1
|
Kisby T, Borst GR, Coope DJ, Kostarelos K. Targeting the glioblastoma resection margin with locoregional nanotechnologies. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01020-2. [PMID: 40369318 DOI: 10.1038/s41571-025-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Surgical resection is the first stage of treatment for patients diagnosed with resectable glioblastoma and is followed by a combination of adjuvant radiotherapy and systemic single-agent chemotherapy, which is typically commenced 4-6 weeks after surgery. This delay creates an interval during which residual tumour cells residing in the resection margin can undergo uninhibited proliferation and further invasion, even immediately after surgery, thus limiting the effectiveness of adjuvant therapies. Recognition of the postsurgical resection margin and peri-marginal zones as important anatomical clinical targets and the need to rethink current strategies can galvanize opportunities for local, intraoperative approaches, while also generating a new landscape of innovative treatment modalities. In this Perspective, we discuss opportunities and challenges for developing locoregional therapeutic strategies to target the glioblastoma resection margin as well as emerging opportunities offered by nanotechnology in this clinically transformative setting. We also discuss how persistent barriers to clinical translation can be overcome to offer a potential path forward towards broader acceptability of such advanced technologies.
Collapse
Affiliation(s)
- Thomas Kisby
- Centre for Nanotechnology in Medicine, Faculty of Biology & Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Gerben R Borst
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - David J Coope
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, UK
| | - Kostas Kostarelos
- Centre for Nanotechnology in Medicine, Faculty of Biology & Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain.
- Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2025; 103:1-19. [PMID: 39601807 PMCID: PMC11739239 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
3
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
5
|
Liu Y, Zhao Y, Liao X, Zhou S, Guo X, Yang L, Lv B. PD-1 deficiency aggravates spinal cord injury by regulating the reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling pathway. Cell Signal 2024; 114:110978. [PMID: 37972801 DOI: 10.1016/j.cellsig.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Spinal cord injury (SCI) is a devastating disorder and a leading cause of disability in adults worldwide. Multiple studies have reported the upregulation of programmed cell death 1 (PD-1) following SCI. However, the underlying mechanism of PD-1 deficiency in SCI is not well established. Therefore, we aimed to investigate the role and potential mechanism of PD-1 in SCI pathogenesis. PD-1 Knockout (KO) SCI mouse model was established, and PD-1 expression was evaluated in tissue samples by western blot assay. We then used a series of function gain-and-loss assays to determine the role of PD-1 in SCI pathogenesis. Moreover, mechanistic assays were performed to explore the association between PD-1, neuron-glia antigen-2 (NG2) glia cells, and miR-23b-5p and then investigated the involved signaling pathway. Results illustrated that PD-1 deficiency enhanced the inflammatory response, neuron loss, and functional impairment induced by SCI. We found that NG2 glia depletion aggravated inflammation, reduced neural survival, and suppressed locomotor recovery in murine SCI model. Further analysis indicated that NG2+ cells were increased in the spinal cord of SCI mice, and PD-1 deficiency increased the number of NG2+ cells by activating the Nogo receptor/ras homolog family member A/Rho kinase (NgR/RhoA/ROCK) signaling. Mechanistically, miR-23b-5p was identified as the negative regulator of PD-1 in NG2 glia. MiR-23b-5p deficiency reduced the expression of inflammatory cytokines, enhanced neural survival, and promoted locomotor recovery in SCI mice, which was counteracted by PD-1 deficiency. In conclusion, PD-1 deficiency exacerbates SCI in vivo by regulating reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Yang Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Xinyuan Liao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Xiang Guo
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Bitao Lv
