1
|
Purzner J, Brown AS, Purzner T, Ellis L, Broski S, Litzenburger U, Andrews K, Sharma A, Wang X, Taylor MD, Cho YJ, Fuller MT, Scott MP. Ezh2 Delays Activation of Differentiation Genes During Normal Cerebellar Granule Neuron Development and in Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624171. [PMID: 39605517 PMCID: PMC11601632 DOI: 10.1101/2024.11.21.624171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. The Sonic Hedgehog (SHH)-medulloblastoma subtype arises from the cerebellar granule neuron lineage. Terminally differentiated neurons are incapable of undergoing further cell division, so an effective treatment for this tumour could be to force neuronal differentiation. Differentiation therapy provides a potential alternative for patients with medulloblastoma who harbor mutations that impair cell death pathways (TP53), which is associated a with high mortality. To this end, our goal was to explore epigenetic regulation of cerebellar granule neuron differentiation in medulloblastoma cells. Key regulators were discovered using chromatin immunoprecipitation with high-throughput sequencing. DNA-bound protein and chromatin protein modifications were investigated across all genes. We discovered that Ezh2-mediated tri-methylation of the H3 histone (H3K27me3), occurred on more than half of the 787 genes whose transcription normally increases as granule neurons terminally differentiate. Conditional knockout of Ezh2 led to early initiation of differentiation in granule neuron precursors (GNPs), but only after cell cycle exit had occurred. Similarly, in MB cells, neuronal differentiation could be induced by preventing H3K27me3 modifications using an Ezh2 inhibitor (UNC1999), but only when UNC1999 was combined with forced cell cycle exit driven by a CDK4/6 inhibitor (Palbociclib). Ezh2 emerges as a powerful restraint upon post-mitotic differentiation during normal GNP development and combination of Ezh2 inhibition with cell cycle exit leads to MB cell differentiation.
Collapse
Affiliation(s)
- James Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Alexander S. Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- EditCo Bio, Redwood City, CA
| | - Teresa Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara Broski
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Nura Bio, South San Francisco, CA
| | - Ulrike Litzenburger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Therapeutic Oncology Research Lab Head, Nuvisan Pharma, Berlin, Germany
| | | | | | - Xin Wang
- Clinician-Scientist Training Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON
| | - Michael D. Taylor
- Pediatric Brain Tumor Research Program, Texas Children’s Hospital, Houston, TX
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Matthew P. Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
2
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Leary SES, Kilburn L, Geyer JR, Kocak M, Huang J, Smith KS, Hadley J, Ermoian R, MacDonald TJ, Goldman S, Phillips P, Young Poussaint T, Olson JM, Ellison DW, Dunkel IJ, Fouladi M, Onar-Thomas A, Northcott PA. Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: A report from the Pediatric Brain Tumor Consortium (PBTC-026). Neuro Oncol 2021; 24:1178-1190. [PMID: 34935967 PMCID: PMC9248403 DOI: 10.1093/neuonc/noab293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Embryonal tumors of the CNS are the most common malignant tumors occurring in the first years of life. This study evaluated the feasibility and safety of incorporating novel non-cytotoxic therapy with vorinostat and isotretinoin to an intensive cytotoxic chemotherapy backbone. METHODS PBTC-026 was a prospective multi-institutional clinical trial for children <48 months of age with newly diagnosed embryonal tumors of the CNS. Treatment included three 21-day cycles of induction therapy with vorinostat and isotretinoin, cisplatin, vincristine, cyclophosphamide, and etoposide; three 28-day cycles of consolidation therapy with carboplatin and thiotepa followed by stem cell rescue; and twelve 28-day cycles of maintenance therapy with vorinostat and isotretinoin. Patients with M0 medulloblastoma (MB) received focal radiation following consolidation therapy. Molecular classification was by DNA methylation array. RESULTS Thirty-one patients with median age of 26 months (range 6-46) received treatment on study; 19 (61%) were male. Diagnosis was MB in 20 and supratentorial CNS embryonal tumor in 11. 24/31 patients completed induction therapy within a pre-specified feasibility window of 98 days. Five-year progression-free survival (PFS) and overall survival (OS) for all 31 patients were 55 ± 15 and 61 ± 13, respectively. Five-year PFS was 42 ± 13 for group 3 MB (n = 12); 80 ± 25 for SHH MB (n = 5); 33 ± 19 for embryonal tumor with multilayered rosettes (ETMR, n = 6). CONCLUSION It was safe and feasible to incorporate vorinostat and isotretinoin into an intensive chemotherapy regimen. Further study to define efficacy in this high-risk group of patients is warranted.
Collapse
Affiliation(s)
- Sarah E S Leary
- Corresponding Author: Sarah E. S. Leary, MD, MS, Seattle Children’s Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA 98105, USA ()
| | - Lindsay Kilburn
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - J Russell Geyer
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mehmet Kocak
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Peter Phillips
- Department of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Olson
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maryam Fouladi
- Department of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Clark RA, Newton M, Qiao J, Lee S, Chung DH. Reactivation of silenced α-N-catenin induces retinoic acid sensitivity in neuroblastoma cells. Surgery 2021; 170:1546-1553. [PMID: 34092372 DOI: 10.1016/j.surg.2021.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND High-risk neuroblastoma remains the most difficult pediatric solid tumor to treat and is associated with chemotherapy and radiation resistance that may be secondary to epigenetic modifications. We have previously found that α-N-catenin, a cell-adhesion protein encoded by the gene CTNNA2, plays a tumor suppressor role in neuroblastoma by inhibiting the NF-κB signaling pathway. A subset of neuroblastoma tumors that lack α-N-catenin are resistant to all-trans retinoic acid. However, the mechanism of CTNNA2 silencing in neuroblastoma remains unknown. Herein, we sought to determine the mechanism of α-N-catenin silencing in neuroblastoma. METHODS Two human neuroblastoma cell lines, SK-N-AS and BE(2)-C, were stably transfected with a plasmid expressing CTNNA2. Both cell lines were treated with the histone deacetylase inhibitor Trichostatin A alone and in combination with retinoic acid. Cell survival and colony formation were measured. Cellular differentiation and expression of cell survival signaling pathways were analyzed. Immunoblotting and reverse transcription quantitative polymerase chain reaction were used to examine protein and messenger RNA expression. RESULTS Retinoic acid treatment induced cellular differentiation and inhibited cellular proliferation in BE(2)-C cells but did not induce differentiation in SK-N-AS cells. Re-expression of α-N-catenin enhanced the sensitivity to retinoic acid-induced cell growth arrest and downregulated key cell survival pathways in both cell lines. Trichostatin A treatment induced CTNNA2 expression in SK-N-AS cells, and combination treatment with Trichostatin A induced retinoic acid sensitivity in retinoic acid-resistant cells. CONCLUSION Re-expression of α-N-catenin in retinoic acid-resistant cells induced sensitivity to retinoic acid treatment and is controlled epigenetically via histone deacetylase. α-N-catenin is a potential biomarker for retinoic acid sensitivity and combination treatment with Trichostatin A and retinoic acid may improve survival among children with high-risk, retinoic acid-resistant neuroblastoma.
Collapse
Affiliation(s)
- Rachael A Clark
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Micah Newton
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jingbo Qiao
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sora Lee
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dai H Chung
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
5
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
6
|
Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer. Int J Mol Sci 2020; 21:ijms21186792. [PMID: 32947930 PMCID: PMC7554966 DOI: 10.3390/ijms21186792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.
