1
|
Yan W, Saqirile, Li K, Li K, Wang C. The Role of N6-Methyladenosine in Mitochondrial Dysfunction and Pathology. Int J Mol Sci 2025; 26:3624. [PMID: 40332101 PMCID: PMC12026702 DOI: 10.3390/ijms26083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondria are indispensable in cells and play crucial roles in maintaining cellular homeostasis, energy production, and regulating cell death. Mitochondrial dysfunction has various manifestations, causing different diseases by affecting the diverse functions of mitochondria in the body. Previous studies have mainly focused on mitochondrial-related diseases caused by nuclear gene mutations or mitochondrial gene mutations, or mitochondrial dysfunction resulting from epigenetic regulation, such as DNA and histone modification. In recent years, as a popular research area, m6A has been involved in a variety of important processes under physiological and pathological conditions. However, there are few summaries on how RNA methylation, especially m6A RNA methylation, affects mitochondrial function. Additionally, the role of m6A in pathology through influencing mitochondrial function may provide us with a new perspective on disease treatment. In this review, we summarize several manifestations of mitochondrial dysfunction and compile examples from recent years of how m6A affects mitochondrial function and its role in some diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (W.Y.); (S.); (K.L.); (K.L.)
| |
Collapse
|
2
|
Erdogan O, Iyigun C, Aydın Son Y. EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease. BioData Min 2025; 18:20. [PMID: 40038746 DOI: 10.1186/s13040-025-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.
Collapse
Affiliation(s)
- Onur Erdogan
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Türkiye
| | - Cem Iyigun
- Department of Industrial Engineering, METU, Ankara, 06800, Türkiye
| | - Yeşim Aydın Son
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, 06800, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence, ODTÜ-NÖROM, Ankar, 06560, Türkiye.
| |
Collapse
|
3
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2025; 62:3040-3052. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
4
|
Yu Q, Du F, Goodman J, Waites CL. APOE4 exacerbates glucocorticoid stress hormone-induced tau pathology via mitochondrial dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636364. [PMID: 39974942 PMCID: PMC11838549 DOI: 10.1101/2025.02.03.636364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
APOE4 is the leading genetic risk factor for Alzheimer's disease, and chronic stress is a leading environmental risk factor. Studies suggest that APOE4 confers vulnerability to the behavioral and neuropathological effects of chronic stress, representing a potential mechanism by which this genetic variant accelerates Alzheimer's onset and progression. Whether and how APOE4-mediated stress vulnerability manifests in neurons of the hippocampus, a brain region particularly susceptible to stress and Alzheimer's pathology, remains unexplored. Using a combination of in vivo and in vitro experiments in humanized APOE4 and APOE3 knockin mice and primary hippocampal neurons from these animals, we investigate whether and how APOE4 confers sensitivity to glucocorticoids, the main stress hormones. We find that a major hallmark of stress/glucocorticoid-induced brain damage, tau pathology (i.e., tau accumulation, hyperphosphorylation, and spreading) is exacerbated in APOE4 versus APOE3 mice. Moreover, APOE4 animals exhibit underlying mitochondrial dysfunction and enhanced glucocorticoid receptor activation in the hippocampus, factors that likely contribute to tau pathogenesis in both the presence and absence of stress/glucocorticoids. Supporting this concept, we show that opening of the mitochondrial permeability transition pore drives mitochondrial dysfunction and tau pathology in APOE4 mice, and that pharmacological inhibition of pore opening is protective against ApoE4-mediated mitochondrial damage, tau phosphorylation and spreading, and downstream hippocampal synapse loss. These findings shed light on the mechanisms of stress vulnerability in APOE4 carriers and identify the mitochondrial permeability transition pore as a potential therapeutic target for ameliorating Alzheimer's pathogenesis in this population.
Collapse
Affiliation(s)
- Qing Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fang Du
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Jeffrey Goodman
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
5
|
Xu B, Tang C, Han R, Zhu C, Yang Y, Li H, Wu N, He D. Targeting the chemokine-microglia nexus: A novel strategy for modulating neuroinflammation in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823251326044. [PMID: 40321241 PMCID: PMC12049630 DOI: 10.1177/25424823251326044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 05/08/2025] Open
Abstract
An increasing body of evidence suggests neuroinflammation has a prominent role in the pathogenesis of Alzheimer's disease (AD). The amyloid-β-tau-neurodegeneration (ATN) classification system is now being expanded toward an amyloid-β-tau neurodegeneration-neuroinflammation (ATN(I)) system. Activated microglia and reactive astrocytes are the key hubs for neuroinflammation in AD, and chemokines are recognized as pivotal modulators of microglial innate immune functions. In this review, based on the chemokine-microglia regulatory axis, we elucidate the mechanisms through which chemokines influence microglial function, potentially modulating neurotoxicity or neuroprotection in AD. The key chemokines that significantly affect microglial polarization, such as CCL2, CCL3, and CXCL1, are summarized, and their role in disease progression are elaborated. Additionally, we explore prospective therapeutic interventions centered on the chemokine-microglia regulatory axis, offering valuable perspectives on pathobiology of AD and avenues for pharmacological advancements.
Collapse
Affiliation(s)
- Bingyang Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Tang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongshou Han
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaomin Zhu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxuan Yang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Heyi Li
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Gao C, Kang J. Oral Diseases Are Associated with Cognitive Decline and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:171-183. [PMID: 40111692 DOI: 10.1007/978-3-031-79146-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Common oral diseases, including periodontitis and dental caries, and their endpoint as tooth loss are controllable yet highly prevalent among adults worldwide. Cognitive decline also poses significant global public health challenges during the aging process, especially the pathological form of cognitive decline such as dementia. Dementia is irreversible and is one of the leading causes of death, disability, and dependency in the aging population. Emerging research suggests a bidirectional association between oral diseases and cognitive decline or dementia. This potential link has implications for designing better oral care plans for patients with dementia and recognizing oral diseases as modifiable risk factors for dementia prevention.This chapter provides an overview of the association between oral diseases and cognitive decline, followed by a discussion of current evidence on such associations in two directions: (1) the impact of cognitive decline or dementia on oral health and (2) the role of oral diseases as modifiable risk factors for dementia. We critically evaluate several hypotheses regarding the underlying mechanisms of this association, including (1) life-course hypothesis, (2) shared inflammation and bacterial infection mechanisms, (3) malnourishment mechanism, (4) pain pathway, and (5) sensory feedback pathway.However, the association between oral diseases and cognitive decline or dementia remains controversial due to limited high-quality evidence, particularly from biomedical research. Much of the existing evidence is from observational studies prone to confounding bias, with inconclusive questions about causation and the direction of causality.This chapter concludes by emphasizing the need for future studies with robust methodological designs, including randomized controlled trials, biomedical studies, and innovative research techniques such as Mendelian randomization. Such studies are crucial for disease prevention and enhancing patient care and quality of life. By providing a comprehensive overview, this chapter contributes to an advanced understanding of this field, addresses current study gaps, and suggests future research directions.
