1
|
Federici L, Masulli M, De Laurenzi V, Allocati N. The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View. Nutrients 2024; 16:2753. [PMID: 39203889 PMCID: PMC11357436 DOI: 10.3390/nu16162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
2
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
3
|
Pinky, Neha, Salman M, Kumar P, Khan MA, Jamal A, Parvez S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res Rev 2023; 90:102022. [PMID: 37490963 DOI: 10.1016/j.arr.2023.102022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by an adverse cellular environment and pathological alterations in distinct brain regions. The development is triggered or facilitated by a condition such as hypoxia or ischemia, or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Increasing evidence suggests that hypoxia may affect many pathological aspects of AD, including oxidative stress, mitochondrial dysfunction, ER stress, amyloidogenic processing of APP, and Aβ accumulation, which may collectively result in neurodegeneration. Further investigation into the relationship between hypoxia and AD may provide an avenue for the effective preservation and pharmacological treatment of this neurodegenerative disease. This review summarizes the effects of normoxia and hypoxia on AD pathogenesis and discusses the underlying mechanisms. Regulation of HIF-1α and the role of its key players, including P53, VEGF, and GLUT1, are also discussed.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pratika Kumar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
5
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
6
|
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer's disease. Eur J Neurosci 2022; 56:5428-5441. [PMID: 35377966 DOI: 10.1111/ejn.15662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard Reynolds
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
8
|
Liu RM. Aging, Cellular Senescence, and Alzheimer's Disease. Int J Mol Sci 2022; 23:1989. [PMID: 35216123 PMCID: PMC8874507 DOI: 10.3390/ijms23041989] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases. The mechanism underlying the aging-related susceptibility to LOAD is unknown. Cellular senescence, a state of permanent cell growth arrest, is believed to contribute importantly to aging and aging-related diseases, including AD. Senescent astrocytes, microglia, endothelial cells, and neurons have been detected in the brain of AD patients and AD animal models. Removing senescent cells genetically or pharmacologically ameliorates β-amyloid (Aβ) peptide and tau-protein-induced neuropathologies, and improves memory in AD model mice, suggesting a pivotal role of cellular senescence in AD pathophysiology. Nonetheless, although accumulated evidence supports the role of cellular senescence in aging and AD, the mechanisms that promote cell senescence and how senescent cells contribute to AD neuropathophysiology remain largely unknown. This review summarizes recent advances in this field. We believe that the removal of senescent cells represents a promising approach toward the effective treatment of aging-related diseases, such as AD.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
9
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
10
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
11
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021; 35:270-292. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Glutathione (GSH) represents the most abundant and the main antioxidant in the body with important functions in the brain related to Alzheimer's disease (AD). Recent Advances: Oxidative stress is one of the central mechanisms in AD. We and others have demonstrated the alteration of GSH levels in the AD brain, its important role in the detoxification of advanced glycation end-products and of acrolein, a by-product of lipid peroxidation. Recent in vivo studies found a decrease of GSH in several areas of the brain from control, mild cognitive impairment, and AD subjects, which are correlated with cognitive decline. Critical Issues: Several strategies were developed to restore its intracellular level with the l-cysteine prodrugs or the oral administration of γ-glutamylcysteine to prevent alterations observed in AD. To date, no benefit on GSH level or on oxidative biomarkers has been reported in clinical trials. Thus, it remains uncertain if GSH could be considered a potential preventive or therapeutic approach or a biomarker for AD. Future Directions: We address how GSH-coupled nanocarriers represent a promising approach for the functionalization of nanocarriers to overcome the blood/brain barrier (BBB) for the brain delivery of GSH while avoiding cellular toxicity. It is also important to address the presence of GSH in exosomes for its potential intercellular transfer or its shuttle across the BBB under certain conditions. Antioxid. Redox Signal. 35, 270-292.
Collapse
Affiliation(s)
- Mohamed Haddad
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Mohamed Raâfet Ben Khedher
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada.,Institute on Nutrition and Functional Foods, Université Laval, Québec, Canada
| |
Collapse
|
12
|
Zhang Y, Huang X, Wang L, Cao C, Zhang H, Wei P, Ding H, Song Y, Chen Z, Qian J, Zhong S, Liu Z, Wang M, Zhang W, Jiang W, Zeng J, Yao G, Wen LP. Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8. Biomaterials 2021; 271:120720. [PMID: 33639563 DOI: 10.1016/j.biomaterials.2021.120720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Point mutations within the DNA-binding domain of the TP53 gene occur in a significant percentage of human cancer, leading to cellular accumulation of highly stabilized mutant p53 proteins (mutp53) with tumor-promoting properties. Depletion of mutp53, through inducing either autophagic or proteasomal degradation, is an attractive strategy for the therapy of p53-mutated cancer, but the currently-known degradation inducers, almost exclusively small molecules, are inadequate. Here we show that pH-responsive zeolitic imidazolate framework-8 (ZIF-8) offers a novel solution to mutp53 degradation. ZIF-8 facilitated ubiquitination-mediated and glutathionylation-dependent proteasomal degradation of all of the nine mutp53 we tested, including six hot-spot mutp53, but not the wild-type p53 protein. Sustained elevation of intracellular Zn++ level, resulted from decomposition of the internalized ZIF-8 in the acidic endosomes, decreased the intracellular reduced glutathione (GSH): oxidized glutathione (GSSG) ratio and was essential for mutp53 glutathionylation and degradation. ZIF-8 modified with an Z1-RGD peptide, exhibiting enhanced cellular internalization and improved decomposition behavior, preferentially killed mutp53-expressing cancer cells and demonstrated remarkable therapeutic efficacy in a p53 S241F ES-2 ovarian cancer model as well as in a p53 Y220C patient-derived xenograft (PDX) breast cancer model. The ability to induce wide-spectrum mutp53 degradation gives ZIF-8 a clear advantage over other degradation-inducers, and engineered nanomaterials may be promising alternatives to small molecules for the development of mutp53-targeting drugs.