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
6
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
7
|
Linnerbauer M, Beyer T, Nirschl L, Farrenkopf D, Lößlein L, Vandrey O, Peter A, Tsaktanis T, Kebir H, Laplaud D, Oellinger R, Engleitner T, Alvarez JI, Rad R, Korn T, Hemmer B, Quintana FJ, Rothhammer V. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat Commun 2023; 14:5555. [PMID: 37689786 PMCID: PMC10492803 DOI: 10.1038/s41467-023-40982-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/11/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS). Current therapies mainly target inflammatory processes during acute stages, but effective treatments for progressive MS are limited. In this context, astrocytes have gained increasing attention as they have the capacity to drive, but also suppress tissue-degeneration. Here we show that astrocytes upregulate the immunomodulatory checkpoint molecule PD-L1 during acute autoimmune CNS inflammation in response to aryl hydrocarbon receptor and interferon signaling. Using CRISPR-Cas9 genetic perturbation in combination with small-molecule and antibody-mediated inhibition of PD-L1 and PD-1 both in vivo and in vitro, we demonstrate that astrocytic PD-L1 and its interaction with microglial PD-1 is required for the attenuation of autoimmune CNS inflammation in acute and progressive stages in a mouse model of MS. Our findings suggest the glial PD-L1/PD-1 axis as a potential therapeutic target for both acute and progressive MS stages.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Laplaud
- Nantes Université, INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064, Nantes, France
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Ivan Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Fernandez-Prades L, Brasal-Prieto M, Alba G, Martin V, Montserrat-de la Paz S, Cejudo-Guillen M, Santa-Maria C, Dakhaoui H, Granados B, Sobrino F, Palomares F, Lopez-Enriquez S. Sulforaphane Reduces the Chronic Inflammatory Immune Response of Human Dendritic Cells. Nutrients 2023; 15:3405. [PMID: 37571342 PMCID: PMC10421388 DOI: 10.3390/nu15153405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Sulforaphane (SFN) is an isothiocyanate of vegetable origin with potent antioxidant and immunomodulatory properties. The characterization of its pleiotropic activity in human dendritic cells (DCs) is poorly summarized. The aim of this work was to study the immunomodulatory power of SFN in response to an inflammatory microenvironment on human monocyte-derived DCs (moDCs). METHODS We studied the immunological response induced by SFN. Apoptosis and autophagy assays were performed using flow cytometry on moDCs and a cancer cell line (THP-1). These included moDC maturation, lymphocyte proliferation and cytokine production under different experimental conditions. We investigated whether these results were associated with an inflammatory microenvironment induced by lipopolysaccharides (LPSs). RESULTS Our results demonstrated that SFN could interact with moDCs, significantly reducing the autophagy process and enhancing apoptosis similarly to cancer cell line THP-1 cells in a chronic inflammatory microenvironment. Under chronic inflammation, SFN modulated the phenotypical characteristics of moDCs, reducing the expression of all markers (CD80, CD83, CD86, HLA-DR and PD-L1). SFN significantly reduced the Th2 proliferative response, with a decrease in the IL-9 and IL-13 levels. Although we did not observe any changes in the regulatory proliferative response, we noted an increase in the IL-10 levels. CONCLUSIONS These findings demonstrate that SFN exerts protective effects against LPS-induced inflammation via the modulation of moDCs/T cells towards a regulatory profile. SFN may be a potential candidate for the treatment of pathologies with an inflammatory profile.
Collapse
Affiliation(s)
- Laura Fernandez-Prades
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Mariano Brasal-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Victoria Martin
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain;
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Beatriz Granados
- Distrito Sanitario Málaga, Servicio Andaluz de Salud, 29006 Málaga, Spain;
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (L.F.-P.); (M.B.-P.); (G.A.); (V.M.); (S.M.-d.l.P.); (H.D.); (F.S.)