Collapse
Affiliation(s)
- Chenyi Gao
- School of Dentistry, University of Leeds, Leeds, UK
| | - Jing Kang
- Oral Clinical Research Unit, Centre of Clinical Translational Science, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
7
|
Zhu W, Du Z, Xu Z, Yang D, Chen M, Song Q. SCRN: Single-Cell Gene Regulatory Network Identification in Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1886-1896. [PMID: 38976461 DOI: 10.1109/tcbb.2024.3424400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and it consumes considerable medical resources with increasing number of patients every year. Mounting evidence show that the regulatory disruptions altering the intrinsic activity of genes in brain cells contribute to AD pathogenesis. To gain insights into the underlying gene regulation in AD, we proposed a graph learning method, Single-Cell based Regulatory Network (SCRN), to identify the regulatory mechanisms based on single-cell data. SCRN implements the γ-decaying heuristic link prediction based on graph neural networks and can identify reliable gene regulatory networks using locally closed subgraphs. In this work, we first performed UMAP dimension reduction analysis on single-cell RNA sequencing (scRNA-seq) data of AD and normal samples. Then we used SCRN to construct the gene regulatory network based on three well-recognized AD genes (APOE, CX3CR1, and P2RY12). Enrichment analysis of the regulatory network revealed significant pathways including NGF signaling, ERBB2 signaling, and hemostasis. These findings demonstrate the feasibility of using SCRN to uncover potential biomarkers and therapeutic targets related to AD.
Collapse
|
8
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
9
|
Han SW, Lee SH, Kim JH, Lee JJ, Park YH, Kim S, Nho K, Sohn JH. Association of liver function markers and apolipoprotein E ε4 with pathogenesis and cognitive decline in Alzheimer's disease. Front Aging Neurosci 2024; 16:1411466. [PMID: 39114318 PMCID: PMC11303325 DOI: 10.3389/fnagi.2024.1411466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Background Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various factors, including liver function, which may impact the clearance of amyloid-β (Aβ) in the brain. This study aimed to explore how the apolipoprotein E (APOE) ε4 allele affects the relationship of liver function markers with AD pathology and cognition. Methods We analyzed data from two independent cohorts, including 732 participants from the Hallym University Medical Center and 483 from the Alzheimer's Disease Neuroimaging Initiative, each group consisting of individuals with and without the APOE ε4 allele. Cross-sectional analyses evaluated the associations of liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], alkaline phosphatase, total bilirubin, and albumin) with AD diagnosis, amyloid positron emission tomography (PET) burden, and cerebrospinal fluid biomarkers for AD (Aβ42, total tau, and phosphorylated tau181) at baseline. Longitudinally, we investigated the associations between these liver enzymes and changes in cognitive performance over the course of a year. Logistic and linear regression models were used to analyze these associations and mediation analyses were conducted to assess whether age and amyloid PET burden mediated these associations. Results Only in the APOE ε4 carrier group, a high AST to ALT ratio and low ALT levels were significantly associated with AD diagnosis, increased amyloid PET burden, and faster longitudinal decline in cognitive function in both cohorts. In particular, the AST to ALT ratio was associated with cerebrospinal fluid Aβ42 levels exclusively in the APOE ε4 carrier group in the Alzheimer's Disease Neuroimaging Initiative cohort but not with phosphorylated tau181 or total tau levels. Moreover, mediation analyses from both cohorts revealed that in the APOE ε4 carriers group, age did not mediate the associations between liver enzymes and AD diagnosis or amyloid PET burden. However, amyloid PET burden partially mediated the association between liver enzymes and AD diagnosis exclusively in the APOE ε4 carriers group. Conclusion This study provides valuable insights into the significant association of the APOE ε4 allele with liver enzymes and their potential role in Aβ-related pathogenesis and cognition in AD. Further research is required to elucidate the underlying mechanisms and potential therapeutic implications of these findings.
Collapse
Affiliation(s)
- Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jong Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
10
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
11
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
12
|
Stapleton MC, Koch SP, Cortes DRE, Wyman S, Schwab KE, Mueller S, McKennan CG, Boehm-Sturm P, Wu YL. Apolipoprotein-E deficiency leads to brain network alteration characterized by diffusion MRI and graph theory. Front Neurosci 2023; 17:1183312. [PMID: 38075287 PMCID: PMC10702609 DOI: 10.3389/fnins.2023.1183312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.
Collapse
Affiliation(s)
- Margaret Caroline Stapleton
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stefan Paul Koch
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Devin Raine Everaldo Cortes
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Wyman
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kristina E. Schwab
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Susanne Mueller
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Philipp Boehm-Sturm
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yijen Lin Wu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Pan F, Wang Y, Wang Y, Wang X, Guan Y, Xie F, Guo Q. Sex and APOE genotype differences in amyloid deposition and cognitive performance along the Alzheimer's Continuum. Neurobiol Aging 2023; 130:84-92. [PMID: 37481959 DOI: 10.1016/j.neurobiolaging.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Conflicting findings exist regarding the differences in amyloid burden and cognitive performance based on sex and apolipoprotein E (APOE) genotype. This study aimed to investigate the brain amyloid-β (Aβ) burden and cognitive performances by sex and APOE genotype in a cohort of Aβ-positron emission tomography (PET)-positive participants. Brain Aβ burden was assessed using 18F-florbetapir PET standard uptake value ratios. Cognitive performance was evaluated using standardized neuropsychological tests. In the cognitively normal participants, females had a higher Aβ burden than males in APOE ε4 noncarriers, whereas APOE ε4 carriers had a higher Aβ burden than noncarriers in males. In the cognitively impaired participants, APOE ε4 carriers were more likely to have a higher Aβ burden than noncarriers in the brain regions of the lateral parietal gyrus, frontal gyrus, and precuneus. In addition, females were more likely to have poorer language and visuospatial performance compared to males, while the APOE genotype did not significantly impact cognitive performance. These findings further elucidate the impact of sex and APOE genotype on brain Aβ burden and sex-related cognitive performance should be considered in the Alzheimer's Continuum.
Collapse
Affiliation(s)
- Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Wang
- Department of Physiology, Capital Medical University, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing, China
| | - Yihui Guan
- Department PET Center, Huashan Hospital, Fudan University, Shaznghai, China
| | - Fang Xie
- Department PET Center, Huashan Hospital, Fudan University, Shaznghai, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Xu C, Padilla V, Lozano S, Gamez D, Su BB, Wang X, Maestre G, Wang K. APOE Gene Associated with Dementia-Related Traits, Depression, and Anxiety in the Hispanic Population. Genes (Basel) 2023; 14:1405. [PMID: 37510309 PMCID: PMC10379967 DOI: 10.3390/genes14071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD), a main cause of dementia, is commonly seen in aging populations with a strong genetic component. AD is one of the most common neurodegenerative disorders; it is a genetically and clinically heterogeneous disease. Specific demographic factors and genetic variants have been identified in non-Hispanic populations; however, limited studies have observed the Hispanic population. Therefore, we focused on investigating a known gene, APOE, associated with AD-related phenotypes and two psychiatric diseases (depression and anxiety) within the U.S. Hispanic population in our current study. A total of 1382 subjects were studied based on data collected from the Texas Alzheimer's Research and Care Consortium (TARCC, N = 1320) and the Initial Study of Longevity and Dementia from the Rio Grande Valley (ISLD-RGV, N = 62). Questionnaires regarding demographics, medical history, and blood/saliva samples were collected. We genotyped the APOE gene. The current findings indicated that APOE-ε4 was associated with not only AD (p < 0.0001) but also with anxiety (p < 0.0001) and depression (p = 0.0004). However, APOE-ε3 was associated with depression (p = 0.002) in the Hispanic population. We provide additional evidence in which APOE-ε4 increased the risk for AD in Hispanics. For the first time, APOE alleles show increased risks for anxiety and depression in Hispanics. Further research is warranted to confirm the current findings.