Collapse
Affiliation(s)
- Yunjiao Zhang
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaowan Huang
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Liansheng Wang
- Department of Cardiology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cong Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Center of Advanced Nanocatalysis (CAN-USTC) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Zhang
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Pengfei Wei
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - He Ding
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Yang Song
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Ziying Chen
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Jieying Qian
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Suqin Zhong
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Zefeng Liu
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Meimei Wang
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Wenbin Zhang
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Wenwei Jiang
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Center of Advanced Nanocatalysis (CAN-USTC) and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Long-Ping Wen
- School of Medicine and Institute for Life Sciences, South China University of Technology, Guangzhou, 510006, China; Department of Cardiology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Zhang T, Luo X, Zeng Q, Fu Y, Li Z, Li K, Liu X, Huang P, Chen Y, Zhang M, Liu Z. Effects of Smoking on Regional Homogeneity in Mild Cognitive Impairment: A Resting-State Functional MRI Study. Front Aging Neurosci 2020; 12:572732. [PMID: 33328955 PMCID: PMC7717978 DOI: 10.3389/fnagi.2020.572732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Background Smoking is a modifiable risk factor for Alzheimer’s disease (AD). However, smoking-related effects on intrinsic brain activity in high-risk AD population are still unclear. Objective We aimed to explore differences in smoking effects on brain function between healthy elderly and amnestic mild cognitive impairment (aMCI) patients using ReHo mapping. Methods We identified 64 healthy elderly controls and 116 aMCI patients, including 98 non-smoking and 18 smoking aMCI. Each subject underwent structural and resting-state functional MRI scanning and neuropsychological evaluations. Regional homogeneity (ReHo) mapping was used to assess regional brain synchronization. After correction for age, gender, education, and gray matter volume, we explored the difference of ReHo among groups in a voxel-wise way based on analysis of covariance (ANCOVA), followed by post hoc two-sample analyses (p < 0.05, corrected). Further, we correlated the mean ReHo with neuropsychological scales. Results Three groups were well-matched in age, gender, and education. Significant ReHo differences were found among three groups, located in the left supramarginal gyrus (SMG) and left angular gyrus (AG). Specifically, non-smoking aMCI had lower ReHo in SMG and AG than smoking aMCI and controls. By contrast, smoking aMCI had greater AG ReHo than healthy controls (p < 0.05). Across groups, correlation analyses showed that left AG ReHo correlated with MMSE (r = 0.18, p = 0.015), clock drawing test (r = 0.20, p = 0.007), immediate recall (r = 0.36, p < 0.001), delayed recall (r = 0.34, p < 0.001), and auditory verbal learning test (r = 0.20, p = 0.007). Conclusion Smoking might pose compensatory or protective effects on intrinsic brain activity in aMCI patients.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
14
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
15
|
Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020; 21:ijms21218113. [PMID: 33143095 PMCID: PMC7663550 DOI: 10.3390/ijms21218113] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.
Collapse
|
16
|
Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2020; 11:330-341. [PMID: 30892598 PMCID: PMC6734141 DOI: 10.1093/jmcb/mjz005] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
The TP53 tumor suppressor gene encodes a DNA-binding transcription factor that regulates multiple cellular processes including cell growth and cell death. The ability of p53 to bind to DNA and activate transcription is tightly regulated by post-translational modifications and is dependent on a reducing cellular environment. Some p53 transcriptional target genes are involved in regulation of the cellular redox homeostasis, e.g. TIGAR and GLS2. A large fraction of human tumors carry TP53 mutations, most commonly missense mutations that lead to single amino acid substitutions in the core domain. Mutant p53 proteins can acquire so called gain-of-function activities and influence the cellular redox balance in various ways, for instance by binding of the Nrf2 transcription factor, a major regulator of cellular redox state. The DNA-binding core domain of p53 has 10 cysteine residues, three of which participate in holding a zinc atom that is critical for p53 structure and function. Several novel compounds that refold and reactivate missense mutant p53 bind to specific p53 cysteine residues. These compounds can also react with other thiols and target components of the cellular redox system, such as glutathione. Dual targeting of mutant p53 and redox homeostasis may allow more efficient treatment of cancer.
Collapse
Affiliation(s)
- Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Sophia Ceder
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, BioClinicum, Stockholm, Sweden
| |
Collapse
|
17
|
Guo Y, Yang H, Huang Z, Tian S, Li Q, Du C, Chen T, Liu Y, Sun H, Liu Z. Design, Synthesis, and Evaluation of Acetylcholinesterase and Butyrylcholinesterase Dual-Target Inhibitors against Alzheimer's Diseases. Molecules 2020; 25:E489. [PMID: 31979317 PMCID: PMC7038160 DOI: 10.3390/molecules25030489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023] Open
Abstract
A series of novel compounds 6a-h, 8i-1, 10s-v, and 16a-d were synthesized and evaluated, together with the known analogs 11a-f, for their inhibitory activities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The inhibitory activities of AChE and BChE were evaluated in vitro by Ellman method. The results show that some compounds have good inhibitory activity against AChE and BChE. Among them, compound 8i showed the strongest inhibitory effect on both AChE (eeAChE IC50 = 0.39 μM) and BChE (eqBChE IC50 = 0.28 μM). Enzyme inhibition kinetics and molecular modeling studies have shown that compound 8i bind simultaneously to the peripheral anionic site (PAS) and the catalytic sites (CAS) of AChE and BChE. In addition, the cytotoxicity of compound 8i is lower than that of Tacrine, indicating its potential safety as anti-Alzheimer's disease (anti-AD) agents. In summary, these data suggest that compound 8i is a promising multipotent agent for the treatment of AD.