Collapse
|
7
|
Perla A, Fratini L, Cardoso PS, Nör C, Brunetto AT, Brunetto AL, de Farias CB, Jaeger M, Roesler R. Histone Deacetylase Inhibitors in Pediatric Brain Cancers: Biological Activities and Therapeutic Potential. Front Cell Dev Biol 2020; 8:546. [PMID: 32754588 PMCID: PMC7365945 DOI: 10.3389/fcell.2020.00546] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Brain cancers are the leading cause of cancer-related deaths in children. Biological changes in these tumors likely include epigenetic deregulation during embryonal development of the nervous system. Histone acetylation is one of the most widely investigated epigenetic processes, and histone deacetylase inhibitors (HDACis) are increasingly important candidate treatments in many cancer types. Here, we review advances in our understanding of how HDACis display antitumor effects in experimental models of specific pediatric brain tumor types, i.e., medulloblastoma (MB), ependymoma (EPN), pediatric high-grade gliomas (HGGs), and rhabdoid and atypical teratoid/rhabdoid tumors (ATRTs). We also discuss clinical perspectives for the use of HDACis in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- Alexandre Perla
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula S Cardoso
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
da Cunha Jaeger M, Ghisleni EC, Cardoso PS, Siniglaglia M, Falcon T, Brunetto AT, Brunetto AL, de Farias CB, Taylor MD, Nör C, Ramaswamy V, Roesler R. HDAC and MAPK/ERK Inhibitors Cooperate To Reduce Viability and Stemness in Medulloblastoma. J Mol Neurosci 2020; 70:981-992. [PMID: 32056089 DOI: 10.1007/s12031-020-01505-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Medulloblastoma (MB), which originates from embryonic neural stem cells (NSCs) or neural precursors in the developing cerebellum, is the most common malignant brain tumor of childhood. Recurrent and metastatic disease is the principal cause of death and may be related to resistance within cancer stem cells (CSCs). Chromatin state is involved in maintaining signaling pathways related to stemness, and inhibition of histone deacetylase enzymes (HDAC) has emerged as an experimental therapeutic strategy to target this cell population. Here, we observed antitumor actions and changes in stemness induced by HDAC inhibition in MB. Analyses of tumor samples from patients with MB showed that the stemness markers BMI1 and CD133 are expressed in all molecular subgroups of MB. The HDAC inhibitor (HDACi) NaB reduced cell viability and expression of BMI1 and CD133 and increased acetylation in human MB cells. Enrichment analysis of genes associated with CD133 or BMI1 expression showed mitogen-activated protein kinase (MAPK)/ERK signaling as the most enriched processes in MB tumors. MAPK/ERK inhibition reduced expression of the stemness markers, hindered MB neurosphere formation, and its antiproliferative effect was enhanced by combination with NaB. These results suggest that combining HDAC and MAPK/ERK inhibitors may be a novel and more effective approach in reducing MB proliferation when compared to single-drug treatments, through modulation of the stemness phenotype of MB cells.
Collapse
Affiliation(s)
- Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Eduarda Chiesa Ghisleni
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Schoproni Cardoso
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marialva Siniglaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Tiago Falcon
- Bioinformatics Core, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
9
|
van Tilburg CM, Milde T, Witt R, Ecker J, Hielscher T, Seitz A, Schenk JP, Buhl JL, Riehl D, Frühwald MC, Pekrun A, Rossig C, Wieland R, Flotho C, Kordes U, Gruhn B, Simon T, Linderkamp C, Sahm F, Taylor L, Freitag A, Burhenne J, Foerster KI, Meid AD, Pfister SM, Karapanagiotou-Schenkel I, Witt O. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin Epigenetics 2019; 11:188. [PMID: 31823832 PMCID: PMC6902473 DOI: 10.1186/s13148-019-0775-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3–18 years) with relapsed or therapy-refractory malignancies. Results A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m2/day with weekly dose escalations of 50 mg/m2 until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m2/day was determined (maximum, 580 mg/m2/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher Cmax. Five patients achieved prolonged disease control (> 12 months) and showed a higher Cmax (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion An SDR of 130 mg/m2/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker. Trial registration ClinicalTrials.gov, NCT01422499. Registered 24 August 2011,
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ruth Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Angelika Seitz
- Division of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens-Peter Schenk
- Division of Pediatric Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane L Buhl
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dennis Riehl
- DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Regina Wieland
- Department of Pediatric Oncology and Hematology, Essen University Hospital, Essen, Germany
| | - Christian Flotho
- Division of Pediatric Oncology and Hematology, Freiburg University Hospital, Freiburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Cologne University Hospital, Cologne, Germany
| | - Christin Linderkamp
- Department of Pediatric Oncology and Hematology, Hannover University Hospital, Hanover, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lenka Taylor
- Pharmacy Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Freitag
- NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Olaf Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
10
|
Hatziagapiou K, Kakouri E, Lambrou GI, Koniari E, Kanakis C, Nikola OA, Theodorakidou M, Bethanis K, Tarantilis PA. Crocins: The Active Constituents of Crocus Sativus L. Stigmas, Exert Significant Cytotoxicity on Tumor Cells In Vitro. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666181029120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::Tumors of the childhood are considered to be grave and devastating pathologies, with high mortality rates. Current therapeutic options like cytotoxic drugs and radiotherapy target both healthy and malignant cells, thus resulting in long-term neurological and intellectual sequelae and endocrinological disorders.Objectives::In this study, we focused on the anticancer potency of crocins, the main constituents of Crocus sativus L, stigmas. Crocins were first extracted using organic solvents from the dried stigmas and then were identified using the HPLC analysis.Materials and Methods::TE-671 cells were treated with the extract of crocins using a range of concentrations between 0.25-mg/ mL and 16 mg/mL. Viability of the cells was measured at 24h, 48h, 72h and 96h. In addition, we have examined the expression levels of the p53 gene using Real-Time Reverse Transcription PCR.Results::Results showed that crocins exerted significant cytotoxic and anti-proliferative effects in a concentration and time - dependent-manner on TE-671 cells. Furthermore, p53 manifested similar expression pattern as the anti-proliferative effect of crocin.Conclusion::Our data demonstrate that crocins could be a novel promising agent for the improvement of tumor treatment.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I. Lambrou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Koniari
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalabos Kanakis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Olti A. Nikola
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Theodorakidou
- Haematology and Oncology Unit, Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Bethanis
- Laboratory of Physics, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
11
|
Williams AP, Garner EF, Stafman LL, Aye JM, Quinn CH, Marayati R, Stewart JE, Atigadda VR, Mroczek-Musulman E, Moore BP, Beierle EA, Friedman GK. UAB30, A Novel Rexinoid Agonist, Decreases Stemness In Group 3 Medulloblastoma Human Cell Line Xenografts. Transl Oncol 2019; 12:1364-1374. [PMID: 31362265 PMCID: PMC6664160 DOI: 10.1016/j.tranon.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE: In spite of advances in therapy for some subtypes, group 3 medulloblastoma continues to portend a poor prognosis. A subpopulation of medulloblastoma cells expressing the cell surface marker CD133 have been posited as possible stem cell like cancer cells (SCLCC), a potential source of drug resistance and relapse. Retinoids have been shown to affect SCLCC in other brain tumors. Based on these findings, we hypothesized that the CD133-enriched cell population group 3 medulloblastoma cells would be sensitive to the novel rexinoid, UAB30. METHODS: Human medulloblastoma cell lines were studied. Cell sorting based on CD133 expression was performed. Both in vitro and in vivo extreme limiting dilution assays were completed to establish CD133 as a SCLCC marker in these cell lines. Cells were treated with either retinoic acid (RA) or UAB30 and sphere forming capacity and CD133 expression were assessed. Immunoblotting was used to assess changes in stem cell markers. Finally, mice injected with CD133-enriched or CD133-depleted cells were treated with UAB30. RESULTS: CD133-enriched cells more readily formed tumorspheres in vitro at lower cell concentrations and formed tumors in vivo at low cell numbers. Treatment with RA or UAB30 decreased CD133 expression, decreased tumorsphere formation, and decreased expression of cancer stem cell markers. In vivo studies demonstrated that tumors from both CD133-enriched and CD133-depleted cells were sensitive to treatment with UAB30. CONCLUSIONS: CD133 is a marker for medulloblastoma SCLCCs. Both CD133-enriched and CD133-depleted medulloblastoma cell populations demonstrated sensitivity to UAB30, indicating its potential as a therapeutic option for group 3 medulloblastoma.