Collapse
Affiliation(s)
- Chun Xu
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (V.P.); (D.G.)
| | - Victoria Padilla
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (V.P.); (D.G.)
| | - Stephanie Lozano
- Department of Science, Graduate College of Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Daniela Gamez
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (V.P.); (D.G.)
| | - Brenda Bin Su
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Allergy and Immunology Baylor College of Medicine, William T. Shearer Center for Human Immunobiology, Texas Children Hospital, Houston, TX 77030, USA;
| | - Xuan Wang
- Department of Information Systems, Robert C. Vackar College of Business and Entrepreneurship, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Gladys Maestre
- Neuroscience and School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
APOE Allele Frequency in Southern Greece: Exploring the Role of Geographical Gradient in the Greek Population. Geriatrics (Basel) 2022; 8:geriatrics8010001. [PMID: 36648906 PMCID: PMC9844375 DOI: 10.3390/geriatrics8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND the apolipoprotein e4 allele (APOE4) constitutes an established genetic risk factor for Alzheimer's Disease Dementia (ADD). We aimed to explore the frequency of the APOE isoforms in the Greek population of Southern Greece. METHODS peripheral blood from 175 Greek AD patients, 113 with mild cognitive impairment (MCI), and 75 healthy individuals. DNA isolation was performed with a High Pure PCR Template Kit (Roche), followed by amplification with a real-time qPCR kit (TIB MolBiol) in Roche's Light Cycler PCR platform. RESULTS APOE4 allele frequency was 20.57% in the ADD group, 17.69% in the MCI group, and 6.67% in the control group. APOE3/3 homozygosity was the most common genotype, while the frequency of APOE4/4 homozygosity was higher in the AD group (8.60%). APOE4 carrier status was associated with higher odds for ADD and MCI (OR: 4.49, 95% CI: [1.90-10.61] and OR: 3.82, 95% CI: [1.59-9.17], respectively). CONCLUSION this study examines the APOE isoforms and is the first to report a higher APOE frequency in MCI compared with healthy controls in southern Greece. Importantly, we report the occurrence of the APOE4 allele, related to ADD, as amongst the lowest globally reported, even within the nation, thus enhancing the theory of ethnicity and latitude contribution.
Collapse
|
16
|
McCarthy MM, Hardy MJ, Leising SE, LaFollette AM, Stewart ES, Cogan AS, Sanghal T, Matteo K, Reeck JC, Oxford JT, Rohn TT. An amino-terminal fragment of apolipoprotein E4 leads to behavioral deficits, increased PHF-1 immunoreactivity, and mortality in zebrafish. PLoS One 2022; 17:e0271707. [PMID: 36520946 PMCID: PMC9754248 DOI: 10.1371/journal.pone.0271707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Although the increased risk of developing sporadic Alzheimer's disease (AD) associated with the inheritance of the apolipoprotein E4 (APOE4) allele is well characterized, the molecular underpinnings of how ApoE4 imparts risk remains unknown. Enhanced proteolysis of the ApoE4 protein with a toxic-gain of function has been suggested and a 17 kDa amino-terminal ApoE4 fragment (nApoE41-151) has been identified in post-mortem human AD frontal cortex sections. Recently, we demonstrated in vitro, exogenous treatment of nApoE41-151 in BV2 microglial cells leads to uptake, trafficking to the nucleus and increased expression of genes associated with cell toxicity and inflammation. In the present study, we extend these findings to zebrafish (Danio rerio), an in vivo model system to assess the toxicity of nApoE41-151. Exogenous treatment of nApoE41-151 to 24-hour post-fertilization for 24 hours resulted in significant mortality. In addition, developmental abnormalities were observed following treatment with nApoE41-151 including improper folding of the hindbrain, delay in ear development, deformed yolk sac, enlarged cardiac cavity, and significantly lower heart rates. A similar nApoE31-151 fragment that differs by a single amino acid change (C>R) at position 112 had no effects on these parameters under identical treatment conditions. Decreased presence of pigmentation was noted for both nApoE31-151- and nApoE41-151-treated larvae compared with controls. Behaviorally, touch-evoked responses to stimulus were negatively impacted by treatment with nApoE41-151 but did not reach statistical significance. Additionally, triple-labeling confocal microscopy not only confirmed the nuclear localization of the nApoE41-151 fragment within neuronal populations following exogenous treatment, but also identified the presence of tau pathology, one of the hallmark features of AD. Collectively, these in vivo data demonstrating toxicity as well as sublethal effects on organ and tissue development support a novel pathophysiological function of this AD associated-risk factor.
Collapse
Affiliation(s)
- Madyson M. McCarthy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Makenna J. Hardy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Saylor E. Leising
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Alex M. LaFollette
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Erica S. Stewart
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Amelia S. Cogan
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Tanya Sanghal
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Katie Matteo
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Jonathon C. Reeck
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Julia T. Oxford
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Troy T. Rohn
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America,* E-mail:
| |
Collapse
|
17
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
18
|
Sabbagh MN, Decourt B. COR388 (atuzaginstat): an investigational gingipain inhibitor for the treatment of Alzheimer disease. Expert Opin Investig Drugs 2022; 31:987-993. [PMID: 36003033 PMCID: PMC10275298 DOI: 10.1080/13543784.2022.2117605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Evidence from in vitro and in vivo studies demonstrates that amyloid beta (Aβ) oligomers have potent, broad-spectrum antimicrobial properties created by fibrils that entrap pathogens and disrupt their membranes. Data suggest that Aβ may play a protective role in the innate immune response to microbial infections and that Aβ in the brain plays a damaging role when the inflammatory response is not well controlled. AREAS COVERED This paper describes the relationship between periodontal disease and Alzheimer disease (AD), the role of Porphyromonas gingivalis and its secreted gingipains in AD, and the potential of the gingipain inhibitor atuzaginstat (COR388) to modulate AD neuropathologies. EXPERT OPINION P. gingivalis is opsonized by Aβ42, is capable of entering the brain, and is an accelerant of neuropathologies in rodent models of AD. Thus, in our opinion, this bacteria is highly likely to be a pathogen capable of initiating or precipitating the progression of AD, which agrees with the pathogen hypothesis of clinical AD development.
Collapse
Affiliation(s)
- Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix Arizona, USA
| | - Boris Decourt
- Translational Neuroscience Lab, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| |
Collapse
|
19
|
Rueter J, Rimbach G, Huebbe P. Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function. Cell Mol Life Sci 2022; 79:499. [PMID: 36018414 PMCID: PMC9418098 DOI: 10.1007/s00018-022-04516-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
Human apolipoprotein E (APOE), originally known for its role in lipid metabolism, is polymorphic with three major allele forms, namely, APOEε2, APOEε3, and APOEε4, leading to three different human APOE isoforms. The ε4 allele is a genetic risk factor for Alzheimer's disease (AD); therefore, the vast majority of APOE research focuses on its role in AD pathology. However, there is increasing evidence for other functions of APOE through the involvement in other biological processes such as transcriptional regulation, mitochondrial metabolism, immune response, and responsiveness to dietary factors. Therefore, the aim of this review is to provide an overview of the potential novel functions of APOE and their characterization. The detection of APOE in various cell organelles points to previously unrecognized roles in mitochondria and others, although it is actually considered a secretory protein. Furthermore, numerous interactions of APOE with other proteins have been detected, providing indications for new metabolic pathways involving APOE. The present review summarizes the current evidence on APOE beyond its original role in lipid metabolism, to change the perspective and encourage novel approaches to future research on APOE and its isoform-dependent role in the cellular metabolism.