Collapse
Affiliation(s)
- Yan Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyu Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongwei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Sen Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tingkai Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
18
|
Kommaddi RP, Tomar DS, Karunakaran S, Bapat D, Nanguneri S, Ray A, Schneider BL, Nair D, Ravindranath V. Glutaredoxin1 Diminishes Amyloid Beta-Mediated Oxidation of F-Actin and Reverses Cognitive Deficits in an Alzheimer's Disease Mouse Model. Antioxid Redox Signal 2019; 31:1321-1338. [PMID: 31617375 DOI: 10.1089/ars.2019.7754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Reactive oxygen species (ROS) generated during Alzheimer's disease (AD) pathogenesis through multiple sources are implicated in synaptic pathology observed in the disease. We have previously shown F-actin disassembly in dendritic spines in early AD (34). The actin cytoskeleton can be oxidatively modified resulting in altered F-actin dynamics. Therefore, we investigated whether disruption of redox signaling could contribute to actin network disassembly and downstream effects in the amyloid precursor protein/presenilin-1 double transgenic (APP/PS1) mouse model of AD. Results: Synaptosomal preparations from 1-month-old APP/PS1 mice showed an increase in ROS levels, coupled with a decrease in the reduced form of F-actin and increase in glutathionylated synaptosomal actin. Furthermore, synaptic glutaredoxin 1 (Grx1) and thioredoxin levels were found to be lowered. Overexpressing Grx1 in the brains of these mice not only reversed F-actin loss seen in APP/PS1 mice but also restored memory recall after contextual fear conditioning. F-actin levels and F-actin nanoarchitecture in spines were also stabilized by Grx1 overexpression in APP/PS1 primary cortical neurons, indicating that glutathionylation of F-actin is a critical event in early pathogenesis of AD, which leads to spine loss. Innovation: Loss of thiol/disulfide oxidoreductases in the synapse along with increase in ROS can render F-actin nanoarchitecture susceptible to oxidative modifications in AD. Conclusions: Our findings provide novel evidence that altered redox signaling in the form of S-glutathionylation and reduced Grx1 levels can lead to synaptic dysfunction during AD pathogenesis by directly disrupting the F-actin nanoarchitecture in spines. Increasing Grx1 levels is a potential target for novel disease-modifying therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Deepti Bapat
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | | - Ajit Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Butterfield DA. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2031-2039. [PMID: 31167728 PMCID: PMC6602546 DOI: 10.1016/j.bbadis.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the major locus of dementia worldwide. In the USA there are nearly 6 million persons with this disorder, and estimates of 13-20 million AD cases in the next three decades. The molecular bases for AD remain unknown, though processes involving amyloid beta-peptide as small oligomeric forms are gaining attention as known agents to both lead to oxidative stress and synaptic dysfunction associated with cognitive dysfunction in AD and its earlier forms, including amnestic mild cognitive impairment (MCI) and possibly preclinical Alzheimer disease (PCAD). Altered brain protein phosphorylation is a hallmark of AD, and phosphoproteomics offers an opportunity to identify these altered phosphoproteins in order to gain more insights into molecular mechanisms of neuronal dysfunction and death that lead to cognitive loss. This paper reviews what, to this author, are believed to be the known phosphoproteomics studies related to in vitro and in vivo models of AD as well as phosphoproteomics studies of brains from subjects with AD, and in at least one case in MCI and PCAD as well. The results of this review are discussed with relevance to new insights into AD brain protein dysregulation in critical neuronal functions and to potential therapeutic targets to slow, or in favorable cases, halt progression of this dementing disorder that affects millions of persons and their families worldwide.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
20
|
Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019; 626:499-538. [PMID: 31606089 PMCID: PMC6908309 DOI: 10.1016/bs.mie.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryan R Dyer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Katarena I Ford
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
21
|
Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Cullen NC, Höglund K, Zetterberg H, Blennow K, Portelius E. The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease. Acta Neuropathol 2019; 137:89-102. [PMID: 30244311 PMCID: PMC6338696 DOI: 10.1007/s00401-018-1910-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Synaptic degeneration and neuronal loss are early events in Alzheimer's disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodegeneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer's disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n = 9), fAD (n = 10), CU-AP (n = 13) and controls (n = 9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of peptide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increased in both sAD and fAD cases compared to controls and CU-AP. This finding was confirmed by western blot, which mainly detects full-length Ng, and enzyme-linked immunosorbent assay, most likely detecting a mix of peptides and full-length Ng. In addition, Ng was significantly associated with the degree of amyloid and tau pathology. These results suggest that processing of Ng into peptides is increased in AD brain tissue, which may reflect the ongoing synaptic degeneration, and which is also mirrored as increased levels of Ng peptides in CSF.
