1
|
Naeimi H, Taheri M, Ghafouri H, Mohammadi A. Investigation of Thiazolidine-2,4-Dione Derivatives as Acetylcholinesterase Inhibitors: Synthesis, In Vitro Biological Activities and In Silico Studies. ChemistryOpen 2025; 14:e202400294. [PMID: 39797425 DOI: 10.1002/open.202400294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE. Additionally, all the TZD derivatives (CHT1-5) showed an acceptable affinity for AChE inhibition, and the results showed convincing binding modes in the active site of AChE. Among them, 5-(4-methoxybenzylidene) thiazolidine-2,4-dione (CHT1) was identified as the most potent AChE inhibitor (IC50 of 165.93 nM) with the highest antioxidant activity. Following the exposure of PC12 cells to Aβ1-42 (100 μM), a marked reduction in cell survival was observed. Pretreatment of PC12 cells with TZD derivatives had a neuroprotective effect and significantly enhanced cell survival in response to Aβ-induced toxicity. Western blotting analysis revealed that CHT1 (5 and 8 μM) downregulated p-Tau and HSP70 expression levels. The results indicate that CHT1 is a promising and effective AchE-I that could be utilized as a powerful candidate against AD.
Collapse
Affiliation(s)
- Hanane Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran
| |
Collapse
|
2
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Fouad D, Alrimawi BH, Dayoob M. ADME profiling, molecular docking, DFT, and MEP analysis reveal cissamaline, cissamanine, and cissamdine from Cissampelos capensis L.f. as potential anti-Alzheimer's agents. RSC Adv 2024; 14:9878-9891. [PMID: 38528929 PMCID: PMC10961956 DOI: 10.1039/d4ra01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
The current pharmacotherapies for Alzheimer's disease (AD) demonstrate limited efficacy and are associated with various side effects, highlighting the need for novel therapeutic agents. Natural products, particularly from medicinal plants, have emerged as a significant source of potential neuroprotective compounds. In this context, Cissampelos capensis L.f., renowned for its medicinal properties, has recently yielded three new proaporphine alkaloids; cissamaline, cissamanine, and cissamdine. Despite their promising bioactive profiles, the biological targets of these alkaloids in the context of AD have remained unexplored. This study undertakes a comprehensive in silico examination of the binding affinity and molecular interactions of these alkaloids with human protein targets implicated in AD. The drug likeness and ADME analyses indicate favorable pharmacokinetic profiles for these compounds, suggesting their potential efficacy in targeting the central nervous system. Molecular docking studies indicate that cissamaline, cissamanine, and cissamdine interact with key AD-associated proteins. These interactions are comparable to, or in some aspects slightly less potent than, those observed with established AD drugs, highlighting their potential as novel therapeutic agents for Alzheimer's disease. Crucially, Density Functional Theory (DFT) calculations offer deep insights into the electronic and energetic characteristics of these alkaloids. These calculations reveal distinct electronic properties, with differences in total energy, binding energy, HOMO-LUMO gaps, dipole moments, and electrophilicity indices. Such variations suggest unique reactivity profiles and molecular stability, pertinent to their pharmacological potential. Moreover, Molecular Electrostatic Potential (MEP) analyses provide visual representations of the electrostatic characteristics of these alkaloids. The analyses highlight areas prone to electrophilic and nucleophilic attacks, indicating their potential for specific biochemical interactions. This combination of DFT and MEP results elucidates the intricate electronic, energetic, and electrostatic properties of these compounds, underpinning their promise as AD therapeutic agents. The in silico findings of this study shed light on the promising potential of cissamaline, cissamanine, and cissamdine as agents for AD treatment. However, further in vitro and in vivo studies are necessary to validate these theoretical predictions and to understand the precise mechanisms through which these alkaloids may exert their therapeutic effects.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University P.O.Box 733 Irbid 21110 Jordan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Gelugor 11800 Penang Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Dania Fouad
