1
|
Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol 2025; 62:5579-5608. [PMID: 39578340 DOI: 10.1007/s12035-024-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Neurological diseases (NDs), including neurodegenerative disorders and acute injuries, are a significant global health concern. The PI3K/Akt/mTOR pathway, a crucial signaling cascade, is responsible for the survival of cells, proliferation, and metabolism. Dysregulation of this pathway has been linked to neurological conditions, indicating its potential as a vital target for therapeutic approaches. Resveratrol (RSV), a natural compound found in berries, peanuts, and red grapes, has antioxidant, anti-cancer, and anti-inflammatory effects. Its ability to modulate the PI3K/Akt/mTOR pathway has been interesting in NDs. Studies have shown that RSV can activate the PI3K/Akt pathway, promoting cell survival and inhibiting apoptosis of neuronal cells. Its impact on mTOR, a downstream effector of Akt, further contributes to its neuroprotective effects. RSV's ability to restore autophagic flux presents a promising avenue for therapeutic intervention. Its anti-inflammatory properties suppress inflammatory responses by inhibiting key signaling molecules within the pathway. Additionally, RSV's role in enhancing mitochondrial function contributes to its neuroprotective profile. This study highlights RSV's potential as a multifaceted therapeutic agent in NDs, specifically by PI3K/Akt/mTOR pathway modulation. Additional investigation is required to optimize its therapeutic capacity in diverse neurological conditions.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuha, Mathura, Uttar Pradesh, 281406, India
| | - Shaik Kareemulla
- Department of Pharmacy Practice, Malla Reddy College of Pharmacy (MRCP), Kompally, Secunderabad, Telangana, 500100, India
| | - Ronald Darwin C
- Department of Pharmacology, School of Pharmaceutical Sciences, Technology and Advanced Studies (VISTAS), Vels Institute of Science, Pallavaram, Chennai, 600117, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Voleti Vijaya Kumar
- Department of Pharmaceutics, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pavankumar Krosuri
- Department of Pharmaceutics, Santhiram College of Pharmacy, NH40, Nandyal, Andhra Pradesh, 518112, India
| | - Dharani Prasad
- Depertment of Pharmacology Mohan Babu University MB School of Pharmaceutical Sciences, Erstwhile Sree Vidyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, 517102, India
| | - Sharukh L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
2
|
Al-Nouri DM. Unlocking the Neuroprotective Effect of Quercetin Against Cadmium-Induced Hippocampal Damage in Rats: PPARγ Activation as a Key Mechanism. Pharmaceuticals (Basel) 2025; 18:657. [PMID: 40430476 PMCID: PMC12115345 DOI: 10.3390/ph18050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background: This study investigates the effects of cadmium chloride (CdCl2) on hippocampal peroxisome proliferator-activated receptor gamma (PPARγ) expression and examines whether PPARγ activation mediates the neuroprotective effects of quercetin (QUR). Methods: Sixty adult male rats were included in this study, separated into 12 rats per group as follows: control, CdCl2 (0.5 mg/kg), CdCl2 + PPARγ agonist (Pioglitazone, 10 mg/kg), CdCl2 + QUR (25 mg/kg), and CdCl2 + QUR + PPARγ antagonist (GW9662, 1 mg/kg). Treatments were administered orally for 30 days. At the end of the experiment, behavioral memory tests, hippocampal histology, markers of cholinergic function, neuroplasticity, oxidative stress, inflammation, and apoptosis, as well as transcription levels of some genes were carried out. Results: CdCl2 exposure significantly reduced hippocampal PPARγ mRNA and DNA binding potential and nuclear levels. Additionally, CdCl2 impaired spatial, short-term, and recognition memory, decreased granular cell density in the dentate gyrus (DG), and reduced levels of neuroprotective factors, including Nrf2, brain-derived neurotrophic factor (BDNF), acetylcholine (ACh), and several antioxidant enzymes including heme-oxygenase-1 (HO-1) and superoxide dismutase (SOD), as well as reduced glutathione (GSH). Conversely, CdCl2 elevated levels of oxidative stress, inflammation, and apoptosis markers such as interleukin-6 (IL-6), malondialdehyde (MDA), Bax, tumor necrosis factor-α (TNF-α), and cleaved caspase-3. QUR and Pioglitazone reversed these effects, restoring expression and PPARγ activation, improving memory, and modulating antioxidant and anti-inflammatory pathways. In contrast, blocking PPARγ with GW9662 negated the neuroprotective effects of QUR, exacerbating oxidative stress and inflammation by reversing all their beneficial effects. Conclusions: Activation of PPARγ by QUR or Pioglitazone offers a promising therapeutic strategy for mitigating CdCl2-induced neurotoxicity.
Collapse
Affiliation(s)
- Doha M Al-Nouri
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
3
|
Alqahtani SM, Al-Kuraishy HM, Al-Gareeb AI, Abdel-Fattah MM, Alsaiari AA, Alruwaili M, Papadakis M, Alexiou A, Batiha GES. Targeting of PP2 A/GSK3β/PTEN Axis in Alzheimer Disease: The Mooting Evidence, Divine, and Devil. Cell Mol Neurobiol 2025; 45:36. [PMID: 40251348 PMCID: PMC12008108 DOI: 10.1007/s10571-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease of the brain due to extracellular accumulation of Aβ. In addition, intracellular accumulation of hyperphosphorlyated tau protein which form neurofibrillary tangle (NFT) is associated with progressive neuronal injury and the development of AD. Aβ and NFTs interact together to induce inflammation and oxidative stress which further induce neurodegeneration in AD. The exact relationship between Aβ and tau, the two proteins that accumulate within these lesions, has proven elusive. A growing body of work supports the notion that Aβ may directly or indirectly interact with tau to accelerate NFTs formation. Aβ can adversely affect distinct molecular and cellular pathways, thereby facilitating tau phosphorylation, aggregation, mislocalization, and accumulation. Aβ may drive tau pathology by activating specific kinases, providing a straightforward mechanism by which Aβ may enhance tau hyperphosphorylation and NFT formation. Many cellular signaling pathways such as protein phosphatase 2A (PP2A), glycogen synthase kinase 3β (GSK3β), and phosphatase and tensin homologue (PTEN) are intricate in AD neuropathology. PP2A which involved in the dephosphorylation of tau protein is deregulated in AD, and correlated with cognitive impairment. PTEN is a critical regulator of neuronal growth, survival, and development, improving synaptic plasticity and axonal regeneration. Nevertheless, mutated PTEN is associated with the development of cognitive impairment by inhibiting the expression and the activity of PP2A. Furthermore, dysregulation of GSK3β affects Aβ, tau protein phosphorylation, synaptic plasticity and other signaling pathways involved in the pathogenesis of AD. Therefore, there is a close interaction among GSK3β, PTEN, and PP2A. GSK3β exaggerates AD neuropathology by inhibiting PP2A and activates the expression of PTEN. These findings specified a related interaction among GSK3β, PTEN, and PP2A, and modulation of the single component of this axis may not produce an effective effect against AD neuropathology. Modulation of this axis by metformin and statins can reduce AD neuropathology. Therefore, this review aims to discuss the role of GSK3β/PTEN/PP2A axis in AD neuropathology and how targeting of this axis by metformin and statins can produce effective therapeutic strategy in the management of AD. In conclusion, inhibition of GSK3β and PTEN and activation of PP2A may be more suitable than modulation of single signaling pathway. Metformin and statins by activating PP2A and inhibiting of GSK3β and PTEN attenuate the development and progression of AD.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology, Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, Po. Box (13), Kufa, Iraq
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- Department of Research & Development, Funogen, Athens, Greece
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
Deabes DAH, El-Abd EAW, Baraka SM, El-Gendy ZA, Korany RMS, Elbatanony MM. Metabolomics analyses and comparative insight to neuroprotective potential of unripe fruits and leaves of Citrus aurantium ethanolic extracts against cadmium-induced rat brain dysfunction: involvement of oxidative stress and akt-mediated CREB/BDNF and GSK3β/NF-κB signaling pathways. Metab Brain Dis 2025; 40:89. [PMID: 39760898 PMCID: PMC11703990 DOI: 10.1007/s11011-024-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid. Fifty-seven chromatographic peaks were identified by UPLC/MS/MS; 49 and 29 were recognized from CAF or CAL, respectively. Four compounds were isolated from CAF: 3',4',7 -trihydroxyflavone, isorhainetin, vitexin, and apigenin. In vitro studies outlined the antioxidant capacity of studied extracts where CAF showed better scavenging radical DPPH activity. Results clarified that both extracts with a superior function of CAF at the high adopted dose significantly ameliorated CdCl2-induced neuro-oxidative stress and neuro-inflammatory response via restoring antioxidant status and hindering nuclear factor kappa B (NF-κB) stimulation. Moreover, it up-regulated the levels of phospho-protein kinase B (p-Akt), phospho- cAMP-response element binding protein (p-CREB), and brain-derived neurotropic factor (BDNF) levels, and elicited a marked decrease in the content of glycogen synthase kinase 3 beta (GSK3β), besides amending Caspase-3 and hyperphosphorylation of tau protein in brain tissues. Moreover, a significant improvement in the rats' behavioral tasks of the CAL and CAF-treated groups has been recorded, as indicated by marked preservation in locomotion, exploratory, and memory functions of the experimental rats. In conclusion, the reported neuroprotective impacts of C. aurantium extracts may be through modulating p-AKT/p-CREB/BDNF and / or p-Akt/ GSK3β/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Doaa A H Deabes
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| | - Eman A W El-Abd
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| | - Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt.
| | - Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Reda M S Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa M Elbatanony
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| |
Collapse
|
5
|
Basurto‐Islas G, Diaz MC, Ocampo LMZ, Martínez‐Herrera M, López‐Camacho PY. Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400721. [PMID: 39888017 PMCID: PMC11781347 DOI: 10.1002/ardp.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory impairments and is considered the most prevalent form of dementia. Among the contributing factors to AD lies the hyperphosphorylation of the microtubule-associated protein tau. Phosphorylated tau reduces its affinity for microtubules and triggers other posttranslational modifications that result in its aggregation and assembly into filaments. These structures progressively accumulate within neurons leading to neurodegeneration. While current AD medications often involve undesirable side effects, the exploration of natural products as a potential therapeutic alternative has gained considerable attention. Numerous compounds have shown potential capacity for reducing tau pathology through different mechanisms, such as inhibiting kinases to reduce tau hyperphosphorylation, enhancing phosphatase activity, and blocking fibril formation. Since tau hyperphosphorylation-induced aggregation is pivotal in AD onset, this review aims to elucidate the potential of natural products in modulating this crucial molecular mechanism.
Collapse
Affiliation(s)
| | | | | | - Melchor Martínez‐Herrera
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| | - Perla Y. López‐Camacho
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| |
Collapse
|
6
|
Ozpak L, Bağca BG. Neuroprotective effects of resveratrol through modulation of PI3K/Akt/GSK-3β pathway and metalloproteases. IUBMB Life 2024; 76:1199-1208. [PMID: 39159067 DOI: 10.1002/iub.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024]
Abstract
To analyze the expressional changes in the PI3K/Akt/GSK-3β pathway and metalloprotease in the cellular Alzheimer's Disease (AD) model with the effect of antioxidant resveratrol. Neuron-like cells were obtained by a two-step method of neuronal differentiation by using a combination of retinoic acid (RA) and brain-derived factor (BDNF) exposure. Then, the application of the amyloid beta peptide 25-35 (Aβ25-35) to the cell culture mimicked the environmental toxicity observed in AD. Afterward, cell viability and apoptosis assays were performed to determine whether the resveratrol exerts a cytotoxic and apoptotic effect. Finally, the expressional changes in genes in the cellular AD model with the effect of resveratrol were analyzed by Real-Time PCR. The analysis in silico was assessed using the STRING V12.0 database in each group. Apoptosis data findings were decreased by 1.5-fold and 2.5-fold respectively by Differentiated+Resveratrol (RES) and RES when compared to control but no significant difference was observed between RES and AD model groups. Real-time PCR analysis results revealed PI3K (3.38-fold), AKT (3.95-fold), and RELN (1.99-fold) expressions were significantly higher (p < .001), and also GSK-3β, TAU, ADAMTS-4, ADAMTS-5, and TIMP-3 gene expression levels were significantly downregulated (2.53-, 1.79-, 2.85-, 4.09-, and 6.62-fold, respectively) in the Differentiated+Aβ + RES groups compared to the Differentiated+Aβ group (p < .001). Network analysis shows the functional enrichment of 23 Alzheimer-related GO terms in the Wnt signaling, proteolysis, and extracellular matrix organization pathways. Resveratrol has inhibited GSK-3β by activating the PI3K/Akt insulin pathway in a neurotoxic environment. In addition, TAU, RELN, metalloproteases, and their inhibitors associated with Alzheimer's pathology have been regulated supporting the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Lütfiye Ozpak
- Department of Medical Biology, Faculty of Medicine, Sutçu Imam University, Kahramanmaraş, Turkey
| | - Bakiye Göker Bağca
- Department of Medical Biology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
7
|
Acharyya S, Kumar SH, Chouksey A, Soni N, Nazeer N, Mishra PK. The enigma of mitochondrial epigenetic alterations in air pollution-induced neurodegenerative diseases. Neurotoxicology 2024; 105:158-183. [PMID: 39374796 DOI: 10.1016/j.neuro.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The incidence of neurodegenerative diseases is a growing concern worldwide, affecting individuals from diverse backgrounds. Although these pathologies are primarily associated with aging and genetic susceptibility, their severity varies among the affected population. Numerous studies have indicated air pollution as a significant contributor to the increasing prevalence of neurodegeneration. Cohort studies have provided compelling evidence of the association between prolonged exposure to different air toxicants and cognitive decline, behavioural deficits, memory impairment, and overall neuronal health deterioration. Furthermore, molecular research has revealed that air pollutants can disrupt the body's protective mechanisms, participate in neuroinflammatory pathways, and cause neuronal epigenetic modifications. The mitochondrial epigenome is particularly interesting to the scientific community due to its potential to significantly impact our understanding of neurodegenerative diseases' pathogenesis and their release in the peripheral circulation. While protein hallmarks have been extensively studied, the possibility of using circulating epigenetic signatures, such as methylated DNA fragments, miRNAs, and genome-associated factors, as diagnostic tools and therapeutic targets requires further groundwork. The utilization of circulating epigenetic signatures holds promise for developing novel prognostic strategies, creating paramount point-of-care devices for disease diagnosis, identifying therapeutic targets, and developing clinical data-based disease models utilizing multi-omics technologies and artificial intelligence, ultimately mitigating the threat and prevalence of neurodegeneration.