Collapse
Affiliation(s)
- Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | | | | | - Blake P Moore
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL.
| | - Gregory K Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Garner EF, Stafman LL, Williams AP, Aye JM, Goolsby C, Atigadda VR, Moore BP, Nan L, Stewart JE, Hjelmeland AB, Friedman GK, Beierle EA. UAB30, a novel RXR agonist, decreases tumorigenesis and leptomeningeal disease in group 3 medulloblastoma patient-derived xenografts. J Neurooncol 2018; 140:209-224. [PMID: 30132166 PMCID: PMC6239946 DOI: 10.1007/s11060-018-2950-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Group 3 tumors account for approximately 25-30% of medulloblastomas and have the worst prognosis. UAB30 is a novel synthetic rexinoid shown to have limited toxicities in humans and significant efficacy in the pediatric neuroectodermal tumor, neuroblastoma. We hypothesized that treatment with UAB30 would decrease tumorigenicity in medulloblastoma patient-derived xenografts (PDXs). METHODS Three group 3 medulloblastoma PDXs (D341, D384 and D425) were utilized. Cell viability, proliferation, migration and invasion assays were performed after treatment with UAB30 or 13-cis-retinoic acid (RA). Cell cycle analysis was completed using flow cytometry. A flank model, a cerebellar model, and a model of leptomeningeal metastasis using human medulloblastoma PDX cells was used to assess the in vivo effects of UAB30 and RA. RESULTS UAB30 treatment led to cell differentiation and decreased medulloblastoma PDX cell viability, proliferation, migration and invasion and G1 cell cycle arrest in all three PDXs similar to RA. UAB30 and RA treatment of mice bearing medulloblastoma PDX tumors resulted in a significant decrease in tumor growth and metastasis compared to vehicle treated animals. CONCLUSIONS UAB30 decreased viability, proliferation, and motility in group 3 medulloblastoma PDX cells and significantly decreased tumor growth in vivo in a fashion similar to RA, suggesting that further investigations into the potential therapeutic application of UAB30 for medulloblastoma are warranted.
Collapse
Affiliation(s)
- Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Caroline Goolsby
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Blake P Moore
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Li Nan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA.
- , Birmingham, USA.
| |
Collapse
|
13
|
A biobank of patient-derived pediatric brain tumor models. Nat Med 2018; 24:1752-1761. [PMID: 30349086 DOI: 10.1038/s41591-018-0207-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/14/2018] [Indexed: 01/12/2023]
Abstract
Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments, better preclinical models adequately reflecting the biological heterogeneity are needed. Through the Children's Oncology Group ACNS02B3 study, we have generated and comprehensively characterized 30 patient-derived orthotopic xenograft models and seven cell lines representing 14 molecular subgroups of pediatric brain tumors. Patient-derived orthotopic xenograft models were found to be representative of the human tumors they were derived from in terms of histology, immunohistochemistry, gene expression, DNA methylation, copy number, and mutational profiles. In vivo drug sensitivity of targeted therapeutics was associated with distinct molecular tumor subgroups and specific genetic alterations. These models and their molecular characterization provide an unprecedented resource for the cancer community to study key oncogenic drivers and to evaluate novel treatment strategies.
Collapse
|
14
|
Russo R, Cimmino F, Pezone L, Manna F, Avitabile M, Langella C, Koster J, Casale F, Raia M, Viola G, Fischer M, Iolascon A, Capasso M. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients. Carcinogenesis 2017; 38:1011-1020. [DOI: 10.1093/carcin/bgx077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Lucia Pezone
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
- Department of Medicine, University of Verona,
| | - Francesco Manna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Concetta Langella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands,
| | - Fiorina Casale
- Servizio di Oncologia Pediatrica, Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica—Seconda Università degli Studi di Napoli, Italy,
| | | | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova, Italy,
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University of Cologne Children’s Hospital, Cologne, Germany,
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany and
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy,
- CEINGE Biotecnologie Avanzate, Napoli, Italy,
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| |
Collapse
|
15
|
|
16
|
[Anti-tumor effects of 13-cis-retinoic acid combined with interferon α-2b in animal model of mantle cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:784-789. [PMID: 27719722 PMCID: PMC7342114 DOI: 10.3760/cma.j.issn.0253-2727.2016.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
目的 评估13-顺式维甲酸(13cRA)和IFN-α-2b单用,以及二者联合应用对套细胞淋巴瘤(MCL)动物模型的抗肿瘤效应,并探讨其作用机制。 方法 构建MCL细胞株Jeko-1细胞重症联合免疫缺陷小鼠模型,将荷瘤小鼠随机分成阴性对照组(溶剂),高(200 mg/kg)、中(100 mg/kg)、低(50 mg/kg)13cRA剂量组,IFN-α-2b组,不同剂量13cRA联合IFN-α-2b组,阳性对照组(硼替佐米+利妥昔单抗+环磷酰胺),同时进行干预治疗。定期观察荷瘤小鼠肿瘤体积变化,计算相对肿瘤增殖率、抑瘤率。采用免疫组化法检测Ki-67的表达。采用缺口末端标记法检测肿瘤组织细胞凋亡情况。采用Western blot法检测Cyclin D1、caspase-9及视网膜神经胶质瘤蛋白(Rb)等的表达水平。 结果 ①中、高剂量13cRA组及中、高剂量13cRA联合IFN-α-2b组的相对肿瘤增殖率分别为30%、37%、32%和33%。②低、中、高剂量13cRA组或其联合IFN-α-2b组的抑瘤率均较阴性对照组明显增高(P<0.05),不同剂量13cRA组间、单用IFN-α-2b组抑瘤率与阴性对照组比较差异均无统计学意义(P值均>0.05)。中剂量13cRA组或其联合IFN-α-2b组抑瘤率最高,分别为59.2%、62.6%,与阳性对照组(69.4%)差异无统计学意义(P>0.05)。③Ki-67在各组的表达差异无统计学意义(P=0.342)。④不同剂量13cRA组及其联合IFN-α-2b组凋亡细胞数均较阴性对照组明显增加(P<0.05),与阳性对照组差异无统计学意义(P=0.170);阴性对照组凋亡细胞数与IFN-α-2b组差异无统计学意义(P=0.098)。⑤不同剂量13cRA联合IFN-α-2b组与阴性对照组比较,cycling D1及procaspase-9降低,cleaved caspase-9升高,与阳性对照组表达相当;不同剂量13cRA组与阴性对照组比较,则未见明显差异。 结论 在MCL动物模型中IFN-α-2b单用并未显示出疗效;13cRA单用及其与IFN-α-2b联合应用均显示出抑制肿瘤生长效应,其作用机制可能为通过下调Cyclin D1的表达而抑制细胞增殖或者激活caspase-9诱导凋亡。
Collapse
|
17
|
Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN. An epigenetic gateway to brain tumor cell identity. Nat Neurosci 2016; 19:10-9. [PMID: 26713744 PMCID: PMC5568053 DOI: 10.1038/nn.4190] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
Abstract
Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks and disruption of chromatin structure. In this Review, we describe the convergence of genetic, metabolic and microenvironmental factors on mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state and neoplastic transformation, as well as addressing the potential to exploit these alterations as new therapeutic strategies for the treatment of brain cancer.