- Faculty of Dentistry, Ibn Sina University for Medical and Pharmaceutical Sciences Baghdad Iraq
| | | | | |
Collapse
|
3
|
Durgun M, Akocak S, Lolak N, Topal F, Koçyiğit ÜM, Türkeş C, Işık M, Beydemir Ş. Design and Synthesis of Pyrazole Carboxamide Derivatives as Selective Cholinesterase and Carbonic Anhydrase Inhibitors: Molecular Docking and Biological Evaluation. Chem Biodivers 2024; 21:e202301824. [PMID: 38149720 DOI: 10.1002/cbdv.202301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Fevzi Topal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100, Gümüşhane, Turkey
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, 29100, Gümüşhane, Turkey
| | - Ümit Muhammet Koçyiğit
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
4
|
Ndhlala AR, Işık M, Kavaz Yüksel A, Dikici E. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules 2024; 29:480. [PMID: 38257392 PMCID: PMC10821218 DOI: 10.3390/molecules29020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The Lamiaceae family are utilized as ornamental, medicinal, and food supplements throughout the world. The current study focuses on a comparative analysis of the phenolic compositions and bioactivities (including antioxidant, anticholinergic, and antibacterial activities) of ethanolic extracts derived from the aerial parts of the two species (Lavandula stoechas L. and Thymus sipyleus Boiss). The presence of phenolic compounds and phytochemicals in the plant extracts was identified using the LC-MS/MS technique. The LC-MS/MS analysis revealed that vanillic acid (125,596.66 µg/L) was the most abundant phytochemical in L. stoechas. Kaempferol (8550.52 µg/L) was the most abundant substance in Thymus sipyleus. The assessment of the antioxidant efficacy of the species extracts was conducted using the DPPH (2.2-diphenyl-1-picryl-hydrazyl-hydrate), ABTS (2.2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)), Fe3+-Fe2+ reducing, and CUPRAC (Cu2+-Cu+ reducing) assays. The anticholinergic activity of the samples was determined using the acetylcholinesterase (AChE) inhibition assay. The results of antioxidant activity were higher in the T. sipyleus than in the L. stoechas ethanol extracts. The extracts of L. stoechas exhibited radical scavenging activity ranging from 15 to 18%, while T. sipyleus had activity effects ranging from 34% to 38%. The AChE inhibition potential for L. stoechas and T. sipyleus extracts as IC50 values were 0.221 ± 0.01 mg/mL and 0.067 ± 0.02 mg/mL, respectively. The antibacterial effects of the ethanolic extracts of these species against pathogenic bacteria isolates were determined using the MIC (minimal inhibitory concentration) method. These findings indicated that the extracts from L. stoechas and T. sipyleus possess the potential to be natural antioxidants in the realm of food preservation. Additionally, their antioxidant, anticholinergic, and antimicrobial properties suggest potential therapeutic utility in the management of certain diseases.
Collapse
Affiliation(s)
- Ashwell R. Ndhlala
- Green Biotechnologies Research Centre, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Arzu Kavaz Yüksel
- Department of Food Technology, Technical Sciences Vocational School, Atatürk University, Erzurum 25030, Turkey;
| | - Emrah Dikici
- Science and Technology Application and Research Center, Aksaray University, Aksaray 68100, Turkey;
| |
Collapse
|
5
|
Obara K, Mori H, Ihara S, Yoshioka K, Tanaka Y. Inhibitory Actions of Antidepressants, Hypnotics, and Anxiolytics on Recombinant Human Acetylcholinesterase Activity. Biol Pharm Bull 2024; 47:328-333. [PMID: 38296462 DOI: 10.1248/bpb.b23-00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is accompanied by behavioral and psychological symptoms of dementia (BPSD), which is often alleviated by treatment with psychotropic drugs, such as antidepressants, hypnotics, and anxiolytics. If these drugs also inhibit acetylcholinesterase (AChE) activity, they may contribute to the suppression of AD progression by increasing brain acetylcholine concentrations. We tested the potential inhibitory effects of 31 antidepressants, 21 hypnotics, and 12 anxiolytics on recombinant human AChE (rhAChE) activity. At a concentration of 10-4 M, 22 antidepressants, 19 hypnotics, and 11 anxiolytics inhibited rhAChE activity by <20%, whereas nine antidepressants (clomipramine, amoxapine, setiptiline, nefazodone, paroxetine, sertraline, citalopram, escitalopram, and mirtazapine), two