| |
Collapse
|
9
|
Ahmed MH, Hernández-Verdin I, Quissac E, Lemaire N, Guerin C, Guyonnet L, Zahr N, Mouton L, Santin M, Petiet A, Schmitt C, Bouchoux G, Canney M, Sanson M, Verreault M, Carpentier A, Idbaih A. Low-Intensity Pulsed Ultrasound-Mediated Blood-Brain Barrier Opening Increases Anti-Programmed Death-Ligand 1 Delivery and Efficacy in Gl261 Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020455. [PMID: 36839777 PMCID: PMC9967384 DOI: 10.3390/pharmaceutics15020455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Therapeutic antibodies targeting immune checkpoints have shown limited efficacy in clinical trials in glioblastoma (GBM) patients. Ultrasound-mediated blood-brain barrier opening (UMBO) using low-intensity pulsed ultrasound improved drug delivery to the brain. We explored the safety and the efficacy of UMBO plus immune checkpoint inhibitors in preclinical models of GBM. A blood-brain barrier (BBB) opening was performed using a 1 MHz preclinical ultrasound system in combination with 10 µL/g microbubbles. Brain penetration of immune checkpoint inhibitors was determined, and immune cell populations were evaluated using flow cytometry. The impact of repeated treatments on survival was determined. In syngeneic GL261-bearing immunocompetent mice, we showed that UMBO safely and repeatedly opened the BBB. BBB opening was confirmed visually and microscopically using Evans blue dye and magnetic resonance imaging. UMBO plus anti-PDL-1 was associated with a significant improvement of overall survival compared to anti-PD-L1 alone. Using mass spectroscopy, we showed that the penetration of therapeutic antibodies can be increased when delivered intravenously compared to non-sonicated brains. Furthermore, we observed an enhancement of activated microglia percentage when combined with anti-PD-L1. Here, we report that the combination of UMBO and anti-PD-L1 dramatically increases GL261-bearing mice's survival compared to their counterparts treated with anti-PD-L1 alone. Our study highlights the BBB as a limitation to overcome in order to increase the efficacy of anti-PD-L1 in GBM and supports clinical trials combining UMBO and in GBM patients.
Collapse
Affiliation(s)
- Mohammed H. Ahmed
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
- School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- Correspondence: (M.H.A.); (A.I.); Tel.: +44-(0)-20-7836-5454 (M.H.A.); +33-01-42-16-03-85 (A.I.); Fax: +33-01-42-16-04-18 (A.I.)
| | - Isaias Hernández-Verdin
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Emie Quissac
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Nolwenn Lemaire
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Coralie Guerin
- Cytometry Department, Institute Curie, F-75006 Paris, France
| | - Lea Guyonnet
- Cytometry Department, Institute Curie, F-75006 Paris, France
| | - Noël Zahr
- Pharmacokinetics and Therapeutic Drug Monitoring Unit, Inserm, CIC-1901, UMR ICAN 1166, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Laura Mouton
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Mathieu Santin
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Alexandra Petiet
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Charlotte Schmitt
- CarThera, Institut du Cerveau et de la Moelle Épinière (ICM), F-75013 Paris, France
| | - Guillaume Bouchoux
- CarThera, Institut du Cerveau et de la Moelle Épinière (ICM), F-75013 Paris, France
| | - Michael Canney
- CarThera, Institut du Cerveau et de la Moelle Épinière (ICM), F-75013 Paris, France
| | - Marc Sanson
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, DMU Neurosciences, Service de Neurologie 2-Mazarin, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Maïté Verreault
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Alexandre Carpentier
- CarThera, Institut du Cerveau et de la Moelle Épinière (ICM), F-75013 Paris, France
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP-HP, DMU Neurosciences, Service de Neurologie 2-Mazarin, Hôpital de la Pitié Salpêtrière, Sorbonne Université, F-75013 Paris, France
| | - Ahmed Idbaih
- CarThera, Institut du Cerveau et de la Moelle Épinière (ICM), F-75013 Paris, France
- Correspondence: (M.H.A.); (A.I.); Tel.: +44-(0)-20-7836-5454 (M.H.A.); +33-01-42-16-03-85 (A.I.); Fax: +33-01-42-16-04-18 (A.I.)
| |
Collapse
|
10
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
11
|
Smith BC, Tinkey RA, Shaw BC, Williams JL. Targetability of the neurovascular unit in inflammatory diseases of the central nervous system. Immunol Rev 2022; 311:39-49. [PMID: 35909222 PMCID: PMC9489669 DOI: 10.1111/imr.13121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is a selectively permeable barrier separating the periphery from the central nervous system (CNS). The BBB restricts the flow of most material into and out of the CNS, including many drugs that could be used as potent therapies. BBB permeability is modulated by several cells that are collectively called the neurovascular unit (NVU). The NVU consists of specialized CNS endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons. CNS ECs maintain a complex "seal" via tight junctions, forming the BBB; breakdown of these tight junctions leads to BBB disruption. Pericytes control the vascular flow within capillaries and help maintain the basal lamina. Astrocytes control much of the flow of material that has moved beyond the CNS EC layer and can form a secondary barrier under inflammatory conditions. Microglia survey the border of the NVU for noxious material. Neuronal activity also plays a role in the maintenance of the BBB. Since astrocytes, pericytes, microglia, and neurons are all able to modulate the permeability of the BBB, understating the complex contributions of each member of the NVU will potentially uncover novel and effective methods for delivery of neurotherapies to the CNS.