Collapse
Affiliation(s)
- Stephen C. Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Christopher G. Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Tyler E. Miller
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Michael D. Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| |
Collapse
|
18
|
The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers (Basel) 2015; 7:1658-83. [PMID: 26343726 PMCID: PMC4586789 DOI: 10.3390/cancers7030856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.
Collapse
|
19
|
Cheung BB, Tan O, Koach J, Liu B, Shum MSY, Carter DR, Sutton S, Po'uha ST, Chesler L, Haber M, Norris MD, Kavallaris M, Liu T, O'Neill GM, Marshall GM. Thymosin-β4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma. Mol Oncol 2015; 9:1484-500. [PMID: 25963741 PMCID: PMC5528804 DOI: 10.1016/j.molonc.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022] Open
Abstract
Retinoids are an important component of neuroblastoma therapy at the stage of minimal residual disease, yet 40-50% of patients treated with 13-cis-retinoic acid (13-cis-RA) still relapse, indicating the need for more effective retinoid therapy. Vorinostat, or Suberoylanilide hydroxamic acid (SAHA), is a potent inhibitor of histone deacetylase (HDAC) classes I & II and has antitumor activity in vitro and in vivo. Fenretinide (4-HPR) is a synthetic retinoid which acts on cancer cells through both nuclear retinoid receptor and non-receptor mechanisms. In this study, we found that the combination of 4-HPR + SAHA exhibited potent cytotoxic effects on neuroblastoma cells, much more effective than 13-cis-RA + SAHA. The 4-HPR + SAHA combination induced caspase-dependent apoptosis through activation of caspase 3, reduced colony formation and cell migration in vitro, and tumorigenicity in vivo. The 4-HPR and SAHA combination significantly increased mRNA expression of thymosin-beta-4 (Tβ4) and decreased mRNA expression of retinoic acid receptor α (RARα). Importantly, the up-regulation of Tβ4 and down-regulation of RARα were both necessary for the 4-HPR + SAHA cytotoxic effect on neuroblastoma cells. Moreover, Tβ4 knockdown in neuroblastoma cells increased cell migration and blocked the effect of 4-HPR + SAHA on cell migration and focal adhesion formation. In primary human neuroblastoma tumor tissues, low expression of Tβ4 was associated with metastatic disease and predicted poor patient prognosis. Our findings demonstrate that Tβ4 is a novel therapeutic target in neuroblastoma, and that 4-HPR + SAHA is a potential therapy for the disease.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia.
| | - Owen Tan
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Michael S Y Shum
- Kids Research Institute, Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Sela T Po'uha
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research, Sutton, Surrey, UK
| | - Michelle Haber
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Geraldine M O'Neill
- Kids Research Institute, Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia; Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia.
| |
Collapse
|
20
|
Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy. Biochim Biophys Acta Rev Cancer 2015; 1856:62-72. [PMID: 26080084 DOI: 10.1016/j.bbcan.2015.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
Abstract
Hedgehog signaling is a key regulator of development and stem cell fate and its aberrant activation is a leading cause of a number of tumors. Activating germline or somatic mutations of genes encoding Hh pathway components are found in Basal Cell Carcinoma (BCC) and Medulloblastoma (MB). Ligand-dependent Hedgehog hyperactivation, due to autocrine or paracrine mechanisms, is also observed in a large number of malignancies of the breast, colon, skin, bladder, pancreas and other tissues. The key tumorigenic role of Hedgehog has prompted effort aimed at identifying inhibitors of this signaling. To date, only the antagonists of the membrane transducer Smo have been approved for therapy or are under clinical trials in patients with BCC and MB linked to Ptch or Smo mutations. Despite the good initial response, patients treated with Smo antagonists have eventually developed resistance due to the occurrence of compensating mechanisms. Furthermore, Smo antagonists are not effective in tumors where the Hedgehog hyperactivation is due to mutations of pathway components downstream of Smo, or in case of non-canonical, Smo-independent activation of the Gli transcription factors. For all these reasons, the research of Hh inhibitors acting downstream of Smo is becoming an area of intensive investigation. In this review we illustrate the progresses made in the identification of effective Hedgehog inhibitors and their application in cancer, with a special emphasis on the newly identified downstream inhibitors. We describe in detail the Gli inhibitors and illustrate their mode of action and applications in experimental and/or clinical settings.
Collapse
|
21
|
High-dose Chemotherapy With Autologous Stem Cell Rescue in Saudi Children Less Than 3 Years of Age With Embryonal Brain Tumors. J Pediatr Hematol Oncol 2015; 37:204-8. [PMID: 25551668 DOI: 10.1097/mph.0000000000000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-dose chemotherapy with autologous stem cell rescue (HDC/ASCR) has been used in children under the age of 3 years with embryonal brain tumors to avoid or delay the use of radiation. We reviewed the medical records of 10 Saudi children less than 3 years of age with embryonal brain tumors who underwent HDC/ASCR. All 10 patients underwent surgical resection followed by 3 to 5 cycles of induction chemotherapy and 1 to 3 cycles of HDC/ASCR using carboplatin and thiotepa. Isotretinoin was used as a maintenance therapy in 4 patients. Five patients had medulloblastoma, 3 had atypical teratoid/rhabdoid tumors, 1 had an embryonal tumor with abundant neuropil and true rosettes, and 1 had pineoblastoma. The median age of the patients was 1.9 years. A total of 19 HDC/ASCR procedures were performed. Radiotherapy (RT) was administered to 5 patients after HDC/ASCR and as a salvage therapy in 1 patient. The progression-free survival rate was 50% at 1 year and at 2 years, with a median follow-up of 24 months. All 5 patients with medulloblastoma are still alive without evidence of disease, but the other patients died secondary to tumor progression. This experience suggests that strategies combining myeloablative chemotherapy and autologous stem cell rescue appear to be feasible for children with embryonal brain tumors in the Middle East.
Collapse
|
22
|
Abstract
Histone deacetylase inhibitors (HDACis) have fascinated researchers in almost all fields of oncology for many years owing to their pleiotropic effects on nearly every aspect of cancer biology. Since the approval of the first HDACi vorinostat for the treatment of cutaneous T-cell leukemia in 2006, more than a hundred clinical trials have been initiated with a HDACi as a single agent or in combination therapy. Although a number of epigenetic and nonepigenetic molecular mechanisms of action have been proposed, biomarkers for response prediction and patient selection are still lacking. One of the inherent problems in the field of HDACis is their 'reverse' history of drug development: these compounds reached clinical application at an early stage, before the biology of their targets, HDAC1-11, was sufficiently understood. This review summarizes the current knowledge on the human family of HDACs as drug targets in pediatric and adult brain tumors, the efficacy and molecular action of HDACis in preclinical models, as well as the current status of the clinical development of these compounds in the field of neuro-oncology.
Collapse
Affiliation(s)
- Jonas Ecker
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
24
|
DeSouza RM, Jones BRT, Lowis SP, Kurian KM. Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Front Oncol 2014; 4:176. [PMID: 25101241 PMCID: PMC4105823 DOI: 10.3389/fonc.2014.00176] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/23/2014] [Indexed: 01/07/2023] Open
Abstract
As advances in the molecular and genetic profiling of pediatric medulloblastoma evolve, associations with prognosis and treatment are found (prognostic and predictive biomarkers) and research is directed at molecular therapies. Medulloblastoma typically affects young patients, where the implications of any treatment on the developing brain must be carefully considered. The aim of this article is to provide a clear comprehensible update on the role molecular profiling and subgroups in pediatric medulloblastoma as it is likely to contribute significantly toward prognostication. Knowledge of this classification is of particular interest because there are new molecular therapies targeting the Shh subgroup of medulloblastomas.