Collapse
Affiliation(s)
- Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Christina E Murray
- Queen Square Brain Bank for Neurological Disorders, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas C Cullen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
22
|
Tramutola A, Abate G, Lanzillotta C, Triani F, Barone E, Iavarone F, Vincenzoni F, Castagnola M, Marziano M, Memo M, Garrafa E, Butterfield DA, Perluigi M, Di Domenico F, Uberti D. Protein nitration profile of CD3 + lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radic Biol Med 2018; 129:430-439. [PMID: 30321702 DOI: 10.1016/j.freeradbiomed.2018.10.414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive form of dementia characterized by increased production of amyloid-β plaques and hyperphosphorylated tau protein, mitochondrial dysfunction, elevated oxidative stress, reduced protein clearance, among other. Several studies showed systemic modifications of immune and inflammatory systems due, in part, to decreased levels of CD3+ lymphocytes in peripheral blood in AD. Considering that oxidative stress, both in the brain and in the periphery, can influence the activation and differentiation of T-cells, we investigated the 3-nitrotyrosine (3-NT) proteome of blood T-cells derived from AD patients compared to non-demented (ND) subjects by using a proteomic approach. 3-NT is a formal protein oxidation and index of nitrosative stress. We identified ten proteins showing increasing levels of 3-NT in CD3+ T-cells from AD patients compared with ND subjects. These proteins are involved in energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response and provide new insights into the molecular mechanism that impact reduced T-cell differentiation in AD. Our results highlight the role of peripheral oxidative stress in T-cells related to immune-senescence during AD pathology focusing on the specific targets of protein nitration that conceivably can be suitable to further therapies. Further, our data demonstrate common targets of protein nitration between the brain and the periphery, supporting their significance as disease biomarkers.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Abate
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Triani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariagrazia Marziano
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 2018; 23:molecules23061297. [PMID: 29843466 PMCID: PMC6099654 DOI: 10.3390/molecules23061297] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Tea is one of the most consumed beverages in the world. Green tea, black tea, and oolong tea are made from the same plant Camellia sinensis (L.) O. Kuntze. Among them, green tea has been the most extensively studied for beneficial effects on diseases including cancer, obesity, diabetes, and inflammatory and neurodegenerative diseases. Several human observational and intervention studies have found beneficial effects of tea consumption on neurodegenerative impairment, such as cognitive dysfunction and memory loss. These studies supported the basis of tea's preventive effects of Parkinson's disease, but few studies have revealed such effects on Alzheimer's disease. In contrast, several human studies have not reported these favorable effects with regard to tea. This discrepancy may be due to incomplete adjustment of confounding factors, including the method of quantifying consumption, beverage temperature, cigarette smoking, alcohol consumption, and differences in genetic and environmental factors, such as race, sex, age, and lifestyle. Thus, more rigorous human studies are required to understand the neuroprotective effect of tea. A number of laboratory experiments demonstrated the benefits of green tea and green tea catechins (GTCs), such as epigallocatechin gallate (EGCG), and proposed action mechanisms. The targets of GTCs include the abnormal accumulation of fibrous proteins, such as Aβ and α-synuclein, inflammation, elevated expression of pro-apoptotic proteins, and oxidative stress, which are associated with neuronal cell dysfunction and death in the cerebral cortex. Computational molecular docking analysis revealed how EGCG can prevent the accumulation of fibrous proteins. These findings suggest that GTCs have the potential to be used in the prevention and treatment of neurodegenerative diseases and could be useful for the development of new drugs.
Collapse
Affiliation(s)
- Monira Pervin
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Keiko Unno
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka 410-0301, Japan.
| | - Hiroki Tanabe
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro-city, Hokkaido 096-8641, Japan.
| | - Noriyuki Miyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yoriyuki Nakamura
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
24
|
Butterfield DA, Boyd-Kimball D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1345-1367. [PMID: 29562527 PMCID: PMC5870019 DOI: 10.3233/jad-170543] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in the pathogenesis and progression of Alzheimer's disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This "Quadrilateral of Neuronal Death" includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, USA
| |
Collapse
|
25
|
Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2818565. [PMID: 29456785 PMCID: PMC5804111 DOI: 10.1155/2017/2818565] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Protein glutathionylation is a redox-mediated posttranslational modification that regulates the function of target proteins by conjugating glutathione with a cysteine thiol group on the target proteins. Protein glutathionylation has several biological functions such as regulation of metabolic pathways, calcium homeostasis, signal transduction, remodeling of cytoskeleton, inflammation, and protein folding. However, the exact role and mechanism of glutathionylation during irreversible oxidative stress has not been completely defined. Irreversible oxidative damage is implicated in a number of neurological disorders. Here, we discuss and highlight the most recent findings and several evidences for the association of glutathionylation with neurodegenerative diseases and the role of glutathionylation of specific proteins in the pathogenesis of neurodegenerative diseases. Understanding the important role of glutathionylation in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions.
Collapse
|
26
|
Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid Redox Signal 2017; 27:989-1010. [PMID: 28443683 PMCID: PMC5649126 DOI: 10.1089/ars.2016.6925] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. CRITICAL ISSUES In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. FUTURE DIRECTIONS Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Lili Zou
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden .,2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Xu Zhang
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Vasco Branco
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jun Wang
- 2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Cristina Carvalho
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Arne Holmgren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jun Lu
- 4 School of Pharmaceutical Sciences, Southwest University , Chongqing, China
| |
Collapse
|
27
|
Tramutola A, Pupo G, Di Domenico F, Barone E, Arena A, Lanzillotta C, Brokeaart D, Blarzino C, Head E, Butterfield DA, Perluigi M. Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. J Alzheimers Dis 2017; 52:359-371. [PMID: 26967221 DOI: 10.3233/jad-151105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, resulting from trisomy of chromosome 21. The main feature of DS neuropathology includes early onset of Alzheimer's disease (AD), with deposition of senile plaques and tangles. We hypothesized that apoptosis may be activated in the presence of AD neuropathology in DS, thus we measured proteins associated with upstream and downstream pathways of p53 in the frontal cortex from DS cases with and without AD pathology and from Ts65Dn mice, at different ages. We observed increased acetylation and phosphorylation of p53, coupled to reduced MDM2/p53 complex level and lower levels of SIRT1. Activation of p53 was associated with a number of targets (BAX, PARP1, caspase-3, p21, heat shock proteins, and PGC1α) that were modulated in both DS and DS/AD compared with age-matched controls. In particular, the most relevant changes (increased p-p53 and acetyl-p53 and reduced formation of MDM2/p53 complex) were found to be modified only in the presence of AD pathology in DS. In addition, a similar pattern of alterations in the p53 pathway was found in Ts65Dn mice. These results suggest that p53 may integrate different signals, which can result in a pro-apoptotic-phenotype contributing to AD neuropathology in people with DS.