Collapse
Affiliation(s)
- Brandon C. Smith
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Department of Biological, Geological, and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Rachel A. Tinkey
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,School of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Benjamin C. Shaw
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jessica L. Williams
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Brain Health Research Institute, Kent State UniversityKentOhioUSA
| |
Collapse
|
12
|
Cui Y, Xu L, Wang F, Wang Z, Tong X, Yan H. Orally Administered Brain Protein Combined With Probiotics Increases Treg Differentiation to Reduce Secondary Inflammatory Damage Following Craniocerebral Trauma. Front Immunol 2022; 13:928343. [PMID: 35874774 PMCID: PMC9298786 DOI: 10.3389/fimmu.2022.928343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Craniocerebral trauma is caused by external forces that can have detrimental effects on the vasculature and adjacent nerve cells at the site. After the mechanical and structural primary injury, a complex series of secondary cascades of injury exacerbates brain damage and cognitive dysfunction following mechanical and structural primary injury. Disruption of the blood-brain barrier and exposure of brain proteins following craniocerebral trauma, recognition by the immune system triggering autoimmune attack, and excessive secondary inflammatory responses causing malignant brain swelling, cerebral edema, and subsequent brain cell apoptosis provide a new direction for the suppression of brain inflammatory responses in the treatment of craniocerebral trauma. We observed that CD4+T/CD8+T in peripheral blood T cells of craniocerebral trauma rats were significantly higher than those of normal rats, and the ratio of CD4+CD25+Foxp3 (Foxp3)+Regulatory T cell (Treg) was significantly lower than that of normal rats and caused increased secondary inflammation. We constructed a rat model of post-surgical brain injury and orally administered brain protein combined with probiotics, which was observed to significantly reduce CD4+T/CD8+T and induce T-cell differentiation into CD4+CD25+Foxp3+Treg, thus, reducing secondary inflammatory responses following craniocerebral trauma. However, collecting intestinal stool and small intestinal tissues for broad target metabolomics, 16s rRNA bacteriomics, and the combined analysis of intestinal tissue proteomics revealed that oral administration of brain protein combined with probiotics activates glycerophospholipid and vitamin B6 metabolic pathways to promote the production of CD4+CD25+Foxp3+Treg. Therefore, we propose the novel idea that oral administration of brain protein combined with probiotics can induce immune tolerance by increasing Treg differentiation, thus, reducing secondary inflammatory injury following craniocerebral trauma.
Collapse
Affiliation(s)
- Yang Cui
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhengang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
13
|
Manenti S, Orrico M, Masciocchi S, Mandelli A, Finardi A, Furlan R. PD-1/PD-L Axis in Neuroinflammation: New Insights. Front Neurol 2022; 13:877936. [PMID: 35756927 PMCID: PMC9222696 DOI: 10.3389/fneur.2022.877936] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICIs) by the Food and Drug Administration (FDA) led to an improvement in the treatment of several types of cancer. The main targets of these drugs are cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein-1/programmed death-ligand 1 pathway (PD-1/PD-L1), which are important inhibitory molecules for the immune system. Besides being generally safer than common chemotherapy, the use of ICIs has been associated with several immune-related adverse effects (irAEs). Although rare, neurological adverse effects are reported within the irAEs in clinical trials, particularly in patients treated with anti-PD-1 antibodies or a combination of both anti-CTLA-4 and PD-1 drugs. The observations obtained from clinical trials suggest that the PD-1 axis may play a remarkable role in the regulation of neuroinflammation. Moreover, numerous studies in preclinical models have demonstrated the involvement of PD-1 in several neurological disorders. However, a comprehensive understanding of these cellular mechanisms remains elusive. Our review aims to summarize the most recent evidence concerning the regulation of neuroinflammation through PD-1/PD-L signaling, focusing on cell populations that are involved in this pathway.