Collapse
Affiliation(s)
- Johanna Rueter
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Patricia Huebbe
- Devision of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
20
|
Yang J, Wang S. A Novel Coupling Model of Physiological Degradation and Emotional State for Prediction of Alzheimer's Disease Progression. Brain Sci 2022; 12:1132. [PMID: 36138868 PMCID: PMC9496856 DOI: 10.3390/brainsci12091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of Alzheimer's disease (AD) progression plays a very important role in the early intervention of patients and the improvement of life quality. Cognitive scales are commonly used to assess the patient's status. However, due to the complicated pathogenesis of AD and the individual differences in AD, the prediction of AD progression is challenging. This paper proposes a novel coupling model (P-E model) that takes into account the processes of physiological degradation and emotional state transition of AD patients. We conduct experiments on synthetic data to validate the effectiveness of the proposed P-E model. Next, we conduct experiments on 134 subjects with more than 10 follow-ups from the Alzheimer's Disease Neuroimaging Initiative. The prediction performance of the P-E model is significantly better than other state-of-the-art methods, which achieves the mean squared error of 7.137 ± 0.035. The experimental results show that the P-E model can well characterize the non-monotonic properties of AD cognitive data and can also have a good predictive ability for time series data with individual differences.
Collapse
Affiliation(s)
- Jiawei Yang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Shaoping Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | | |
Collapse
|
21
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
22
|
Heal M, McFall GP, Vergote D, Jhamandas JH, Westaway D, Dixon RA. Bridging Integrator 1 (BIN1, rs6733839) and Sex Are Moderators of Vascular Health Predictions of Memory Aging Trajectories. J Alzheimers Dis 2022; 89:265-281. [DOI: 10.3233/jad-220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A promising risk loci for sporadic Alzheimer’s disease (AD), Bridging Integrator 1 (BIN1), is thought to operate through the tau pathology pathway. Objective: We examine BIN1 risk for a moderating role with vascular health (pulse pressure; PP) and sex in predictions of episodic memory trajectories in asymptomatic aging adults. Methods: The sample included 623 participants (Baseline Mean age = 70.1; 66.8% female) covering a 44-year longitudinal band (53–97 years). With an established memory latent variable arrayed as individualized trajectories, we applied Mplus 8.5 to determine the best fitting longitudinal growth model. Main analyses were conducted in three sequential phases to investigate: 1) memory trajectory prediction by PP, 2) moderation by BIN1 genetic risk, and 3) stratification by sex. Results: We first confirmed that good vascular health (lower PP) was associated with higher memory level and shallower decline and males were more severely affected by worsening PP in both memory performance and longitudinal decline. Second, the PP prediction of memory trajectories was significant for BIN1 C/C and C/T carriers but not for persons with the highest AD risk (T/T homozygotes). Third, when further stratified by sex, the BIN1 moderation of memory prediction by PP was selective for females. Conclusion: We observed a novel interaction whereby BIN1 (linked with tauopathy in AD) and sex sequentially moderated a benchmark PP prediction of differential memory decline in asymptomatic aging. This multi-modal biomarker interaction approach, disaggregated by sex, can be an effective method for enhancing precision of AD genetic risk assessment.
Collapse
Affiliation(s)
- Mackenzie Heal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - G. Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - David Vergote
- Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Jack H. Jhamandas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Garbuzova-Davis S, Willing AE, Borlongan CV. Apolipoprotein A1 Enhances Endothelial Cell Survival in an In Vitro Model of ALS. eNeuro 2022; 9:ENEURO.0140-22.2022. [PMID: 35840315 PMCID: PMC9337612 DOI: 10.1523/eneuro.0140-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Altered lipoprotein metabolism is considered a pathogenic component of amyotrophic lateral sclerosis (ALS). Apolipoprotein A1 (ApoA1), a major high-density lipoprotein (HDL) protein, is associated with prevention of vascular damage. However, ApoA1's effects on damaged endothelium in ALS are unknown. This study aimed to determine therapeutic potential of ApoA1 for endothelial cell (EC) repair under a pathologic condition reminiscent of ALS. We performed in vitro studies using mouse brain ECs (mBECs) exposed to plasma from symptomatic G93A SOD1 mice. Dosage effects of ApoA1, including inhibition of the phosphoinoside 3-kinase (PI3K)/Akt signaling pathway and integration of ApoA1 into mBECs were examined. Also, human bone marrow-derived endothelial progenitor cells (hBM-EPCs) and mBECs were co-cultured without cell contact to establish therapeutic mechanism of hBM-EPC transplantation. Results showed that ApoA1 significantly reduced mBEC death via the PI3K/Akt downstream signaling pathway. Also, ApoA1 was incorporated into mBECs as confirmed by blocked ApoA1 cellular integration. Co-culture system provided evidence that ApoA1 was secreted by hBM-EPCs and incorporated into injured mBECs. Thus, our study findings provide important evidence for ApoA1 as a potential novel therapeutic for endothelium protection in ALS. This in vitro study lays the groundwork for further in vivo research to fully determine therapeutic effects of ApoA1 in ALS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Alison E Willing
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33613
| |
Collapse
|
24
|
Xiao SY, Liu YJ, Lu W, Sha ZW, Xu C, Yu ZH, Lee SD. Possible Neuropathology of Sleep Disturbance Linking to Alzheimer's Disease: Astrocytic and Microglial Roles. Front Cell Neurosci 2022; 16:875138. [PMID: 35755779 PMCID: PMC9218054 DOI: 10.3389/fncel.2022.875138] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep disturbances not only deteriorate Alzheimer’s disease (AD) progress by affecting cognitive states but also accelerate the neuropathological changes of AD. Astrocytes and microglia are the principal players in the regulation of both sleep and AD. We proposed that possible astrocyte-mediated and microglia-mediated neuropathological changes of sleep disturbances linked to AD, such as astrocytic adenosinergic A1, A2, and A3 regulation; astrocytic dopamine and serotonin; astrocyte-mediated proinflammatory status (TNFα); sleep disturbance-attenuated microglial CX3CR1 and P2Y12; microglial Iba-1 and astrocytic glial fibrillary acidic protein (GFAP); and microglia-mediated proinflammatory status (IL-1b, IL-6, IL-10, and TNFα). Furthermore, astrocytic and microglial amyloid beta (Aβ) and tau in AD were reviewed, such as astrocytic Aβ interaction in AD; astrocyte-mediated proinflammation in AD; astrocytic interaction with Aβ in the central nervous system (CNS); astrocytic apolipoprotein E (ApoE)-induced Aβ clearance in AD, as well as microglial Aβ clearance and aggregation in AD; proinflammation-induced microglial Aβ aggregation in AD; microglial-accumulated tau in AD; and microglial ApoE and TREM2 in AD. We reviewed astrocytic and microglial roles in AD and sleep, such as astrocyte/microglial-mediated proinflammation in AD and sleep; astrocytic ApoE in sleep and AD; and accumulated Aβ-triggered synaptic abnormalities in sleep disturbance. This review will provide a possible astrocytic and microglial mechanism of sleep disturbance linked to AD.
