1
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
2
|
Chrobok L, Ahern J, Piggins HD. Ticking and talking in the brainstem satiety centre: Circadian timekeeping and interactions in the diet-sensitive clock of the dorsal vagal complex. Front Physiol 2022; 13:931167. [PMID: 36117684 PMCID: PMC9481231 DOI: 10.3389/fphys.2022.931167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.
Collapse
|
3
|
Frostad S. Are the Effects of Malnutrition on the Gut Microbiota–Brain Axis the Core Pathologies of Anorexia Nervosa? Microorganisms 2022; 10:microorganisms10081486. [PMID: 35893544 PMCID: PMC9329996 DOI: 10.3390/microorganisms10081486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Anorexia nervosa (AN) is a disabling, costly, and potentially deadly illness. Treatment failure and relapse after treatment are common. Several studies have indicated the involvement of the gut microbiota–brain (GMB) axis. This narrative review hypothesizes that AN is driven by malnutrition-induced alterations in the GMB axis in susceptible individuals. According to this hypothesis, initial weight loss can voluntarily occur through dieting or be caused by somatic or psychiatric diseases. Malnutrition-induced alterations in gut microbiota may increase the sensitivity to anxiety-inducing gastrointestinal hormones released during meals, one of which is cholecystokinin (CCK). The experimental injection of a high dose of its CCK-4 fragment in healthy individuals induces panic attacks, probably via the stimulation of CCK receptors in the brain. Such meal-related anxiety attacks may take part in developing the clinical picture of AN. Malnutrition may also cause increased effects from appetite-reducing hormones that also seem to have roles in AN development and maintenance. The scientific background, including clinical, microbiological, and biochemical factors, of AN is discussed. A novel model for AN development and maintenance in accordance with this hypothesis is presented. Suggestions for future research are also provided.
Collapse
Affiliation(s)
- Stein Frostad
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
4
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Brix LM, Häusl AS, Toksöz I, Bordes J, van Doeselaar L, Engelhardt C, Narayan S, Springer M, Sterlemann V, Deussing JM, Chen A, Schmidt MV. The co-chaperone FKBP51 modulates HPA axis activity and age-related maladaptation of the stress system in pituitary proopiomelanocortin cells. Psychoneuroendocrinology 2022; 138:105670. [PMID: 35091292 DOI: 10.1016/j.psyneuen.2022.105670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 01/02/2023]
Abstract
Glucocorticoid (GC)-mediated negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, the body's physiological stress response system, is tightly regulated and essential for appropriate termination of this hormonal cascade. Disturbed regulation and maladaptive response of this axis are fundamental components of multiple stress-induced psychiatric and metabolic diseases and aging. The co-chaperone FK506 binding protein 51 (FKBP51) is a negative regulator of the GC receptor (GR), is highly stress responsive, and its polymorphisms have been repeatedly associated with stress-related disorders and dysfunctions in humans and rodents. Proopiomelanocortin (Pomc)-expressing corticotropes in the anterior pituitary gland are one of the key cell populations of this closed-loop GC-dependent negative feedback regulation of the HPA axis in the periphery. However, the cell type-specific role of FKBP51 in anterior pituitary corticotrope POMC cells and its impact on age-related HPA axis disturbances are yet to be elucidated. Here, using a combination of endogenous knockout and viral rescue, we show that male mice lacking FKBP51 in Pomc-expressing cells exhibit enhanced GR-mediated negative feedback and are protected from age-related disruption of their diurnal corticosterone (CORT) rhythm. Our study highlights the complexity of tissue- and cell type-specific, but also cross-tissue effects of FKBP51 in the rodent stress response at different ages and extends our understanding of potential targets for pharmacological intervention in stress- and age-related disorders.
Collapse
Affiliation(s)
- Lea M Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany.
| | - Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Irmak Toksöz
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vera Sterlemann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Weizmann Institute of Science, Department of Neurobiology, 7610001 Rehovot, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
6
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
7
|
Lee J, Guk HS, Kim M, Lee EJ. Successful Treatment of Basilar Invagination and Platybasia Associated With Cerebellar Atrophy by Decompression Surgery. J Clin Neurol 2022; 18:241-243. [PMID: 35274843 PMCID: PMC8926774 DOI: 10.3988/jcn.2022.18.2.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Juhee Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Hyung Seok Guk
- Department of Neurology, Gunsan Medical Center, Gunsan, Korea
| | - Museong Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Eung-Joon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Institute of Public Health and Medical Care, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Jaillard C, Ouechtati F, Clérin E, Millet-Puel G, Corsi M, Aït-Ali N, Blond F, Chevy Q, Gales L, Farinelli M, Dalkara D, Sahel JA, Portais JC, Poncer JC, Léveillard T. The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function. Redox Biol 2021; 48:102198. [PMID: 34856436 PMCID: PMC8640531 DOI: 10.1016/j.redox.2021.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Céline Jaillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Farah Ouechtati
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Emmanuelle Clérin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | | | - Mariangela Corsi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Najate Aït-Ali
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Quentin Chevy
- Sorbonne Université, INSERM, CNRS, Institut du Fer à Moulin, F-75005, Paris, France
| | - Lara Gales
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, 06410, Biot, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Jean-Charles Portais
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | | | - Thierry Léveillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France.