Collapse
Affiliation(s)
- Susanna Manenti
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario Orrico
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Masciocchi
- Neuroimmunology Laboratory and Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B, Chen G. Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull 2022; 183:116-126. [PMID: 35247489 DOI: 10.1016/j.brainresbull.2022.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China; Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhe Ren
- Department of Infectious Diseases, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Min Qian
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Cheng YY, Chen BY, Bian GL, Ding YX, Chen LW. Programmed Death-1 Deficiency Aggravates Motor Dysfunction in MPTP Model of Parkinson's Disease by Inducing Microglial Activation and Neuroinflammation in Mice. Mol Neurobiol 2022; 59:2642-2655. [PMID: 35142987 DOI: 10.1007/s12035-022-02758-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Abstract
Abundant reactive gliosis and neuroinflammation are typical pathogenetic hallmarks of brains in Parkinson's disease (PD) patients, but regulation mechanisms are poorly understood. We are interested in role of programmed death-1 (PD-1) in glial reaction, neuroinflammation and neuronal injury in PD pathogenesis. Using PD mouse model and PD-1 knockout (KO) mice, we designed wild-type-control (WT-CON), WT-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (WT-MPTP), PD-1-KO-control (KO-CON) and PD-1-KO-MPTP (KO-MPTP), and observed motor dysfunction of animal, morphological distribution of PD-1-positive cells, dopaminergic neuronal injury, glial activation and generation of inflammatory cytokines in midbrains by motor behavior detection, immunohistochemistry and western blot. WT-MPTP mouse model exhibited decrease of PD-1/Iba1-positive microglial cells in the substantia nigra compared with WT-CON mice. By comparison of four groups, PD-1 deficiency showed exacerbation in motor dysfunction of animals, decreased expression of TH protein and TH-positive neuronal protrusions. PD-1 deficiency enhanced microglial activation, production of proinflammatory cytokines like inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β and interleukin-6, and expression and phosphorylation of AKT and ERK1/2 in the substantia nigra of MPTP model. We concluded that PD-1 deficiency could aggravate motor dysfunction of MPTP mouse model by inducing microglial activation and neuroinflammation in midbrains, suggesting that PD-1 signaling abnormality might be possibly involved in PD pathogenesis.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Anatomy, Histology and Embryology, The Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Neurobiology, Institute of Neurosciences, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Gan-Lan Bian
- Department of Histology and Embryology, School of Medicine, Northwest University, Xi'an, 710069, People's Republic of China.,Institute of Medical Research, Northwest Polytechnical University, Xi'an,, 710072, People's Republic of China
| | - Yin-Xiu Ding
- Department of Anatomy, Histology and Embryology, The Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| | - Liang-Wei Chen
- Department of Neurobiology, Institute of Neurosciences, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China. .,Department of Histology and Embryology, School of Medicine, Northwest University, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
16
|
Shen Y, Li Y, Zhu Q, Wang J, Huang Y, Liang J, Wu X, Zhao Y. The immunomodulatory effect of microglia on ECM neuroinflammation via the PD-1/PD-L1 pathway. CNS Neurosci Ther 2022; 28:46-63. [PMID: 34766463 PMCID: PMC8673706 DOI: 10.1111/cns.13760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The experimental cerebral malaria (ECM) model in C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) has revealed microglia are involved in the ECM immune microenvironment. However, the regulation of microglia in the ECM immune response is not clear, and there is no safe and efficient treatment clinically for the protection of the nerve cells. AIMS To elucidate the negative regulation mechanism in the ECM brain mediated by microglia. Furthermore, to investigate protective effect of the appropriate enhancement of the PD-1/PD-L1 pathway in the brain against ECM through the intrathecal injection of the adenovirus expressing PDL1-IgG1Fc fusion protein. RESULTS The PD-1/PD-L1 pathway was induced in the ECM brain and showed an upregulation in the microglia. Deep single-cell analysis of immune niches in the ECM brainstem indicated that the microglia showed obvious heterogeneity and activation characteristics. Intrathecal injection of recombinant adenovirus expressing PD-L1 repressed the neuroinflammation and alleviated ECM symptoms. In addition, the synergistic effect of artemisinin and intracranial immunosuppression mediated by PD-L1 was more efficacious than either treatment alone. CONCLUSION The appropriate enhancement of the PD-1/PD-L1 pathway in the early stage of ECM has an obvious protective effect on the maintenance of immune microenvironment homeostasis in the brain. Regulating microglia and the PD-1/PD-L1 pathway could be considered as a promising approach for protection against human cerebral malaria in the future.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Yinghui Li
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Qinghao Zhu
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Jun Wang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Yuxiao Huang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Jiao Liang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Xingan Wu
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| | - Ya Zhao
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi’anChina