Collapse
Affiliation(s)
- Shu-Yun Xiao
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Jie Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lu
- Department of Traditional Treatment, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Wei Sha
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Che Xu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
25
|
Hannonen S, Andberg S, Kärkkäinen V, Rusanen M, Lehtola JM, Saari T, Korhonen V, Hokkanen L, Hallikainen M, Hänninen T, Leinonen V, Kaarniranta K, Bednarik R, Koivisto AM. Shortening of Saccades as a Possible Easy-to-Use Biomarker to Detect Risk of Alzheimer's Disease. J Alzheimers Dis 2022; 88:609-618. [PMID: 35662117 PMCID: PMC9398059 DOI: 10.3233/jad-215551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Wide-ranging functional defects in eye movements have been reported in Alzheimer’s disease (AD) dementia. The detection of abnormal eye movements and reading problems may identify persons at risk of AD when clear clinical symptoms are lacking. Objective: To examine whether computer-based eye-tracking (ET) analysis of King-Devick (KD) test results differentiates cognitively healthy persons from persons with minor problems in cognitive testing or diagnosed mild AD. Methods: We recruited 78 participants (57 non-demented, 21 with mild AD) who underwent neurological examination, the Consortium to Establish a Registry for Alzheimer’s Disease neuropsychological test battery (CERAD-NB), and a Clinical Dementia Rating (CDR) interview. The non-demented participants were further divided into control (normal CERAD subtests, mean MMSE = 28) and objective mild cognitive impairment (MCI; decline in at least one CERAD memory score, mean MMSE = 27) groups. The KD reading test was performed using computer-based ET. The total time used for the reading test, errors made, fixation and saccade durations, and saccade amplitudes were analyzed. Results: We found significant differences between the control, objective MCI, and AD groups in regard to the mean saccade amplitude (3.58, 3.33, and 3.21 ms, respectively, p < 0.03) and duration (27.1, 25.3, and 24.8 ms, respectively, p < 0.05). The KD error scores in the AD group differed significantly (p < 0.01) from the other groups. Conclusion: Computed ET analysis of the KD test may help detect persons with objective MCI early when clear clinical symptoms are lacking. The portable device for ET is easy to use in primary health care memory clinics.
Collapse
Affiliation(s)
- Sanna Hannonen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sami Andberg
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Virve Kärkkäinen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Minna Rusanen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha-Matti Lehtola
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Toni Saari
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
| | - Ville Korhonen
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Merja Hallikainen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Hänninen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Leinonen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Roman Bednarik
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Anne M Koivisto
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Departments of Geriatrics and Neurology, Helsinki University Hospital and Department of Neurosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Zheng Z, Zhang X, Oh BK, Kim KY. Identification of combined biomarkers for predicting the risk of osteoporosis using machine learning. Aging (Albany NY) 2022; 14:4270-4280. [PMID: 35580864 PMCID: PMC9186773 DOI: 10.18632/aging.204084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Osteoporosis is a severe chronic skeletal disorder that affects older individuals, especially postmenopausal women. However, molecular biomarkers for predicting the risk of osteoporosis are not well characterized. The aim of this study was to identify combined biomarkers for predicting the risk of osteoporosis using machine learning methods. We merged three publicly available gene expression datasets (GSE56815, GSE13850, and GSE2208) to obtain expression data for 6354 unique genes in postmenopausal women (45 with high bone mineral density and 45 with low bone mineral density). All machine learning methods were implemented in R, with the GEOquery and limma packages, for dataset download and differentially expressed gene identification, and a nomogram for predicting the risk of osteoporosis was constructed. We detected 378 significant differentially expressed genes using the limma package, representing 15 major biological pathways. The performance of the predictive models based on combined biomarkers (two or three genes) was superior to that of models based on a single gene. The best predictive gene set among two-gene sets included PLA2G2A and WRAP73. The best predictive gene set among three-gene sets included LPN1, PFDN6, and DOHH. Overall, we demonstrated the advantages of using combined versus single biomarkers for predicting the risk of osteoporosis. Further, the predictive nomogram constructed using combined biomarkers could be used by clinicians to identify high-risk individuals and in the design of efficient clinical trials to reduce the incidence of osteoporosis.
Collapse
Affiliation(s)
- Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin Province, China.,Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University College of Medicine, Yanji, Jilin Province, China.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Bong-Kyeong Oh
- Institute for the Integration of Medicine and Innovative Technology, Hanyang University College of Medicine, Seoul, Korea
| | - Ki-Yeol Kim
- BK21 PLUS Project, Department of Dental Education, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
27
|
Gupta A, Uthayaseelan K, Uthayaseelan K, Kadari M, Subhan M, Saji Parel N, Krishna PV, Sange I. Alzheimer's Disease and Stroke: A Tangled Neurological Conundrum. Cureus 2022; 14:e25005. [PMID: 35712342 PMCID: PMC9194877 DOI: 10.7759/cureus.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/05/2022] Open
|
28
|
Li MS, Li Y, Liu Y, Zhou XJ, Zhang H. An Updated Review and Meta Analysis of Lipoprotein Glomerulopathy. Front Med (Lausanne) 2022; 9:905007. [PMID: 35602473 PMCID: PMC9120586 DOI: 10.3389/fmed.2022.905007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
More than 200 cases of lipoprotein glomerulopathy (LPG) have been reported since it was first discovered 30 years ago. Although relatively rare, LPG is clinically an important cause of nephrotic syndrome and end-stage renal disease. Mutations in the APOE gene are the leading cause of LPG. APOE mutations are an important determinant of lipid profiles and cardiovascular health in the population and can precipitate dysbetalipoproteinemia and glomerulopathy. Apolipoprotein E-related glomerular disorders include APOE2 homozygote glomerulopathy and LPG with heterozygous APOE mutations. In recent years, there has been a rapid increase in the number of LPG case reports and some progress in research into the mechanism and animal models of LPG. We consequently need to update recent epidemiological studies and the molecular mechanisms of LPG. This endeavor may help us not only to diagnose and treat LPG in a more personized manner but also to better understand the potential relationship between lipids and the kidney.
Collapse
Affiliation(s)
- Meng-Shi Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
29
|
VEGF-A-related genetic variants protect against Alzheimer's disease. Aging (Albany NY) 2022; 14:2524-2536. [PMID: 35347084 PMCID: PMC9004571 DOI: 10.18632/aging.203984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer’s disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed using the elastic net machine learning methodology. An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related genes are implicated in neurological diseases. In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD.
Collapse
|
30
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
31
|
Todorovova V, Altschmiedova T, Vrablik M, Ceska R. Familial Hypercholesterolemia: Real-World Data of 1236 Patients Attending a Czech Lipid Clinic. A Retrospective Analysis of Experience in More than 50 years. Part I: Genetics and Biochemical Parameters. Front Genet 2022; 13:849008. [PMID: 35295947 PMCID: PMC8918685 DOI: 10.3389/fgene.2022.849008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The cause of familial hypercholesterolemia (FH) is defect in LDL receptor or familial defect of apolipoprotein B-100 (FDB) or, rarely, defect in proprotein convertase subtilisin/kexin type 9. Identification and treatment of patients with FH improves their prognosis. Our data represent retrospective analysis of 50 years of specialised care in our center. Patients and Methods: A group of 1236 FH patients (841 women, 395 men; 993 study subjects and 243 relatives; mean age 44.8 ± 16.7 years) included 154 FDB patients followed at the Lipid Clinic of the General University Hospital in Prague since the mid-1960s to the present. Clinical diagnosis was based on the Dutch Lipid Clinic Network Criteria. Genetic analysis was performed using PCR-RFLP to detect FDB and apolipoprotein E (APOE) polymorphism. Biochemical data were collected and statistically analysed. Results: At baseline, mean LDL-C and total cholesterol (TC) levels of all FH patients combined were 6.49 ± 1.92 mmol/L and 8.95 ± 1.95 mmol/L, respectively. Their LDL-C levels decreased to 3.26 ± 1.57 mmol/L and TC levels to 5.43 ± 1.69 mmol/L during follow-up. In the subgroup of LDL receptor-mediated FH (non-FDB) patients, baseline LDL-C and TC levels of 6.61 ± 1.95 mmol/L and 9.09 ± 1.97 mmol/L declined to 3.21 ± 1.60 mmol/L and 5.39 ± 1.72 mmol/L, respectively, during follow-up. In the FDB subgroup of patients, baseline levels of LDL-C and TC were 5.57 ± 1.46 mmol/L and 7.88 ± 1.58 mmol/L decreasing to 3.45 ± 0.24 mmol/L and 5.58 ± 1.37 mmol/L, respectively, during follow-up. Differences were also found in the effects of various APOE isoforms on lipid lowering. A significant decrease in lipid parameters was observed with the E2E2 isoform whereas a minimal decrease was seen with the E4E4 and E3E3 isoforms. Conclusion: Whereas, overall, non-FDB patients had higher baseline lipid levels, these levels declined more appreciably compared with FDB patients during follow-up. Our retrospective analysis also found different effects of APOE isoforms on the decrease in lipid levels.