Collapse
Affiliation(s)
| | | | | | - Kathreena M Kurian
- Brain Tumour Group, Institute of Clinical Neuroscience, University of Bristol , Bristol , UK
| |
Collapse
|
25
|
Merve A, Dubuc AM, Zhang X, Remke M, Baxter PA, Li XN, Taylor MD, Marino S. Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. Acta Neuropathol Commun 2014; 2:10. [PMID: 24460684 PMCID: PMC3928978 DOI: 10.1186/2051-5960-2-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022] Open
Abstract
Background Medulloblastoma is the most common intracranial childhood malignancy and a genetically heterogeneous disease. Despite recent advances, current therapeutic approaches are still associated with high morbidity and mortality. Recent molecular profiling has suggested the stratification of medulloblastoma from one single disease into four distinct subgroups namely: WNT Group (best prognosis), SHH Group (intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate prognosis). BMI1 is a Polycomb group repressor complex gene overexpressed across medulloblastoma subgroups but most significantly in Group 4 tumours. Bone morphogenetic proteins are morphogens belonging to TGF-β superfamily of growth factors, known to inhibit medulloblastoma cell proliferation and induce apoptosis. Results Here we demonstrate that human medulloblastoma of Group 4 characterised by the greatest overexpression of BMI1, also display deregulation of cell adhesion molecules. We show that BMI1 controls intraparenchymal invasion in a novel xenograft model of human MB of Group 4, while in vitro assays highlight that cell adhesion and motility are controlled by BMI1 in a BMP dependent manner. Conclusions BMI1 controls MB cell migration and invasion through repression of the BMP pathway, raising the possibility that BMI1 could be used as a biomarker to identify groups of patients who may benefit from a treatment with BMP agonists.
Collapse
|
26
|
Lafay-Cousin L, Hader W, Wei XC, Nordal R, Strother D, Hawkins C, Chan JA. Post-chemotherapy maturation in supratentorial primitive neuroectodermal tumors. Brain Pathol 2013; 24:166-72. [PMID: 24033491 DOI: 10.1111/bpa.12089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022] Open
Abstract
Maturation in central nervous system embryonal tumors is an uncommon phenomenon that is mainly reported in the context of specific histological subgroups of medulloblastoma. In this report we describe two cases of histological maturation in patients with supratentorial primitive neuroectodermal tumor with strikingly different outcomes. We discuss the potential impact of such findings on treatment and outcome.
Collapse
Affiliation(s)
- Lucie Lafay-Cousin
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Spyropoulou A, Piperi C, Adamopoulos C, Papavassiliou AG. Deregulated chromatin remodeling in the pathobiology of brain tumors. Neuromolecular Med 2013; 15:1-24. [PMID: 23114751 DOI: 10.1007/s12017-012-8205-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors encompass a heterogeneous group of malignant tumors with variable histopathology, aggressiveness, clinical outcome and prognosis. Current gene expression profiling studies indicate interplay of genetic and epigenetic alterations in their pathobiology. A central molecular event underlying epigenetics is the alteration of chromatin structure by post-translational modifications of DNA and histones as well as nucleosome repositioning. Dynamic remodeling of the fundamental nucleosomal structure of chromatin or covalent histone marks located in core histones regulate main cellular processes including DNA methylation, replication, DNA-damage repair as well as gene expression. Deregulation of these processes has been linked to tumor suppressor gene silencing, cancer initiation and progression. The reversible nature of deregulated chromatin structure by DNA methylation and histone deacetylation inhibitors, leading to re-expression of tumor suppressor genes, makes chromatin-remodeling pathways as promising therapeutic targets. In fact, a considerable number of these inhibitors are being tested today either alone or in combination with other agents or conventional treatments in the management of brain tumors with considerable success. In this review, we focus on the mechanisms underpinning deregulated chromatin remodeling in brain tumors, discuss their potential clinical implications and highlight the advances toward new therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | | | |
Collapse
|
28
|
Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PLoS One 2013; 8:e71455. [PMID: 23951168 PMCID: PMC3739791 DOI: 10.1371/journal.pone.0071455] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022] Open
Abstract
Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.
Collapse
Affiliation(s)
- Seung Joon Lee
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Stephan Lindsey
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Bruce Graves
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Soonmoon Yoo
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - James M. Olson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sigrid A. Langhans
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hanson JE, La H, Plise E, Chen YH, Ding X, Hanania T, Sabath EV, Alexandrov V, Brunner D, Leahy E, Steiner P, Liu L, Scearce-Levie K, Zhou Q. SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS One 2013; 8:e69964. [PMID: 23922875 PMCID: PMC3724849 DOI: 10.1371/journal.pone.0069964] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/physiology
- Cognition/drug effects
- Conditioning, Psychological/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacokinetics
- Hydroxamic Acids/pharmacology
- Inhibitory Concentration 50
- Isoenzymes/metabolism
- Long-Term Potentiation/drug effects
- Membranes/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuronal Plasticity/drug effects
- Phenotype
- Rats
- Rats, Sprague-Dawley
- Synapses/drug effects
- Synapses/physiology
- Vorinostat
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech, Inc South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sampson VB, Gorlick R, Kamara D, Anders Kolb E. A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol 2013; 3:132. [PMID: 23755370 PMCID: PMC3668267 DOI: 10.3389/fonc.2013.00132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/12/2013] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma, the most common malignant bone tumor of childhood, is a high-grade primary bone sarcoma that occurs mostly in adolescence. Standard treatment consists of surgery in combination with multi-agent chemotherapy regimens. The development and approval of imatinib for Philadelphia chromosome-positive acute lymphoblastic leukemia in children and the fully human monoclonal antibody, anti-GD2, as part of an immune therapy for high-risk neuroblastoma patients have established the precedent for use of targeted inhibitors along with standard chemotherapy backbones. However, few targeted agents tested have achieved traditional clinical endpoints for osteosarcoma. Many biological agents demonstrating anti-tumor responses in preclinical and early-phase clinical testing have failed to reach response thresholds to justify randomized trials with large numbers of patients. The development of targeted therapies for pediatric cancer remains a significant challenge. To aid in the prioritization of new agents for clinical testing, the Pediatric Preclinical Testing Program (PPTP) has developed reliable and robust preclinical pediatric cancer models to rapidly screen agents for activity in multiple childhood cancers and establish pharmacological parameters and effective drug concentrations for clinical trials. In this article, we examine a range of standard and novel agents that have been evaluated by the PPTP, and we discuss the preclinical and clinical development of these for the treatment of osteosarcoma. We further demonstrate that committed resources for hypothesis-driven drug discovery and development are needed to yield clinical successes in the search for new therapies for this pediatric disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Childhood Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | | | | | | |
Collapse
|
31
|
Grunda JM, Wang D, Clines GA. Development and characterization of murine models of medulloblastoma extraneural growth in bone. Clin Exp Metastasis 2013; 30:769-79. [PMID: 23494821 DOI: 10.1007/s10585-013-9577-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/27/2013] [Indexed: 01/02/2023]
Abstract
Medulloblastoma is a malignant pediatric brain neoplasm with an unusual predilection for metastasis to the skeleton. The objective of this study was to generate and characterize murine models of medulloblastoma extraneural growth in bone as 'discovery tools' for the identification of unrecognized signal transduction pathways and factors driving metastatic bone disease. To this end, the human Daoy and D283 medulloblastoma cell lines were inoculated into the intratibial medullary space of athymic nude mice. Daoy injected mice developed a primarily osteolytic radiographic and histological phenotype. In contrast, both areas of osteolytic and osteosclerotic activity were evident in D283 inoculated bones. D283 and Daoy cell conditioned media increased in vitro osteoblast differentiation and is consistent with the enhanced bone turnover characteristic of bone metastases. Daoy cells also significantly increased bone marrow osteoclast formation, consistent with the robust in vivo osteolytic phenotype. A survey of secreted factors implicated in bone metastasis and expressed by D283 and Daoy was performed. High expression of the bone-homing factor, CXCR4, was observed in both Daoy and D283 tissues. Consistent with the skeletal phenotypes, Daoy cells, while secreting the osteoblastic factor ET-1, abundantly produced the osteolytic factors RANKL, PTHrP and TNFα. D283 cells produced high levels of both RANKL and ET-1. These newly described animal models of medulloblastoma bone metastasis are expected to serve as platforms to aid in the elucidation of novel bone metastasis signaling cascades and to test therapeutics that target both medulloblastoma metastasis and the primary tumor.