| |
Collapse
|
17
|
Jure I, De Nicola AF, Encinas JM, Labombarda F. Spinal Cord Injury Leads to Hippocampal Glial Alterations and Neural Stem Cell Inactivation. Cell Mol Neurobiol 2022; 42:197-215. [PMID: 32537668 PMCID: PMC11441270 DOI: 10.1007/s10571-020-00900-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The hippocampus encodes spatial and contextual information involved in memory and learning. The incorporation of new neurons into hippocampal networks increases neuroplasticity and enhances hippocampal-dependent learning performances. Only few studies have described hippocampal abnormalities after spinal cord injury (SCI) although cognitive deficits related to hippocampal function have been reported in rodents and even humans. The aim of this study was to characterize in further detail hippocampal changes in the acute and chronic SCI. Our data suggested that neurogenesis reduction in the acute phase after SCI could be due to enhanced death of amplifying neural progenitors (ANPs). In addition, astrocytes became reactive and microglial cells increased their number in almost all hippocampal regions studied. Glial changes resulted in a non-inflammatory response as the mRNAs of the major pro-inflammatory cytokines (IL-1β, TNFα, IL-18) remained unaltered, but CD200R mRNA levels were downregulated. Long-term after SCI, astrocytes remained reactive but on the other hand, microglial cell density decreased. Also, glial cells induced a neuroinflammatory environment with the upregulation of IL-1β, TNFα and IL-18 mRNA expression and the decrease of CD200R mRNA. Neurogenesis reduction may be ascribed at later time points to inactivation of neural stem cells (NSCs) and inhibition of ANP proliferation. The number of granular cells and CA1 pyramidal neurons decreased only in the chronic phase. The release of pro-inflammatory cytokines at the chronic phase might involve neurogenesis reduction and neurodegeneration of hippocampal neurons. Therefore, SCI led to hippocampal changes that could be implicated in cognitive deficits observed in rodents and humans.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience. Sede Bldg. Campus, UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
- Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Wu SC, Rau CS, Kuo PJ, Shih FY, Lin HP, Wu YC, Hsieh TM, Liu HT, Hsieh CH. Profiling the Expression of Circulating Acute-Phase Proteins, Cytokines, and Checkpoint Proteins in Patients with Severe Trauma: A Pilot Study. J Inflamm Res 2021; 14:3739-3753. [PMID: 34393495 PMCID: PMC8354739 DOI: 10.2147/jir.s324056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Purpose Severe trauma may lead to the systemic release of inflammatory mediators into the circulation with profound acute-phase responses; however, the understanding of the expression of these mediators remains limited. This study aimed to characterize the alterations in the expression of circulating acute-phase proteins, cytokines, and checkpoint proteins in patients with severe trauma injuries. Patients and Methods The study population included trauma patients in the intensive care unit (ICU) with an injury severity score equal to or greater than 16 and who had used a ventilator for 48 hours. A total of 12 female and 28 male patients were recruited for the study; six patients died and 34 survived. Blood samples collected at acute stages were compared with those drawn at the subacute stage, the time when the patients were discharged from the ICU, or before the discharge of the patients from the hospital. Results The study identified that the expression of acute-phase proteins, such as alpha-1-acid glycoprotein and C-reactive protein, and cytokines, including granulocyte colony-stimulating factor, interleukin-6, and interleukin-1 receptor antagonist, was elevated in the circulation after severe trauma. In contrast, the levels of acute-phase proteins, such as alpha-2-macroglobulin, serum amyloid P, and von Willebrand factor, and cytokines, including interleukin-4 and interferon gamma-induced protein 10, were reduced. However, there were no significant differences in the expression of checkpoint proteins in the circulation. Conclusion The dysregulated proteins identified in this study may serve as potential therapeutic targets or biomarkers for treating patients with severe trauma. However, the related biological functions of these dysregulated factors require further investigation to validate their functions.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Yuan Shih
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Zhao J, Roberts A, Wang Z, Savage J, Ji RR. Emerging Role of PD-1 in the Central Nervous System and Brain Diseases. Neurosci Bull 2021; 37:1188-1202. [PMID: 33877518 PMCID: PMC8353059 DOI: 10.1007/s12264-021-00683-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint modulator and a major target of immunotherapy as anti-PD-1 monoclonal antibodies have demonstrated remarkable efficacy in cancer treatment. Accumulating evidence suggests an important role of PD-1 in the central nervous system (CNS). PD-1 has been implicated in CNS disorders such as brain tumors, Alzheimer's disease, ischemic stroke, spinal cord injury, multiple sclerosis, cognitive function, and pain. PD-1 signaling suppresses the CNS immune response via resident microglia and infiltrating peripheral immune cells. Notably, PD-1 is also widely expressed in neurons and suppresses neuronal activity via downstream Src homology 2 domain-containing protein tyrosine phosphatase 1 and modulation of ion channel function. An improved understanding of PD-1 signaling in the cross-talk between glial cells, neurons, and peripheral immune cells in the CNS will shed light on immunomodulation, neuromodulation, and novel strategies for treating brain diseases.
