1
|
Tsukamoto Y, Natsumeda M, Shimizu H, Takahashi H, Shibuma S, Ueno A, Takahashi A, Shida K, Saito T, Fujiwara H, Nakayama Y, Takahashi Y, Kondo R, Saito R, Eda T, Okada M, Okamoto K, Kikuchi T, Kakita A, Oishi M. Rapidly progressive scalp and lung metastases with fatal pneumothorax in glioblastoma, IDH-wildtype, with MET and CDK6 amplifications: a case report of clinical course and postmortem autopsy, including genetic analysis. Brain Tumor Pathol 2025:10.1007/s10014-025-00503-5. [PMID: 40392422 DOI: 10.1007/s10014-025-00503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
We report a rare case of extracranial metastases of a glioblastoma, IDH-wildtype, in a 77-year-old man who initially presented with a right frontal tumor, and gross total resection and adjuvant chemoradiotherapy were performed. The tumor was histologically comprised of two cellular components: astrocytic and poorly differentiated astrocytic tumor cells, with each strongly and infrequently positive for glial markers. Importantly, both components were positive for Nestin and CD44, indicating stemness and migratory characteristics. Three-and-a-half months after surgery, the patient presented with a subcutaneous tumor of the scalp at the surgical site and dyspnea. Imaging studies revealed tumors in the scalp, multiple intracranial locations, and the lungs, complicating a pneumothorax. He died of respiratory failure approximately 4.5 months after tumor resection. An autopsy revealed extra-axial tumors involving the sub/epidural, scalp, and intrathoracic regions, each consisting of tumor cells resembling those of the poorly differentiated astrocytic component observed in the original right frontal tumor. Genetic and copy number analysis proved that the extra-axial tumors were metastatic lesions originating from the right frontal glioblastoma, as MET and CDK6 amplification and TERT promoter mutation were shared in all tumors. These genomic alterations and stemness might contribute to the rapid development of extracranial glioblastoma metastasis and a worse prognosis.
Collapse
Affiliation(s)
- Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan.
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Haruhiko Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Shibuma
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Asuka Ueno
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Akihiro Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Kazuki Shida
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Taiki Saito
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Hidemoto Fujiwara
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Yoko Nakayama
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Yuki Takahashi
- Department of Respiratory Medicine and Infectious Diseases, School of Medical and Dental Sciences, Niigata University Graduate, Niigata University, Niigata, Japan
| | - Rie Kondo
- Department of Respiratory Medicine and Infectious Diseases, School of Medical and Dental Sciences, Niigata University Graduate, Niigata University, Niigata, Japan
| | - Rie Saito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeyoshi Eda
- Division of Pharmacy, Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, School of Medical and Dental Sciences, Niigata University Graduate, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chu-ou-ku, Niigata, 951-8585, Japan
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Bhattarai S, Hakkim FL, Day CA, Grigore F, Langfald A, Entin I, Hinchcliffe EH, Robinson JP. H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independent of H3K27me3 in Diffuse Midline Glioma. Epigenetics Chromatin 2025; 18:23. [PMID: 40287708 PMCID: PMC12032731 DOI: 10.1186/s13072-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase activity, leading to global reduction and redistribution of the repressive H3 lysine 27 tri-methylation (H3K27me3). This epigenomic rewiring is thought to promote gliomagenesis, but the precise role of K27M in gene regulation and tumorigenesis remains incompletely understood. RESULTS We established isogenic DMG patient-derived cell lines using CRISPR-Cas9 editing to create H3.3 wild-type (WT), H3.3K27M, and combinations with EZH2 and EZH1 co-deletion, thereby eliminating PRC2 function and H3K27me3. RNA-seq and ATAC-seq analysis revealed that K27M exerts a novel epigenetic effect independent of PRC2 inhibition. While PRC2 loss led to widespread gene induction including HOX gene clusters, and activation of biological pathways, K27M induced a balanced gene deregulation with an overall repressive effect on pathway activity. Genes uniquely affected by K27M, independent of PRC2 loss, showed concordant changes in chromatin accessibility, with upregulated genes becoming more accessible. Importantly, xenografts of H3.3K27M/EZH1/2 WT cells formed tumors, whereas /EZH1/2 knockout cells did not, demonstrating a PRC2-independent role of K27M in tumorigenesis. CONCLUSION Our findings reveal that the H3.3K27M mutation alters chromatin accessibility and uniquely deregulates gene expression independent of H3K27 methylation loss. These PRC2-independent functions of K27M contribute to changes in biological pathway activity and are necessary for tumor development, highlighting novel mechanisms of K27M-driven gliomagenesis.
Collapse
Affiliation(s)
- Suraj Bhattarai
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Faruck L Hakkim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Charles A Day
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Neuro-Oncology Training Program, Mayo Clinic, Rochester, MN, USA
| | - Florina Grigore
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Igor Entin
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Edward H Hinchcliffe
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Qin A, Musket A, Hilton B, Preiszner J, Krenciute G, Berens ME, Ying M, Musich PR, Xie Q. Efficacy of MET-targeting CAR T cells against glioblastoma patient-derived xenograft models. J Transl Med 2025; 23:460. [PMID: 40259400 PMCID: PMC12013037 DOI: 10.1186/s12967-025-06475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Genetic alteration of the MET receptor tyrosine kinase frequently occurs in glioblastoma (GBM). Clinically, bevacizumab treatment results in MET signaling activation, leading to GBM recurrence with a more malignant phenotype. While MET has been a promising therapeutic target, MET inhibitors have not been successful in treating GBM patients. MET-directed chimeric antigen receptor (CAR) T cells hold the promise of targeting MET-positive GBM regardless of genetic alterations or kinase activity. METHODS GBM patient-derived xenografts (PDX) harboring MET amplification (METamp) or PTPRZ-MET fusion (ZM) were propagated in vivo followed by glioma stem cell (GSC) isolation. Cell-based assays were used for comparing GSC survival in response to MET inhibitors and CAR T cells. Multi-panel cytokine release was analyzed to profile MET-CAR T cell activation during co-culture with GBM. Orthotopic tumor growth and real-time imaging were performed to evaluate MET-CAR T cell therapeutic efficacy in vivo. RESULTS Although GBM are heterogeneous tumors, neuro-sphere cells isolated from METamp or ZM fusion PDX tumors showed universal cognate genetic MET alteration along with GSC markers such as SOX2 and nestin. Both METamp and ZM fusion tumors showed MET overexpression but only the METamp cells presented activated MET signaling which was vulnerable to MET inhibitors. In contrast, MET-CAR T cells specifically inhibited all MET-positive tumor growth regardless of MET activation status. CONCLUSIONS Whereas MET inhibitors are effective in MET-active tumors, MET-CAR T cells eradicate MET-positive GBM growth in an antigen-dependent manner, demonstrating a promising therapeutic approach for treating MET-positive GBM. MET overexpression, especially METamp and ZM fusion may be used to predefine the GBM patients for treating with MET-CAR T cell therapy.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Anna Musket
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Benjamin Hilton
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Johanna Preiszner
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael E Berens
- Clinical Genomics and Therapeutics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN, 37614, USA.
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
5
|
Pham LC, Weller L, Gann CN, Schumacher KM, Vlassak S, Swanson T, Highsmith K, O’Brien BJ, Nash S, Aaroe A, de Groot JF, Majd NK. Prolonged complete response to adjuvant tepotinib in a patient with newly diagnosed disseminated glioblastoma harboring mesenchymal-epithelial transition fusion. Oncologist 2025; 30:oyae100. [PMID: 38815166 PMCID: PMC11783278 DOI: 10.1093/oncolo/oyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The prognosis of patients with glioblastoma (GBM) remains poor despite current treatments. Targeted therapy in GBM has been the subject of intense investigation but has not been successful in clinical trials. The reasons for the failure of targeted therapy in GBM are multifold and include a lack of patient selection in trials, the failure to identify driver mutations, and poor blood-brain barrier penetration of investigational drugs. Here, we describe a case of a durable complete response in a newly diagnosed patient with GBM with leptomeningeal dissemination and PTPRZ1-MET fusion who was treated with tepotinib, a brain-penetrant MET inhibitor. This case of successful targeted therapy in a patient with GBM demonstrates that early molecular testing, identification of driver molecular alterations, and treatment with brain-penetrant small molecule inhibitors have the potential to change the outcome in select patients with GBM.