| |
Collapse
|
9
|
Powley TL. Brain-gut communication: vagovagal reflexes interconnect the two "brains". Am J Physiol Gastrointest Liver Physiol 2021; 321:G576-G587. [PMID: 34643086 PMCID: PMC8616589 DOI: 10.1152/ajpgi.00214.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract has its own "brain," the enteric nervous system or ENS, that executes routine housekeeping functions of digestion. The dorsal vagal complex in the central nervous system (CNS) brainstem, however, organizes vagovagal reflexes and establishes interconnections between the entire neuroaxis of the CNS and the gut. Thus, the dorsal vagal complex links the "CNS brain" to the "ENS brain." This brain-gut connectome provides reflex adjustments that optimize digestion and assimilation of nutrients and fluid. Vagovagal circuitry also generates the plasticity and adaptability needed to maintain homeostasis to coordinate among organs and to react to environmental situations. Arguably, this dynamic flexibility provided by the vagal circuitry may, in some circumstances, lead to or complicate maladaptive disorders.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
10
|
Andersson-Hall U, Svedin P, Mallard C, Blennow K, Zetterberg H, Holmäng A. Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy. PLoS One 2021; 16:e0248980. [PMID: 34043633 PMCID: PMC8158880 DOI: 10.1371/journal.pone.0248980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Aim Growth differentiation factor 15 (GDF15) increases in serum during pregnancy to levels not seen in any other physiological state and is suggested to be involved in pregnancy-induced nausea, weight regulation and glucose metabolism. The main action of GDF15 is regulated through a receptor of the brainstem, i.e., through exposure of GDF15 in both blood and cerebrospinal fluid (CSF). The aim of the current study was to measure GDF15 in both CSF and serum during pregnancy, and to compare it longitudinally to non-pregnant levels. Methods Women were sampled at elective caesarean section (n = 45, BMI = 28.1±5.0) and were followed up 5 years after pregnancy (n = 25). GDF15, insulin and leptin were measured in CSF and serum. Additional measurements included plasma glucose, and serum adiponectin and Hs-CRP. Results GDF15 levels were higher during pregnancy compared with follow-up in both CSF (385±128 vs. 115±32 ng/l, P<0.001) and serum (73789±29198 vs. 404±102 ng/l, P<0.001). CSF levels correlated with serum levels during pregnancy (P<0.001), but not in the non-pregnant state (P = 0.98). Both CSF and serum GDF15 were highest in women carrying a female fetus (P<0.001). Serum GDF15 correlated with the homeostatic model assessment for beta-cell function and placental weight, and CSF GDF15 correlated inversely with CSF insulin levels. Conclusion This, the first study to measure CSF GDF15 during pregnancy, demonstrated increased GDF15 levels in both serum and CSF during pregnancy. The results suggest that effects of GDF15 during pregnancy can be mediated by increases in both CSF and serum levels.
Collapse
Affiliation(s)
- Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Chrobok L, Wojcik M, Klich JD, Pradel K, Lewandowski MH, Piggins HD. Phasic Neuronal Firing in the Rodent Nucleus of the Solitary Tract ex vivo. Front Physiol 2021; 12:638695. [PMID: 33762969 PMCID: PMC7982836 DOI: 10.3389/fphys.2021.638695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Phasic pattern of neuronal activity has been previously described in detail for magnocellular vasopressin neurons in the hypothalamic paraventricular and supraoptic nuclei. This characteristic bistable pattern consists of alternating periods of electrical silence and elevated neuronal firing, implicated in neuropeptide release. Here, with the use of multi-electrode array recordings ex vivo, we aimed to study the firing pattern of neurons in the nucleus of the solitary tract (NTS) - the brainstem hub for homeostatic, cardio-vascular, and metabolic processes. Our recordings from the mouse and rat hindbrain slices reveal the phasic activity pattern to be displayed by a subset of neurons in the dorsomedial NTS subjacent to the area postrema (AP), with the inter-spike interval distribution closely resembling that reported for phasic magnocellular vasopressin cells. Additionally, we provide interspecies comparison, showing higher phasic frequency and firing rate of phasic NTS cells in mice compared to rats. Further, we describe daily changes in their firing rate and pattern, peaking at the middle of the night. Last, we reveal these phasic cells to be sensitive to α 2 adrenergic receptors activation and to respond to electrical stimulation of the AP. This study provides a comprehensive description of the phasic neuronal activity in the rodent NTS and identifies it as a potential downstream target of the AP noradrenergic system.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michal Wojcik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jasmin Daniela Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Hugh David Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
13
|
Chrobok L, Northeast RC, Myung J, Cunningham PS, Petit C, Piggins HD. Timekeeping in the hindbrain: a multi-oscillatory circadian centre in the mouse dorsal vagal complex. Commun Biol 2020; 3:225. [PMID: 32385329 PMCID: PMC7210107 DOI: 10.1038/s42003-020-0960-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic and cardiovascular processes controlled by the hindbrain exhibit 24 h rhythms, but the extent to which the hindbrain possesses endogenous circadian timekeeping is unresolved. Here we provide compelling evidence that genetic, neuronal, and vascular activities of the brainstem’s dorsal vagal complex are subject to intrinsic circadian control with a crucial role for the connection between its components in regulating their rhythmic properties. Robust 24 h variation in clock gene expression in vivo and neuronal firing ex vivo were observed in the area postrema (AP) and nucleus of the solitary tract (NTS), together with enhanced nocturnal responsiveness to metabolic cues. Unexpectedly, we also find functional and molecular evidence for increased penetration of blood borne molecules into the NTS at night. Our findings reveal that the hindbrain houses a local network complex of neuronal and non-neuronal autonomous circadian oscillators, with clear implications for understanding local temporal control of physiology in the brainstem. Lukasz Chrobok, Rebecca Northeast et al. show circadian variation in clock gene expression and neuronal firing within the area postrema and the nucleus of the solitary tract in mice. These regions also exhibit variation in metabolic processes and blood-brain barrier permeability across the 24 hour cycle suggesting the presence of circadian oscillators within the dorsal vagal complex.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - Rebecca C Northeast
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, No.172-1 Sec. 2 Keelung Road, Da'an District, Taipei, 106, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, No. 291 Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Peter S Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cheryl Petit
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hugh D Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. .,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
14
|
Yuanyuan ZMD, Jie LMD, Shengzheng WMD, Weihua LMD, Keyan LMD, Zhiye CMD, Dudu WMD, Ming ZMD, Ningbo ZMD, Xuan Z, Xuexia S, Shunji GMD, Faqin LMD. Aspiration Pneumonia Caused by Neuromyelitis Optica in a Patient with Suspected COVID-19. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2020. [DOI: 10.37015/audt.2020.200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Wickham RJ. Revisiting the physiology of nausea and vomiting-challenging the paradigm. Support Care Cancer 2019; 28:13-21. [PMID: 31388745 DOI: 10.1007/s00520-019-05012-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The predominant neurotransmitters and receptors for acute and delayed chemotherapy-induced nausea and vomiting (CINV) are represented in the current paradigm, which reflects successful control of emesis. However, control of nausea (N) lags behind management of vomiting (V). This review aims to re-examine and incorporate new information about the mechanisms of V and N. METHODS The initial literature search focused on CINV. Keywords in articles led to subsequent discovery of publications focused on N&V in other medical and scientific fields (e.g., gastroenterology, neurology, cannabinoid science, neuropharmacology, and motion sickness). Using keywords to identify other sources continued until no further recent, meaningful publications were found. RESULTS More than 86% of references were from recent non-oncology journals and books, suggesting there are many areas for cross-fertilization research into mechanisms and management of N&V-particularly of N, which involves overlapping and dissimilar CNS areas from V. Information from cited articles was incorporated into visual representation of N&V, which is certainly not exhaustive but supports highly complex processes in the stomach and gut, the vagus nerve and spinal cord neurons, the nucleus tractus solitarii, and the anterior insular cortex and anterior cingulate cortex with input from the amygdala. CONCLUSIONS These data support the idea that mechanisms for N, whatever the cause, must be highly similar. Continued research into nausea, including patient-reported evaluation and outcomes, is important; interventions for nausea could be considered adjuvants to current standard of care antiemetics and be individualized, depending on patient-reported efficacy and adverse effects and preferences.