Collapse
Affiliation(s)
- Junli Zhao
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, USA.
| | - Alexus Roberts
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, USA
- Department of Biology, Duke University Medical Center, Durham, 27710, USA
| | - Zilong Wang
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, USA
| | - Justin Savage
- Department of Neurobiology, Duke University Medical Center, Durham, 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, 27710, USA.
| |
Collapse
|
20
|
Huang TC, Luo L, Jiang SH, Chen C, He HY, Liang CF, Li WS, Wang H, Zhu L, Wang K, Guo Y. Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat. Cell Signal 2021; 85:110048. [PMID: 34015470 DOI: 10.1016/j.cellsig.2021.110048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Integrated stress response (ISR) contributes to various neuropathological processes and acting as a therapy target in CNS injuries. However, the fundamental role of ISR in regulating microglial polarization remains largely unknown. Currently no proper pharmacological approaches to reverse microglia-driven neuroinflammation in surgical brain injury (SBI) have been reported. Here we found that inhibition of the crucial ISR effector, activating transcription factor 4 (ATF4), using the RNA interference suppressed the lipopolysaccharide (LPS)-stimulated microglial M1 polarization in vitro. Interestingly, counteracting ISR with a small-molecule ISR inhibitor (ISRIB) resulted in a significant microglial M1 towards M2 phenotype switching after LPS treatment. The potential underlying mechanisms may related to downregulate the intracellular NADPH oxidase 4 (NOX4) expression under the neuroinflammatory microenvironment. Notably, ISRIB ameliorated the infiltration of microglia and improved the neurobehavioral outcomes in the SBI rat model. Overall, our findings suggest that targeting ISR exerts a novel anti-inflammatory effect on microglia via regulating M1/M2 phenotype and may represent a potential therapeutic target to overcome neuroinflammation following SBI.
Collapse
Affiliation(s)
- Teng-Chao Huang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; East China Institute of Digital Medical Engineering, Shangrao 334000, PR China
| | - Lun Luo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Shi-Hai Jiang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China; Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Chuan Chen
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hai-Yong He
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Chao-Feng Liang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Wen-Sheng Li
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Hui Wang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Lei Zhu
- Department of Burns, Plastic & Reconstructive Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China
| | - Kun Wang
- Department of Joint Replacement and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| | - Ying Guo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Canton 510630, PR China.