Collapse
Affiliation(s)
- Jessica M Grunda
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Boshell Diabetes Building RM 730B, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | |
Collapse
|
32
|
A contemporary review of molecular candidates for the development and treatment of childhood medulloblastoma. Childs Nerv Syst 2013; 29:381-8. [PMID: 23292496 DOI: 10.1007/s00381-012-2014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/22/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous system tumor; however, the causes are not well established. There has been some emphasis on mutations in developmental pathways and their impact on tumor pathology in hereditary diseases, but, in order to better understand the nature of diseases like medulloblastoma, other mechanisms also require attention. PURPOSE The purpose of this review is to provide an overview of the main genes involved in neurodevelopment, their downstream targets, and modulatory links by growth factors. Occurrence of pediatric brain tumors including medulloblastoma are mostly sporadic, but some hereditary diseases like Li-Fraumeni syndrome, Gorlin's syndrome, Turcot's syndrome, and Rubenstein-Tarbi syndrome are known to contribute their development as consequences of germline mutations at specific points: DNA-repairing gene Tp53 for Li-Fraumeni syndrome or Patch for Gorlin's, and apoptosis-related gene product adenomatous polyposis coli for Turcot's disease. CONCLUSION Intracellular relations at molecular level and future therapeutics that specifically target the corresponding pathways should be well understood in order to prevent and cure childhood medulloblastoma.
Collapse
|
33
|
Northcott PA, Dubuc AM, Pfister S, Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother 2012; 12:871-84. [PMID: 22853794 DOI: 10.1586/ern.12.66] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understanding of the core medulloblastoma subgroups, focusing largely on clinically relevant discoveries that have already, and will continue to, shape research.
Collapse
Affiliation(s)
- Paul A Northcott
- The Arthur & Sonia Labatt Brain Tumour Research Center, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
34
|
Conceição N, Viegas M, Fidalgo J, Cancela ML. Development and characterization of Xl1, a Xenopus laevis chondrocyte-like cell culture. Mol Cell Biochem 2012; 373:41-51. [PMID: 23054192 DOI: 10.1007/s11010-012-1473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
We describe the development and characterization of a new cell line, designated Xl1, derived from vertebra and long bones of Xenopus laevis. These cells can mineralize their extracellular matrix upon addition of an inorganic phosphate donor and vitamin C, as characterized by von Kossa staining. In addition they express genes such as matrix gla protein (mgp), alkaline phosphatase, type II collagen, and retinoic acid receptors, representing a valuable tool to analyze expression and regulation of Xenopus cartilage-associated genes. Continuous treatment with retinoic acid (RA) inhibited mineralization, alkaline phosphatase expression and its activity, suggesting that RA is a potential negative regulator of Xl1 cell differentiation. These cells are receptive to efficient transfer of DNA using conventional methods including calcium phosphate, liposome-mediated transfer or electroporation and were found to express basal levels of mgp at least 50-fold higher than the routinely used Xenopus A6 cell line, as seen by transcription assays with the distal X. laevis mgp promoter. Being the first amphibian cell line derived from bone tissue, the Xl1 culture provides an excellent in vitro tool for functional promoter studies, being suitable, among other uses, for identifying promoter elements mediating cartilage-expressed genes as shown here for mgp.
Collapse
Affiliation(s)
- Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
35
|
Milde T, Lodrini M, Savelyeva L, Korshunov A, Kool M, Brueckner LM, Antunes ASLM, Oehme I, Pekrun A, Pfister SM, Kulozik AE, Witt O, Deubzer HE. HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. J Neurooncol 2012; 110:335-48. [PMID: 23054560 DOI: 10.1007/s11060-012-0978-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
Medulloblastomas are the most common malignant brain tumors in childhood. Emerging evidence suggests that medulloblastoma comprises at least four distinct diseases (WNT, SHH, Group 3 and 4) with different biology, clinical presentation, and outcome, with especially poor prognosis in Group 3. The tight connection of biology and clinical behavior in patients emphasizes the need for subgroup-specific preclinical models in order to develop treatments tailored to each subgroup. Herein we report on the novel cell line HD-MB03, isolated from tumor material of a patient with metastasized Group 3 medulloblastoma, and preclinical testing of different histone deacetylase inhibitors (HDACis) in this model. HD-MB03 cells grow long term in vitro and form metastatic tumors in vivo upon orthotopic transplantation. HD-MB03 cells reflect the original Group 3 medulloblastoma at the histological and molecular level, showing large cell morphology, similar expression patterns for markers Ki67, p53, and glial fibrillary acidic protein (GFAP), a gene expression profile most closely matching Group 3 medulloblastomas, and persistence of typical molecular alterations, i.e., isochromosome 17q [i(17q)] and MYC amplification. Protein expression analysis of HDACs 2, 5, 8, and 9 as well as the predictive marker HR23B showed intermediate to strong expression, suggesting sensitivity to HDACis. Indeed, treatment with HDACis Helminthosporium carbonum (HC)-toxin, vorinostat, and panobinostat revealed high sensitivity to this novel drug class, as well as a radiation-sensitizing effect with significantly increased cell death upon concomitant treatment. In summary, our data indicate that HD-MB03 is a suitable preclinical model for Group 3 medulloblastoma, and HDACis could represent a therapeutic option for this subgroup.
Collapse
Affiliation(s)
- Till Milde
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Masetti R, Biagi C, Zama D, Vendemini F, Martoni A, Morello W, Gasperini P, Pession A. Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Adv Ther 2012; 29:747-62. [PMID: 22941525 DOI: 10.1007/s12325-012-0047-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Indexed: 01/20/2023]
Abstract
Retinoids are lipophilic compounds derived from vitamin A, which have been extensively studied in cancer prevention and therapy. In pediatric oncology, they are successfully used for the treatment of acute promyelocytic leukemia (APL) and high-risk neuroblastoma (HR-NBL). APL is a subtype of acute myeloid leukemia (AML) clinically characterized by a severe bleeding tendency with a highrisk of fatal hemorrhage. The molecular hallmark of this disease is the presence of the promyelocytic leukemia (PML)-retinoic acid receptor-α (RAR α) gene fusion that plays a critical role in promyelocytic leukemogenesis and represents the target of retinoid therapy. The introduction in the late 1980s of all-trans retinoic acid (ATRA) into the therapy of APL radically changed the management and the outcome of this disease. Presently, the standard front-line therapeutic approach for pediatric APL includes anthracycline-based chemotherapy and ATRA, leading to a complete remission in almost 90% of the patients. Neuroblastoma (NBL) is an aggressive childhood tumor derived from the peripheral neural crest. More than half of patients have a high-risk disease, with a poor outcome despite intensive multimodal treatment. Although the exact mechanism of action remains unclear, the introduction of 13-cis-retinoic acid (13-cis-RA) in the therapy of NBL has improved the prognosis of this disease. Currently, the standard treatment for HR-NBL consists of myeloablative therapy followed by autologous hematopoietic stem cell transplantation (HSCT) and maintenance with 13-cis-RA for the treatment of minimal residual disease, leading to a 3-year disease-free survival rate (DFS) of about 50%. In this paper the authors provide a review of the peer-reviewed literature on the role of retinoids in the treatment of pediatric APL and HR-NBL, summarizing the most relevant clinical trial results of the last decades, analyzing the ongoing trials, and investigating future therapeutic perspectives of children affected by these diseases.