Collapse
Affiliation(s)
| | - Tereza Altschmiedova
- Third Department of Medicine—Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | | | | |
Collapse
|
32
|
Botchway BOA, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022; 13:87-102. [PMID: 35111364 PMCID: PMC8782546 DOI: 10.14336/ad.2021.0616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a current public health challenge and will remain until the development of an effective intervention. However, developing an effective treatment for the disease requires a thorough understanding of its etiology, which is currently lacking. Although several studies have shown the association between oxidative damage and AD, only a few have clarified the specific mechanisms involved. Herein, we reviewed recent preclinical and clinical studies that indicated the significance of oxidative damage in AD, as well as potential antioxidants. Although several factors regulate oxidative stress in AD, we centered our investigation on apolipoprotein E and the gut microbiome. Apolipoprotein E, particularly apolipoprotein E-ε4, can impair the structural facets of the mitochondria. This, in turn, can minimize the mitochondrial functionality and result in the progressive build-up of free radicals, eventually leading to oxidative stress. Similarly, the gut microbiome can influence oxidative stress to a significant degree via its metabolite, trimethylamine N-oxide. Given the various roles of these two factors in modulating oxidative stress, we also discuss the possible relationship between them and provide future research directions.
Collapse
Affiliation(s)
- Benson OA Botchway
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| | - Favour C Okoye
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Chen
- Neurosurgery Department, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - William E Arthur
- Department of Internal Medicine, Eastern Regional Hospital, Koforidua, Ghana
| | - Marong Fang
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Yang B, Liang X, Wu Z, Sun X, Shi Q, Zhan Y, Dan W, Zheng D, Xia Y, Deng B, Xie Y, Jiang L. APOE gene polymorphism alters cerebral oxygen saturation and quantitative EEG in early-stage traumatic brain injury. Clin Neurophysiol 2022; 136:182-190. [DOI: 10.1016/j.clinph.2022.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 11/03/2022]
|
34
|
Zhu X, Li Z, Guo C, Wang Z, Wang Z, Li X, Qian Y, Wei Y. Risk of neurodegeneration among residents of electronic waste recycling areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113132. [PMID: 34979305 DOI: 10.1016/j.ecoenv.2021.113132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The abnormal disposal process of electronic waste (e-waste) always emits a variety of toxic substances that enter the human body through various environmental media and can have many adverse health effects. Metals are thought to be inextricably linked to neurodegeneration. In the present study, we tried to explore the neurodegenerative status of subjects exposed to e-waste and the association between metal intake and neurodegeneration. We recruited the residents near the e-waste recycling area (the exposed group) and the residents without any e-waste contact history (the reference group) for a comparative study with detection and analysis of metals, biomarkers associated with neurodegeneration or oxidative stress (OS). The results showed that the metals between the reference and exposed group were significantly different. The concentrations of Brain-derived neurotrophic factor (BDNF) and β-amyloid protein 42 (Aβ42) in the exposed groups were significantly lower, while the levels of Euchromatic Histone lysine Methyltransferase 1 (EHMT1), Bromodomain Adjacent to Zinc finger domain 2B (BAZ2B) and Malondialdehyde (MDA) were significantly higher than in the reference groups. Although the ratio of Aβ42/Aβ40 had no statistical significance in the two groups, the medians of the ratio in the exposed group was lower than in the reference group. The linear regression and mediating effect analysis showed that MDA (OS) might mediate the effects of metals on EHMT1(pAg-MDA <0.001, pMDA-EHMT1 <0.05, pAg-EHMT1 <0.001). It could be inferred from the results of the present investigation that e-waste exposure had a high risk of neurodegeneration, especially Sliver (Ag) and Nickel (Ni).
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
35
|
Yu Y, Yang M, Zhuang X, Pan J, Feng J, Yu J, Yu Y. Neurotoxic 18-kDa apolipoprotein E fragment production contributes to anesthetic sevoflurane-induced tau phosphorylation and neuroinflammation in vitro. Hum Exp Toxicol 2022; 41:9603271221102519. [PMID: 35575159 DOI: 10.1177/09603271221102519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anesthesia may induce neuronal tau phosphorylation and neurotoxicity in the developing brain. Apolipoprotein E (ApoE) may play a protective role in neuronal activity and injury repair, whereas its 18-kDa fragments are reported to induce neurodegeneration and neuroinflammation in Alzheimer's disease patients. We aimed to test the hypothesis that differences in 18-kDa ApoE fragment levels, but not full-length ApoE, in primary neurons contribute to differences in tau phosphorylation and neuroinflammation with or without sevoflurane administration. Neurons extracted from wild-type (WT), ApoE knockout (ApoE-KO), and ApoE ε3-and ε2-targeted replacement (ApoE ε3, ApoE ε2) mice were divided into control and sevoflurane groups. Neurons in the sevoflurane group were treated with 21% O2, 5% CO2, and 4.1% sevoflurane, whereas those in the control group were treated with 21% O2 and 5% CO2 only on day 5 of neuronal culture. ApoE mRNA, full-length ApoE, 18-kDa ApoE fragments, Tau-PS202/PT205 (AT8), Tau-PSer396/404 (PHF1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 and IL-1β levels were measured. The data showed that sevoflurane-induced AT8 and PHF1 increases, and TNF-α, IL-6, and IL-1β increases in WT or ApoE ε3 neurons (both expressing full-length and 18-kDa fragmented ApoE) could be mitigated in ApoE ε2 (only expressing full-length ApoE), but not in ApoE-KO neurons, indicating that differences in 18-kDa ApoE fragments, but not full-length ApoE, in primary mouse neurons contributed to differences in tau phosphorylation and neuroinflammation with or without 4.1% sevoflurane administration.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - M Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - X Zhuang
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - J Pan
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - J Feng
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - J Yu
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
36
|
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS - understanding various aspects of the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2021; 19:16-31. [PMID: 34856902 PMCID: PMC9127729 DOI: 10.2174/1567205018666211202143935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok. Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok. Poland
| | | |
Collapse
|
37
|
Amponsah AE, Feng B, Guo R, Zhang W, He J, Kong D, Dong T, Ma J, Cui H. Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Rev Neurosci 2021; 31:589-603. [PMID: 32364519 DOI: 10.1515/revneuro-2019-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/01/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a very common cause of dementia in the elderly. It is characterized by progressive amnesia and accretions of neurofibrillary tangles (NFTs) of neurons and senile plaques in the neuropil. After aging, the inheritance of the apolipoprotein E (ApoE) epsilon 4 (ε4) allele is the greatest risk factor for late-onset AD. The ApoE protein is the translated product of the ApoE gene. This protein undergoes proteolysis, and the resulting fragments colocalize with neurofibrillary tangles and amyloid plaques, and for that matter may be involved in AD onset and/or progression. Previous studies have reported the pathogenic potential of various ApoE fragments in AD pathophysiology. However, the pathways activated by the fragments are not fully understood. In this review, ApoE fragments obtained from post-mortem brains and body fluids, cerebrospinal fluid (CSF) and plasma, are discussed. Additionally, current knowledge about the process of fragmentation is summarized. Finally, the mechanisms by which these fragments are involved in AD pathogenesis and pathophysiology are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Tianyu Dong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.,China Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| |