| |
Collapse
|
21
|
Kim JE, Patel K, Jackson CM. The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opin Ther Targets 2021; 25:101-113. [PMID: 33356658 DOI: 10.1080/14728222.2021.1869213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Neuroinflammation has been linked to poor neurologic and functional outcomes in many cerebrovascular disorders. Immune checkpoints are upregulated in the setting of traumatic brain injury, intracerebral hemorrhage, ischemic stroke, central nervous systems vasculitis, and post-hemorrhagic vasospasm, and are potential mediators of pathologic inflammation. Burgeoning evidence suggests that immune checkpoint modulation is a promising treatment strategy to decrease immune cell recruitment, cytokine secretion, brain edema, and neurodegeneration.Areas covered: This review discusses the role of immune checkpoints in neuroinflammation, and the potential for therapeutic immune checkpoint modulation in inflammatory cerebrovascular disorders. A search of Pubmed and clinicaltrials.gov was performed to find relevant literature published within the last 50 years.Expert opinion: The clinical success of immune-activating checkpoint modulators in human cancers has shown the immense clinical potential of checkpoint-based immunotherapy. Given that checkpoint blockade can also precipitate a pathologic pro-inflammatory or autoimmune response, it is plausible that these pathways may also be targeted to quell aberrant inflammation. A limited but growing number of studies suggest that immune checkpoints play a critical role in regulating the immune response in the central nervous system in a variety of contexts, and that immune-deactivating checkpoint modulators may be a promising treatment strategy for acute and chronic neuroinflammation in cerebrovascular disorders.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
The Activation of Phosphatidylserine/CD36/TGF- β1 Pathway prior to Surgical Brain Injury Attenuates Neuroinflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4921562. [PMID: 32849998 PMCID: PMC7441426 DOI: 10.1155/2020/4921562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Neuroinflammation plays an important pathological role in experimental surgical brain injury (SBI). Apoptotic associated with phosphatidylserine (PS) externalization promotes anti-inflammatory mediator TGF-β1 release. In the present study, we investigated the anti-neuroinflammation effect of PS liposome or isoflurane pretreatment via PS/CD36/TGF-β1 signaling in a rat model of SBI. A total of 120 male Sprague-Dawley rats (weighing 280-330 gms) were used. SBI was induced by partial right frontal lobe corticotomy. Intranasal PS liposome or isoflurane inhalation was administered prior to SBI induction. CD36 small interfering RNA (siRNA) was administered intracerebroventricularly. Recombinant Annexin V protein (rAnnexin V) was delivered intranasally. Post-SBI assessments included neurological tests, brain water content, Western blot, and immunohistochemistry. Endogenous CD36 protein levels but not TGF-β1 was significantly increased within peri-resection brain tissues over 72 h after SBI. SBI rats were associated with increased brain water content surrounding corticotomy and neurological deficits. PS liposome pretreatment significantly reduced brain water content and improved some neurological deficits at 24 hours and 72 hours after SBI. PS liposome increased CD36 and TGF-β1 protein levels, but decreased IL-1β and TNFα protein levels in peri-resection brain tissues at 24 hours after SBI. CD36 siRNA or rAnnexin V partially countered the protective effect of PS liposome. Isoflurane pretreatment produced similar antineuroinflammation and neurological benefits in SBI rats partially by upregulating CD36/Lyn/TGF-β1 signaling. Collectively, our findings suggest that the activation of PS/CD36/TGF-β1 pathway by PS liposome or isoflurane prior to SBI could attenuate neuroinflammation and improve neurological outcomes in rats. PS liposome or isoflurane pretreatment may serve as an effective preventive strategy to minimize the brain injury caused by neurosurgical procedures in patients.
Collapse
|
23
|
Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3762-3777. [PMID: 33463324 PMCID: PMC10373914 DOI: 10.1021/acsbiomaterials.0c00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.
Collapse
Affiliation(s)
- Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Li LZ, Huang YY, Yang ZH, Zhang SJ, Han ZP, Luo YM. Potential microglia-based interventions for stroke. CNS Neurosci Ther 2020; 26:288-296. [PMID: 32064759 PMCID: PMC7052807 DOI: 10.1111/cns.13291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
A large number of families worldwide suffer from the physical and mental burden posed by stroke. An increasing number of studies aimed at the prevention and treatment of stroke have been conducted. Specifically, manipulating the immune response to stroke is under intense investigation. Microglia are the principal immune cells in the brain and are the first line of defense against the pathophysiology induced by stroke. Increasing evidence has suggested that microglia play diverse roles that depend on dynamic interactions with neurons, astrocytes, and other neighboring cells both in the normal brain and under pathological conditions, including stroke. Moreover, there are dynamic alterations in microglial functions with respect to aging and sex differences in the human brain, which offer a deep understanding of the conditions of stroke patients of different ages and sex. Hence, we review the dynamic microglial reactions caused by aging, sex, and crosstalk with neighboring cells both in normal conditions and after stroke and relevant potential interventions.
Collapse
Affiliation(s)
- Ling-Zhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-You Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhen-Hong Yang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|