Collapse
Affiliation(s)
- Riccardo Masetti
- Paediatric Oncology and Haematology Unit Lalla Seràgnoli, University of Bologna, Sant'Orsola-Malpighi Hospital, Via Massarenti 11, 40137, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Samkari A, Hwang E, Packer RJ. Medulloblastoma/Primitive neuroectodermal tumor and germ cell tumors: the uncommon but potentially curable primary brain tumors. Hematol Oncol Clin North Am 2012; 26:881-95. [PMID: 22794288 DOI: 10.1016/j.hoc.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article presents an overview of medulloblastomas, central nervous system primitive neuroectodermal tumors, and germ cell tumors for the practicing oncologist. Discussion includes the definition of these tumors, histopathologic findings, molecular and genetic characteristics, prognoses, and evolution of treatment.
Collapse
Affiliation(s)
- Ayman Samkari
- The Brain Tumor Institute, Division of Neurology, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
38
|
Nageswara Rao AA, Scafidi J, Wells EM, Packer RJ. Biologically targeted therapeutics in pediatric brain tumors. Pediatr Neurol 2012; 46:203-11. [PMID: 22490764 PMCID: PMC3654250 DOI: 10.1016/j.pediatrneurol.2012.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 02/10/2012] [Indexed: 01/10/2023]
Abstract
Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale.
Collapse
Affiliation(s)
- Amulya A. Nageswara Rao
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota,Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Elizabeth M. Wells
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
| | - Roger J. Packer
- Department of Neurology and Pediatrics, George Washington University, Washington, DC,Brain Tumor Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC,Communications should be addressed to: Dr. Packer; Department of Neurology; Children’s National Medical Center; 111 Michigan Avenue NW; Washington, DC 20010.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Most children diagnosed with cancer today are expected to be cured. Medulloblastoma, the most common pediatric malignant brain tumor, is an example of a disease that has benefitted from advances in diagnostic imaging, surgical techniques, radiation therapy and combination chemotherapy over the past decades. It was an incurable disease 50 years ago, but approximately 70% of children with medulloblastoma are now cured of their disease. However, the pace of increasing the cure rate has slowed over the past 2 decades, and we have likely reached the maximal benefit that can be achieved with cytotoxic therapy and clinical risk stratification. Long-term toxicity of therapy also remains significant. To increase cure rates and decrease long-term toxicity, there is great interest in incorporating biologic 'targeted' therapy into treatment of medulloblastoma, but this will require a paradigm shift in how we classify and study disease. RECENT FINDINGS Using genome-based high-throughput analytic techniques, several groups have independently reported methods of molecular classification of medulloblastoma within the past year. This has resulted in a working consensus to view medulloblastoma as four molecular subtypes, including wingless-type murine mammary tumor virus integration site (WNT) pathway subtype, Sonic Hedgehog pathway subtype and two less well defined subtypes (groups C and D). SUMMARY Novel classification and risk stratification based on biologic subtypes of disease will form the basis of further study in medulloblastoma and identify specific subtypes that warrant greater research focus.
Collapse
|
40
|
GU C, YOKOTA N, GAO Y, AMANO S, KOIZUMI S, TOKUYAMA T, NAMBA H. Molecular Targeting Therapy Against Promyelocytic Leukemia Protein Using Arsenic Acids in Experimental Intracranial Medulloblastoma. Neurol Med Chir (Tokyo) 2012; 52:62-7. [DOI: 10.2176/nmc.52.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Chunyu GU
- Department of Neurosurgery, Hamamatsu University School of Medicine
- Department of Neurosurgery, Shengjing Hospital of China Medical University
| | - Naoki YOKOTA
- Department of Neurosurgery, Hamamatsu University School of Medicine
- Yokohama CyberKife Center
| | - Yun GAO
- Department of Neurosurgery, Hamamatsu University School of Medicine
| | - Shinji AMANO
- Department of Neurosurgery, Hamamatsu University School of Medicine
| | | | - Tsutomu TOKUYAMA
- Department of Neurosurgery, Hamamatsu University School of Medicine
| | - Hiroki NAMBA
- Department of Neurosurgery, Hamamatsu University School of Medicine
| |
Collapse
|
41
|
Impact of UDP-gluconoryltransferase 2B17 genotype on vorinostat metabolism and clinical outcomes in Asian women with breast cancer. Pharmacogenet Genomics 2011; 21:760-8. [DOI: 10.1097/fpc.0b013e32834a8639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Nör C, de Farias CB, Abujamra AL, Schwartsmann G, Brunetto AL, Roesler R. The histone deacetylase inhibitor sodium butyrate in combination with brain-derived neurotrophic factor reduces the viability of DAOY human medulloblastoma cells. Childs Nerv Syst 2011; 27:897-901. [PMID: 21560052 DOI: 10.1007/s00381-011-1439-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/17/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE Histone deacetylase inhibitors (HDACis) are a promising class of anticancer agents for the treatment of brain tumors. HDACis can increase the expression of brain-derived neurotrophic factor (BDNF) in brain cells. We have previously shown that BDNF reduces the viability of medulloblastoma cells. The aim of the present study was to examine the effect of the HDACi sodium butyrate (NaB) combined with human recombinant BDNF (hrBDNF), on the viability of human medulloblastoma cell lines. METHODS DAOY and ONS76 medulloblastoma cells were treated with NaB, hrBDNF, or NaB combined with hrBDNF. Cell viability was measured with the MTT assay. RESULTS NaB combined with hrBDNF significantly reduced the viability of DAOY medulloblastoma cells. In ONS76 cells, NaB alone reduced viability, but the effect was not potentiated by hrBDNF. CONCLUSION These findings provide early evidence for a rationale supporting further evaluation of HDACis and BDNF as a new combinatorial approach to inhibit the growth of medulloblastoma.
Collapse
Affiliation(s)
- Carolina Nör
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Onvani S, Etame AB, Smith CA, Rutka JT. Genetics of medulloblastoma: clues for novel therapies. Expert Rev Neurother 2010; 10:811-23. [PMID: 20420498 DOI: 10.1586/ern.10.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Current medulloblastoma therapy entails surgery, radiation and chemotherapy. The 5-year survival rate for patients ranges from 40 to 70%, with most survivors suffering from serious long-term treatment-related sequelae. Additional research on the molecular biology and genetics of medulloblastoma is needed to identify robust prognostic markers for disease-risk stratification, to improve current treatment regimes and to discover novel and more effective molecular-targeted therapies. Recent advances in molecular biology have led to the development of powerful tools for the study of medulloblastoma tumorigenesis, which have revealed new insights into the molecular underpinnings of this disease. Here we discuss the signaling pathway alterations implicated in medulloblastoma pathogenesis, the techniques used in molecular profiling of these tumors and recent molecular subclassification schemes. Particular emphasis is given to the identification of novel molecular targets for less toxic, patient-tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sara Onvani
- The Hospital for Sick Children, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, Zwiebel J, Blaney SM, Adamson PC. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children's Oncology Group phase I consortium report. J Clin Oncol 2010; 28:3623-9. [PMID: 20606092 DOI: 10.1200/jco.2009.25.9119] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The purpose of this study was to determine the maximum-tolerated dose (MTD), dose-limiting toxicities (DLT), and pharmacokinetics of vorinostat administered as a single agent and in combination 13-cis retinoic acid (13cRA) in children with refractory solid tumors; to evaluate the tolerability of the solid tumor MTD in children with refractory leukemias; and to characterize the pharmacokinetics of a vorinostat suspension in children. PATIENTS AND METHODS Vorinostat was administered orally daily starting at 180 mg/m(2)/d with escalations planned in 30% increments. Pharmacokinetic studies were performed with the initial dose. Acetyl-histone (H3) accumulation was assessed by Western blotting of peripheral blood mononuclear cells (PBMC). RESULTS Sixty-four patients were enrolled on this multipart trial. In patients with solid tumors, the MTD was 230 mg/m(2)/d with dose-limiting neutropenia, thrombocytopenia, and hypokalemia at 300 mg/m(2)/d. DLTs observed with the combination of 13cRA and vorinostat included thrombocytopenia, neutropenia, anorexia, and hypertriglyceridemia, resulting in a MTD of vorinostat 180 mg/m(2)/d 4 times per week and 13cRA 80 mg/m(2)/dose twice per day, days 1 through 14 every 28 days. Wide interpatient variability was noted in vorinostat disposition, with area under the concentration-time curves at 230 mg/m(2)/d for the capsule (range, 1,415 to 9,291 ng/mL x hr) and oral suspension (range, 1,186 to 4,780 ng/mL x hr). Significant accumulation of acetylated H3 histone in PBMC was observed after administration of vorinostat, particularly at higher doses. One patient with neuroblastoma experienced a complete response to the combination. CONCLUSION In children with recurrent solid tumors, vorinostat is well-tolerated at 230 mg/m(2)/d, with a modest dose reduction being required when combining vorinostat with 13cRA. Drug disposition is similar to that observed in adults.