hypnotics (triazolam and brotizolam), and one anxiolytic (buspirone) inhibited rhAChE activity by ≥20%. Brotizolam (≥10-6 M) exhibited stronger inhibition of rhAChE activity than the other drugs, with its pIC50 value being 4.57 ± 0.02. The pIC50 values of the other drugs were <4, and they showed inhibitory activities toward rhAChE at the following concentrations: ≥3 × 10-6 M (sertraline and buspirone), ≥10-5 M (amoxapine, nefazodone, paroxetine, citalopram, escitalopram, mirtazapine, and triazolam), and ≥3 × 10-5 M (clomipramine and setiptiline). Among these drugs, only nefazodone inhibited rhAChE activity within the blood concentration range achievable at clinical doses. Therefore, nefazodone may not only improve the depressive symptoms of BPSD through its antidepressant actions but also slow the progression of cognitive symptoms of AD through its AChE inhibitory actions.
Collapse
Affiliation(s)
- Keisuke Obara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Haruka Mori
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Suzune Ihara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kento Yoshioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Yoshio Tanaka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
6
|
Massei R, Brack W, Seidensticker S, Hollert H, Muz M, Schulze T, Krauss M, Küster E. Neurotoxicity in complex environmental mixtures-a case-study at River Danube in Novi Sad (Serbia) using zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96138-96146. [PMID: 37566323 PMCID: PMC10482774 DOI: 10.1007/s11356-023-29186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors are an important class of neuroactive chemicals that are often detected in aquatic and terrestrial environments. The correct functionality of the AChE enzyme is linked to many important physiological processes such as locomotion and respiration. Consequently, it is necessary to develop new analytical strategies to identify harmful AChE inhibitors in the environment. It has been shown that mixture effects and oxidative stress may jeopardize the application of in vivo assays for the identification of AChE inhibitors in the environment. To confirm that in vivo AChE assays can be successfully applied when dealing with complex mixtures, an extract from river water impacted by non-treated wastewater was bio-tested using the acute toxicity fish embryo test (FET) and AChE inhibition assay with zebrafish. The zebrafish FET showed high sensitivity for the extract (LC10 = relative extraction factor 2.8) and we observed a significant inhibition of the AChE (40%, p < 0.01) after 4-day exposure. Furthermore, the extract was chromatographically fractionated into a total of 26 fractions to dilute the mixture effect and separate compounds according to their physico-chemical properties. As expected, non-specific acute effects (i.e., mortality) disappeared or evenly spread among the fractions, while AChE inhibition was still detected in five fractions. Chemical analysis did not detect any known AChE inhibitors in these active fractions. These results confirm that the AChE assay with Danio rerio can be applied for the detection of neuroactive effects induced in complex environmental samples, but also, they highlight the need to increase analytical and identification techniques for the detection of neurotoxic substances.
Collapse
Affiliation(s)
- Riccardo Massei
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
- Department of Monitoring and Exploration Technologies, UFZ-Helmholtz Centre for Environmental Research , Leipzig, Germany.
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Eberhard Küster
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
7
|
Lolak N, Akocak S, Durgun M, Duran HE, Necip A, Türkeş C, Işık M, Beydemir Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers 2023; 27:1735-1749. [PMID: 36136229 DOI: 10.1007/s11030-022-10527-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey.
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, 63300, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
8
|
Jiang N, Li X, Wang Q, Baihetiyaer B, Fan X, Li M, Sun H, Yin X, Wang J. Ecological risk assessment of environmentally relevant concentrations of propofol on zebrafish (Danio rerio) at early life stage: Insight into physiological, biochemical, and molecular aspects. CHEMOSPHERE 2023; 316:137846. [PMID: 36646180 DOI: 10.1016/j.chemosphere.2023.137846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.