Collapse
Affiliation(s)
- Lily C Pham
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Lauryn Weller
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Todd Swanson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kaitlin Highsmith
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara J O’Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sebnem Nash
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John F de Groot
- Department of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Detchou D, Barrie U. Interleukin 6 and cancer resistance in glioblastoma multiforme. Neurosurg Rev 2024; 47:541. [PMID: 39231832 DOI: 10.1007/s10143-024-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Despite unprecedented survival in patients with glioblastoma (GB), the aggressive primary brain cancer remains largely incurable and its mechanisms of treatment resistance have gained particular attention. The cytokine interleukin 6 (IL-6) and its receptor weave through the hallmarks of malignant gliomas and may represent a key vulnerability to GB. Known for activating the STAT3 pathway in autocrine fashion, IL-6 is amplified in GB and has been recognized as a negative biomarker for GB prognosis, rendering it a putative target of novel GB therapies. While it has been recognized as a biologically active component of GB for three decades only with concurrent advances in understanding of complementary immunotherapy has the concept of targeting IL-6 for a human clinical trial gained scientific footing.
Collapse
Affiliation(s)
- Donald Detchou
- School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
7
|
Bhattarai S, Hakkim FL, Day CA, Grigore F, Langfald A, Entin I, Hinchcliffe EH, Robinson JP. H3F3A K27M Mutations Drives a Repressive Transcriptome by Modulating Chromatin Accessibility, Independent of H3K27me3 in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594522. [PMID: 38798502 PMCID: PMC11118475 DOI: 10.1101/2024.05.16.594522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis. Methods We established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3. Results RNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not. Conclusion We demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation's role in altering biological pathways and its necessity for tumor development. Key Points We revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development. Importance of the Study This study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.
Collapse
|
8
|
Chen MS, Chong ZY, Huang C, Huang HC, Su PH, Chen JC. Lidocaine attenuates TMZ resistance and inhibits cell migration by modulating the MET pathway in glioblastoma cells. Oncol Rep 2024; 51:72. [PMID: 38606513 PMCID: PMC11024889 DOI: 10.3892/or.2024.8731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Currently, the predominant clinical treatment is the combination of surgical resection with concurrent radiotherapy and chemotherapy, using temozolomide (TMZ) as the primary chemotherapy drug. Lidocaine, a widely used amide‑based local anesthetic, has been found to have a significant anticancer effect. It has been reported that aberrant hepatocyte growth factor (HGF)/mesenchymal‑epithelial transition factor (MET) signaling plays a role in the progression of brain tumors. However, it remains unclear whether lidocaine can regulate the MET pathway in GBM. In the present study, the clinical importance of the HGF/MET pathway was analyzed using bioinformatics. By establishing TMZ‑resistant cell lines, the impact of combined treatment with lidocaine and TMZ was investigated. Additionally, the effects of lidocaine on cellular function were also examined and confirmed using knockdown techniques. The current findings revealed that the HGF/MET pathway played a key role in brain cancer, and its activation in GBM was associated with increased malignancy and poorer patient outcomes. Elevated HGF levels and activation of its receptor were found to be associated with TMZ resistance in GBM cells. Lidocaine effectively suppressed the HGF/MET pathway, thereby restoring TMZ sensitivity in TMZ‑resistant cells. Furthermore, lidocaine also inhibited cell migration. Overall, these results indicated that inhibiting the HGF/MET pathway using lidocaine can enhance the sensitivity of GBM cells to TMZ and reduce cell migration, providing a potential basis for developing novel therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Zhi-Yong Chong
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, R.O.C
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu 30014, Taiwan, R.O.C
- Center for Teacher Education, National Tsing Hua University, Hsinchu 300044, Taiwan, R.O.C
| | - Pin-Hsuan Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan, R.O.C
| |
Collapse
|
9
|
Abdoli Shadbad M, Baghbanzadeh A, Baradaran B. hsa-miR-34a-5p enhances temozolomide anti-tumoral effects on glioblastoma: in-silico and in-vitro study. EXCLI JOURNAL 2024; 23:384-400. [PMID: 38655096 PMCID: PMC11036064 DOI: 10.17179/excli2023-6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Glioblastoma multiform (GBM) is a commonly diagnosed brain neoplasm with a poor prognosis. Accumulating evidence has highlighted the significance of microRNA (miR) dysregulation in tumor development and progression. This study investigated the effect of hsa-miR-34a-5p and its combination with temozolomide on GBM, the related molecular mechanisms, and the signaling pathway using in-silico and in-vitro approaches. The in-silico tumor bulk and single-cell RNA sequencing analyses were done on TCGA-GTEx, CGGA, GSE13276, GSE90603, and GSE182109 datasets. After selecting the A172 cell line, hsa-miR-34a-5p mimics were transfected, and the cell viability, migration, cell cycle, clonogenicity, and apoptosis of studied groups were studied using MTT, scratch, flow cytometry, colony formation, and Annexin V/PI assays. The mRNA expression of CASP9, CASP3, CASP8, MMP2, CD44, CDK6, CDK4, CCND1, RAF1, MAP2K1, MET, SRC, and CD274 was studied using qRT-PCR method. hsa-miR-34a-5p downregulated RAF1 expression, as the signaling factor of the MAPK pathway. The combined treatment significantly downregulated the expression of MET, SRC, and MAP2K1, leading to the inhibition of the MET/MAPK pathway compared to temozolomide. Besides exerting anti-tumoral effects on the cell viability, migration, cell cycle, apoptosis, and clonogenicity of A172 cells, its combination with temozolomide enhanced temozolomide anti-tumoral effect. Compared to temozolomide, the combined treatment significantly decreased CDK4, CDK6, CCND1, and MMP2 expression. hsa-miR-34a-5p targets RAF1, as the signaling factor of the MAPK pathway, and potentiates the temozolomide anti-tumoral effect on A172 cells.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Al-Ghabkari A, Huang B, Park M. Aberrant MET Receptor Tyrosine Kinase Signaling in Glioblastoma: Targeted Therapy and Future Directions. Cells 2024; 13:218. [PMID: 38334610 PMCID: PMC10854665 DOI: 10.3390/cells13030218] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
| | - Bruce Huang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Toedebusch RG, Wei NW, Simafranca KT, Furth-Jacobus JA, Brust-Mascher I, Stewart SL, Dickinson PJ, Woolard KD, Li CF, Vernau KM, Meyers FJ, Toedebusch CM. Intra- and Intertumoral Microglia/Macrophage Infiltration and Their Associated Molecular Signature Is Highly Variable in Canine Oligodendroglioma: A Preliminary Evaluation. Vet Sci 2023; 10:403. [PMID: 37368789 PMCID: PMC10303632 DOI: 10.3390/vetsci10060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The goal of this study was to define the glioma-associated microglia/macrophage (GAM) response and associated molecular landscape in canine oligodendrogliomas. Here, we quantified the intratumoral GAM density of low- and high-grade oligodendrogliomas compared to that of a normal brain, as well as the intratumoral concentration of several known GAM-derived pro-tumorigenic molecules in high-grade oligodendrogliomas compared to that in a normal brain. Our analysis demonstrated marked intra- and intertumoral heterogeneity of GAM infiltration. Correspondingly, we observed significant variability in the intratumoral concentrations of several GAM-associated molecules, unlike what we previously observed in high-grade astrocytomas. However, high-grade oligodendroglioma tumor homogenates (n = 6) exhibited an increase in the pro-tumorigenic molecules hepatocyte growth factor receptor (HGFR) and vascular endothelial growth factor (VEGF), as we observed in high-grade astrocytomas. Moreover, neoplastic oligodendrocytes displayed robust expression of GAL-3, a chimeric galectin implicated in driving immunosuppression in human glioblastoma. While this work identifies shared putative therapeutic targets across canine glioma subtypes (HGFR, GAL-3), it highlights several key differences in the immune landscape. Therefore, a continued effort to develop a comprehensive understanding of the immune microenvironment within each subtype is necessary to inform therapeutic strategies going forward.