Collapse
Affiliation(s)
- Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Angelova VT, Stoyanov BP, Simeonova R. New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer's Disease Treatment. Molecules 2024; 29:5314. [PMID: 39598703 PMCID: PMC11596391 DOI: 10.3390/molecules29225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathophysiology with multiple interconnected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress, and microglia-mediated neuroinflammation. Current treatments, which generally target a single subpathology, have failed to modify the disease's progression, providing only temporary symptom relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation of pathological proteins. In this review, we cover hybrid molecules published between 2014 and 2024. We offer an overview of the strategies employed in drug design and approaches that have led to notable improvements and reduced hepatotoxicity. Our aim is to offer insights into the potential development of new Alzheimer's disease drugs. This overview highlights the potential of multi-target drugs featuring heterocycles with N-benzylpiperidine fragments and natural compounds in improving Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Boris P. Stoyanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
9
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
10
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
11
|
Thananthirige KPM, Chitranshi N, Basavarajappa D, Rajput R, Abbasi M, Palanivel V, Gupta VB, Paulo JA, Koronyo-Hamaoui M, Mirzaei M, Graham SL, Gupta V. Tau modulation through AAV9 therapy augments Akt/Erk survival signalling in glaucoma mitigating the retinal degenerative phenotype. Acta Neuropathol Commun 2024; 12:89. [PMID: 38845058 PMCID: PMC11158005 DOI: 10.1186/s40478-024-01804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The microtubule-associated protein Tau is a key player in various neurodegenerative conditions, including Alzheimer's disease (AD) and Tauopathies, where its hyperphosphorylation disrupts neuronal microtubular lattice stability. Glaucoma, a neurodegenerative disorder affecting the retina, leads to irreversible vision loss by damaging retinal ganglion cells and the optic nerve, often associated with increased intraocular pressure. Prior studies have indicated Tau expression and phosphorylation alterations in the retina in both AD and glaucoma, yet the causative or downstream nature of Tau protein changes in these pathologies remains unclear. This study investigates the impact of Tau protein modulation on retinal neurons under normal and experimental glaucoma conditions. Employing AAV9-mediated gene therapy for Tau overexpression and knockdown, both manipulations were found to adversely affect retinal structural and functional measures as well as neuroprotective Akt/Erk survival signalling in healthy conditions. In the experimental glaucoma model, Tau overexpression intensified inner retinal degeneration, while Tau silencing provided significant protection against these degenerative changes. These findings underscore the critical role of endogenous Tau protein levels in preserving retinal integrity and emphasize the therapeutic potential of targeting Tau in glaucoma pathology.
Collapse
Affiliation(s)
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mojdeh Abbasi
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
| | - Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Veer Bala Gupta
- School of Medicine, Deakin University, Melbourne, VIC, 3220, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Research Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Division of Applied Cell Biology and Physiology, Departments of Neurology and Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
12
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Ruczaj A, Brzóska MM, Rogalska J. The Protective Impact of Aronia melanocarpa L. Berries Extract against Prooxidative Cadmium Action in the Brain-A Study in an In Vivo Model of Current Environmental Human Exposure to This Harmful Element. Nutrients 2024; 16:502. [PMID: 38398826 PMCID: PMC10891719 DOI: 10.3390/nu16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Cadmium (Cd) is a prooxidant that adversely affects human health, including the nervous system. As exposure of the general population to this heavy metal is inevitable, it is crucial to look for agents that can prevent the effects of its toxic action. An experimental model on female rats of current lifetime human exposure to cadmium (3-24-months' treatment with 1 or 5 mg Cd/kg diet) was used to test whether low-level and moderate intoxication can exert a prooxidative impact in the brain and whether supplementation with a 0.1% extract from the berries of Aronia melanocarpa L. (Michx.) Elliott (AE; chokeberry extract) can protect against this action. Numerous parameters of the non-enzymatic and enzymatic antioxidative barrier, as well as total antioxidative and oxidative status (TAS and TOS, respectively), were determined and the index of oxidative stress (OSI) was calculated. Moreover, chosen prooxidants (myeloperoxidase, xanthine oxidase, and hydrogen peroxide) and biomarkers of oxidative modifications of lipids, proteins, and deoxyribonucleic acid were assayed. Cadmium dysregulated the balance between oxidants and antioxidants in the brain and led to oxidative stress and oxidative injury of the cellular macromolecules, whereas the co-administration of AE alleviated these effects. To summarize, long-term, even low-level, cadmium exposure can pose a risk of failure of the nervous system by the induction of oxidative stress in the brain, whereas supplementation with products based on aronia berries seems to be an effective protective strategy.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
14
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
15
|
Arruebarrena MA, Hawe CT, Lee YM, Branco RC. Mechanisms of Cadmium Neurotoxicity. Int J Mol Sci 2023; 24:16558. [PMID: 38068881 PMCID: PMC10706630 DOI: 10.3390/ijms242316558] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cadmium is a heavy metal that increasingly contaminates food and drink products. Once ingested, cadmium exerts toxic effects that pose a significant threat to human health. The nervous system is particularly vulnerable to prolonged, low-dose cadmium exposure. This review article provides an overview of cadmium's primary mechanisms of neurotoxicity. Cadmium gains entry into the nervous system via zinc and calcium transporters, altering the homeostasis for these metal ions. Once within the nervous system, cadmium disrupts mitochondrial respiration by decreasing ATP synthesis and increasing the production of reactive oxygen species. Cadmium also impairs normal neurotransmission by increasing neurotransmitter release asynchronicity and disrupting neurotransmitter signaling proteins. Cadmium furthermore impairs the blood-brain barrier and alters the regulation of glycogen metabolism. Together, these mechanisms represent multiple sites of biochemical perturbation that result in cumulative nervous system damage which can increase the risk for neurological and neurodegenerative disorders. Understanding the way by which cadmium exerts its effects is critical for developing effective treatment and prevention strategies against cadmium-induced neurotoxic insult.
Collapse
Affiliation(s)
- Madelyn A. Arruebarrena
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Calvin T. Hawe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Young Min Lee
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Rachel C. Branco
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
16
|
Bi M, Qin Y, Wang L, Zhang J. The protective role of resveratrol in diabetic wound healing. Phytother Res 2023; 37:5193-5204. [PMID: 37767805 DOI: 10.1002/ptr.7981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 09/29/2023]
Abstract
Diabetic wounds are severe complications of diabetes mellitus (DM), which have difficulty in healing. Although diverse treatments have been used, the prognosis of diabetic wounds is not satisfactory; therefore, an effective therapy to accelerate diabetic wound healing is urgently needed. In our review, we summarized that resveratrol can promote diabetic wound healing by protecting against hyperglycemia, inflammation, oxidative stress, vascular pathology, infection, and peripheral neuropathy. To clarify it clearly, we highlighted its underlying mechanisms of protective effects of resveratrol against diabetic wounds, and high-quality studies are needed to firmly establish its clinical efficacy. Otherwise, with the development of material sciences, resveratrol can exert its therapeutic effectiveness efficiently; however, more high-quality studies are needed to confirm the clinical efficacy of resveratrol on diabetic wounds.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yonghong Qin
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Lerong Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
17
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
18
|
Sola E, Moyano P, Flores A, García JM, García J, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-promoted thyroid hormones disruption mediates ROS, inflammation, Aβ and Tau proteins production, gliosis, spongiosis and neurodegeneration in rat basal forebrain. Chem Biol Interact 2023; 375:110428. [PMID: 36868496 DOI: 10.1016/j.cbi.2023.110428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure. However, the mechanisms through which THs disruption mediate this effect remain unknown. To research the possible mechanisms through which Cd-induced THs deficiency may mediate BF neurodegeneration, Wistar male rats were treated with Cd for 1- (1 mg/kg) or 28-days (0.1 mg/kg) with or without triiodothyronine (T3, 40 μg/kg/day). Cd exposure promoted neurodegeneration, spongiosis, gliosis and several mechanisms related to these alterations (increased H202, malondialdehyde, TNF-α, IL-1β, IL-6, BACE1, Aβ and phosphorylated-Tau levels, and decreased phosphorylated-AKT and phosphorylated-GSK-3β levels). T3 supplementation partially reversed the effects observed. Our results show that Cd induces several mechanisms that may be responsible for the neurodegeneration, spongiosis and gliosis observed in the rats' BF, which are partially mediated by a reduction in THs levels. These data may help to explain the mechanisms through which Cd induces BF neurodegeneration, possibly leading to the cognitive decline observed, providing new therapeutic tools to prevent and treat these damages.