Collapse
Affiliation(s)
- Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xiaoteng Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
9
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
10
|
Işık M, Beydemir Ş. AChE mRNA expression as a possible novel biomarker for the diagnosis of coronary artery disease and Alzheimer's disease, and its association with oxidative stress. Arch Physiol Biochem 2022; 128:352-359. [PMID: 31726885 DOI: 10.1080/13813455.2019.1683584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative metabolic reactions and their by products have played a role in coronary artery disease (CAD) and Alzheimer's disease (AD) pathogenesis. This study was carried out on 28 patients with AD, 21 patients with CAD, and 28 healthy as control. Oxidative stress biomarkers and acetylcholinesterase (AChE) activity were assayed in plasma. mRNA expression of AChE was investigated in leukocytes of patients with CAD and AD. Thus, Alzheimer's and coronary artery patients were observed that the protein carbonyl levels and mRNA expression of AChE were increased (p<.05, p<.01, respectively). The plasma total thiol levels were decreased compared to the control group (p<.05). There was a significant relationship between amyloid β (Aβ) accumulation and oxidative stress, cholinergic gene expression. AChE gene expression and protein oxidation were increased in patients with AD and CAD. These results suggest that increased release of AChE from cells produces neurotoxic β-amyloid plaques and may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
11
|
Yapar G, Esra Duran H, Lolak N, Akocak S, Türkeş C, Durgun M, Işık M, Beydemir Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg Chem 2021; 117:105473. [PMID: 34768205 DOI: 10.1016/j.bioorg.2021.105473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
Aldose reductase (ALR2), one of the metabolically important enzymes, catalyzes the formation of sorbitol from glucose in the polyol pathway. ALR2 inhibition is required to prevent diabetic complications. In the present study, the novel bis-hydrazone compounds bearing isovanillin moiety (GY1-12) were synthesized, and various chromatographic methods were applied to purify the ALR2 enzyme. Afterward, the inhibitory effect of the synthesized compounds on the ALR2 was screened in vitro. All the novel bis-hydrazones demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 12.55-35.04 nM, and 13.38-88.21 nM, respectively. Compounds GY-11, GY-7, and GY-5 against ALR2 were identified as the highly potent inhibitors, respectively, and were superior to the standard drug, epalrestat. Moreover, a comprehensive ligand-receptor interactions prediction was performed using ADME-Tox, Glide XP, and MM-GBSA modules of Schrödinger Small-Molecule Drug Discovery Suite to elucidate the novel bis-hydrazone derivatives, potential binding modes versus the ALR2. As a result, these compounds with ALR2 inhibitory effects may be potential alternative agents that can be used to treat or prevent diabetic complications.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, İstanbul Technical University, İstanbul 34469, Turkey.
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
12
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. Biophys Chem 2021; 278:106677. [PMID: 34428682 PMCID: PMC8373590 DOI: 10.1016/j.bpc.2021.106677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Venezuela.