Collapse
|
38
|
Ben Khedher MR, Haddad M, Laurin D, Ramassamy C. Effect of APOE ε4 allele on levels of apolipoproteins E, J, and D, and redox signature in circulating extracellular vesicles from cognitively impaired with no dementia participants converted to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12231. [PMID: 34541286 PMCID: PMC8438681 DOI: 10.1002/dad2.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The substantial link between apolipoprotein E (APOE) ε4 allele and oxidative stress may underlie enhanced Alzheimer's disease (AD) risk. Here, we studied the impact of APOE ε4 on the level of apolipoproteins with antioxidant activities along with oxidative markers in circulating extracellular vesicles (cEVs) and plasma from cognitively impaired-not demented (CIND) individuals converted to AD (CIND-AD). METHODS Apolipoproteins E, J, and D and antioxidant response markers were determined in cEVs and plasma using immunoblotting, electrochemical examination, and spectrofluorimetry. RESULTS Total antioxidant capacity and apolipoprotein D levels in cEVs, as judged by regression analysis and cognitive performance correlations, allowed us to differentiate CIND APOE ε4 carriers from controls and to predict their progression to AD 5 years later. DISCUSSION Our findings support the pathological redox linkage between APOE ε4 and AD onset and suggest the use of cEVs oxidative signature in early AD diagnosis.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| | - Mohamed Haddad
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| | - Danielle Laurin
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
- Centre d'excellence sur le vieillissement de QuébecCHU de Québec‐Université Laval Research CentreVITAM‐Centre de recherche en santé durableQuébecQuébecCanada
- Faculty of PharmacyLaval UniversityQuébecQuébecCanada
| | - Charles Ramassamy
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| |
Collapse
|
39
|
Ke F, Kong W, Wang S. Identifying Imaging Genetics Biomarkers of Alzheimer's Disease by Multi-Task Sparse Canonical Correlation Analysis and Regression. Front Genet 2021; 12:706986. [PMID: 34422007 PMCID: PMC8375409 DOI: 10.3389/fgene.2021.706986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Imaging genetics combines neuroimaging and genetics to assess the relationships between genetic variants and changes in brain structure and metabolism. Sparse canonical correlation analysis (SCCA) models are well-known tools for identifying meaningful biomarkers in imaging genetics. However, most SCCA models incorporate only diagnostic status information, which poses challenges for finding disease-specific biomarkers. In this study, we proposed a multi-task sparse canonical correlation analysis and regression (MT-SCCAR) model to reveal disease-specific associations between single nucleotide polymorphisms and quantitative traits derived from multi-modal neuroimaging data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. MT-SCCAR uses complementary information carried by multiple-perspective cognitive scores and encourages group sparsity on genetic variants. In contrast with two other multi-modal SCCA models, MT-SCCAR embedded more accurate neuropsychological assessment information through linear regression and enhanced the correlation coefficients, leading to increased identification of high-risk brain regions. Furthermore, MT-SCCAR identified primary genetic risk factors for Alzheimer’s disease (AD), including rs429358, and found some association patterns between genetic variants and brain regions. Thus, MT-SCCAR contributes to deciphering genetic risk factors of brain structural and metabolic changes by identifying potential risk biomarkers.
Collapse
Affiliation(s)
- Fengchun Ke
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
40
|
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer's Disease. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050458. [PMID: 34068096 PMCID: PMC8152728 DOI: 10.3390/ph14050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Health Sciences, High School of Economics, Law and Medical Sciences, 25-734 Kielce, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-00; Fax: +48-81-65-00-01
| |
Collapse
|
41
|
Olsen I. Possible effects of Porphyromonas gingivalis on the blood-brain barrier in Alzheimer's disease. Expert Rev Anti Infect Ther 2021; 19:1367-1371. [PMID: 33938372 DOI: 10.1080/14787210.2021.1925540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway,
| |
Collapse
|
42
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
43
|
Generation of APOE knock-down SK-N-SH human neuroblastoma cells using CRISPR/Cas9: a novel cellular model relevant to Alzheimer's disease research. Biosci Rep 2021; 41:227846. [PMID: 33600562 PMCID: PMC7897917 DOI: 10.1042/bsr20204243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
APOE ε4 is the major genetic risk factor for Alzheimer’s disease (AD). A precise role for apolipoprotein E (apoE) in the pathogenesis of the disease remains unclear in part due to its expression in multiple cell types of the brain. APOE is highly expressed in astrocytes and microglia, however its expression can also be induced in neurons under various conditions. The neuron-like cell line SK-N-SH is a useful model in the study of the cellular and molecular effects of apoE as it can be differentiated with retinoic acid to express and secrete high levels of apoE and it also shows the same apoE fragmentation patterns observed in the human brain. We previously found that apoE is cleaved into a 25-kDa fragment by high temperature-requirement serine protease A1 (HtrA1) in SK-N-SH cells. To further understand the endogenous functions of apoE, we used CRISPR/Cas9 to generate SK-N-SH cell lines with APOE expression knocked-down (KD). APOE KD cells showed lower APOE and HTRA1 expression than parental SK-N-SH cells but no overt differences in neuritogenesis or cell proliferation compared with the CRISPR/Cas9 control cells. This research shows that the loss of apoE and HtrA1 has a negligible effect on neuritogenesis and cell survival in SK-N-SH neuron-like cells.
Collapse
|
44
|
Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 2021; 21:426-440. [PMID: 33510490 PMCID: PMC7841384 DOI: 10.1038/s41577-020-00488-6] [Citation(s) in RCA: 794] [Impact Index Per Article: 198.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Periodontitis, a major inflammatory disease of the oral mucosa, is epidemiologically associated with other chronic inflammation-driven disorders, including cardio-metabolic, neurodegenerative and autoimmune diseases and cancer. Emerging evidence from interventional studies indicates that local treatment of periodontitis ameliorates surrogate markers of comorbid conditions. The potential causal link between periodontitis and its comorbidities is further strengthened by recent experimental animal studies establishing biologically plausible and clinically consistent mechanisms whereby periodontitis could initiate or aggravate a comorbid condition. This multi-faceted ‘mechanistic causality’ aspect of the link between periodontitis and comorbidities is the focus of this Review. Understanding how certain extra-oral pathologies are affected by disseminated periodontal pathogens and periodontitis-associated systemic inflammation, including adaptation of bone marrow haematopoietic progenitors, may provide new therapeutic options to reduce the risk of periodontitis-associated comorbidities. Periodontitis has been causally linked to the development of other chronic inflammatory diseases outside the oral mucosa. In this Review, George Hajishengallis and Triantafyllos Chavakis consider the molecular basis of these links.