Collapse
Affiliation(s)
- Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ning-Wei Wei
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Kulani T. Simafranca
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Jennie A. Furth-Jacobus
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Susan L. Stewart
- Division of Biostatistics, School of Medicine, University of California, Davis, CA 95616, USA;
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Kevin D. Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Chai-Fei Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Karen M. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Frederick J. Meyers
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, Microbiology, and Immunology, School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| |
Collapse
|
13
|
Petterson SA, Sørensen MD, Burton M, Thomassen M, Kruse TA, Michaelsen SR, Kristensen BW. Differential expression of checkpoint markers in the normoxic and hypoxic microenvironment of glioblastomas. Brain Pathol 2022; 33:e13111. [PMID: 36093941 PMCID: PMC9836374 DOI: 10.1111/bpa.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2022] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults with an overall survival of only 14.6 months. Hypoxia is known to play a role in tumor aggressiveness but the influence of hypoxia on the immune microenvironment is not fully understood. The aim of this study was to investigate the expression of immune-related proteins in normoxic and hypoxic tumor areas by digital spatial profiling. Tissue samples from 10 glioblastomas were stained with a panel of 40 antibodies conjugated to photo-cleavable oligonucleotides. The free oligo-tags from normoxic and hypoxic areas were hybridized to barcodes for digital counting. Differential expression patterns were validated by Ivy Glioblastoma Atlas Project (GAP) data and an independent patient cohort. We found that CD44, Beta-catenin and B7-H3 were upregulated in hypoxia, whereas VISTA, CD56, KI-67, CD68 and CD11c were downregulated. PD-L1 and PD-1 were not affected by hypoxia. Focusing on the checkpoint-related markers CD44, B7-H3 and VISTA, our findings for CD44 and VISTA could be confirmed with Ivy GAP RNA sequencing data. Immunohistochemical staining and digital quantification of CD44, B7-H3 and VISTA in an independent cohort confirmed our findings for all three markers. Additional stainings revealed fewer T cells and high but equal amounts of tumor-associated microglia and macrophages in both hypoxic and normoxic regions. In conclusion, we found that CD44 and B7-H3 were upregulated in areas with hypoxia whereas VISTA was downregulated together with the presence of fewer T cells. This heterogeneous expression should be taken into consideration when developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mia Dahl Sørensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mark Burton
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Mads Thomassen
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Torben A. Kruse
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Signe Regner Michaelsen
- Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
14
|
Liu Z, Wang Z, Chen D, Liu X, Yu G, Zhang Y, Chen C, Xu R, Wang Y, Liu RE. Paeoniflorin Inhibits EMT and Angiogenesis in Human Glioblastoma via K63-Linked C-Met Polyubiquitination-Dependent Autophagic Degradation. Front Oncol 2022; 12:785345. [PMID: 35957872 PMCID: PMC9360619 DOI: 10.3389/fonc.2022.785345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Paeoniflorin has been widely studied in experimental models and clinical trials for cancer treatment because of its anti-cancer property. However, the underlying mechanisms of paeoniflorin in EMT and angiogenesis in glioblastoma was not fully elucidated. The present study aimed to investigate whether paeoniflorin inhibits EMT and angiogenesis, which involving c-Met suppression, while exploring the potential ways of c-Met degradation. In our study, we found that paeoniflorin inhibited EMT via downregulating c-Met signaling in glioblastoma cells. Furthermore, overexpressing c-Met in glioblastoma cells abolished the effects of paeoniflorin on EMT. Moreover, paeoniflorin showed anti-angiogenic effects by suppressing cell proliferation, migration, invasion and tube formation through downregulating c-Met in human umbilical vein endothelial cells (HUVECs). And c-Met overexpression in HUVECs offset the effects of paeoniflorin on angiogenesis. Additionally, paeoniflorin induced autophagy activation involving mTOR/P70S6K/S6 signaling and promoted c-Met autophagic degradation, a process dependent on K63-linked c-Met polyubiquitination. Finally, paeoniflorin suppressed mesenchymal makers (snail, vimentin, N-cadherin) and inhibited angiogenesis via the identical mechanism in an orthotopic xenograft mouse model. The in vitro and in vivo experiments showed that paeoniflorin treatment inhibited EMT, angiogenesis and activated autophagy. What’s more, for the first time, we identified c-Met may be a potential target of paeoniflorin and demonstrated paeoniflorin downregulated c-Met via K63-linked c-Met polyubiquitination-dependent autophagic degradation. Collectively, these findings indicated that paeoniflorin inhibits EMT and angiogenesis via K63-linked c-Met polyubiquitination-dependent autophagic degradation in human glioblastoma.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
| | - Zhaotao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Danmin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaorui Liu
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guoyong Yu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Chen Chen
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ru-en Liu
- Department of Neurosurgery, Peking University People’s Hospital, Peking University, Beijing, China
- *Correspondence: Ru-en Liu,
| |
Collapse
|
15
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
16
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
A Signature of Three microRNAs Is a Potential Diagnostic Biomarker for Glioblastoma. IRANIAN BIOMEDICAL JOURNAL 2022; 26:301-12. [PMID: 35490305 PMCID: PMC9432466 DOI: 10.52547/ibj.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Glioblastoma is the most common primary malignant neoplasm of the central nervous system. Despite progress in diagnosis and treatment, glioblastoma still has a poor prognosis. This study aimed to examine whether a signature of three candidate miRNAs (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) can be used as a diagnostic biomarker for distinguishing glioblastoma from healthy brain tissues. Methods: In this study, 50 FFPE glioblastoma tissue samples and 50 healthy tissue samples adjacent to tumor were included. The expression of each candidate miRNA (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) was measured using RT-qPCR. To show the roles of each miRNA and their biological effects on glioblastoma development and clinicopathological characteristics, in silico tools were used. ROC curves were performed to assess the diagnostic accuracy of each miRNA. Results: Based on the results, hsa-let-7c-5p and hsa-miR-206-5p were downregulated, while hsa-miR-1909-5p was upregulated in glioblastoma tumors compared to healthy samples. No association was detected between the expression of each candidate miRNA and sex. Except for hsa-let-7c-5p, other miRNAs did not correlate with age status. ROC curve analysis indicated that the signature of candidate miRNAs is a potential biomarker distinguishing between glioblastoma and healthy samples. Only hsa-miR-206-5p suggested the association with poor prognosis in glioblastoma patients. Conclusion: Our findings revealed that the signature of three miRNAs is capable of distinguishing glioblastoma tumor and healthy tissues. These results are beneficial for the clinical management of glioblastoma patients.
Collapse
|
18
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
20
|
Rosager AM, Dahlrot RH, Sørensen MD, Bangsø JA, Hansen S, Kristensen BW. The Epigenetic Regulator Jumonji Domain-Containing Protein 6 (JMJD6) Is Highly Expressed but Not Prognostic in IDH-Wildtype Glioblastoma Patients. J Neuropathol Exp Neurol 2021; 81:54-60. [PMID: 34875075 DOI: 10.1093/jnen/nlab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patients with IDH-wildtype glioblastoma (GBM) generally have a poor prognosis. However, there is an increasing need of novel robust biomarkers in the daily clinico-pathological setting to identify and support treatment in patients who become long-time survivors. Jumonji domain-containing protein 6 (JMJD6) is involved in epigenetic regulation of demethylation of histones and has been associated with GBM aggressiveness. We investigated the expression and prognostic potential of JMJD6 tumor fraction score in 184 IDH-wildtype GBMs. Whole-slides were double-stained with an antibody against JMJD6 and an exclusion-cocktail consisting of 4 antibodies (CD31, SMA, CD45, and Iba-1), enabling evaluation of tumor cells only. Stainings were quantified with a combined software- and scoring-based approach. For comparison, IDH-mutated WHO grade II, III and IV astrocytic gliomas were also stained, and the JMJD6 tumor fraction score increased with increasing WHO grade, although not significantly. In multivariate analysis including age, gender, performance status and post-surgical treatment high JMJD6 tumor fraction score was associated with longer overall survival in IDH-wildtype GBMs (p = 0.03), but the effect disappeared when MGMT promoter status was included (p = 0.34). We conclude that JMJD6 is highly expressed in IDH-wildtype GBM but it has no independent prognostic value.