Collapse
Affiliation(s)
- Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Montero-Cosme TG, Pascual-Mathey LI, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Aranda-Abreu GE. Potential drugs for the treatment of Alzheimer's disease. Pharmacol Rep 2023; 75:544-559. [PMID: 37005970 DOI: 10.1007/s43440-023-00481-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
It is well known that amyloid precursor protein (APP), the enzyme β-secretase 1 (BACE1), cyclooxygenase 2 (COX-2), nicastrin (NCT), and hyperphosphorylated tau protein (p-tau) are closely related to the development of Alzheimer's disease (AD). In addition, recent evidence shows that neuroinflammation also contributes to the pathogenesis of AD. Although the mechanism is not clearly known, such inflammation could alter the activity of the aforementioned molecules. Therefore, the use of anti-inflammatory agents could slow the progression of the disease. Nimesulide, resveratrol, and citalopram are three anti-inflammatory agents that could contribute to a decrease in neuroinflammation and consequently to a decrease in the overexpression of APP, BACE1, COX-2, NCT, and p-Tau, as they possess anti-inflammatory effects that could regulate the expression of APP, BACE1, COX-2, NCT, and p-Tau of potent pro-inflammatory markers indirectly involved in the expression of APP, BACE1, NCT, COX-2, and p-Tau; therefore, their use could be beneficial as preventive treatment as well as in the early stages of AD.
Collapse
Affiliation(s)
| | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | | |
Collapse
|
21
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
22
|
Babić Leko M, Mihelčić M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Zubčić K, Langer Horvat L, Pleić N, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Diana A, Borovečki F, Hof PR, Šimić G. Heavy Metals and Essential Metals Are Associated with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease. Int J Mol Sci 2022; 24:467. [PMID: 36613911 PMCID: PMC9820819 DOI: 10.3390/ijms24010467] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Various metals have been associated with the pathogenesis of Alzheimer's disease (AD), principally heavy metals that are environmental pollutants (such as As, Cd, Hg, and Pb) and essential metals whose homeostasis is disturbed in AD (such as Cu, Fe, and Zn). Although there is evidence of the involvement of these metals in AD, further research is needed on their mechanisms of toxicity. To further assess the involvement of heavy and essential metals in AD pathogenesis, we compared cerebrospinal fluid (CSF) AD biomarkers to macro- and microelements measured in CSF and plasma. We tested if macro- and microelements' concentrations (heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Na, Mg, K, Ca, Fe, Co, Mn, Cu, Zn, and Mo), essential non-metals (B, P, S, and Se), and other non-essential metals (Al, Ba, Li, and Sr)) are associated with CSF AD biomarkers that reflect pathological changes in the AD brain (amyloid β1-42, total tau, phosphorylated tau isoforms, NFL, S100B, VILIP-1, YKL-40, PAPP-A, and albumin). We used inductively coupled plasma mass spectroscopy (ICP-MS) to determine macro- and microelements in CSF and plasma, and enzyme-linked immunosorbent assays (ELISA) to determine protein biomarkers of AD in CSF. This study included 193 participants (124 with AD, 50 with mild cognitive impairment, and 19 healthy controls). Simple correlation, as well as machine learning algorithms (redescription mining and principal component analysis (PCA)), demonstrated that levels of heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, K, and Zn), and essential non-metals (P, S, and Se) are positively associated with CSF phosphorylated tau isoforms, VILIP-1, S100B, NFL, and YKL-40 in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Medical Biology, University of Split School of Medicine, 21000 Split, Croatia
| | - Matej Mihelčić
- Department of Mathematics, University of Zagreb Faculty of Science, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | | | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nikolina Pleić
- Department of Medical Biology, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia
| | - Andrea Diana
- Laboratory of Neurogenesis and Neuropoiesis, Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Li Y, Zhang H, Tu F, Cao J, Hou X, Chen Y, Yan J. Effects of resveratrol and its derivative pterostilbene on hepatic injury and immunological stress of weaned piglets challenged with lipopolysaccharide. J Anim Sci 2022; 100:skac339. [PMID: 36242589 PMCID: PMC9733527 DOI: 10.1093/jas/skac339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The present study was to investigate the protective effects of resveratrol (RSV) and its 3,5-dimethylether derivative pterostilbene (PT) against liver injury and immunological stress of weaned piglets upon lipopolysaccharide (LPS) challenge. Seventy-two weaned piglets were divided into the following groups: control group, LPS-challenged group, and LPS-challenged groups pretreated with either RSV or PT for 14 d (n = 6 pens, three pigs per pen). At the end of the feeding trial, piglets were intraperitoneally injected with either LPS or an equivalent amount of sterile saline. After 6 h of sterile saline or LPS injection, plasma and liver samples were collected. LPS stimulation caused massive apoptosis, activated inflammatory responses, and incited severe oxidative stress in the piglet livers while also promoting the nuclear translocation of nuclear factor kappa B (NF-κB) p65 (P < 0.001) and the protein expression of Nod-like receptor pyrin domain containing 3 (NLRP3; P = 0.001) and cleaved caspase 1 (P < 0.001). PT was more effective than RSV in alleviating LPS-induced hepatic damage by decreasing the apoptotic rate of liver cells (P = 0.045), inhibiting the transcriptional expression of interleukin 1 beta (P < 0.001) and interleukin 6 (P = 0.008), and reducing myeloperoxidase activity (P = 0.010). The LPS-induced increase in hepatic lipid peroxidation accumulation was also reversed by PT (P = 0.024). Importantly, inhibiting protein phosphatase 2A (PP2A) activity in a hepatocellular model largely blocked the ability of PT to prevent tumor necrosis factor alpha-induced increases in NF-κB p65 protein phosphorylation (P = 0.043) and its nuclear translocation (P = 0.029). In summary, PT is a promising agent that may alleviate liver injury and immunological stress of weaned piglets via the PP2A/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Tu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Jing Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiang Hou
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yanan Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
25
|