Collapse
|
45
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
46
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
47
|
Baek MS, Cho H, Lee HS, Lee JH, Ryu YH, Lyoo CH. Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:140. [PMID: 33129364 PMCID: PMC7603688 DOI: 10.1186/s13195-020-00710-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/20/2020] [Indexed: 02/12/2023]
Abstract
Background To assess the effects of apolipoprotein E (ApoE) ε4 genotype on amyloid-β (Aβ) and tau burden and their longitudinal changes in Alzheimer’s disease (AD) spectrum. Methods Among 272 individuals who underwent PET scans (18F-florbetaben for Aβ and 18F-flortaucipir for tau) and ApoE genotyping, 187 individuals completed 2-year follow-up PET scans. After correcting for the partial volume effect, we compared the standardized uptake value ratio (SUVR) for Aβ and tau burden between the ε4+ and ε4− groups. By using a linear mixed-effect model, we measured changes in SUVR in the ApoE ε4+ and ε4− groups. Results The ε4+ group showed greater baseline Aβ burden in the diffuse cortical regions and greater tau burden in the lateral, and medial temporal, cingulate, and insula cortices. Tau accumulation rate was higher in the parietal, occipital, lateral, and medial temporal cortices in the ε4+ group. In Aβ+ individuals, baseline tau burden was greater in the medial temporal cortex, while Aβ burden was conversely greater in the ε4− group. Tau accumulation rate was higher in the ε4+ group in a small region in the lateral temporal cortex. The effect of ApoE ε4 on enhanced tau accumulation persisted even after adjusting for the global cortical Aβ burden. Conclusions Progressive tau accumulation may be more prominent in ε4 carriers, particularly in the medial and lateral temporal cortices. ApoE ε4 allele has differential effects on the Aβ burden depending on the existing amyloidosis and may enhance vulnerability to progressive tau accumulation in the AD spectrum independent of Aβ. Supplementary information Supplementary information accompanies this paper at 10.1186/s13195-020-00710-6.
Collapse
Affiliation(s)
- Min Seok Baek
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 20 Eonjuro 63-gil, Gangnam-gu, Seoul, South Korea.
| |
Collapse
|
48
|
Camporez D, Belcavello L, Almeida JFF, Silva-Sena GG, Pimassoni LHS, Morelato RL, do Carmo Pimentel Batitucci M, de Paula F. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease. Neurol Sci 2020; 42:1843-1851. [DOI: 10.1007/s10072-020-04704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
|
49
|
Yang M, Tan H, Zhang K, Lian N, Yu Y, Yu Y. Protective effects of Coenzyme Q10 against sevoflurane-induced cognitive impairment through regulating apolipoprotein E and phosphorylated Tau expression in young mice. Int J Dev Neurosci 2020; 80:418-428. [PMID: 32473608 DOI: 10.1002/jdn.10041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 01/24/2023] Open
Abstract
Children with multiple exposures to anesthesia and surgery may be more likely to develop the learning disability. Coenzyme Q10 (CoQ10) was reported to reduce the multiple sevoflurane treatment-induced cognitive deficiency in 6-day-old young mice. However, its specific mechanisms have not yet been found. This research aimed to reveal the role of ApoE in the pathogenesis of cognitive deficiency caused by sevoflurane anesthesia and the protective mechanism of CoQ10 in a multiple sevoflurane treatment model of young mice. The mice were randomly divided into four groups: Control + corn oil, Sevoflurane + corn oil, Control + CoQ10, and Sevoflurane + CoQ10. Sevoflurane group mice were anesthetized with 3% sevoflurane and 60% oxygen 2 hr a day for 3 days, while control group mice received only 60% oxygen. Mice received an intraperitoneal injection of 50 mg/kg CoQ10 or the same volume of corn oil 30 min before the inhalation of oxygen or sevoflurane for 3 days. Mice received sevoflurane anesthesia or control treatment from the 6th to 8th day after birth. The cortex and hippocampus were harvested on the 8th day. The ATP, MMP, ApoE mRNA, total ApoE, ApoE fragments, Aβ1-40, Aβ1-42, Tau5, AT8, and PHF levels were detected. The Morris water maze (MWM) tests were performed from P30 to p36 after anesthesia or control treatment. The results indicated that the injection of CoQ10 ahead of sevoflurane treatment could reverse the anesthesia-induced energy deficiency, mitochondrial dysfunction, ApoE, and its fragments expression, Aβ1-42 generation, Tau phosphorylation, and cognitive impairment in young mice. These data reveal that the ApoE and its fragments enhancement may play an important role in the pathogenesis of cognitive deficiency caused by sevoflurane anesthesia. CoQ10 could reduce ApoE expression by improving energy replenishment and mitochondrial functions, thereby alleviating sevoflurane-induced brain damage and cognitive impairment.
Collapse
Affiliation(s)
- Man Yang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Hong Tan
- Department of Anesthesia, Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
50
|
Yang M, Lian N, Yu Y, Wang Y, Xie K, Yu Y. Coenzyme Q10 alleviates sevoflurane‑induced neuroinflammation by regulating the levels of apolipoprotein E and phosphorylated tau protein in mouse hippocampal neurons. Mol Med Rep 2020; 22:445-453. [PMID: 32377738 PMCID: PMC7248477 DOI: 10.3892/mmr.2020.11131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Sevoflurane may exert neurotoxic effects on the developing brain. Coenzyme Q10 (CoQ10) has been reported to reduce sevoflurane anesthesia-induced cognitive deficiency in 6-day-old mice. However, its specific mechanisms remain unknown. Apolipoprotein E (ApoE) has been reported to lead to the initiation of neurodegeneration in patients with Alzheimer's disease (AD) and may serve an important role in anesthesia-induced neurotoxicity. The present study aimed to reveal the role of ApoE in the pathogenesis of tau protein hyperphosphorylation and neuroinflammation enhancement caused by sevoflurane anesthesia, as well as the protective mechanism of CoQ10 in an anesthetic sevoflurane treatment model of primary mouse hippocampal neurons. For that purpose, the neurons were randomly assigned to the following groups: i) Control; ii) sevoflurane; iii) control+corn oil; iv) sevoflurane+corn oil; v) control+CoQ10; and vi) control+CoQ10. CoQ10 or corn oil alone was added to the medium on day 4 of neuron culture. The neurons in the sevoflurane group were treated with 21% O2, 5% CO2 and 4.1% sevoflurane for 4 h, whereas the control group only with 21% O2 and 5% CO2 on day 5. Samples were collected immediately after anesthesia or control treatment. ATP, superoxidase dismutase (SOD)1, ApoE mRNA, total ApoE, full-length ApoE, ApoE fragments, Tau5, Tau-PS202/PT205 (AT8), Tau-PSer396/404 (PHF1), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β levels were measured with ELISA, quantitative PCR, western blotting and immunocytochemistry. The results of the present study indicated that sevoflurane anesthesia significantly decreased the ATP and SOD levels, but increased ApoE mRNA, total ApoE protein, full-length ApoE, ApoE fragments, phosphorylated tau (AT8 and PHF1) and neuroinflammatory factor (TNF-α, IL-6 and IL-1β) expression levels compared with those in the control group. The use of CoQ10 reversed the expression of these factors. These results suggested that sevoflurane treatment damaged mouse hippocampal neurons, which may be associated with the expression of ApoE and its toxic fragments. CoQ10 improved energy replenishment and inhibited oxidative stress, which may lead to a decrease in ApoE and phosphorylated tau protein expression, thus mitigating the sevoflurane-induced neuroinflammation in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Man Yang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yaoqi Wang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Keliang Xie
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|