Collapse
Affiliation(s)
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | - Carla Blarzino
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA
| | - D Allan Butterfield
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA.,Department of Chemistry, University of Kentucky, Lexington KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
28
|
Kayano M, Higaki S, Satoh JI, Matsumoto K, Matsubara E, Takikawa O, Niida S. Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomark Res 2016; 4:22. [PMID: 27999671 PMCID: PMC5151129 DOI: 10.1186/s40364-016-0076-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is an intermediate state between normal aging and dementia including Alzheimer's disease. Early detection of dementia, and MCI, is a crucial issue in terms of secondary prevention. Blood biomarker detection is a possible way for early detection of MCI. Although disease biomarkers are detected by, in general, using single molecular analysis such as t-test, another possible approach is based on interaction between molecules. RESULTS Differential correlation analysis, which detects difference on correlation of two variables in case/control study, was carried out to plasma microRNA (miRNA) expression profiles of 30 age- and race-matched controls and 23 Japanese MCI patients. The 20 pairs of miRNAs, which consist of 20 miRNAs, were selected as MCI markers. Two pairs of miRNAs (hsa-miR-191 and hsa-miR-101, and hsa-miR-103 and hsa-miR-222) out of 20 attained the highest area under the curve (AUC) value of 0.962 for MCI detection. Other two miRNA pairs that include hsa-miR-191 and hsa-miR-125b also attained high AUC value of ≥ 0.95. Pathway analysis was performed to the MCI markers for further understanding of biological implications. As a result, collapsed correlation on hsa-miR-191 and emerged correlation on hsa-miR-125b might have key role in MCI and dementia progression. CONCLUSION Differential correlation analysis, a bioinformatics tool to elucidate complicated and interdependent biological systems behind diseases, detects effective MCI markers that cannot be found by single molecule analysis such as t-test.
Collapse
Affiliation(s)
- Mitsunori Kayano
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sayuri Higaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Etsuro Matsubara
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Osamu Takikawa
- Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
29
|
Gu L, Robinson RAS. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Proteomics Clin Appl 2016; 10:1159-1177. [PMID: 27666938 DOI: 10.1002/prca.201600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
Cysteine is a highly reactive amino acid and is subject to a variety of reversible post-translational modifications (PTMs), including nitrosylation, glutathionylation, palmitoylation, as well as formation of sulfenic acid and disulfides. These modifications are not only involved in normal biological activities, such as enzymatic catalysis, redox signaling, and cellular homeostasis, but can also be the result of oxidative damage. Especially in aging and neurodegenerative diseases, oxidative stress leads to aberrant cysteine oxidations that affect protein structure and function leading to neurodegeneration as well as other detrimental effects. Methods that can identify cysteine modifications by type, including the site of modification, as well as the relative stoichiometry of the modification can be very helpful for understanding the role of the thiol proteome and redox homeostasis in the context of disease. Cysteine reversible modifications however, are challenging to investigate as they are low abundant, diverse, and labile especially under endogenous conditions. Thanks to the development of redox proteomic approaches, large-scale quantification of cysteine reversible modifications is possible. These approaches cover a range of strategies to enrich, identify, and quantify cysteine reversible modifications from biological samples. This review will focus on nongel-based redox proteomics workflows that give quantitative information about cysteine PTMs and highlight how these strategies have been useful for investigating the redox thiol proteome in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
ZHANG XQ, CHEN C, FANG CY, LU HJ. Progress of Analytical Methods for Protein Cysteine Post-translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60974-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Brigelius-Flohé R. Mixed results with mixed disulfides. Arch Biochem Biophys 2016; 595:81-7. [PMID: 27095221 DOI: 10.1016/j.abb.2015.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/03/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
Abstract
A period of research with Helmut Sies in the 1980s is recalled. Our experiments aimed at an in-depth understanding of metabolic changes due to oxidative challenges under near-physiological conditions, i.e. perfused organs. A major focus were alterations of the glutathione and the NADPH/NADP(+) system by different kinds of oxidants, in particular formation of glutathione mixed disulfides with proteins. To analyze mixed disulfides, a test was adapted which is widely used until today. The observations in perfused rat livers let us believe that glutathione-6-phosphate dehydrogenase (G6PDH), i.a. might be activated by glutathionylation. Although we did not succeed to verify this hypothesis for the special case of G6PDH, the regulation of enzyme/protein activities by glutathionylation today is an accepted posttranslational mechanism in redox biology in general. Our early experimental approaches are discussed in the context of present knowledge.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
32
|
Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1871-82. [PMID: 27425034 DOI: 10.1016/j.bbadis.2016.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
Protein phosphorylation of serine, threonine, and tyrosine residues is one of the most prevalent post-translational modifications fundamental in mediating diverse cellular functions in living cells. Aberrant protein phosphorylation is currently recognized as a critical step in the pathogenesis and progression of Alzheimer disease (AD). Changes in the pattern of protein phosphorylation of different brain regions are suggested to promote AD transition from a presymptomatic to a symptomatic state in response to accumulating amyloid β-peptide (Aβ). Several experimental approaches have been utilized to profile alteration of protein phosphorylation in the brain, including proteomics. Among central pathways regulated by kinases/phosphatases those involved in the activation/inhibition of both pro survival and cell death pathways play a central role in AD pathology. We discuss in detail how aberrant phosphorylation could contribute to dysregulate p53 activity and insulin-mediated signaling. Taken together these results highlight that targeted therapeutic intervention, which can restore phosphorylation homeostasis, either acting on kinases and phosphatases, conceivably may prove to be beneficial to prevent or slow the development and progression of AD.