Liu C, Zhang R, Yang L, Ji T, Zhu C, Liu B, Zhang H, Xu C, Zhang N, Huang S, Chen L. Neuroprotection of resveratrol against cadmium-poisoning acts through dual inhibition of mTORC1/2 signaling. Neuropharmacology 2022; 219:109236. [PMID: 36049535 PMCID: PMC9524506 DOI: 10.1016/j.neuropharm.2022.109236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Resveratrol is a natural polyphenol with neuroprotective function. The underlying mechanism is not well understood. Our previous studies have identified that resveratrol antagonizes cadmium (Cd) neurotoxicity via targeting PP2A/PP5-mediated Erk1/2 and JNK pathways. Here we show that resveratrol protected against Cd-poisoning also by blocking Cd-induced activation of mTORC1 and mTORC2 pathways in PC12 cells and murine primary neurons. Co-treatment with inhibitors of mTORC1 (rapamycin), mTORC1/2 (PP242), Erk1/2 (U0126) and/or JNK (SP600125), knockdown of mTOR, or disruption of mTORC1 and/or mTORC2 by silencing raptor, rictor or raptor/rictor, respectively, markedly potentiated the inhibitory effects of resveratrol on Cd-induced phosphorylation of S6K1/4E-BP1 (mTORC1 substrates), Akt (mTORC2 substrate), Erk1/2 and/or JNK/c-Jun, cleavage of caspase-3 and cell death in PC12 cells and/or primary neurons. Knockdown of S6K1 or 4E-BP1, or ectopic expression of constitutively hypophosphorylated 4E-BP1 (4E-BP1-5A) reinforced the resveratrol's inhibition on Cd-evoked cell death, whereas ectopic expression of constitutively active S6K1 or knockdown of 4E-BP1 attenuated the resveratrol's inhibition on Cd-induced cell death. Co-treatment with Akt inhibitor or overexpression of dominant negative Akt (dn-Akt) strengthened the resveratrol's suppression on Cd-induced ROS, Erk1/2 activation and apoptosis, whereas overexpression of constitutively active Akt (myr-Akt) conferred high resistance to the resveratrol's inhibitory effects in the neuronal cells. Taken together, the results indicate that resveratrol attenuates Cd-induced neuronal apoptosis partly through inhibition of mTORC1/2 pathways. Our studies highlight that resveratrol can be exploited for the prevention of Cd toxicity related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; Department of Medical Technology, Suzhou Vocational Health College, Suzhou, 215009, PR China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China; College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cuilan Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Shreveport, LA, 71130-3932, USA; Department of Hematology and Oncology, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
26
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 2022; 200:4370-4384. [PMID: 34846673 DOI: 10.1007/s12011-021-03027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, Autonomous University of Puebla, 22 South, FC91, University City, C.P. 72560, Puebla, Mexico
| | - Brambila Eduardo
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Treviño Samuel
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico.
| |
Collapse
|
27
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Hussen BM, Talebi SF, Baig SG, Taheri M, Ayatollahi SA. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell Int 2022; 22:298. [PMID: 36180892 PMCID: PMC9524725 DOI: 10.1186/s12935-022-02719-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural phenol that is present in the skin of the grape, blueberry, raspberry, mulberry, and peanut. This substance is synthesized in these plants following injury or exposure to pathogens. Resveratrol is used as a dietary supplement for a long time and its effects have been assessed in animal models of human disorders. It has potential beneficial effects in diverse pathological conditions such as diabetes mellitus, obesity, hypertension, neoplastic conditions, Alzheimer's disease, and cardiovascular disorders. Notably, resveratrol has been found to affect the expression of several genes including cytokine coding genes, caspases, matrix metalloproteinases, adhesion molecules, and growth factors. Moreover, it can modulate the activity of several signaling pathways such as PI3K/AKT, Wnt, NF-κB, and Notch pathways. In the current review, we summarize the results of studies that reported modulatory effects of resveratrol on the expression of genes and the activity of signaling pathways. We explain these results in two distinct sections of non-neoplastic and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
28
|
Nagaraju PG, S A, Priyadarshini P. Tau-aggregation inhibition: promising role of nanoencapsulated dietary molecules in the management of Alzheimer's disease. Crit Rev Food Sci Nutr 2022; 63:11153-11168. [PMID: 35748395 DOI: 10.1080/10408398.2022.2092446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Alzheimer's disease (AD) is a cumulative form of dementia associated with memory loss, cognition impairment, and finally leading to death. AD is characterized by abnormal deposits of extracellular beta-amyloid and intracellular Tau-protein tangles throughout the brain. During pathological conditions of AD, Tau protein undergoes various modifications and aggregates over time. A number of clinical trials on patients with AD symptoms have indicated the effectiveness of Tau-based therapies over anti-Aβ treatments. Thus, there is a huge paradigm shift toward Tau aggregation inhibitors. Several bioactives of plants and microbes have been suggested to cross the neuronal cell membrane and play a crucial role in managing neurodegenerative disorders. Bioactives mainly act as active modulators of AD pathology besides having antioxidant and anti-inflammatory potential. Studies also demonstrated the potential role of dietary molecules in inhibiting the formation of Tau aggregates and removing toxic Tau. Further, these molecules in nonencapsulated form exert enhanced Tau aggregation inhibition activity both in in vitro and in vivo studies suggesting a remarkable role of nanoencapsulation in AD management. The present article aims to review and discuss the structure-function relationship of Tau protein, the post-translational modifications that aid Tau aggregation and potential bioactives that inhibit Tau aggregation.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration. Curr Mol Pharmacol 2022; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aβ- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
30
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Huber KL, Fernández JR, Webb C, Rouzard K, Healy J, Tamura M, Stock JB, Stock M, Pérez E. AGSE: A Novel Grape Seed Extract Enriched for PP2A Activating Flavonoids That Combats Oxidative Stress and Promotes Skin Health. Molecules 2021; 26:molecules26216351. [PMID: 34770760 PMCID: PMC8587015 DOI: 10.3390/molecules26216351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022] Open
Abstract
Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer’s Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE’s activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin.
Collapse
Affiliation(s)
- Kristen L. Huber
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - José R. Fernández
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Corey Webb
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Karl Rouzard
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Jason Healy
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Masanori Tamura
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Jeffry B. Stock
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08852, USA
| | - Maxwell Stock
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
| | - Eduardo Pérez
- Research and Development Department, Signum Biosciences, 11 Deer Park Drive Suite 202, Monmouth Junction, NJ 08852, USA; (K.L.H.); (J.R.F.); (C.W.); (K.R.); (J.H.); (M.T.); (J.B.S.); (M.S.)