Collapse
Affiliation(s)
- Rita J Wickham
- Rush University College of Nursing, 8039 Garth Point Lane, Rapid River, MI, 49878, USA.
| |
Collapse
|
18
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
19
|
Ailanen L, Vähätalo LH, Salomäki-Myftari H, Mäkelä S, Orpana W, Ruohonen ST, Savontaus E. Peripherally Administered Y 2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice. Front Pharmacol 2018; 9:319. [PMID: 29674968 PMCID: PMC5895854 DOI: 10.3389/fphar.2018.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y2-receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y2-receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y2-receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPYDβH) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y2-receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPYDβH and WT mice feeding on chow or Western diet. Treatment with Y2-receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y2-receptors induced obesity in WT mice, whereas OE-NPYDβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y2-receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y2-receptor antagonism has beneficial effects on metabolic status.
Collapse
Affiliation(s)
- Liisa Ailanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Laura H Vähätalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Henriikka Salomäki-Myftari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Satu Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Wendy Orpana
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Oliveira M, Fernández F, Solé J, Pumarola M. Morphological, histological and immunohistochemical study of the area postrema in the dog. Anat Sci Int 2017; 93:188-196. [PMID: 28063139 DOI: 10.1007/s12565-016-0388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/10/2016] [Indexed: 02/05/2023]
Abstract
Circumventricular organs are specialized brain structures that are located mainly at the midsagittal line, around the third and fourth ventricles, often protruding into the lumen. They are positioned at the interface between the neuroparenchyma and the ventricular system of the brain. These highly vascularized nervous tissue structures differ from the brain parenchyma, as they lack a blood-brain barrier. Circumventricular organs have specialized sensory and secretory functions. It is essential for any pathologist who evaluates brain sections to have a solid knowledge of microscopic neuroanatomy and to recognize these numerous specialized structures within the nervous system as normal and not mistake them for pathological changes. The purpose of this study was to provide, for the first time, a detailed and complete histological description of the healthy canine area postrema and to determine its resemblance to that of other mammalian species. Anatomical dissections with routine histological and immunohistochemical techniques were carried out on ten canine brains. The cellular composition of area postrema proved to be largely comparable to that of other mammal species.
Collapse
Affiliation(s)
- Maria Oliveira
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain. .,Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain. .,Pride Veterinary Centre, Derby, DE24 8HX, UK.
| | - Francisco Fernández
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jordi Solé
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Martí Pumarola
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Wilhelm I, Nyúl-Tóth Á, Suciu M, Hermenean A, Krizbai IA. Heterogeneity of the blood-brain barrier. Tissue Barriers 2016; 4:e1143544. [PMID: 27141424 DOI: 10.1080/21688370.2016.1143544] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
The brain microvascular network is comprised of capillaries, arterioles and venules, all of which retain - although to a different extent - blood-brain barrier (BBB) properties. Capillaries constitute the largest and tightest microvasculature. In contrast, venules have a looser junctional arrangement, while arterioles have a lower expression of P-gp. Development and maintenance of the BBB depends on the interaction of cerebral endothelial cells with pericytes and astrocytes, which are all heterogeneous in different regions of the central nervous system. At the level of circumventricular organs microvessels are permeable, containing fenestrations and discontinuous tight junctions. In addition, the blood-spinal cord barrier - where the number of pericytes is lower and expression of junctional proteins is reduced - is also more permeable than the BBB. However, much less is known about the cellular, molecular and functional differences among other regions of the brain. This review summarizes our current knowledge on the heterogeneity of the brain microvasculature.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences ; Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences ; Szeged, Hungary
| | - Maria Suciu
- Institute of Life Sciences, Vasile Goldis Western University of Arad ; Arad, Romania
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad ; Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences; Szeged, Hungary; Institute of Life Sciences, Vasile Goldis Western University of Arad; Arad, Romania
| |
Collapse
|
22
|
Miyata S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 2015; 9:390. [PMID: 26578857 PMCID: PMC4621430 DOI: 10.3389/fnins.2015.00390] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of which affect vascular permeability. Thus, recent findings advocate novel concepts for the CVOs, which have the dynamic features of vascular and parenchymal tissues.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
23
|
Rudd JA, Nalivaiko E, Matsuki N, Wan C, Andrews PL. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin) 2015; 2:258-76. [PMID: 27227028 PMCID: PMC4843889 DOI: 10.1080/23328940.2015.1043042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Diverse transmitter systems (e.g. acetylcholine, dopamine, endocannabinoids, endorphins, glutamate, histamine, 5-hydroxytryptamine, substance P) have been implicated in the pathways by which nausea and vomiting are induced and are targets for anti-emetic drugs (e.g. 5-hydroxytryptamine3 and tachykinin NK1 antagonists). The involvement of TRPV1 in emesis was discovered in the early 1990s and may have been overlooked previously as TRPV1 pharmacology was studied in rodents (mice, rats) lacking an emetic reflex. Acute subcutaneous administration of resiniferatoxin in the ferret, dog and Suncus murinus revealed that it had “broad–spectrum” anti-emetic effects against stimuli acting via both central (vestibular system, area postrema) and peripheral (abdominal vagal afferents) inputs. One of several hypotheses discussed here is that the anti-emetic effect is due to acute depletion of substance P (or another peptide) at a critical site (e.g. nucleus tractus solitarius) in the central emetic pathway. Studies in Suncus murinus revealed a potential for a long lasting (one month) effect against the chemotherapeutic agent cisplatin. Subsequent studies using telemetry in the conscious ferret compared the anti-emetic, hypothermic and hypertensive effects of resiniferatoxin (pungent) and olvanil (non-pungent) and showed that the anti-emetic effect was present (but reduced) with olvanil which although inducing hypothermia it did not have the marked hypertensive effects of resiniferatoxin. The review concludes by discussing general insights into emetic pathways and their pharmacology revealed by these relatively overlooked studies with TRPV1 activators (pungent an non-pungent; high and low lipophilicity) and antagonists and the potential clinical utility of agents targeted at the TRPV1 system.