Collapse
|
33
|
Evidence for a role for the putative Drosophila hGRX1 orthologue in copper homeostasis. Biometals 2016; 29:705-13. [PMID: 27379771 DOI: 10.1007/s10534-016-9946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.
Collapse
|
34
|
Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15:60. [PMID: 27268025 PMCID: PMC4897892 DOI: 10.1186/s12937-016-0179-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.
Collapse
Affiliation(s)
- Neha Atulkumar Singh
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Zaved Ahmed Khan
- Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, Punjab, India.
| |
Collapse
|
35
|
Gu L, Robinson RAS. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML). Anal Bioanal Chem 2016; 408:2993-3004. [PMID: 26800981 DOI: 10.1007/s00216-016-9307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Cysteine is widely involved in redox signaling pathways through a number of reversible and irreversible modifications. Reversible modifications (e.g., S-glutathionylation, S-nitrosylation, disulfide bonds, and sulfenic acid) are used to protect proteins from oxidative attack and maintain cellular homeostasis, while irreversible oxidations (e.g., sulfinic acid and sulfonic acid) serve as hallmarks of oxidative stress. Proteomic analysis of cysteine-enriched peptides coupled with reduction of oxidized thiols can be used to measure the oxidation states of cysteine, which is helpful for elucidating the role that oxidative stress plays in biology and disease. As an extension of our previously reported cysDML method, we have developed oxidized cysteine-selective dimethylation (OxcysDML), to investigate the site-specific total oxidation of cysteine residues in biologically relevant samples. OxcysDML employs (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing reversibly oxidized cysteine by a solid phase resin, and (3) isotopic labeling of peptide amino groups to quantify cysteine modifications arising from different biological conditions. On-resin enrichment and labeling minimizes sample handing time and improves efficiency in comparison with other redox proteomic methods. OxcysDML is also inexpensive and flexible, as it can accommodate the exploration of various cysteine modifications. Here, we applied the method to liver tissues from a late-stage Alzheimer's disease (AD) mouse model and wild-type (WT) controls. Because we have previously characterized this proteome using the cysDML approach, we are able here to probe deeper into the redox status of cysteine in AD. OxcysDML identified 1129 cysteine sites (from 527 proteins), among which 828 cysteine sites underwent oxidative modifications. Nineteen oxidized cysteine sites had significant alteration levels in AD and represent proteins involved in metabolic processes. Overall, we have demonstrated OxcysDML as a simple, rapid, robust, and inexpensive redox proteomic approach that is useful for gaining deeper insight into the proteome of AD.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, 111 Eberly Hall, 200 University Drive, Pittsburgh, PA, 15260, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, 111 Eberly Hall, 200 University Drive, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
36
|
Zhang C, Kuo CC, Moghadam SH, Monte L, Rice KC, Rissman RA. Corticotropin-Releasing Factor Receptor-1 Antagonism Reduces Oxidative Damage in an Alzheimer’s Disease Transgenic Mouse Model. J Alzheimers Dis 2016; 45:639-50. [PMID: 25649650 DOI: 10.3233/jad-141722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reports from Alzheimer’s disease (AD) biomarker work have shown a strong link between oxidative stress and AD neuropathology. The nonenzymatic antioxidant, glutathione (GSH), plays a crucial role in defense against reactive oxygen species and maintenance of GSH redox homeostasis. In particular, our previous studies on GSH redox imbalance have implicated oxidative stress induced by excessive reactive oxygen species as a major mediator of AD-like events, with the presence of S- glutathionylated proteins (Pr-SSG) appearing prior to overt AD neuropathology. Furthermore, evidence suggests that oxidative stress may be associated with dysfunction of the hypothalamic-pituitary-adrenal axis, leading to activation of inflammatory pathways and increased production of corticotropin-releasing factor (CRF). Therefore, to investigate whether oxidative insults can be attenuated by reduction of central CRF signaling, we administered the type-1 CRF receptor (CRFR1) selective antagonist, R121919, to AD-transgenic mice beginning in the preclinical/prepathologic period (30-day-old) for 150 days, a time point where behavioral impairments and pathologic progression should be measureable. Our results indicate that R121919 treatment can significantly reduce Pr-SSG levels and increase glutathione peroxide activity, suggesting that interference of CRFR1 signaling may be useful as a preventative therapy for combating oxidative stress in AD.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kunieda K, Tsutsuki H, Ida T, Kishimoto Y, Kasamatsu S, Sawa T, Goshima N, Itakura M, Takahashi M, Akaike T, Ihara H. 8-Nitro-cGMP Enhances SNARE Complex Formation through S-Guanylation of Cys90 in SNAP25. ACS Chem Neurosci 2015. [PMID: 26221773 DOI: 10.1021/acschemneuro.5b00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nitrated guanine nucleotide 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) generated by reactive oxygen/nitrogen species causes protein S-guanylation. However, the mechanism of 8-nitro-cGMP formation and its protein targets in the normal brain have not been identified. Here, we investigated 8-nitro-cGMP generation and protein S-guanylation in the rodent brain. Immunohistochemistry indicated that 8-nitro-cGMP was produced by neurons, such as pyramidal cells and interneurons. Using liquid chromatography-tandem mass spectrometry, we determined endogenous 8-nitro-cGMP levels in the brain as 2.92 ± 0.10 pmol/mg protein. Based on S-guanylation proteomics, we identified several S-guanylated neuronal proteins, including SNAP25 which is a core member of the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex. SNAP25 post-translational modification including palmitoylation, phosphorylation, and oxidation, are known to regulate neurotransmission. Our results demonstrate that S-guanylation of SNAP25 enhanced the stability of the SNARE complex, which was further promoted by Ca(2+)-dependent activation of neuronal nitric oxide synthase. Using site-directed mutagenesis, we identified SNAP25 cysteine 90 as the main target of S-guanylation which enhanced the stability of the SNARE complex. The present study revealed a novel target of redox signaling via protein S-guanylation in the nervous system and provided the first substantial evidence of 8-nitro-cGMP function in the nervous system.