Collapse
|
45
|
Abstract
Medulloblastoma, a primitive neuro-ectodermal tumour that arises in the posterior fossa, is the most common malignant brain tumour occurring in childhood. Over the past half century, the long-term survival for children with medulloblastoma has improved remarkably from a certain fatal diagnosis to a cancer that is often curable. Although overall survival for children with non-disseminated and non-anaplastic medulloblastoma can approach 80%, the current multidisciplinary therapeutic approach is not without long-term sequelae. Chemotherapy has improved the long-term survival and allowed for reductions in the amount of radiation given, thereby reducing some of the long-term toxicities. In this review, we describe the current understanding of the basic biology of medulloblastoma and report on the current active chemotherapeutic agents utilized in medulloblastoma therapy. Ultimately, our understanding of the basic biology of medulloblastoma may lead to further advances in therapy by providing targets that are more specific and potentially less toxic.
Collapse
Affiliation(s)
- Laura J Klesse
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA.
| | | |
Collapse
|
46
|
DeBoer R, Batjer H, Marymont M, Goldman S, Walker M, Gottardi-Littell N, Raizer J. Response of an adult patient with pineoblastoma to vorinostat and retinoic acid. J Neurooncol 2009; 95:289-292. [DOI: 10.1007/s11060-009-9921-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
47
|
Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 2009; 6:570-86. [PMID: 19560746 PMCID: PMC5084192 DOI: 10.1016/j.nurt.2009.04.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/11/2009] [Accepted: 04/13/2009] [Indexed: 01/19/2023] Open
Abstract
Pediatric CNS tumors are the most common solid tumors of childhood and the second most common cancer after hematological malignancies accounting for approximate 20 to 25% of all primary pediatric tumors. With over 3,000 new cases per year in the United States, childhood CNS tumors are the leading cause of death related to cancer in this population. The prognosis for these patients has improved over the last few decades, but current therapies continue to carry a high risk of significant side effects, especially for the very young. Currently a combination of surgery, radiation, and chemotherapy is often used in children greater than 3 years of age. This article will outline current and future therapeutic strategies for the most common pediatric CNS tumors, including primitive neuroectodermal tumors such as medulloblastoma, as well as astrocytomas and ependymomas.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Division of Child Neurology, University of San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
48
|
Kalin JH, Butler KV, Kozikowski AP. Creating zinc monkey wrenches in the treatment of epigenetic disorders. Curr Opin Chem Biol 2009; 13:263-71. [PMID: 19541531 DOI: 10.1016/j.cbpa.2009.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/06/2009] [Accepted: 05/13/2009] [Indexed: 11/26/2022]
Abstract
The approval of suberoylanilide hydroxamic acid by the FDA for the treatment of cutaneous T-cell lymphoma in October, 2006 sparked a dramatic increase in the development of inhibitors for the class of enzymes known as the histone deacetylases (HDACs). In recent years, a large number of combination therapies involving histone deacetylase inhibitors (HDACIs) have been developed for the treatment of a variety of malignancies and neurodegenerative disorders. Promising evidence has been reported for the treatment of pancreatic cancer, prostate cancer, and leukemia as well as a number of other previously difficult to treat cancers. Drug combination approaches have also shown promise for the treatment of mood disorders including bipolar disorder and depression. In addition to these drug combination approaches, HDACIs alone have demonstrated effectiveness in the treatment of Parkinson's disease, Alzheimer's disease, Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease, multiple sclerosis, anxiety, and schizophrenia. Adverse inflammatory affects observed with traumatic brain injury and arthritis have also been alleviated by treatment with certain HDACIs. Based on the diverse utility and wide range of mechanistic actions observed with this class of drugs, the future development of better drug combination therapies and more selective HDACIs is warranted.
Collapse
Affiliation(s)
- Jay Hans Kalin
- University of Illinois at Chicago, Department of Medicinal Chemistry, 833 South Wood Street, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
49
|
Richon VM, Garcia-Vargas J, Hardwick JS. Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 2009; 280:201-10. [PMID: 19181442 DOI: 10.1016/j.canlet.2009.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/22/2008] [Accepted: 01/01/2009] [Indexed: 12/31/2022]
Abstract
Vorinostat is a potent histone deacetylase inhibitor that blocks the catalytic site of these enzymes. A large number of cellular proteins are modified post-translationally by acetylation, leading to altered structure and/or function. Many of these proteins, such as core nucleosomal histones and transcription factors, function in key cellular processes and signal transduction pathways that regulate cell growth, migration, and differentiation. At concentrations that are non-toxic to normal cells, vorinostat dramatically alters cellular acetylation patterns and causes growth arrest and death and in a wide range of transformed cells, both in vitro and in animal tumor models. Vorinostat has shown promising clinical activity against hematologic and solid tumors at doses that have been well tolerated by patients. Recent non-clinical experiments that explored the effects of vorinostat in combination with other chemotherapeutic agents have begun to illuminate potential mechanisms of action for this histone deacetylase inhibitor and are providing guidance for new avenues of clinical investigation.
Collapse
|
50
|
Zhang G, Park MA, Mitchell C, Hamed H, Rahmani M, Martin AP, Curiel DT, Yacoub A, Graf M, Lee R, Roberts JD, Fisher PB, Grant S, Dent P. Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin Cancer Res 2008; 14:5385-99. [PMID: 18765530 DOI: 10.1158/1078-0432.ccr-08-0469] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE AND DESIGN Mechanism(s) by which the multikinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal, and pancreatic adenocarcinoma cells has been defined. RESULTS Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal, and pancreatic adenocarcinoma cells in multiple short-term viability (24-96 h) and in long-term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase-8 and, to a lesser extent, by inhibition of caspase-9. Twenty-four hours after exposure, the activities of extracellular signal-regulated kinase 1/2, AKT, and nuclear factor-kappaB were only modestly modulated by sorafenib and vorinostat treatment. However, 24 h after exposure, sorafenib- and vorinostat-treated cells exhibited markedly diminished expression of c-FLIP-s, full-length BID, BCL-2, BCL-XL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK, and BAD. Expression of eIF2alpha S51A blocked sorafenib- and vorinostat-induced suppression of c-FLIP-s levels and overexpression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase-8. Knockdown of CD95 or FADD expression significantly reduced sorafenib/vorinostat-mediated lethality. CONCLUSIONS These data show that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple antiapoptotic proteins and promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the proapoptotic signals from CD95 to promote mitochondrial dysfunction and death.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|