Collapse
Affiliation(s)
- Ann Mari Rosager
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Rikke H Dahlrot
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Mia D Sørensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Julie A Bangsø
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Steinbjørn Hansen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Bjarne W Kristensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| |
Collapse
|
21
|
Qin A, Musket A, Musich PR, Schweitzer JB, Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter? Neurooncol Adv 2021; 3:vdab133. [PMID: 34806012 PMCID: PMC8598918 DOI: 10.1093/noajnl/vdab133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor without effective therapies. Since bevacizumab was FDA approved for targeting vascular endothelial growth factor receptor 2 (VEGFR2) in adult patients with recurrent GBM, targeted therapy against receptor tyrosine kinases (RTKs) has become a new avenue for GBM therapeutics. In addition to VEGFR, the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) are major RTK targets. However, results from clinical Phase II/III trials indicate that most RTK-targeting therapeutics including tyrosine kinase inhibitors (TKIs) and neutralizing antibodies lack clinical efficacy, either alone or in combination. The major challenge is to uncover the genetic RTK alterations driving GBM initiation and progression, as well as to elucidate the mechanisms toward therapeutic resistance. In this review, we will discuss the genetic alterations in these 5 commonly targeted RTKs, the clinical trial outcomes of the associated RTK-targeting therapeutics, and the potential mechanisms toward the resistance. We anticipate that future design of new clinical trials with combination strategies, based on the genetic alterations within an individual patient’s tumor and mechanisms contributing to therapeutic resistance after treatment, will achieve durable remissions and improve outcomes in GBM patients.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Anna Musket
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - John B Schweitzer
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Qian Xie
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
22
|
Hou Y, Xie H, Dou G, Yang W, Ge J, Zhou B, Ren J, Li J, Wang J, Zhang Z, Wang X. Computational study on novel natural inhibitors targeting c-MET. Medicine (Baltimore) 2021; 100:e27171. [PMID: 34559105 PMCID: PMC8462629 DOI: 10.1097/md.0000000000027171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
This study was designed to select ideal lead compounds and preclinical drug candidates http://dict.youdao.com/w/eng/preclinical_drug_candidate/javascript:void (0); with inhibitory effect on c-MET from the drug library (ZINC database).A battery of computer-aided virtual techniques was used to identify possible inhibitors of c-MET. A total of 17,931 ligands were screened from the ZINC15 database. LibDock is applied for structure-based screening followed by absorption, distribution, metabolic, and excretion, and toxicity prediction. Molecular docking was conducted to confirm the binding affinity mechanism between the ligand and c-MET. Molecular dynamics simulations were used to assess the stability of ligand-c-MET complexes.Two new natural compounds ZINC000005879645 and ZINC000002528509 were found to bind to c-MET in the ZINC database, showing higher binding affinity. In addition, they were predicted to have lower rodent carcinogenicity, Ames mutagenicity, developmental toxicity potential, and high tolerance to cytochrome P4502D6. Molecular dynamics simulation shows that ZINC000005879645 and ZINC000002528509 have more favorable potential energies with c-MET, which could exist stably in the natural environment.This study suggests that ZINC000005879645 and ZINC000002528509 are ideal latent inhibitors of c-MET targeting. As drug candidates, these 2 compounds have low cytotoxicity and hepatotoxicity as well as important implications for the design and improvement of c-MET target drugs.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Haoqun Xie
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Department of Breast Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, China
| | - Baolin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Junan Ren
- Clinical College, Jilin University, Changchun, China
| | - Juncheng Li
- Clinical College, Jilin University, Changchun, China
| | - Jing Wang
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xinxiang, China
| |
Collapse
|
23
|
Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Sci Rep 2021; 11:17918. [PMID: 34504133 PMCID: PMC8429554 DOI: 10.1038/s41598-021-95958-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Survival of glioblastoma patients varies and prognostic markers are important in the clinical setting. With digital pathology and improved immunohistochemical multiplexing becoming a part of daily diagnostics, we investigated the prognostic value of the Ki-67 labelling index (LI) in glioblastomas more precisely than previously by excluding proliferation in non-tumor cells from the analysis. We investigated the Ki-67 LI in a well-annotated population-based glioblastoma patient cohort (178 IDH-wildtype, 3 IDH-mutated). Ki-67 was identified in full tumor sections with automated digital image analysis and the contribution from non-tumor cells was excluded using quantitative double-immunohistochemistry. For comparison of the Ki-67 LI between WHO grades (II-IV), 9 IDH-mutated diffuse astrocytomas and 9 IDH-mutated anaplastic astrocytomas were stained. Median Ki-67 LI increased with increasing WHO grade (median 2.7%, 6.4% and 27.5%). There was no difference in median Ki-67 LI between IDH-mutated and IDH-wildtype glioblastomas (p = 0.9) and Ki-67 LI was not associated with survival in glioblastomas in neither univariate (p = 0.9) nor multivariate analysis including MGMT promoter methylation status and excluding IDH-mutated glioblastomas (p = 0.2). Ki-67 may be of value in the differential diagnostic setting, but it must not be over-interpreted in the clinico-pathological context.
Collapse
|
24
|
Krenzlin H, Zdioruk M, Nowicki MO, Finkelberg T, Keric N, Lemmermann N, Skubal M, Chiocca EA, Cook CH, Lawler SE. Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Lett 2021; 513:26-35. [PMID: 33989707 PMCID: PMC8209659 DOI: 10.1016/j.canlet.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Cytomegalovirus (CMV) is widespread in humans and has been implicated in glioblastoma (GBM) and other tumors. However, the role of CMV in GBM remains poorly understood and the mechanisms involved are not well-defined. The goal of this study was to identify candidate pathways relevant to GBM that may be modulated by CMV. Analysis of RNAseq data after CMV infection of patient-derived GBM cells showed significant upregulation of GBM-associated transcripts including the MET oncogene, which is known to play a role in a subset of GBM patients. These findings were validated in vitro in both mouse and human GBM cells. Using immunostaining and RT-PCR in vivo, we confirmed c-MET upregulation in a mouse model of CMV-driven GBM progression and in human GBM. siRNA knockdown showed that MET upregulation was dependent on CMV-induced upregulation of NF-κB signaling. Finally, proneural GBM xenografts overexpressing c-MET grew much faster in vivo than controls, suggesting a mechanism by which CMV infection of tumor cells could induce a more aggressive mesenchymal phenotype. These studies implicate the CMV-induced upregulation of c-MET as a potential mechanism involved in the effects of CMV on GBM growth.
Collapse
Affiliation(s)
- Harald Krenzlin
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Mykola Zdioruk
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michal O Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Finkelberg
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naureen Keric
- Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Niels Lemmermann
- Institute of Virology, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Magdalena Skubal
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA.
| | - Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
26
|
Gangliosides as Signaling Regulators in Cancer. Int J Mol Sci 2021; 22:ijms22105076. [PMID: 34064863 PMCID: PMC8150402 DOI: 10.3390/ijms22105076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
At the plasma membrane, gangliosides, a group of glycosphingolipids, are expressed along with glycosphingolipids, phospholipids, and cholesterol in so-called lipid rafts that interact with signaling receptors and related molecules. Most cancers present abnormalities in the intracellular signal transduction system involved in tumor growth, invasion, and metastasis. To date, the roles of gangliosides as regulators of signal transduction have been reported in several cancer types. Gangliosides can be expressed by the exogenous ganglioside addition, with their endogenous expression regulated at the enzymatic level by targeting specific glycosyltransferases. Accordingly, the relationship between changes in the composition of cell surface gangliosides and signal transduction has been investigated by controlling ganglioside expression. In cancer cells, several types of signaling molecules are positively or negatively regulated by ganglioside expression levels, promoting malignant properties. Moreover, antibodies against gangliosides have been shown to possess cytotoxic effects on ganglioside-expressing cancer cells. In the present review, we highlight the involvement of gangliosides in the regulation of cancer cell signaling, and we explore possible therapies targeting ganglioside-expressing cancer.