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Laura Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
| |
Collapse
|
13
|
Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 2021; 39:5449-5460. [PMID: 32691682 DOI: 10.1080/07391102.2020.1790422] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health Services, Iğdır University, Iğdır, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
14
|
Kavaz Yüksel A, Dikici E, Yüksel M, Işık M, Tozoğlu F, Köksal E. Phytochemical, phenolic profile, antioxidant, anticholinergic and antibacterial properties of Epilobium angustifolium (Onagraceae). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01050-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M, Gülçin İ, Budak Y, Beydemir Ş. Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn 2021; 40:8752-8764. [PMID: 33950796 DOI: 10.1080/07391102.2021.1916599] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The underlying cause of many metabolic diseases is abnormal changes in enzyme activity in metabolism. Inhibition of metabolic enzymes such as cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and α-glucosidase (α-GLY) is one of the accepted approaches in the treatment of Alzheimer's disease (AD) and diabetes mellitus (DM). Here we reported an investigation of a new series of novel ureido-substituted derivatives with sulfamethazine backbone (2a-f) for the inhibition of AChE, BChE, and α-GLY. All the derivatives demonstrated activity in nanomolar levels as AChE, BChE, and α-GLY inhibitors with KI values in the range of 56.07-204.95 nM, 38.05-147.04 nM, and 12.80-79.22 nM, respectively. Among the many strong N-(4,6-dimethylpyrimidin-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives (2a-f) detected against ChEs, compound 2c, the 4-fluorophenylureido derivative, demonstrated the most potent inhibition profile towards AChE and BChE. A comprehensive ligand/receptor interaction prediction was performed in silico for the three metabolic enzymes providing molecular docking investigation using Glide XP, MM-GBSA, and ADME-Tox modules. The present research reinforces the rationale behind utilizing inhibitors with sulfamethazine backbone as innovative anticholinergic and antidiabetic agents with a new mechanism of action, submitting propositions for the rational design and synthesis of novel strong inhibitors targeting ChEs and α-GLY.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
16
|
Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y, Türkeş C, Gülçin İ, Beydemir Ş. Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α‐Glycosidase and Cholinesterase Inhibitors. Chem Biodivers 2021; 18:e2000958. [DOI: 10.1002/cbdv.202000958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartın University Bartın 74100 Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Mesut Işık
- Department of Bioengineering Faculty of Engineering Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Mustafa Durgun
- Department of Chemistry Faculty of Arts and Sciences Harran University Şanlıurfa 63290 Turkey
| | - Yakup Budak
- Department of Chemistry Faculty of Arts and Sciences Gaziosmanpaşa University Tokat 60250 Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University Erzurum 25240 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
17
|
Maleki MF, Nadri H, Kianfar M, Edraki N, Eisvand F, Ghodsi R, Mohajeri SA, Hadizadeh F. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: Molecular dynamic, in vitro and in vivo studies. Bioorg Chem 2021; 109:104684. [PMID: 33607363 DOI: 10.1016/j.bioorg.2021.104684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
As anandamide (N-arachidonoylethanolamine, AEA) shows neuroprotective effects, the inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH) has been considered as a hopeful avenue for the treatment of neurodegenerative diseases, like Alzheimer's disease (AD). Memory loss, cognitive impairment and diminution of the cholinergic tone, due to the dying cholinergic neurons in the basal forebrain, are common hallmarks in patients with AD. By taking advantage of cholinesterase inhibitors (ChEIs), the degradation of acetylcholine (ACh) is decreased leading to enhanced cholinergic neurotransmission in the aforementioned region and ultimately improves the clinical condition of AD patients. In this work, new carbamates were designed as inhibitors of FAAH and cholinestrases (ChEs) (acetylcholinestrase (AChE), butyrylcholinestrase (BuChE)) inspired by the structure of the native substrates, structure of active sites and the SARs of the well-known inhibitors of these enzymes. All the designed compounds were synthesized using different reactions. All the target compounds were tested for their inhibitory activity against FAAH and ChEs by employing the Cayman assay kit and Elman method respectively. Generally, compounds possessing aminomethyl phenyl linker was more potent compared to their corresponding compounds possessing piperazinyl ethyl linker. The inhibitory potential of the compounds 3a-q extended from 0.83 ± 0.03 μM (3i) to ˃100 μM (3a) for FAAH, 0.39 ± 0.02 μM (3i) to 24% inhibition in 113 ± 4.8 μM (3b) for AChE, and 1.8 ± 3.2 μM (3i) to 23.2 ± 0.2 μM (3b) for BuChE. Compound 3i a heptyl carbamate analog possessing 2-oxo-1,2-dihydroquinolin ring and aminomethyl phenyl linker showed the most inhibitory activity against three enzymes. Also, compound 3i was investigated for memory improvement using the Morris water maze test in which the compound showed better memory improvement at 10 mg/kg compared to reference drug rivastigmine at 2.5 mg/kg. Molecular docking and molecular dynamic studies of compound 3i into the enzymes displayed the possible interactions of key residues of the active sites with compound 3i. Finally, kinetic study indicated that 3i inhibits AChE through the mixed- mode mechanism and non-competitive inhibition mechanism was revealed for BuChE.