Collapse
Affiliation(s)
- Kohei Kunieda
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Hiroyasu Tsutsuki
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoaki Ida
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yusuke Kishimoto
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Shingo Kasamatsu
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Tomohiro Sawa
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Goshima
- Quantitative
Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Makoto Itakura
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masami Takahashi
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takaaki Akaike
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Hideshi Ihara
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
38
|
Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2015; 79:1562-83. [PMID: 25749165 DOI: 10.1134/s0006297914130082] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia, Moscow, 117198, Russia.
| | | | | |
Collapse
|
39
|
McGarry DJ, Chen W, Chakravarty P, Lamont DL, Wolf CR, Henderson CJ. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver. Biochem J 2015; 469:25-32. [PMID: 25891661 DOI: 10.1042/bj20141256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/20/2015] [Indexed: 11/17/2022]
Abstract
Protein S-glutathionylation is a reversible post-translational modification regulating sulfhydryl homeostasis. However, little is known about the proteins and pathways regulated by S-glutathionylation in whole organisms and current approaches lack the sensitivity to examine this modification under basal conditions. We now report the quantification and identification of S-glutathionylated proteins from animal tissue, using a highly sensitive methodology combining high-accuracy proteomics with tandem mass tagging to provide precise, extensive coverage of S-glutathionylated targets in mouse liver. Critically, we show significant enrichment of S-glutathionylated mitochondrial and Krebs cycle proteins, identifying that S-glutathionylation is heavily involved in energy metabolism processes in vivo. Furthermore, using mice nulled for GST Pi (GSTP) we address the potential for S-glutathionylation to be mediated enzymatically. The data demonstrate the impact of S-glutathionylation in cellular homeostasis, particularly in relation to energy regulation and is of significant interest for those wishing to examine S-glutathionylation in an animal model.
Collapse
Affiliation(s)
- David J McGarry
- Molecular Pharmacology Group, Medical Research Institute, Level 9, Jacqui Wood Cancer Centre, Dundee DD1 9SY, U.K.
| | - Wenzhang Chen
- FingerPrints Proteomics Facility, MSI/WTB/JBC Complex, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Probir Chakravarty
- Bioinformatics & Biostatistics Group, Cancer Research UK London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3PX, U.K
| | - Douglas L Lamont
- FingerPrints Proteomics Facility, MSI/WTB/JBC Complex, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - C Roland Wolf
- Molecular Pharmacology Group, Medical Research Institute, Level 9, Jacqui Wood Cancer Centre, Dundee DD1 9SY, U.K
| | - Colin J Henderson
- Molecular Pharmacology Group, Medical Research Institute, Level 9, Jacqui Wood Cancer Centre, Dundee DD1 9SY, U.K
| |
Collapse
|
40
|
Halloran M, Parakh S, Atkin JD. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013; 2013:797914. [PMID: 24348565 PMCID: PMC3852308 DOI: 10.1155/2013/797914] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI) is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO-) containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI) in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- M. Halloran
- Department of Neuroscience in the School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - S. Parakh
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | - J. D. Atkin
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
41
|
Cell cycle checkpoint abnormalities during dementia: A plausible association with the loss of protection against oxidative stress in Alzheimer's disease [corrected]. PLoS One 2013; 8:e68361. [PMID: 23861893 PMCID: PMC3702571 DOI: 10.1371/journal.pone.0068361] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022] Open
Abstract
Background Increasing evidence suggests an association between neuronal cell cycle (CCL) events and the processes that underlie neurodegeneration in Alzheimer’s disease (AD). Elevated levels of oxidative stress markers and mitochondrial dysfunction are also among early events in AD. Recent studies have reported the role of CCL checkpoint proteins and tumor suppressors, such as ATM and p53 in the control of glycolysis and oxidative metabolism in cancer, but their involvement in AD remains uncertain. Methods and Findings In this postmortem study, we measured gene expression levels of eight CCL checkpoint proteins in the superior temporal cortex (STC) of persons with varying severities of AD dementia and compare them to those of cognitively normal controls. To assess whether the CCL changes associated with cognitive impairment in AD are specific to dementia, gene expression of the same proteins was also measured in STC of persons with schizophrenia (SZ), which is also characterized by mitochondrial dysfunction. The expression of CCL-checkpoint and DNA damage response genes: MDM4, ATM and ATR was strongly upregulated and associated with progression of dementia (cognitive dementia rating, CDR), appearing as early as questionable or mild dementia (CDRs 0.5–1). In addition to gene expression changes, the downstream target of ATM-p53 signaling - TIGAR, a p53-inducible protein, the activation of which can regulate energy metabolism and protect against oxidative stress was progressively decreased as severity of dementia evolved, but it was unaffected in subjects with SZ. In contrast to AD, different CCL checkpoint proteins, which include p53, CHEK1 and BRCA1 were significantly downregulated in SZ. Conclusions These results support the activation of an ATM signaling and DNA damage response network during the progression of AD dementia, while the progressive decrease in the levels of TIGAR suggests loss of protection initiated by ATM-p53 signaling against intensifying oxidative stress in AD.