Collapse
Key Words
- 12-HPETE, 12-hydroperoxy-eicosatetraenoic acid
- 5-HT, 5-hydroxytryptamine
- 5-HT3, 5-hdroxytryptamine3
- 8-OH-DPAT, (±)-8-Hydroxy-2-dipropylaminotetralin
- AM404
- AM404, N-arachidonoylaminophenol
- AMT, anandamide membrane transporter
- AP, area postrema
- BBB, blood brain barrier
- CB1, cannabinoid1
- CGRP, calcitonin gene-related peptide
- CINV, chemotherapy-induced nausea and vomiting
- CP 99,994
- CTA, conditioned taste aversion
- CVO's, circumventricular organs
- D2, dopamine2
- DRG, dorsal root ganglia
- FAAH, fatty acid amide hydrolase
- H1, histamine1
- LTB4, leukotriene B4
- NADA, N-arachidonoyl-dopamine
- NK1, neurokinin1
- POAH, preoptic anterior hypothalamus
- RTX
- Suncus murinus
- TRPV1
- TRPV1, transient receptor potential vanilloid receptor1
- anti-emetic
- capsaicin
- ferret
- i.v., intravenous
- nausea
- olvanil
- thermoregulation
- vanilloid
- vomiting
Collapse
Affiliation(s)
- John A Rudd
- Brain and Mind Institute; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR; School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong; Shatin; New Territories, Hong Kong SAR
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy; University of Newcastle ; Callaghan, NSW, Australia
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo ; Tokyo, Japan
| | - Christina Wan
- School of Biomedical Sciences; Faculty of Medicine; Chinese University of Hong Kong ; Shatin; New Territories, Hong Kong SAR
| | - Paul Lr Andrews
- Division of Biomedical Sciences; St George's University of London ; London, UK
| |
Collapse
|
24
|
Longatti P, Porzionato A, Basaldella L, Fiorindi A, De Caro P, Feletti A. The human area postrema: clear-cut silhouette and variations shown in vivo. J Neurosurg 2015; 122:989-95. [PMID: 25594320 DOI: 10.3171/2014.11.jns14482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECT The human area postrema (AP) is a circumventricular organ that has only been described in cadaveric specimens and animals. Because of its position in the calamus scriptorius and the absence of surface markers on the floor of the fourth ventricle, the AP cannot be clearly localized during surgical procedures. METHODS The authors intravenously administered 500 mg fluorescein sodium to 25 patients during neuroendoscopic procedures; in 12 of these patients they explored the fourth ventricle. A flexible endoscope equipped with dual observation modes for both white light and fluorescence was used. The intraoperative fluorescent images were reviewed and compared with anatomical specimens and 3D reconstructions. RESULTS Because the blood-brain barrier does not cover the AP, it was visualized in all cases after fluorescein sodium injection. The AP is seen as 2 coupled leaves on the floor of the fourth ventricle, diverging from the canalis centralis medullaris upward. Although the leaves normally appear short and thick, there can be different morphological patterns. Exploration using the endoscope's fluorescent mode allowed precise localization of the AP in all cases. CONCLUSIONS Fluorescence-enhanced inspection of the fourth ventricle accurately identifies the position of the AP, which is an important landmark during surgical procedures on the brainstem. A better understanding of the AP can also be valuable for neurologists, considering its functional role in the regulation of homeostasis, emesis, and cardiovascular and electrolyte balance. Despite the limited number of cases in this report, evidence indicates that the normal anatomical appearance of the AP is that of 2 short and thick leaves that are joined at the midline. However, there can be great variability in terms of the structure's shape and size.