Collapse
|
27
|
Gortany NK, Panahi G, Ghafari H, Shekari M, Ghazi-Khansari M. Foretinib induces G2/M cell cycle arrest, apoptosis, and invasion in human glioblastoma cells through c-MET inhibition. Cancer Chemother Pharmacol 2021; 87:827-842. [PMID: 33688998 DOI: 10.1007/s00280-021-04242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is one of the most aggressive human cancers. The c-MET receptor tyrosine kinase (RTK) which is frequently deregulated in GBM is considered as a promising target for GBM treatment. The c-MET plays a key role in cell proliferation, cell cycle progression, invasion, angiogenesis, and metastasis. Here, we investigated the anti-tumour activity of foretinib, a c-MET inhibitor, on three human GBM cells (T98G, U87MG and U251). METHODS Anti-proliferative effect of foretinib was determined using MTT, crystal violet staining, and clonogenic assays. PI and Annexin V/PI staining flow cytometry were used to evaluate the effects of foretinib on cell cycle and apoptosis, respectively. Scratch assay, qRT-PCR, western blot, and zymography analyses were applied to elucidate the molecular mechanisms underlying the anti-tumour activity of foretinib. RESULTS Foretinib treatment reduced phosphorylation of c-MET on T98G and U251 cells, but not in U87MG cells. The highest inhibitory effect was observed in T98G cells (IC50 = 4.66 ± 0.29 µM) and the lowest one in U87MG cells (IC50 = 29.99 ± 1.31 µM). The results showed that foretinib inhibited the proliferation of GBM cells through a G2/M cell cycle arrest and mitochondrial-mediated apoptosis in association with alternation in expression of the related genes and protein-regulated G2/M phase and apoptosis. Foretinib diminished GBM cell invasion through downregulation of the proteolytic cascade of MMP2, uPA and uPAR and epithelial-mesenchymal transition (EMT)-related genes. A different GBM cell sensitivity pattern was noticeable in all experiments which demonstrated T98G as a sensitive and U87MG as a resistant phenotype to foretinib treatment. CONCLUSION The results indicated that foretinib might have the therapeutic potential against human GBM which deserve further investigation.
Collapse
Affiliation(s)
- Narges K Gortany
- Cancer Biology Research Center, Cancer Institute of I.R. Iran, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Maryam Shekari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Cancer Biology Research Center, Cancer Institute of I.R. Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
28
|
Cheng HS, Marvalim C, Zhu P, Law CLD, Low ZYJ, Chong YK, Ang BT, Tang C, Tan NS. Kinomic profile in patient-derived glioma cells during hypoxia reveals c-MET-PI3K dependency for adaptation. Theranostics 2021; 11:5127-5142. [PMID: 33859738 PMCID: PMC8039937 DOI: 10.7150/thno.54741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/17/2021] [Indexed: 01/05/2023] Open
Abstract
Hypoxic microenvironment is a hallmark of solid tumors, especially glioblastoma. The strong reliance of glioma-propagating cells (GPCs) on hypoxia-induced survival advantages is potentially exploitable for drug development. Methods: To identify key signaling pathways for hypoxia adaptation by patient-derived GPCs, we performed a kinase inhibitor profiling by screening 188 small molecule inhibitors against 130 different kinases in normoxia and hypoxia. Potential kinase candidates were prioritized for in vitro and in vivo investigations using a ranking algorithm that integrated information from the kinome connectivity network and estimated patients' survival based on expression status. Results: Hypoxic drug screen highlighted extensive modifications of kinomic landscape and a crucial functionality of c-MET-PI3K. c-MET inhibitors diminished phosphorylation of c-MET and PI3K in GPCs subjected to hypoxia, suggesting its role in the hypoxic adaptation of GPCs. Mechanistically, the inhibition of c-MET and PI3K impaired antioxidant defense, leading to oxidative catastrophe and apoptosis. Repurposed c-MET inhibitors PF04217903 and tivantinib exhibited hypoxic-dependent drug synergism with temozolomide, resulting in reduced tumor load and growth of GPC xenografts. Detailed analysis of bulk and single-cell glioblastoma transcriptomes associates the cellular subpopulation over-expressing c-MET with inflamed, hypoxic, metastatic, and stem-like phenotypes. Conclusions: Thus, our "bench to bedside (the use of patient-derived GPCs and xenografts for basic research) and back (validation with independent glioblastoma transcriptome databases)" analysis unravels the novel therapeutic indications of c-MET and PI3K/Akt inhibitors for the treatment of glioblastoma, and potentially other cancers, in the hypoxic tumor microenvironment.
Collapse
|
29
|
Petterson SA, Sørensen MD, Kristensen BW. Expression Profiling of Primary and Recurrent Glioblastomas Reveals a Reduced Level of Pentraxin 3 in Recurrent Glioblastomas. J Neuropathol Exp Neurol 2021; 79:975-985. [PMID: 32791527 DOI: 10.1093/jnen/nlaa088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBM) are highly infiltrative tumors and despite intensive treatment tumor recurrence is inevitable. The immune microenvironment in recurrent GBM is poorly characterized, but it is potentially influenced by therapeutic interventions with surgery, radiotherapy, and chemotherapy. The aim of this study was to obtain a deeper insight in the immune microenvironment in primary and recurrent GBM. Primary and recurrent glioblastoma samples from 18 patients were identified and expression profiling of 770 myeloid innate immune-related markers was performed. Leukemia inhibitory factor and pentraxin 3 were expressed at lower levels in recurrent tumors. Using in silico data and immunohistochemical staining, this was validated for pentraxin 3. Both high leukemia inhibitory factor and pentraxin 3 expression appeared to be associated with shorter survival in primary and recurrent GBM using in silico data. In primary GBM, gene set analysis also showed higher expression of genes involved in metabolism, extracellular matrix remodeling and complement activation, whereas genes involved in T cell activation and checkpoint signaling were expressed at higher levels in recurrent GBM. The reduced level of pentraxin 3 in recurrent glioblastomas and the gene set analysis results suggest an altered microenvironment in recurrent GBM that might be more active.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
31
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
32
|
Abstract
Chemotherapy remains the mainstay of treatment in the majority of solid and haematological malignancies. Resistance to cytotoxic chemotherapy is a major clinical problem and substantial research is ongoing into potential methods of overcoming this resistance. One major target, the receptor tyrosine kinase MET, has generated increasing interest with multiple clinical trials in progress. Overexpression of MET is frequently observed in a range of different cancers and is associated with poor prognosis. Studies have shown that MET promotes resistance to targeted therapies, including those targeting EGFR, BRAF and MEK. More recently, several reports suggest that MET also contributes to cytotoxic chemotherapy resistance. Here we review the preclinical evidence of MET's role in chemotherapy resistance, the mechanisms by which this resistance is mediated and the translational relevance of MET inhibitor therapy for patients with chemotherapy resistant disease.
Collapse
|
33
|
IFN-γ regulates the transformation of microglia into dendritic-like cells via the ERK/c-myc signaling pathway during cerebral ischemia/reperfusion in mice. Neurochem Int 2020; 141:104860. [DOI: 10.1016/j.neuint.2020.104860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
|
34
|
Land CA, Musich PR, Haydar D, Krenciute G, Xie Q. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med 2020; 18:428. [PMID: 33176788 PMCID: PMC7659102 DOI: 10.1186/s12967-020-02598-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain cancer that invades normal brain tissue and impedes surgical eradication, resulting in early local recurrence and high mortality. In addition, most therapeutic agents lack permeability across the blood brain barrier (BBB), further reducing the efficacy of chemotherapy. Thus, effective treatment against GBM requires tumor specific targets and efficient intracranial drug delivery. With the most recent advances in immunotherapy, genetically engineered T cells with chimeric antigen receptors (CARs) are becoming a promising approach for treating cancer. By transducing T lymphocytes with CAR constructs containing a tumor-associated antigen (TAA) recognition domain linked to the constant regions of a signaling T cell receptor, CAR T cells may recognize a predefined TAA with high specificity in a non-MHC restricted manner, and is independent of antigen processing. Active T cells can travel across the BBB, providing additional advantage for drug delivery and tumor targeting. Here we review the CAR design and technical innovations, the major targets that are in pre-clinical and clinical development with a focus on GBM, and multiple strategies developed to improve CAR T cell efficacy.