Collapse
|
42
|
Zhang C, Kuo CC, Chiu AWL, Feng J. Prediction of S-glutathionylated proteins progression in Alzheimer's transgenic mouse model using principle component analysis. J Alzheimers Dis 2013; 30:919-34. [PMID: 22475799 DOI: 10.3233/jad-2012-120028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To date, prediction of Alzheimer's disease (AD) is mainly based on clinical criteria because no well-established biochemical biomarkers for routine clinical diagnosis of AD currently exist. We developed an approach to aid in the early diagnosis of AD by using principal component analysis (PCA)-based spectral analysis of oxidized protein electrophoretic profiling. We found that the combination of capillary electrophoresis and PCA analysis of S-glutathionylation distribution characterization can be used in the sample classification and molecular weight (Mw) prediction. The comparison of leave-one-out AD versus non-AD gives the sensitivity of 100% and 93.33% in brain tissues and blood samples, respectively, while the specificity of 100% in brain and 90.0% in blood samples. Our findings demonstrate that PCA of S-glutathionylation electrophoretic profiling detects AD pathology features, and that the molecular weight based electrophoretic profiling of blood and brain S-glutathionylated proteins are sensitive to change, even at the early stage of the disease. Our results offer a previously unexplored diagnostic approach by using electrophoretic characteristics of oxidized proteins to serve as a predictor of AD progression and early stage screening.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | |
Collapse
|
43
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
44
|
Brain Oxidative Stress in the Pathogenesis and Progression of Alzheimer’s Disease. STUDIES ON ALZHEIMER'S DISEASE 2013. [DOI: 10.1007/978-1-62703-598-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Fiorini A, Sultana R, Barone E, Cenini G, Perluigi M, Mancuso C, Cai J, Klein JB, St. Clair D, Butterfield DA. Lack of p53 affects the expression of several brain mitochondrial proteins: insights from proteomics into important pathways regulated by p53. PLoS One 2012; 7:e49846. [PMID: 23209608 PMCID: PMC3507874 DOI: 10.1371/journal.pone.0049846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/12/2012] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor protein p53 has been described "as the guardian of the genome" for its crucial role in regulating the transcription of numerous genes responsible for cells cycle arrest, senescence, or apoptosis in response to various stress signals. Although p53 promotes longevity by decreasing the risk of cancer through activation of apoptosis or cellular senescence, several findings suggest that an increase of its activity may have deleterious effects leading to selected aspects of the aging phenotype and neurodegenerative diseases. There is the link between p53 and oxidative stress, the latter a crucial factor that contributes to neurodegenerative processes like Alzheimer disease (AD). In the present study, using a proteomics approach, we analyzed the impact of lack of p53 on the expression of several brain mitochondrial proteins involved in different pathways, and how lack of p53 may present a target to restore neuronal impairments. Our investigation on isolated brain mitochondria from p53((-/-)) mice also provides a better understanding of the p53-mitochondria relationship and its involvement in the development of many diseases.
Collapse
Affiliation(s)
- Ada Fiorini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Jian Cai
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jon B. Klein
- Division of Nephrology, Department of Medicine and Proteomics Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Daret St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, United States of America
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
SIGNIFICANCE Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis. RECENT ADVANCES Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites. CRITICAL ISSUES Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments. FUTURE DIRECTIONS The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
47
|
Barone E, Cenini G, Sultana R, Di Domenico F, Fiorini A, Perluigi M, Noel T, Wang C, Mancuso C, St Clair DK, Butterfield DA. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B. Antioxid Redox Signal 2012; 16:1407-20. [PMID: 22229939 PMCID: PMC3329952 DOI: 10.1089/ars.2011.4124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS The basal oxidative and nitrosative stress levels measured in cytosol, mitochondria, and nuclei as well as in the whole homogenate obtained from the brain of wild type (wt) and p53 knockout [p53((-/-))] mice were evaluated. We hypothesized that the loss of p53 could trigger the activation of several protective mechanisms such as those involving thioredoxin-1 (Thio-1), the heme-oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system, manganese superoxide dismutase (MnSOD), the IkB kinase type β (IKKβ)/nuclear factor kappa-B (NF-kB), and the nuclear factor-erythroid 2 (NF-E2) related factor 2 (Nrf-2). RESULTS A decrease of protein carbonyls, protein-bound 4-hydroxy-2-nonenal (HNE), and 3-nitrotyrosine (3-NT) was observed in the brain from p53((-/-)) mice compared with wt. Furthermore, we observed a significant increase of the expression levels of Thio-1, BVR-A, MnSOD, IKKβ, and NF-kB. Conversely a significant decrease of Nrf-2 protein levels was observed in the nuclear fraction isolated from p53((-/-)) mice. No changes were found for HO-1. INNOVATION This is the first study of basal oxidative/nitrosative stress in in vivo conditions of brain obtained from p53((-/-)) mice. New insights into the role of p53 in oxidative stress have been gained. CONCLUSION We demonstrated, for the first time, that the lack of p53 reduces basal oxidative stress levels in mice brain. Due to the pivotal role that p53 plays during cellular stress response our results provide new insights into novel therapeutic strategies to modulate protein oxidation and lipid peroxidation having p53 as a target. The implications of this work are profound, particularly for neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
49
|
Sabens Liedhegner EA, Gao XH, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation. Antioxid Redox Signal 2012; 16:543-66. [PMID: 22066468 PMCID: PMC3270051 DOI: 10.1089/ars.2011.4119] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention. RECENT ADVANCES Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death. CRITICAL ISSUES Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases. FUTURE DIRECTIONS The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.
Collapse
|
50
|
Tveden-Nyborg P, Hasselholt S, Miyashita N, Moos T, Poulsen HE, Lykkesfeldt J. Chronic Vitamin C Deficiency does not Accelerate Oxidative Stress in Ageing Brains of Guinea Pigs. Basic Clin Pharmacol Toxicol 2012; 110:524-9. [DOI: 10.1111/j.1742-7843.2011.00852.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/05/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Stine Hasselholt
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Namiyo Miyashita
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Torben Moos
- Department of Health Science and Technology; Aalborg University; Aalborg; Denmark
| | - Henrik E. Poulsen
- Department of Clinical Pharmacology Q; Copenhagen University Hospital; Copenhagen; Denmark
| | - Jens Lykkesfeldt
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|