- Correspondence: ; Tel.: +1-732-329-6344; Fax: +1-732-329-8344
| |
Collapse
|
32
|
Shati AA, El-Kott AF, Alkhateeb MA. Resolvin D1 prevents cadmium chloride-induced memory loss and hippocampal damage in rats by activation/upregulation of PTEN-induced suppression of PI3K/Akt/mTOR signaling pathway. Clin Exp Pharmacol Physiol 2021; 49:275-290. [PMID: 34570918 DOI: 10.1111/1440-1681.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
This study evaluated the protective effect of resolvin D1 (RVD1) against cadmium chloride (CdCl2 )-induced hippocampal damage and memory loss in rats and investigated if such protection is mediated by modulating the PTEN/PI3K/Akt/mTOR pathway. Adult male Wistar rats (n = 18/group) were divided as control, control + RVD1, CdCl2 , CdCl2 + RVD1 and CdCl2 + RVD1 + bpV(pic), a PTEN inhibitor. All treatments were conducted for 4 weeks. Resolvin D1 improved the memory function as measured by Morris water maze (MWM), preserved the structure of CA1 area of the hippocampus, and increased hippocampal levels of RVD1 in the CdCl2 -treated rats. Resolvin D1 also suppressed the generation of reactive oxygen species (ROS), tumour necrosis factor-α and interleukine-6 (IL-6), inhibited nuclear factor κB (NF-κB) p65, stimulated levels of glutathione (GSH), manganese superoxide dismutase (MnSOD), and Bcl2 but reduced the expression of Bax and cleaved caspase 3 in hippocampi of CdCl2 -treated rats. Concomitantly, it stimulated levels and activity of PTEN and reduced the phosphorylation (activation) of PI3K, Akt and mTOR in hippocampi of CdCl2 -treated rats. In conclusion, RVD1 attenuates CdCl2 -induced memory loss and hippocampal damage in rats mainly by activating PTEN-induced suppression of PI3K/Akt/mTOR, an effect that seems secondary to its' anti-oxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Ribeiro R, Santos AC, Calazans MO, De Oliveira ACP, Vieira LB. Is resveratrol a prospective therapeutic strategy in the co-association of glucose metabolism disorders and neurodegenerative diseases? Nutr Neurosci 2021; 25:2442-2457. [PMID: 34514962 DOI: 10.1080/1028415x.2021.1972514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: The mechanism behind the progression of Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) remains poorly understood. However some evidence pointed out that the co-occurrence of metabolic conditions affecting glucose homeostasis, as type 2 diabetes mellitus (T2DM), may be an important catalyst in this context. Notably, candidate drugs which modulate common pathways in the development of MCI-to-AD mediated by T2DM may offer likely therapy for AD. Nonetheless, limited pharmacological alternatives that modulate common pathways in T2DM, MCI, and AD are available. In the recent decades, studies have shown that resveratrol may act as a neuroprotective compound, but little is known about its potential in improving cognitive and metabolic aspects associated with AD progression mediated by the co-association between TDM2-MCI.Methods: In this review, we discuss possible protective mechanisms of resveratrol on shared pathways associated with AD progression mediated by T2DM-MCI co-occurrence.Results: Some studies indicated that insulin resistance and hyperglycemia may be also a T2DM risk factor for the progression of MCI-to-AD, promoting alterations in metabolic pathways associated with neuronal plasticity, and increasing pro-inflammatory environment. Interestingly, basic research and clinical trials indicate that resveratrol may modulate those pathways, showing a potential neuroprotective effect of this polyphenol.Conclusion: Therefore, there is not enough clinical data supporting the translational therapeutic use of resveratrol in this scenario.
Collapse
Affiliation(s)
- R Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M O Calazans
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C P De Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Calfio C, Gonzalez A, Singh SK, Rojo LE, Maccioni RB. The Emerging Role of Nutraceuticals and Phytochemicals in the Prevention and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 77:33-51. [PMID: 32651325 DOI: 10.3233/jad-200443] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, β-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.
Collapse
Affiliation(s)
- Camila Calfio
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, India.,Centre of Biomedical Research (CBMR), Lucknow, India
| | - Leonel E Rojo
- Department of Biology, University of Santiago, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Shati AA, El-Kott AF. Resolvin D1 protects against cadmium chloride-induced memory loss and hippocampal damage in rats: A comparison with docosahexaenoic acid. Hum Exp Toxicol 2021; 40:S215-S232. [PMID: 34405727 DOI: 10.1177/09603271211038739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intoxication with cadmium (Cd) ions leads to hippocampal damage and cognitive impairment. However, omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert neuroprotective effects in different animal models of neurodegeneration. PURPOSE This study compared the neuroprotective effect of the n-3 PUFA, docosahexaenoic acid (DHA), and its downstream metabolite, resolvin D1 (RVD1), on hippocampal damage and memory deficits in cadmium chloride (CdCl2)-treated rats. RESEARCH DESIGN Control or CdCl2 (0.5 mg/kg)-treated rats were subdivided into three groups (n = 18/each) and treated for 6 weeks as follows: (1) fed control diet, (2) fed DHA-rich diets (0.7 g/100 g), or (3) treated with RVD1 (0.2 μg/kg, i.p). RESULTS Treatment with a DHA-rich diet or RVD1 significantly increased the levels of docosahexaenoic acid and RVD1, respectively, in the hippocampal of CdCl2-treated rats without affecting the reduction in the expression of the 15-lipooxygenase-1 (ALOX15). These effects were associated with improvements in rats' memory function and hippocampal structure, as well as a redction in the hippocampal levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear localization of the nuclear factor-kappa beta p65 (NF-κB p65), and expression of cleaved caspase-3. Concomitantly, hippocampi of both groups of rats showed significantly higher levels of Bcl-2, superoxide dismutase (SOD), and glutathione (GSH), as well as enhanced nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf-2). The effects of RVD1 on all these markers in the CdCl2-induced rats were more profound than those of DHA. Also, the increase in the nuclear protein levels of Nrf-2 and the decrease in the levels of Bax and nuclear protein levels of NF-κB p65 were only seen in the hippocampal of CdCl2 + RVD1-treated rats. CONCLUSION RVD1 is more powerful than DHA in preventing CdCl2-induced memory loss and hippocampal damage in rats.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
36
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
El-Kott AF, ElBealy ER, Alshehri AS, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Salidroside induces cell apoptosis and inhibits the invasiveness of HT29 colorectal cells by regulating protein kinase R, NF-κB and STAT3. Cancer Biomark 2021; 31:13-25. [PMID: 33749640 DOI: 10.3233/cbm-203257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Protein kinase R (PKR) can suppress various types of solid tumors by inducing cellular oxidative stress and apoptosis. Likewise, Slaidorside, a plant flavonoid, was shown to have anti-tumorigenesis in many solid tumors. OBJECTIVE This study evaluated anti-tumorigenesis of Salidroside in HT29 colorectal cancer and investigated if the underlying mechanism involves activation of PKR. METHODS Control or PKR deficient cells were cultured in DMEM media treated with 100 μM Salidroside and cell survival, apoptosis, and other biochemical-related markers were evaluated. RESULTS Salidroside significantly reduced cell survival and proliferation and increased the release of lactate dehydrogenase (LDH) and levels of single-stranded DNA (ssDNA). It also increased the protein levels of caspases 3 and 8. Concomitantly, Salidroside increased the protein level and activity of PKR and increased the expression of its downstream targets, p-eIF2α (Ser51), p53 MAPK, and p53. On the contrary, it inhibited the nuclear activation of STAT-3 and NF-κB p65. In PKR deficient cells, the partial effects of Salidroside on cell survival, proliferation, and apoptotic markers were observed coincided with no effects on the expression of eIF-2α, and JNK, p53, p38 MAPK, and caspase 8 but with a significant decrease in the nuclear activities of STAT3 and NF-κB. CONCLUSION Salidroside suppresses the tumorigenesis of HT29 CRC by increasing activation of eIF-2α and JNK and upregulation of p53, p38 MAPK, and caspase-8 through upregulating and activation of PKR. However, the tumor suppressor effect of Salidroside requires also inhibition of STAT3 and NF-κB in a PKR-independent mechanism.