Collapse
Affiliation(s)
- Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mostafa Kianfar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Durgun M, Türkeş C, Işık M, Demir Y, Saklı A, Kuru A, Güzel A, Beydemir Ş, Akocak S, Osman SM, AlOthman Z, Supuran CT. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzyme Inhib Med Chem 2020; 35:950-962. [PMID: 32249705 PMCID: PMC7170330 DOI: 10.1080/14756366.2020.1746784] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sulphonamides are biologically important compounds with low toxicity, many bioactivities and cost-effectiveness. Eight sulphonamide derivatives were synthesised and characterised by FT-IR, 13C NMR, 1H NMR, LC-MS and elemental analysis. Their inhibitory effect on AChE, and carbonic anhydrase I and II enzyme activities was investigated. Their antioxidant activity was determined using different bioanalytical assays such as radical scavenging tests with ABTS•+, and DPPH•+ as well as metal-reducing abilities with CUPRAC, and FRAP assays. All compounds showed satisfactory enzyme inhibitory potency in nanomolar concentrations against AChE and CA isoforms with KI values ranging from 10.14 ± 0.03 to 100.58 ± 1.90 nM. Amine group containing derivatives showed high metal reduction activity and about 70% ABTS radical scavenging activity. Due to their antioxidant activity and AChE inhibition, these novel compounds may be considered as leads for investigations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ali Saklı
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Abdussamat Güzel
- Department of Pharmacy Services, Vocational School of Health Services, İnönü University, Malatya, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Sameh M. Osman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
19
|
Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K, Beydemir Ş. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
21
|
Işık M, Beydemir Ş. The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. J Biomol Struct Dyn 2020; 39:6515-6523. [DOI: 10.1080/07391102.2020.1801509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
22
|
Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem 2020; 100:103897. [PMID: 32413628 DOI: 10.1016/j.bioorg.2020.103897] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Some metabolic enzyme inhibitors can be used in the treatment of many diseases. Therefore, synthesis and determination of alternative inhibitors are essential. In this study, the inhibition effect of newly synthesized compounds on carbonic anhydrase (cytosolic isoforms, hCA I and hCA II), α-glycosidase (α-GLY), and acetylcholinesterase (AChE) were investigated. The possible binding mechanism of the compounds with a high inhibitory effect on the active site of the enzyme was demonstrated by molecular docking method. We investigated the inhibition effects of novel synthesized compounds (MZ1-MZ11) on metabolic enzymes such as α-GLY, AChE, and hCA I and II. The compound MZ6 for AChE, MZ8 for CA I and CA II and MZ7 for α-GLY showed a very active inhibition profile (KIs 51.67 ± 4.76 for hCA I, 40.35 ± 5.74 nM for hCA II, 41.74 ± 8.08 nM for α-GLY and 335.76 ± 46.91 nM for AChE). The novel synthesized compounds (MZ1-MZ11) have a higher enzyme (α-GLY, AChE, hCA I, and II) inhibitory potential than ACR, TAC, and AZA, respectively. The compounds may have the potential to be used as alternative medicines after further research in the treatment of many diseases such as diabetes, Alzheimer's disease, heart failure, ulcer, and epilepsy.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın 74100, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa 63300, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| |
Collapse
|
23
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
24
|
Işık M, Akocak S, Lolak N, Taslimi P, Türkeş C, Gülçin İ, Durgun M, Beydemir Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch Pharm (Weinheim) 2020; 353:e2000102. [DOI: 10.1002/ardp.202000102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health ServicesHarran UniversityŞanlıurfa Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartın UniversityBartın Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincan Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of SciencesAtatürk UniversityErzurum Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and SciencesHarran UniversityŞanlıurfa Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- The Rectorate of Bilecik Şeyh Edebali UniversityBilecik Turkey
| |
Collapse
|
25
|