Collapse
|
25
|
Edebali N, Tekin IÖ, Açıkgöz B, Açıkgöz S, Barut F, Sevinç N, Sümbüloğlu V. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining. Neurol Res 2014; 36:1114-20. [PMID: 25137492 DOI: 10.1179/1743132814y.0000000437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The circumventricular organs (CVOs) are essential for most autonomic and endocrine functions. Trauma and bleeding can affect their function. The aim of this study was to investigate apoptosis and necrosis in CVOs in the early period after experimental subarachnoid hemorrhage (SAH) in rats, using annexin V affinity and caspase 3 immunostaining. METHODS Three experimental groups were used: Days 1 and 2 after SAH, and a control group, seven Wistar albino rats each. Subarachnoid hemorrhage was accomplished by transclival basilar artery puncture. Rats were perfused with 0.9% NaCl and 0·1M phosphate buffer pH 7.4 until heart stoppage. Apoptosis and necrosis in CVOs were measured by flow cytometry with annexin V staining, and by caspase 3 immunostaining. RESULTS Apoptosis in the organum vasculosum lamina terminalis (OVLT), median eminence (ME), and area postrema (AP) was significantly higher in the Day 1 group than in the control group. Apoptosis in the subfornicial organ (SFO), OVLT, ME, and AP was significantly higher in the Day 2 group than in the control group. There were significant differences between the Day 1 and Day 2 groups, except for AP. Necrosis in SFO and OVLT was significantly higher in the Day 2 group than in the Day 1 or control groups, whereas necrosis in the ME and AP did not differ between the three groups. Caspase 3-positive cell density was more intense in the Day 2 group than in the Day 1 and control groups. DISCUSSION Prevention of apoptosis may potentially improve impaired functions of CVOs after SAH.
Collapse
|
26
|
Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 2013; 10:32. [PMID: 24176017 PMCID: PMC3818657 DOI: 10.1186/2045-8118-10-32] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/13/2013] [Indexed: 12/27/2022] Open
Abstract
Background Fibroblast growth factor (FGF)-19, an endocrine FGF protein mainly produced by the ileum, stimulates metabolic activity and alleviates obesity. FGF19 modulates metabolism after either intravenous or intracerebroventricular injection, and its receptor FGFR4 is present in the hypothalamus. This led to the question whether blood-borne FGF19 crosses the blood-brain barrier (BBB) to exert its metabolic effects. Methods We determined the pharmacokinetics of FGF19 permeation from blood to brain in comparison with its distribution in peripheral organs. Multiple-time regression analysis after intravenous bolus injection, in-situ brain perfusion, and HPLC assays were performed. Results FGF19 was relatively stable in blood and in the brain compartment. Significant influx was seen in the presence of excess unlabeled FGF19 in blood. This coincided with a slower decline of 125I-FGF19 in blood which suggested there was decreased clearance or peripheral tissue uptake. In support of an altered pattern of peripheral processing of 125I-FGF19 by excess unlabeled FGF19, the high influx to liver was significantly attenuated, whereas the minimal renal uptake was linearly accelerated. In the present setting, we did not detect a saturable transport of FGF19 across the BBB, as the entry rate of 125I-FGF19 was not altered by excess unlabeled FGF19 or its mouse homologue FGF15 during in-situ brain perfusion. Conclusion FGF19 remained stable in the blood and brain compartments for up to 10 min. Its influx to the brain was non-linear, non-saturable, and affected by its blood concentration and distribution in peripheral organs. Liver showed a robust and specific uptake of FGF19 that could be inhibited by the presence of excess unlabeled FGF19, whereas kidney clearance was dose-dependent.
Collapse
Affiliation(s)
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
27
|
Morita S, Hourai A, Miyata S. Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation. Cell Biochem Funct 2013; 32:51-61. [PMID: 23629811 DOI: 10.1002/cbf.2971] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) is a barrier that prevents free access of blood-derived substances to the brain through the tight junctions and maintains a specialized brain environment. Circumventricular organs (CVOs) lack the typical BBB. The fenestrated vasculature of the sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows parenchyma cells to sense a variety of blood-derived information, including osmotic ones. In the present study, we utilized immunohistochemistry to examine changes in the expression of NG2 and platelet-derived growth factor receptor beta (PDGFRB) in the OVLT, SFO and AP of adult mice during chronic osmotic stimulation. The expression of NG2 and PDGFRB was remarkably prominent in pericytes, although these angiogenesis-associated proteins are highly expressed at pericytes of developing immature vasculature. The chronic salt loading prominently increased the expression of NG2 in the OVLT and SFO and that of PDGFRB in the OVLT, SFO and AP. The vascular permeability of low-molecular-mass tracer fluorescein isothiocyanate was increased significantly by chronic salt loading in the OVLT and SFO but not AP. In conclusion, the present study demonstrates changes in pericyte expression of NG2 and PDGFRB and vascular permeability in the sensory CVOs by chronic osmotic stimulation, indicating active participation of the vascular system in osmotic homeostasis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan; Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | | | | |
Collapse
|
28
|
Canning BJ, Mori N, Lehmann A. Antitussive effects of the peripherally restricted GABAB receptor agonist lesogaberan in guinea pigs: comparison to baclofen and other GABAB receptor-selective agonists. COUGH 2012; 8:7. [PMID: 23025757 PMCID: PMC3520872 DOI: 10.1186/1745-9974-8-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/07/2012] [Indexed: 12/17/2022]
Abstract
UNLABELLED BACKGROUND Gastroesophageal reflux disease (GERD) is a common cause of chronic cough. Both acid and nonacid reflux is thought to play a role in the initiation of coughing and cough hypersensitivity. The GABAB receptor agonist lesogaberan was developed as a peripherally restricted anti-reflux therapy that reduces the frequency of transient lower esophageal sphincter relaxations (TLESR; the major cause of reflux) in animals and in patients with GERD. GABAB receptor agonists have also been shown to possess antitussive effects in patients and in animals independent of their effects on TLESR, suggesting that lesogaberan may be a promising treatment for chronic cough. METHODS We have assessed the direct antitussive effects of lesogaberan (AZD3355). The effects of other GABAB receptor agonists were also determined. Coughing was evoked in awake guinea pigs using aerosol challenges with citric acid. RESULTS Lesogaberan dose-dependently inhibited citric acid evoked coughing in guinea pigs. Comparable effects of the GABAB receptor agonists baclofen and 3-aminopropylphosphinic acid (3-APPiA) on cough were also observed. Baclofen produced obvious signs of sedation and respiratory depression. By contrast, both lesogaberan and 3-APPiA (both inactivated centrally by GABA transporters) were devoid of sedative effects and did not alter respiratory rate. CONCLUSIONS Together, the data suggest that lesogaberan and related GABAB receptor agonists may hold promise as safe and effective antitussive agents largely devoid of CNS side effects.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, Maryland, 21224, USA.