Collapse
Affiliation(s)
- Craig A. Land
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
35
|
Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res (Stuttg) 2020; 71:122-137. [DOI: 10.1055/a-1296-7870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
Collapse
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Md. Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College and Hospital, New Delhi, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia (KSA)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
36
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
37
|
Angom RS, Mondal SK, Wang F, Madamsetty VS, Wang E, Dutta SK, Gulani Y, Sarabia-Estrada R, Sarkaria JN, Quiñones-Hinojosa A, Mukhopadhyay D. Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene 2020; 39:7114-7126. [PMID: 33005016 DOI: 10.1038/s41388-020-01462-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly proliferative and locally invasive cancer with poor prognosis and a high recurrence rate. Although anti-VEGF (vascular endothelial growth factor) therapy offers short-term benefit to GBM patients, this approach fails as the tumor develops into a more invasive and drug-resistant phenotype and ultimately recurs. Recently, both glioma stemlike cells (GSCs) and brain tumor-initiating cells (BTICs) have been implicated in GBM recurrence and its resistance to therapy. We observed that patient-derived GBM cells expressing shRNAs of VEGF or neuropilin-1 (NRP-1) attenuate cancer stem cell markers, inhibit the tumor-initiating cell's neurosphere-forming capacity, and migration. Furthermore, both VEGF and NRP-1 knockdown inhibit the growth of patient-derived GBM xenografts in both zebrafish and mouse models. Interestingly, NRP-1-depleted patient-derived GBM xenografts substantially prolonged survival in mice compared to that of VEGF depletion. Our results also demonstrate that NRP-1 ablation of patient-derived GBM cells improves the sensitivity of TMZ and enhances the overall survival of the respective tumor-bearing mice. This improved outcome may provide insight into the inhibition of GBM progression and effective treatment strategies by targeting NRP-1 in addition to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Sujan Kumar Mondal
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.,Department of Pathology, University of Pittsburgh Medical Center, UPMC Hillman Center, Pittsburgh, PA, USA
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.,Department of Neurosurgery, Inner Mongolia Medical University Affiliated Hospital, 010050, Inner Mongolia, China
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Yash Gulani
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.
| |
Collapse
|
38
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
39
|
Dahlrot RH, Larsen P, Boldt HB, Kreutzfeldt MS, Hansen S, Hjelmborg JB, Kristensen BW. Posttreatment Effect of MGMT Methylation Level on Glioblastoma Survival. J Neuropathol Exp Neurol 2020; 78:633-640. [PMID: 31058280 DOI: 10.1093/jnen/nlz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) removes temozolomide-induced alkylation, thereby preventing DNA damage and cytotoxicity. We investigated the prognostic effect of different MGMT methylation levels on overall and progression-free survival in 327 patients with primary glioblastoma undergoing standard treatment. We obtained MGMT methylation level in 4 CpG sites using pyrosequencing. The association between MGMT methylation level and survival was investigated using Cox proportional hazards model and an extension to detect time-varying effects. We found an association between MGMT methylation level and overall survival (OS) from around 9 months after the diagnosis, with no association between MGMT methylation level and OS before that. For patients surviving at least 9 months even small increases in MGMT methylation level are significantly beneficial (HR = 0.97, 95% CI [0.96, 0.98]). The predictive ability of MGMT methylation level on OS from 9 months after diagnosis has a Harrel's C of 66%. We conclude that the MGMT methylation level is strongly associated with survival only for patients surviving beyond 9 months with considerable effects for levels much lower than previously reported. Prognostic evaluation of cut-points of MGMT methylation levels and of CpG island site selection should take the time-varying effect on overall survival into account.
Collapse
Affiliation(s)
| | - Pia Larsen
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark
| | | | | | | | - Jacob B Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Qin Y, Musket A, Kou J, Preiszner J, Tschida BR, Qin A, Land CA, Staal B, Kang L, Tanner K, Jiang Y, Schweitzer JB, Largaespada DA, Xie Q. Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice. Neurooncol Adv 2020; 2:vdaa067. [PMID: 32642717 PMCID: PMC7332240 DOI: 10.1093/noajnl/vdaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant MET receptor tyrosine kinase (RTK) activation leads to invasive tumor growth in different types of cancer. Overexpression of MET and its ligand hepatocyte growth factor (HGF) occurs more frequently in glioblastoma (GBM) than in low-grade gliomas. Although we have shown previously that HGF-autocrine activation predicts sensitivity to MET tyrosine kinase inhibitors (TKIs) in GBM, whether it initiates tumorigenesis remains elusive. Methods Using a well-established Sleeping Beauty (SB) transposon strategy, we injected human HGF and MET cDNA together with a short hairpin siRNA against Trp53 (SB-hHgf.Met.ShP53) into the lateral ventricle of neonatal mice to induce spontaneous glioma initiation and characterized the tumors with H&E and immunohistochemistry analysis. Glioma sphere cells also were isolated for measuring the sensitivity to specific MET TKIs. Results Mixed injection of SB-hHgf.Met.ShP53 plasmids induced de novo glioma formation with invasive tumor growth accompanied by HGF and MET overexpression. While glioma stem cells (GSCs) are considered as the tumor-initiating cells in GBM, both SB-hHgf.Met.ShP53 tumor sections and glioma spheres harvested from these tumors expressed GSC markers nestin, GFAP, and Sox 2. Moreover, specific MET TKIs significantly inhibited tumor spheres' proliferation and MET/MAPK/AKT signaling. Conclusions Overexpression of the HGF/MET axis along with p53 attenuation may transform neural stem cells into GSCs, resulting in GBM formation in mice. These tumors are primarily driven by the MET RTK pathway activation and are sensitive to MET TKIs. The SB-hHgf.Met.ShP53 spontaneous mouse glioma model provides a useful tool for studying GBM tumor biology and MET-targeting therapeutics.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Anna Musket
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jianqun Kou
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Johanna Preiszner
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Barbara R Tschida
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Craig A Land
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ben Staal
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Liang Kang
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Yong Jiang
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - John B Schweitzer
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qian Xie
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
41
|
1,2,3-Triazole tethered 2-mercaptobenzimidazole derivatives: design, synthesis and molecular assessment toward C6 glioma cell line. Future Med Chem 2020; 12:689-708. [PMID: 32193951 DOI: 10.4155/fmc-2019-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Glioblastoma multiforme (GBM) is an aggressive cancer with very limited clinical therapies. Herein, we have designed novel mercaptobenzimidazole derivatives (1-7) as multitarget antineoplastic drugs and assessed their antiproliferative profiles on an experimental model for GBM, the C6 glioma line. Results: The target compounds were synthesized in few steps with reasonable yields (33-90%). Compounds 1 (∼18 μM) and 4 (∼20 μM) showed dose-dependent antiproliferative effects on C6 glioma and significantly increased early apoptosis, but only 4 disrupted the cell cycle progression and did not induce autophagy. Docking simulations suggested these compounds as dual kinase and colchicine binding site inhibitors. Conclusion: In spite of the limited selective toxicity, 4 hold the potential to be further optimized for the treatment of GBM.
Collapse
|
42
|
Hwang JW, Loisel-Duwattez J, Desterke C, Latsis T, Pagliaro S, Griscelli F, Bennaceur-Griscelli A, Turhan AG. A novel neuronal organoid model mimicking glioblastoma (GBM) features from induced pluripotent stem cells (iPSC). Biochim Biophys Acta Gen Subj 2020; 1864:129540. [PMID: 31978452 DOI: 10.1016/j.bbagen.2020.129540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Current experimental models using either human or mouse cell lines, are not representative of the complex features of GBM. In particular, there is no model to study patient-derived iPSCs to generate a GBM model. Overexpression of c-met gene is one of the molecular features of GBM leading to increased signaling via STAT3 phosphorylation. We generated an iPSC line from a patient with c-met mutation and we asked whether we could use it to generate neuronal-like organoids mimicking features of GBM. METHODS We have generated iPSC-aggregates differentiating towards organoids. We analyzed them by gene expression profiling, immunostaining and transmission electronic microscopy analyses (TEM). RESULTS Herein we describe that c-met-mutated iPSC aggregates spontaneously differentiate into dopaminergic neurons more rapidly than control iPSC aggregates in culture. Gene expression profiling of c-met-mutated iPSC aggregates at day +90 showed neuronal- and GBM-related genes, reproducing a genomic network described in primary human GBM. Comparative TEM analyses confirmed the enrichment of these structures in intermediate filaments and abnormal cilia, a feature described in human GBM. The c-met-mutated iPSC-derived organoids, as compared to controls expressed high levels of glial fibrillary acidic protein (GFAP), which is a typical marker of human GBM, as well as high levels of phospho-MET and phospho-STAT3. The use of temozolomide (TMZ) showed a preferential cytotoxicity of this drug in c-met-mutated neuronal-like organoids. GENERAL SIGNIFICANCE This study shows the feasibility of generating "off-the shelf" neuronal-like organoid model mimicking GBM using c-met-mutated iPSC aggregates and its potential future use in research.