Turhan K, Pektaş B, Türkan F, Tuğcu FT, Turgut Z, Taslimi P, Karaman HS, Gulcin I. Novel benzo[b]xanthene derivatives: Bismuth(III) triflate‐catalyzed one‐pot synthesis, characterization, and acetylcholinesterase, glutathione S‐transferase, and butyrylcholinesterase inhibitory properties. Arch Pharm (Weinheim) 2020; 353:e2000030. [DOI: 10.1002/ardp.202000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kadir Turhan
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Begüm Pektaş
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health ServicesIgdir University Iğdır Turkey
| | - Fatma T. Tuğcu
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Zuhal Turgut
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University Bartin Turkey
| | - Halide S. Karaman
- Department of Chemistry, Faculty of ScienceAtaturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of ScienceAtaturk University Erzurum Turkey
| |
Collapse
|
26
|
Affiliation(s)
- Mesut Işık
- Department of Pharmacy ServicesVocational School of Health ServicesHarran University Şanlıurfa 63300 Turkey
| |
Collapse
|
27
|
IŞIK M. Anticholinergic, Antioxidant Activity and LC-MS/MS analysis of Ethanol Extract from Salvia officinalis L. ACTA ACUST UNITED AC 2020. [DOI: 10.38001/ijlsb.690835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Istrefi Q, Türkeş C, Arslan M, Demir Y, Nixha AR, Beydemir Ş, Küfrevioğlu Öİ. Sulfonamides incorporating keteneN,S‐acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900383. [DOI: 10.1002/ardp.201900383] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Qëndresa Istrefi
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım University Erzincan Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and SciencesSakarya University Sakarya Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High SchoolArdahan University Ardahan Turkey
| | - Arleta R. Nixha
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu University Eskişehir Turkey
| | - Ömer İ. Küfrevioğlu
- Department of Chemistry, Faculty of SciencesAtatürk University Erzurum Turkey
| |
Collapse
|
29
|
Durgun M, Türkeş C, Işık M, Demir Y, Saklı A, Kuru A, Güzel A, Beydemir Ş, Akocak S, Osman SM, AlOthman Z, Supuran CT. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzyme Inhib Med Chem 2020. [DOI: 10.1080/14756366.2020.1746784 pmid: 32249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ali Saklı
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Abdussamat Güzel
- Department of Pharmacy Services, Vocational School of Health Services, İnönü University, Malatya, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Sameh M. Osman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
30
|
Işık M, Beydemir Ş, Demir Y, Durgun M, Türkeş C, Nasır A, Necip A, Akkuş M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020; 146:1111-1123. [PMID: 31739032 DOI: 10.1016/j.ijbiomac.2019.09.237] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
Sulfonamides known as inhibitors of many metabolic enzymes have been widely used as antimicrobial drugs for a long time. In the present study, we investigated in vitro inhibitory activities of benzenesulfonamide derivatives on human paraoxonase-I (hPON1). For this aim, PON1 was purified from human serum with a specific activity of 2603.57 EU/mg and 8.34% yield using simple chromatographic methods. The various concentrations of early-synthesized sixteen sulfonamide derivatives were tested on the paraoxonase activity. Ki values of compounds were found in the range of 0.28-357.70 µM. Compound H4 had the highest inhibitory activity on hPON1 as competitive. Estimated structure-activity relationship (SAR) for compounds was done based on different substituents and their positions in the compounds. Besides, the molecular docking analysis of compound H4 was performed to understand the binding interactions on the active site of the enzyme. According to these experimental results, compound H4 was a potential inhibitor of PON1.
Collapse
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Health Services Vocational School, Harran University, 63300 Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290 Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey
| | - Abdul Nasır
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Adem Necip
- Department of Pharmacy Services, Health Services Vocational School, Harran University, 63300 Şanlıurfa, Turkey
| | - Musa Akkuş
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
31
|
Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020. [DOI: 10.1016/j.ijbiomac.2019.09.237 pmid: 31739032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Işık M, Demir Y, Durgun M, Türkeş C, Necip A, Beydemir Ş. Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00988-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|