| | | | | |
Collapse
|
29
|
Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain. Cell Tissue Res 2012; 349:589-603. [PMID: 22584508 DOI: 10.1007/s00441-012-1421-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/19/2012] [Indexed: 01/05/2023]
Abstract
The blood-brain barrier (BBB) prevents free access of circulating molecules to the brain and maintains a specialized brain environment to protect the brain from blood-derived bioactive and toxic molecules; however, the circumventricular organs (CVOs) have fenestrated vasculature. The fenestrated vasculature in the sensory CVOs, including the organum vasculosum of lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows neurons and astrocytes to sense a variety of plasma molecules and convey their information into other brain regions and the vasculature in the secretory CVOs, including median eminence (ME) and neurohypophysis (NH), permits neuronal terminals to secrete many peptides into the blood stream. The present study showed that vascular permeability of low-molecular-mass tracers such as fluorescein isothiocyanate (FITC) and Evans Blue was higher in the secretory CVOs and kidney as compared with that in the sensory CVOs. On the other hand, vascular permeability of high-molecular-mass tracers such as FITC-labeled bovine serum albumin and Dextran 70,000 was lower in the CVOs as compared with that in the kidney. Prominent vascular permeability of low- and high-molecular-mass tracers was also observed in the arcuate nucleus. These data demonstrate that vascular permeability for low-molecular-mass molecules is higher in the secretory CVOs as compared with that in the sensory CVOs, possibly for large secretion of peptides to the blood stream. Moreover, vascular permeability for high-molecular-mass tracers in the CVOs is smaller than that of the kidney, indicating that the CVOs are not totally without a BBB.
Collapse
|
30
|
Pan W, Hsuchou H, Jayaram B, Khan RS, Huang EYK, Wu X, Chen C, Kastin AJ. Leptin action on nonneuronal cells in the CNS: potential clinical applications. Ann N Y Acad Sci 2012; 1264:64-71. [PMID: 22530983 PMCID: PMC3407332 DOI: 10.1111/j.1749-6632.2012.06472.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leptin, an adipocyte-derived cytokine, crosses the blood–brain barrier to act on many regions of the central nervous system (CNS). It participates in the regulation of energy balance, inflammatory processes, immune regulation, synaptic formation, memory condensation, and neurotrophic activities. This review focuses on the newly identified actions of leptin on astrocytes. We first summarize the distribution of leptin receptors in the brain, with a focus on the hypothalamus, where the leptin receptor is known to mediate essential feeding suppression activities, and on the hippocampus, where leptin facilitates memory, reduces neurodegeneration, and plays a dual role in seizures. We will then discuss regulation of the nonneuronal leptin system in obesity. Its relationship with neuronal leptin signaling is illustrated by in vitro assays in primary astrocyte culture and by in vivo studies on mice after pretreatment with a glial metabolic inhibitor or after cell-specific deletion of intracellular signaling leptin receptors. Overall, the glial leptin system shows robust regulation and plays an essential role in obesity. Strategies to manipulate this nonneuronal leptin signaling may have major clinical impact.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Lousiana 70808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hsuchou H, Kastin AJ, Tu H, Markadakis EN, Stone KP, Wang Y, Heymsfield SB, Chua SS, Obici S, Magrisso IJ, Pan W. Effects of cell-type specific leptin receptor mutation on leptin transport across the BBB. Peptides 2011; 32:1392-9. [PMID: 21616110 PMCID: PMC3137692 DOI: 10.1016/j.peptides.2011.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022]
Abstract
The functions of leptin receptors (LRs) are cell-type specific. At the blood-brain barrier, LRs mediate leptin transport that is essential for its CNS actions, and both endothelial and astrocytic LRs may be involved. To test this, we generated endothelia specific LR knockout (ELKO) and astrocyte specific LR knockout (ALKO) mice. ELKO mice were derived from a cross of Tie2-cre recombinase mice with LR-floxed mice, whereas ALKO mice were generated by a cross of GFAP-cre with LR-floxed mice, yielding mutant transmembrane LRs without signaling functions in endothelial cells and astrocytes, respectively. The ELKO mutation did not affect leptin half-life in blood or apparent influx rate to the brain and spinal cord, though there was an increase of brain parenchymal uptake of leptin after in situ brain perfusion. Similarly, the ALKO mutation did not affect blood-brain barrier permeation of leptin or its degradation in blood and brain. The results support our observation from cellular studies that membrane-bound truncated LRs are fully efficient in transporting leptin, and that basal levels of astrocytic LRs do not affect leptin transport across the endothelial monolayer. Nonetheless, the absence of leptin signaling at the BBB appears to enhance the availability of leptin to CNS parenchyma. The ELKO and ALKO mice provide new models to determine the dynamic regulation of leptin transport in metabolic and inflammatory disorders where cellular distribution of LRs is shifted.
Collapse
Affiliation(s)
- Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Abba J. Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Hong Tu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | | | - Yuping Wang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | | | - Silvana Obici
- Obesity Research Center, University of Cincinnati, Cincinnati, Ohio 45237
| | - I. Jack Magrisso
- Obesity Research Center, University of Cincinnati, Cincinnati, Ohio 45237
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| |
Collapse
|
32
|
Dallaporta M, Bonnet MS, Horner K, Trouslard J, Jean A, Troadec JD. Glial cells of the nucleus tractus solitarius as partners of the dorsal hindbrain regulation of energy balance: a proposal for a working hypothesis. Brain Res 2010; 1350:35-42. [PMID: 20451504 DOI: 10.1016/j.brainres.2010.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 01/08/2023]
Abstract
While the evidences emphasizing the role of astroglial cells in numerous aspects of information processing within the brain merges, the literature dealing with the involvement of this cell population in the signalization involved in feeding behavior and energetic homeostasis remains scarce. Nevertheless, some clues are now available indicating that glia could play a dynamic role in the regulation of energy balance, and that strengthening research effort in this field may further our understanding of the mechanisms controlling feeding behaviour. In the present review, we have summarized recent data indicating that the multifaceted glial compartment of the brainstem should be considered in future research aimed at identifying feeding-related processes operating at this level.