Collapse
Affiliation(s)
- Jin Wook Hwang
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Julien Loisel-Duwattez
- INSERM U1195, Université Paris Sud, Faculté de Médecine, APHP, Service de Neurologie, Bicêtre Hospital, 94276 le Kremlin Bicêtre, France
| | - Christophe Desterke
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Theodoros Latsis
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Sarah Pagliaro
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Frank Griscelli
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | | | - Ali G Turhan
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; INGESTEM National IPSC Infrastructure, 94800 Villejuif, France; Division of Hematology, Paris Sud University Hospitals, Le Kremlin Bicêtre 75006, Villejuif 94800, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| |
Collapse
|
43
|
Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front Oncol 2019; 9:963. [PMID: 31616641 PMCID: PMC6775189 DOI: 10.3389/fonc.2019.00963] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumour in humans and has a very poor prognosis. The existing treatments have had limited success in increasing overall survival. Thus, identifying and understanding the key molecule(s) responsible for the malignant phenotype of GBM will yield new potential therapeutic targets. The treatment of brain tumours faces unique challenges, including the presence of the blood brain barrier (BBB), which limits the concentration of drugs that can reach the site of the tumour. Nevertheless, several promising treatments have been shown to cross the BBB and have shown promising pre-clinical results. This review will outline the status of several of these promising targeted therapies.
Collapse
Affiliation(s)
- Olivia G Taylor
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Joshua S Brzozowski
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kathryn A Skelding
- Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Cancer Research Alliance and Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
44
|
Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res 2019; 38:270. [PMID: 31221203 PMCID: PMC6585013 DOI: 10.1186/s13046-019-1269-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
45
|
Cheng F, Zhang P, Xiao Q, Li Y, Dong M, Wang H, Kuang D, He Y, Duan Q, Mao F, Wang B, Guo D. The Prognostic and Therapeutic Potential of LRIG3 and Soluble LRIG3 in Glioblastoma. Front Oncol 2019; 9:447. [PMID: 31245283 PMCID: PMC6563081 DOI: 10.3389/fonc.2019.00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a highly lethal type of primary brain tumor that exhibits unrestricted growth and aggressive invasion capabilities, leading to a dismal prognosis despite a multitude of therapies. Multiple alterations in the expression level of genes and/or proteins have been identified in glioblastomas, including the activation of oncogenes and/or silencing of tumor-suppressor genes. Nevertheless, there are still no effective targeted therapies associated with these changes. In this study, we investigated the expression of human leucine-rich repeats and immunoglobulin-like domains protein 3 (LRIG3) in human glioma specimens through immunohistochemical analysis. The results showed that LRIG3 was weakly expressed in high-grade gliomas (WHO [World Health Organization] grades III and IV) compared with that in low-grade gliomas (WHO grade II). Survival analysis of these patients with glioma indicated that LRIG3 is an important prognostic marker for better survival. Moreover, we confirmed the existence of soluble ectodomain of LRIG3 (sLRIG3) in the cell culture supernatant, serum, and in tumor cystic fluid of patients with glioma. Molecular mechanistic investigation demonstrated that both LRIG3 and sLRIG3 inhibit the growth and invasion capabilities of GL15, U87, and PriGBM cells and tumor xenografts in nude mice through regulating the MET/phosphatidylinositol 3-kinase/Akt signaling pathway. Enzyme-linked immunosorbent assay confirmed the positive correlation between serum sLRIG3 protein levels and overall survival time in patients with high-grade gliomas. Taken together, our data for the first time demonstrate the existence of sLRIG3 and that both LRIG3 and sLRIG3 are potent tumor suppressors, which could be used as prognostic markers for better overall survival and therapeutic agents for glioblastoma.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Chinese-German Lab of Molecular Neuro-oncology of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Ohba S, Yamada Y, Murayama K, Sandika E, Sasaki H, Yamada S, Abe M, Hasegawa M, Hirose Y. c-Met Expression Is a Useful Marker for Prognosis Prediction in IDH-Mutant Lower-Grade Gliomas and IDH-Wildtype Glioblastomas. World Neurosurg 2019; 126:e1042-e1049. [PMID: 30878754 DOI: 10.1016/j.wneu.2019.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE c-Met has been shown to be associated with tumor growth in several human cancers. This study aims to evaluate the correlation between the c-Met expression and histopathologic/clinical characteristics. METHODS A total of 153 patients with histologically defined World Health Organization grade II-IV diffuse astrocytic and oligodendroglial tumors were analyzed. RESULTS For each histopathologic diagnosis, the number of cases and positive rate of c-Met expression are as follows: oligodendroglioma, IDH-mutant, and 1p19q codeletion (OD): 16 cases, 6.3%; anaplastic oligodendroglioma, IDH-mutant, and 1p19q codeletion (AO): 11 cases, 36.4%; diffuse astrocytoma (DA), IDH-mutant: 21 cases, 28.6%; anaplastic astrocytoma (AA), IDH- mutant: 15 cases, 20%; glioblastoma, IDH-mutant: 2, 100%, DA, IDH-wildtype: 9 cases, 33.3%; AA, IDH-wildtype: 20 cases, 30.0%; and glioblastoma, IDH-wildtype: 59 cases, 52.5%. c-Met expression was correlated with progression-free survival in oligodendroglial tumors and glioblastoma, IDH-wildtype. Furthermore, it was correlated with overall survival in AO, oligodendroglial tumors, DA, IDH-mutant, DA, IDH-wildtype, and glioblastoma, IDH-wildtype, and tend to be correlated with overall survival in IDH-mutant lower-grade astrocytic tumors. CONCLUSIONS c-Met expression was revealed to be a useful marker for prognosis prediction in IDH-mutant lower-grade gliomas and glioblastoma, IDH-wildtype, representing a new independent prognostic marker that can be easily measured.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan.
| | - Yasuhiro Yamada
- Department of Neurosurgery, Fujita Health University, Banbuntane Hotokukai Hospital, Aichi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University, Toyoake, Aichi, Japan
| | - Eriel Sandika
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Yamada
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan; Department of School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
47
|
SPINT2 is hypermethylated in both IDH1 mutated and wild-type glioblastomas, and exerts tumor suppression via reduction of c-Met activation. J Neurooncol 2019; 142:423-434. [PMID: 30838489 DOI: 10.1007/s11060-019-03126-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/09/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood. METHODS We analyzed RRBS-generated methylation profiles for 11 IDH1WT gliomas (including 7 GBMs), 24 IDH1MUT gliomas (including 6 GBMs), and 5 normal brain samples and employed TCGA GBM methylation profiles as a validation set. Upon classification of differentially methylated CpG islands by IDH1 status, we used integrated analysis of methylation and gene expression to identify SPINT2 as a top cancer related gene. To explore functional consequences of SPINT2 methylation in GBM, we validated SPINT2 methylation status using targeted bisulfite sequencing in a large cohort of GBM samples. We assessed DNA methylation-mediated SPINT2 gene regulation using 5-aza-2'-deoxycytidine treatment, DNMT1 knockdown and luciferase reporter assays. We conducted functional analyses of SPINT2 in GBM cell lines in vitro and in vivo. RESULTS We identified SPINT2 as a candidate tumor-suppressor gene within a group of CpG islands (designated GT-CMG) that are hypermethylated in both IDH1MUT and IDH1WT gliomas but not in normal brain. We established that SPINT2 downregulation results from promoter hypermethylation, and that restoration of SPINT2 expression reduces c-Met activation and tumorigenic properties of GBM cells. CONCLUSIONS We defined a previously under-recognized group of coordinately methylated CpG islands common to both IDH1WT and IDH1MUT gliomas (GT-CMG). Within GT-CMG, we identified SPINT2 as a top cancer-related candidate and demonstrated that SPINT2 suppressed GBM via down-regulation of c-Met activation.