Collapse
Affiliation(s)
- Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Eman R ElBealy
- Biology Department, College of Science for Girls, King Khalid University, Abha, Saudi Arabia
| | - Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Amira M AlRamlawy
- Mansoura Research Centre for Cord Stem Cell (MARC-CSC), Stem Cells Bank, Children's Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
39
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Morán C, Brambila E, Treviño S. Sodium metavanadate treatment improves glycogen levels in multiple tissues in a model of metabolic syndrome caused by chronic cadmium exposure in Wistar rats. Biometals 2021; 34:245-258. [PMID: 33389338 DOI: 10.1007/s10534-020-00276-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
Cadmium, one of the more hazardous environmental contaminants, has been proposed as a metabolic disruptor. Vanadium has emerged as a possible treatment for metabolic diseases. Both metals are important in public health. We aimed to investigate whether vanadium treatment is effective against metabolic disturbances caused by chronic exposure to the lowest-observable adverse effect level of cadmium. Male Wistar rats were exposed to cadmium (32.5 ppm) in drinking water for 3 months. Metabolic complications such as overweight, visceral adipose gain, hyperglycemia, impaired glucose tolerance, and dyslipidemia were detected, and low glycogen levels and steatosis were observed in the tissues. Then, the control and treated animals were subdivided and treated with a solution of 5 μM NaVO3/kg/twice a week for 2 months. The control-NaVO3 group did not show zoometric or metabolic changes. A strong interaction of NaVO3 treatment over cadmium metabolic disruption was observed. The vanadium accumulation diminished cadmium concentration in tissues. Also, vanadium interaction improved glucose homeostasis. The major effect was observed on glycogen synthesis, which was fully recovered in all tissues analyzed. Additionally, vanadium treatment prevented overweight and visceral fat accumulation, improving BMI and the percentage of fat. However, NaVO3 treatment did not have an effect on dyslipidemia or steatosis. In conclusion, this work shows that vanadium administration has a strong effect against metabolic disturbances caused by chronic cadmium exposure, observing powerful interaction on glucose homeostasis.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South. FC91, University City, C.P. 72560, Puebla, Mexico
| | - Carolina Morán
- Department of Biology and Reproduction Toxicology, Science Institute, University Autonomous of Puebla, 14 South. University City, C.P. 72560, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, C.P. 72560, Puebla, Mexico.
| |
Collapse
|
40
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
41
|
Morsy MD, Alsaleem MA, Aboonq MS, Bashir SO, Al-Daher HA. Acylated Ghrelin Administration Inhibits Sleeve Gastrectomy-Induced Hippocampal Oxidative Stress, Apoptosis and Tau-Hyperphosphorylation by Activating the PI3K/Akt Pathway. Folia Biol (Praha) 2021; 67:49-61. [PMID: 34624937 DOI: 10.14712/fb2021067020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study investigated the impact of exogenous replacement therapy with acylated ghrelin (AG) post sleeve gastrectomy (SG) on the memory function in rats. In addition, we investigated the possible underlying mechanisms, including the effects on markers of oxidative stress, tau phosphorylation, and apoptosis. Adult male Wistar rats were divided into four groups (N = 18/group) as follows: sham (control), SG, SG+AG (100 μM), and SG+AG+LY294002 (0.25 μg/100 g). We continued all treatments daily for four weeks post-surgery. SG impaired the spatial, retention, and recognition memories as tested by the Morris water maze test, passive avoidance test, and novel object recognition test, respectively. Also, it enhanced the levels of reactive oxygen species and lipid peroxides, reduced glutathione and protein levels of Bcl-2, and increased the levels of Bax and cleaved caspase-3 in the hippocampus. In addition, SG reduced the hippocampal levels of acetylcholine and brain-derived neurotrophic factor. Concomitantly, it inhibited the hippocampal activity of Akt and increased the activity of glycogen synthase kinase 3β and tau protein phosphorylation. Exogenous administration of acylated ghrelin to rats that had undergone SG prevented memory deficits. Also, it prevented the alteration in the above-mentioned biochemical parameters, an effect that was abolished by co-administration of LY294002 (phosphoinositide 3-kinase inhibitor). In conclusion, AG replacement therapy after SG in rats protects them against memory deficits and hippocampal damage by suppressing tau protein phosphorylation, mediated by activating PI3K/Aktinduced inhibition of glycogen synthase kinase 3β.
Collapse
Affiliation(s)
- M D Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M A Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M S Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - S O Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - H A Al-Daher
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
42
|
Shati AA, Alfaifi MY. Salidroside protects against diabetes mellitus-induced kidney injury and renal fibrosis by attenuating TGF-β1 and Wnt1/3a/β-catenin signalling. Clin Exp Pharmacol Physiol 2020; 47:1692-1704. [PMID: 32472701 DOI: 10.1111/1440-1681.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/09/2023]
Abstract
This study evaluated if the nephroprotective effect of Salidroside in type 1 diabetes mellitus (T1DM) involves modulation of Wnt/β-catenin signalling pathways. Control or Streptozotocin (STZ, 50 mg/kg, iv)-induced T1DM adult male Wister rats were treated with the vehicle and Salidroside (100 mg/kg, orally) for 8 weeks daily. As compared to T1DM-induced rats, Salidroside improved kidney structure, reduced urinary protein and albumin level, increased creatinine clearance, and suppressed renal fibrosis. It also decreased mRNA and protein levels of Wnt1, Wnt3, and TGF-β1, phosphorylation of Smad-3, total and nuclear levels of β-catenin, and levels and activities of cleaved caspase-3. Concomitantly, Salidroside significantly increased the levels of p-β-catenin (Ser33/37 /Thr41 ) and suppressed protein levels of Axin-2, fibronectin, and, mRNA and protein levels of collagen IIIa, the main targets of β-catenin. In both control and T1DM rats, Salidroside significantly lowered fasting glucose levels and reduced renal levels of reactive oxygen species (ROS) p-and GS3Kβ (Ser9) but significantly increased levels of SOD and GSH. In conclusion, Salidroside protected the kidney of rats against T1DM-induced injury and fibrosis by activating GS3Kβ-induced inhibition of Wnt1/Wnt3a β-catenin. This was associated with hypoglycaemic and antioxidant effects.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, College of Science, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
43
|
El-Kott AF, Alshehri AS, Khalifa HS, Abd-Lateif AEKM, Alshehri MA, El-Maksoud MMA, Eid RA, Bin-Meferij MM. Cadmium Chloride Induces Memory Deficits and Hippocampal Damage by Activating the JNK/p 66Shc/NADPH Oxidase Axis. Int J Toxicol 2020; 39:477-490. [PMID: 32856499 DOI: 10.1177/1091581820930651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated whether the mechanism underlying the neurotoxic effects of cadmium chloride (CdCl2) in rats involves p66Shc. This study comprised an initial in vivo experiment followed by an in vitro experiment. For the in vivo experiment, male rats were orally administered saline (vehicle) or CdCl2 (0.05 mg/kg) for 30 days. Thereafter, spatial and retention memory of rats were tested and their hippocampi were used for biochemical and molecular analyses. For the in vitro experiment, control or p66Shc-deficient hippocampal cells were treated with CdCl2 (25 µM) in the presence or absence of SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. Cadmium chloride impaired the spatial learning and retention memory of rats; depleted levels of glutathione and manganese superoxide dismutase; increased reactive oxygen species (ROS), tumor necrosis factor α, and interleukin 6; and induced nuclear factor kappa B activation. Cadmium chloride also decreased the number of pyramidal cells in the CA1 region and induced severe damage to the mitochondria and endoplasmic reticulum of cells in the hippocampi of rats. Moreover, CdCl2 increased the total unphosphorylated p66Shc, phosphorylated (Ser36) p66Shc, phosphorylated JNK, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cytochrome c, and cleaved caspase-3. A dose-response increase in cell death, ROS, DNA damage, p66Shc, and NADPH oxidase was also observed in cultured hippocampal cells treated with CdCl2. Of note, all of these biochemical changes were attenuated by silencing p66Shc or inhibiting JNK with SP600125. In conclusion, CdCl2 induces hippocampal ROS generation and apoptosis by promoting the JNK-mediated activation of p66Shc.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, 110144Damanhour University, Damanhour, Egypt