Collapse
Affiliation(s)
- Michel Dallaporta
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, UMR 6231 CNRS, Département de Physiologie Neurovégétative, USC INRA 2027, Université Paul Cézanne, Marseille, France
| | | | | | | | | | | |
Collapse
|
33
|
Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal-dependent memory. J Neurosci 2010; 30:4725-34. [PMID: 20357123 DOI: 10.1523/jneurosci.6160-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interleukin-15 (IL15) is a cytokine produced by normal brain, but the functions of the IL15 system in normal adults are not yet clear. The hypothesis that the hippocampal IL15 system is essential for memory consolidation was tested by use of IL15Ralpha knock-out mice in behavioral, biochemical, immunohistological, and electron microscopic analyses. The knock-out mice showed deficits in memory, determined by the Stone T-maze and fear conditioning. In their hippocampi, the concentration of GABA was significantly lower. There were region-specific changes of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), with increased GAD-67-immunopositive interneurons in the stratum oriens of the CA1 region of the hippocampus, accompanied by nonsignificant reduction of GAD-67 synapses in the CA3 region. Western blotting showed an increase of GAD-65, but not GAD-67, in the hippocampal homogenate. The ultrastructure of the hippocampus remained intact in the knock-out mice. To further test the hypothesis that IL15 directly modulates GABA turnover by reuptake mechanisms, the dose-response relationship of IL15 on (3)H-GABA uptake was determined in two neuronal cell lines. The effective and nontoxic dose was further used in the synaptosomal uptake studies. IL15 decreased the uptake of (3)H-GABA in synaptosomes from the forebrain of wild-type mice. Consistent with this, IL15Ralpha knock-out mice had increased synaptosomal uptake of (3)H-GABA. Overall, the results show novel functions of a unique cytokine in normal hippocampal activity by regulating GABA transmission.
Collapse
|
34
|
Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci 2009; 29:7015-22. [PMID: 19474328 DOI: 10.1523/jneurosci.0334-09.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although several studies implicate small declines in blood glucose levels as stimulus for spontaneous meal initiation, no mechanism is known for how these dips might initiate feeding. To assess the role of ventromedial hypothalamus (VMH) (arcuate plus ventromedial nucleus) glucosensing neurons as potential mediators of spontaneous and glucoprivic feeding, meal patterns were observed, and blood and VMH microdialysis fluid were sampled in 15 rats every 10 min for 3.5 h after dark onset and 2 h after insulin (5 U/kg, i.v.) infusion. Blood glucose levels declined by 11% beginning approximately 5 min before 65% of all spontaneous meals, with no fall in VMH levels. After insulin, blood and VMH glucose reached nadirs by 30-40 min, and the same rats ate 60% faster and spent 84% more time eating during the ensuing hypoglycemia. Although 83% of first hypoglycemic meals were preceded by 5 min dips in VMH (but not blood) glucose levels, neither blood nor VMH levels declined before second meals, suggesting that low glucose, rather than changing levels, was the stimulus for glucoprivic meals. Furthermore, altering VMH glucosensing by raising or lowering glucokinase (GK) activity failed to affect spontaneous feeding, body or adipose weights, or glucose tolerance. However, chronic depletion by 26-70% of VMH GK mRNA reduced glucoprivic feeding. Thus, although VMH glucosensing does not appear to be involved in either spontaneous feeding or long-term body-weight regulation, it does participate in glucoprivic feeding, similar to its role in the counter-regulatory neurohumoral responses to glucoprivation.
Collapse
|
35
|
Gakis G, Mueller MH, Hahn J, Glatzle J, Grundy D, Kreis ME. Neuronal activation in the nucleus of the solitary tract following jejunal lipopolysaccharide in the rat. Auton Neurosci 2009; 148:63-8. [PMID: 19359223 DOI: 10.1016/j.autneu.2009.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/21/2009] [Accepted: 03/12/2009] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Inflammation during systemic lipopolysaccharide (LPS) seems to be modulated by the CNS via afferent and efferent vagal pathways. We hypothesized that similar to systemic inflammation, local LPS in the gut lumen may also activate central neurons and aimed to identify potential molecular mechanisms. METHODS Male Wistar rats were equipped with an exteriorized canula in the proximal jejunum. LPS or vehicle were administered into the jejunum (10 mg ml(-1)). For further study of molecular mechanisms, LPS or vehicle were administered systemically (1 mg kg(-1)). Brain stem activation was quantified by Fos-immunohistochemistry in the vagal nucleus of the solitary tract (NTS) and the Area postrema which is exposed to systemic circulation. Serum LPS concentrations were also determined. RESULTS Jejunal LPS exposure entailed 91+/-12 (n=7) Fos-positive neurons in the NTS compared to 39+/-9 in controls (n=6; p<0.01), while serum LPS concentrations and Fos-positive neurons in the Area postrema were not different. Systemic LPS triggered 150+/-25 (n=6) and vehicle 52+/-6 Fos-positive neurons (n=7; p<0.01). The Fos count after systemic LPS was reduced to 99+/-30 following pretreatment with the cyclooxygenase inhibitor Naproxen (10 mg kg(-1); p>0.05 versus vehicle controls) and increased to 242+/-66 following the iNOS-inhibitor Aminoguanidine (15 mg kg(-1); p<0.01). In the Area postrema, 97+/-17 (n=6) neurons were counted in animals pretreated with systemic LPS compared to 14+/-4 in controls (n=7, p<0.001). CONCLUSIONS Central neuronal activation following inflammation after systemic LPS is modulated by cyclooxygenase and NO pathways. Local exposure to bacterial LPS in the gut lumen activates the NTS which may set the stage for efferent vagal modulation of intestinal inflammation.