Collapse
|
48
|
Cruickshanks N, Zhang Y, Hine S, Gibert M, Yuan F, Oxford M, Grello C, Pahuski M, Dube C, Guessous F, Wang B, Deveau C, Saoud K, Gallagher I, Wulfkuhle J, Schiff D, Phan S, Petricoin E, Abounader R. Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin Cancer Res 2018; 25:663-673. [PMID: 30201763 DOI: 10.1158/1078-0432.ccr-18-0926] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and most lethal primary malignant brain tumor. The receptor tyrosine kinase MET is frequently upregulated or overactivated in GBM. Although clinically applicable MET inhibitors have been developed, resistance to single modality anti-MET drugs frequently occurs, rendering these agents ineffective. We aimed to determine the mechanisms of MET inhibitor resistance in GBM and use the acquired information to develop novel therapeutic approaches to overcome resistance.Experimental Design: We investigated two clinically applicable MET inhibitors: crizotinib, an ATP-competitive small molecule inhibitor of MET, and onartuzumab, a monovalent monoclonal antibody that binds to the extracellular domain of the MET receptor. We developed new MET inhibitor-resistant cells lines and animal models and used reverse phase protein arrays (RPPA) and functional assays to uncover the compensatory pathways in MET inhibitor-resistant GBM. RESULTS We identified critical proteins that were altered in MET inhibitor-resistant GBM including mTOR, FGFR1, EGFR, STAT3, and COX-2. Simultaneous inhibition of MET and one of these upregulated proteins led to increased cell death and inhibition of cell proliferation in resistant cells compared with either agent alone. In addition, in vivo treatment of mice bearing MET-resistant orthotopic xenografts with COX-2 or FGFR pharmacological inhibitors in combination with MET inhibitor restored sensitivity to MET inhibition and significantly inhibited tumor growth. CONCLUSIONS These data uncover the molecular basis of adaptive resistance to MET inhibitors and identify new FDA-approved multidrug therapeutic combinations that can overcome resistance.
Collapse
Affiliation(s)
- Nichola Cruickshanks
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Sarah Hine
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Myron Gibert
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Fang Yuan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Madison Oxford
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Cassandra Grello
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Mary Pahuski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Fadila Guessous
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia.,University Mohammed 6 for Health Sciences, Casablanca, Morocco
| | - Baomin Wang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Ciana Deveau
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Karim Saoud
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Isela Gallagher
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Julia Wulfkuhle
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - David Schiff
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - See Phan
- Genentech Inc. South San Francisco, California
| | - Emanuel Petricoin
- George Mason University Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. .,Department of Neurology, University of Virginia, Charlottesville, Virginia.,The Cancer Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
49
|
Nielsen LAG, Bangsø JA, Lindahl KH, Dahlrot RH, Hjelmborg JVB, Hansen S, Kristensen BW. Evaluation of the proliferation marker Ki-67 in gliomas: Interobserver variability and digital quantification. Diagn Pathol 2018; 13:38. [PMID: 29885671 PMCID: PMC5994254 DOI: 10.1186/s13000-018-0711-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/13/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The Ki-67 Labelling Index (LI) is used as an ancillary tool in glioma diagnostics. Interobserver variability has been reported and no precise guidelines are available. Nor is it known whether novel digital approaches would be an advantage. Our aim was to evaluate the inter- and intraobserver variability of the Ki-67 LI between two pathologists and between pathologists and digital quantification both in whole tumour slides and in hot spots using narrow but diagnostically relevant intervals. METHODS In samples of 235 low and high grade gliomas, two pathologists (A and B) estimated the Ki-67 LI (5-10% intervals) for whole tumour slides and for hot spots. In 20 of the cases intraobserver variability was evaluated. For digital quantification (C) slides were scanned with subsequent systematic random sampling of viable tumour areas. A software classifier trained to identify positive and negative nuclei calculated the Ki-67 LI. The interobserver agreements were evaluated using kappa (κ) statistics. RESULTS The observed proportions of agreement and κ values for Ki-67 LI for whole tumour slides were: A/B: 46% (κ = 0.32); A/C: 37% (κ = 0.26); B/C: 37% (κ = 0.26). For hot spots equivalent values were: A/B: 14% (κ = 0.04); A/C: 18% (κ = 0.09); B/C: 31% (κ = 0.21). CONCLUSIONS Interobserver variability was pronounced between pathologists and for pathologists versus digital quantification when attempting to estimate a precise value of the Ki-67 LI. Ki-67 LI should therefore be used with caution and should not be over interpreted in the grading of gliomas. Digital quantification of Ki-67 LI in gliomas was feasible, but intra- and interlaboratory robustness need to be determined.
Collapse
Affiliation(s)
- Ljudmilla A. G. Nielsen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
- Department of Pathology, Hospital of Southern Jutland/ Sygehus Sønderjylland, Kresten Philipsens Vej 15, Dk-6200 Aabenraa, Denmark
| | - Julie A. Bangsø
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Kim H. Lindahl
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Rikke H. Dahlrot
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, Dk-5000 Odense C, Denmark
| | - Jacob v. B. Hjelmborg
- Department of Public Health, Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, J.B. Winsløws Vej 9, Entrance B, 1st, Dk-5000 Odense C, Denmark
| | - Steinbjørn Hansen
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, Dk-5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| | - Bjarne W. Kristensen
- Department of Pathology, Odense University Hospital, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 15, Entrance 240, DK-5000 Odense C, Denmark
| |
Collapse
|
50
|
Dahlrot RH, Dowsett J, Fosmark S, Malmström A, Henriksson R, Boldt H, de Stricker K, Sørensen MD, Poulsen HS, Lysiak M, Söderkvist P, Rosell J, Hansen S, Kristensen BW. Prognostic value of O-6-methylguanine-DNA methyltransferase (MGMT) protein expression in glioblastoma excluding nontumour cells from the analysis. Neuropathol Appl Neurobiol 2018; 44:172-184. [PMID: 28574607 DOI: 10.1111/nan.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023]
Abstract
AIMS It is important to predict response to treatment with temozolomide (TMZ) in glioblastoma (GBM) patients. Both MGMT protein expression and MGMT promoter methylation status have been reported to predict the response to TMZ. We investigated the prognostic value of quantified MGMT protein levels in tumour cells and the prognostic importance of combining information of MGMT protein level and MGMT promoter methylation status. METHODS MGMT protein expression was quantified in tumour cells in 171 GBMs from the population-based Region of Southern Denmark (RSD)-cohort using a double immunofluorescence approach. Pyrosequencing was performed in 157 patients. For validation we used GBM-patients from a Nordic Study (NS) investigating the effect of radiotherapy and different TMZ schedules. RESULTS When divided at the median, patients with low expression of MGMT protein (AF-low) had the best prognosis (HR = 1.5, P = 0.01). Similar results were observed in the subgroup of patients receiving the Stupp regimen (HR = 2.0, P = 0.001). In the NS-cohort a trend towards superior survival (HR = 1.6, P = 0.08) was seen in patients with AF-low. Including MGMT promoter methylation status, we found for both cohorts that patients with methylated MGMT promoter and AF-low had the best outcome; median OS 23.1 and 20.0 months, respectively. CONCLUSION Our data indicate that MGMT protein expression in tumour cells has an independent prognostic significance. Exclusion of nontumour cells contributed to a more exact analysis of tumour-specific MGMT protein expression. This should be incorporated in future studies evaluating MGMT status before potential integration into clinical practice.
Collapse
Affiliation(s)
- R H Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - J Dowsett
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - S Fosmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - A Malmström
- Department of Advanced Home Care, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - R Henriksson
- Department of Radiation Sciences & Oncology, Umeå University, Umeå, Sweden
- Regional Cancer Center Stockholm Gotland, Stockholm, Sweden
| | - H Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - K de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - M D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - H S Poulsen
- Department of Radiation Biology & Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - M Lysiak
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - P Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Rosell
- Regional Cancer Center South East Sweden and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - S Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - B W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|