| | - Ali S Alshehri
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, 110144Damanhour University, Damanhour, Egypt
| | | | - Mohammad Ali Alshehri
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia
| | - Mona M Abd El-Maksoud
- Community of Nursing Care, Nursing College, 204574King Khalid University, Abha, Saudi Arabia.,Community Health Nursing, Faculty of Nursing, Helwan University, Helwan, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, 204574King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
44
|
El-Kott AF, Abd-Lateif AEKM, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138832. [PMID: 32353801 DOI: 10.1016/j.scitotenv.2020.138832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The neuroprotective effect of Kaempferol against cadmium chloride (CdCl2) -induced neurotoxicity is well reported. The silent information regulator 1 (SIRT1) and poly (ADP-Ribose) polymerase-1 (PARP1) are two related cellular molecules that can negatively affect the activity of each other to promote or inhibit cell survival, respectively. It is still largely unknown if the neurotoxicity of CdCl2 or the neuroprotection of Kaempferol are mediated by modulating SIRT1 and/or PAPR1 activities. In this study, we tested the hypothesis that CdCl2-induced memory deficit and hippocampal damage are associated with downregulation/inhibition of SIRT1 and activation of PAPR1, an effect that can be reversed by co-treatment with Kaempferol. Rats (n = 12/group) were divided into 4 groups as control, control + Kaempferol (50 mg//kg), CdCl2 (0.5 mg/kg), and CdCl2 + Kaempferol. All treatments were administered orally for 30 days daily. As compared to control rats, CdCl2 reduced rat's final body weights (21.8%) and their food intake (30%), induced oxidative stress and apoptosis in their hippocampi, and impaired their short and long-term recognition memory functions. Besides, the hippocampi of CdCl2-treated rats had higher levels of TNF-α (197%), and IL-6 (190%) with a concomitant increase in nuclear activity and levels of NF-κB p65 (721% & 554%). Besides, they showed reduced nuclear activity (53%) and levels (74%) of SIRT1, higher nuclear activity and levels of PARP1 (292% & 138%), increased nuclear levels of p53 (870%), and higher acetylated levels of NF-κB p65 (513%), p53 (644%), PARP1 (696%), and FOXO-2 (149%). All these events were significantly reversed in the CdCl2 + Kaempferol-treated rats. Of note, Kaempferol also increased levels of MnSOD (73.5%), and GSH (40%), protein levels of Bcl-2 (350%), and nuclear activity (67%) and levels (46%) of SIRT1 in the hippocampi of the control rats. In conclusion, Kaempferol ameliorates CdCl2-induced memory deficits and hippocampal oxidative stress, inflammation, and apoptosis by increasing SIRT1 activity and inhibiting PARP1 activity.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | | | - Heba S Khalifa
- Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Essam H Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo 12611, Egypt
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France.
| |
Collapse
|
45
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Yao G, Man YH, Li AR, Guo Y, Dai Y, Wang P, Zhou YF. NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging (Albany NY) 2020; 12:6370-6384. [PMID: 32276265 PMCID: PMC7185139 DOI: 10.18632/aging.103031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023]
Abstract
The release of the neuropeptide CGRP from the trigeminal ganglion neurons (TGNs) plays a central role in migraine. Whereas CGRP can activate NO release from ganglionic glial cells, NO in turn enhances CGRP release. However, it remains unclear how NO promotes CGRP release. Here, we report that the NO donor SNAP triggered CGRP release from cultured primary TGNs. This event was associated with GSK-3β activation and Akt inactivation. Immunofluorescent staining revealed that GSK-3β primarily located in neurons. Furthermore, GSK-3β inhibition resulted in a marked reduction in expression of CGRP as well as other migraine-related factors, including substance P, cholecystokinin, and prostaglandin E2. Last, exposure to SNAP also activated NF-κB, while NF-κB inhibition prevented the induction of CGRP by SNAP. Interestingly, this event was blocked by GSK-3β inhibition, in association with inhibition of NF-κB/p65 expression and nuclear translocation. Together, these findings argue that NO could stimulate TGNs to release of CGRP as well as other migraine-related factors, likely by activating GSK-3β, providing a novel mechanism underlying a potential feed-forward loop between NO and CGRP in migraine. They also raise a possibility that GSK-3β might act to trigger migraine through activation of NF-κB, suggesting a link between neuroinflammation and migraine.
Collapse
Affiliation(s)
- Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Yu-Hong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - An-Ran Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology - Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Fa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
47
|
Sánchez-Melgar A, Albasanz JL, Martín M. Polyphenols and Neuroprotection: The Role of Adenosine Receptors. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Sánchez-Melgar
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
48
|
Shati AA. Resveratrol protects against cadmium chloride-induced hippocampal neurotoxicity by inhibiting ER stress and GAAD 153 and activating sirtuin 1/AMPK/Akt. ENVIRONMENTAL TOXICOLOGY 2019; 34:1340-1353. [PMID: 31433112 DOI: 10.1002/tox.22835] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study investigated whether the apoptotic effect induced by cadmium chloride (CdCl2 ) in rat's hippocampi and neuroprotection afforded by resveratrol (RES) are mediated by modulation of ER stress and involve sirtuin 1 (SIRT1)/AMPK/Akt axis. Adult male Wistar rats were divided into four groups (n = 24/group) as control, control + RES (300 mg/kg), CdCl2 (5 mg/kg), and CdCl2 + RES. All treatments were conducted orally for 45 days. Also, cultured hippocampal cells were treated with CdCl2 in the presence or absence of RES and with or without preincubation with SIRT1, AMPK, or PI3K inhibitors. CdCl2 impaired retention and spatial memories of rats and reduced levels and activities of SIRT1 and inhibited AMPK/Akt axis in their hippocamapi where SIRT1 was the upstream regulator. It also enahnced hippocampal levels of reactive oxygen species (ROS) and expression of caspase-12 and caspase-3, depleted glutathione (GSH) levels, and activated GRP78, activating transcription factor-6, GAAD 153, X-box binding protein-1 arms of ER stress. On the contrary, RES coadminsitration completley abolished all these events. Interstingly and in control rats, RES not only increased levels of GSH, but also enhenced protein levels of B-cell lymphoma 2 (Bcl-2) and dwonregulated GAAD 153. In both control and CdCl2 -treated rats, pharmacological inhibtion of SIRT1, AMPK, and Akt compleltely abolished all effects afforded by RES. In conclusion, CdCl2 -induced hippocampal apopotis is associated with reduction of SIRT1/AMPK/Akt activity levels, ROS generation, downregulation of Bcl-2, and activities, activation of ER stress, and GAAD 153, whereas RES is able to reverse these effects through activation of SIRT1/AMPK/Akt.
Collapse
Affiliation(s)
- Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
49
|
El-kott AF, Bin-Meferij MM, Eleawa SM, Alshehri MM. Kaempferol Protects Against Cadmium Chloride-Induced Memory Loss and Hippocampal Apoptosis by Increased Intracellular Glutathione Stores and Activation of PTEN/AMPK Induced Inhibition of Akt/mTOR Signaling. Neurochem Res 2019; 45:295-309. [DOI: 10.1007/s11064-019-02911-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022]
|