Collapse
Affiliation(s)
- G Gakis
- Ludwig-Maximilian's University, Department of Surgery, Grosshadern, Munich, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Dallaporta M, Pecchi E, Pio J, Jean A, Horner KC, Troadec JD. Expression of leptin receptor by glial cells of the nucleus tractus solitarius: possible involvement in energy homeostasis. J Neuroendocrinol 2009; 21:57-67. [PMID: 19094094 DOI: 10.1111/j.1365-2826.2008.01799.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Leptin, an adipocyte-derived hormone, regulates food intake and body weight by acting principally on the hypothalamus, which displays the highest expression of leptin receptor (Ob-R). Nevertheless, other regions of the brain express Ob-R and constitute leptin's target sites. The dorsal vagal complex (DVC), an integrative centre of autonomic functions located in the caudal brainstem, is one of these structures. Leptin, by acting through the DVC, affects autonomic and neuroendocrine functions, such as control of food intake and gastric motility. In the present study, we observed Ob-R labelling within the DVC in cells that correspond to neuronal cell bodies. We showed for the first time Ob-R expression in a subpopulation of glial fibrillary acid protein positive cells located at the border between the area postrema and the nucleus tractus solitarius (NTS). These glial cells exhibit an atypical morphology consisting of unbranched processes that radiate rostro-caudally from the fourth ventricle wall. In vitro, the glial cells exhibited both long and short Ob-R expression with a preferential expression of the Ob-Ra and-f isoforms. Interestingly, using i.v and i.c.v. injection of the fluorescent tracer hydroxystilbamidine, we provided evidence that these cells may constitute a diffusion barrier which might regulate entry of molecules into the NTS. Finally, modulation of energy status, by acute or chronic reduction of food intake, modulated especially the short Ob-R isoforms in the DVC. In the light of these results, we hypothesise that Ob-R positive glial cells of the DVC participate in the transport of leptin into the brainstem and thus contribute to regulation of energy homeostasis.
Collapse
Affiliation(s)
- M Dallaporta
- Département de Physiologie Neurovégétative, Centre de recherche en Neurobiologie-Neurophysiologie de Marseille (CRN2M), Université Paul Cézanne, Marseille, France
| | | | | | | | | | | |
Collapse
|
37
|
Fry M, Ferguson AV. Ghrelin modulates electrical activity of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 2008; 296:R485-92. [PMID: 19118100 DOI: 10.1152/ajpregu.90555.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ghrelin, a peptide hormone secreted from the stomach, is known to have a potent appetite-stimulating activity. Recently, it has been shown that area postrema (AP), a caudal brain stem center that lacks a blood-brain barrier, is a key site of activity for ghrelin in stimulating appetite and regulating pancreatic protein secretion. In this study, we have examined the ability of ghrelin to regulate the electrical activity of area postrema neurons using patch-clamp electrophysiology. Using current-clamp configuration, we found that at a concentration of 10 nM, ghrelin caused inhibition in 19% of neurons tested, while a further 19% were excited by similar application of ghrelin. The remaining 62% of AP neurons were insensitive to ghrelin. These effects were concentration dependent, with an apparent EC(50) of 1.9 nM. Voltage-clamp recordings revealed that ghrelin caused a potentiation of voltage-gated K(+) currents in neurons that exhibited a hyperpolarization and a potentiation of a depolarizing nonspecific cation current (NSCC) in those neurons that exhibited a depolarization of membrane potential. These are the first data showing that ghrelin exerts a direct effect on electrical activity of AP neurons and supports the notion that ghrelin can act via the AP to regulate energy homeostasis.
Collapse
Affiliation(s)
- Mark Fry
- Queen's Univ., Dept. of Physiology, Botterell Hall, 4th Fl., Kingston, ON Canada K7L 3N6
| | | |
Collapse
|
38
|
Maolood N, Meister B. Protein components of the blood-brain barrier (BBB) in the brainstem area postrema-nucleus tractus solitarius region. J Chem Neuroanat 2008; 37:182-95. [PMID: 19146948 DOI: 10.1016/j.jchemneu.2008.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 01/15/2023]
Abstract
The blood-brain barrier (BBB) prevents entry of circulating substances into the brain. The circumventricular organs (CVOs) lack a BBB and have a direct communication with the circulation blood. One of the CVOs, the area postrema (AP), which has a close relationship with the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMX), plays a role in controlling the entry of blood-borne substances to neurons of the brainstem. To clarify the cellular localization of protein components of the BBB in the brainstem AP-NTS region, we used antisera to--(1) Tight junctions: claudin-5 and zona occludens-1 (ZO-1). (2) Endothelial cells: (a) all endothelial cells--rat endothelial cell antigen-1 (RECA-1) and (b) endothelial cells at BBB--endothelial barrier antigen (EBA), glucose transporter 1 (GLUT1) and transferrin receptor (TfR). (3) Basal lamina--laminin. (4) Vascular smooth muscle cells--smooth muscle actin (SMA). (5) Pericytes--chondroitin sulfate proteoglycan (NG2). (6) Glial cells: (a) astrocytes--glial fibrillary acidic protein (GFAP), (b) tanycytes--dopamine- and cAMP-regulated phosphoprotein of 32 kDA (DARPP-32), and (c) microglia--CD11b. Neuronal cell bodies in the NTS were visualized by antisera to neuropeptide Y (NPY) and alpha-melanocyte-stimulating hormone (alpha-MSH), two peptides regulating energy balance. This study provides a detailed analysis of the cellular localization of BBB proteins in the AP and NTS and shows the existence of vessels in the dorsomedial aspect of the NTS that lack immunoreactivity for the BBB markers EBA and TfR. Such vessels may represent a route of entry for circulating substances to neurons in the NTS that inter alia regulate energy balance.
Collapse
Affiliation(s)
- Nasren Maolood
- Department of Neuroscience, The Retzius Laboratory, Retzius väg 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|