1
|
Wang X, Stefanello ST, Shahin V, Qian Y. From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417564. [PMID: 40434211 DOI: 10.1002/adma.202417564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 05/03/2025] [Indexed: 05/29/2025]
Abstract
Piezoelectric materials, capable of converting mechanical stimuli into electrical signals, have emerged as promising tools in regenerative medicine due to their potential to stimulate tissue repair. Despite a surge in research on piezoelectric biomaterials, systematic insights to direct their translational optimization remain limited. This review addresses the current landscape by bridging fundamental principles with clinical potential. The biomimetic basis of piezoelectricity, key molecular pathways involved in the synergy between mechanical and electrical stimulation for enhanced tissue regeneration, and critical considerations for material optimization, structural design, and biosafety is discussed. More importantly, the current status and translational quagmire of mechanisms and applications in recent years are explored. A mechanism-driven strategy is proposed for the therapeutic application of piezoelectric biomaterials for tissue repair and identify future directions for accelerated clinical applications.
Collapse
Affiliation(s)
- Xinyu Wang
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Yun Qian
- National Center for Orthopaedics, Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| |
Collapse
|
2
|
Muñoz-González PU, Delgado J, González-García G, Mendoza-Novelo B. Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels. J Biomater Appl 2025; 39:1240-1257. [PMID: 39934094 DOI: 10.1177/08853282251319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Macrophages encapsulated in composite gels are subjected to a three-dimensional (3D) microenvironment and material-related stimuli that allow modulation of their phenotypes. Herein, 3D collagen fibrillar networks structured with di- or tri-functionalized oligourethanes, including Si-O or Si-Si particles confined therein, are compared regarding their physicochemical properties and material-guided macrophage activation. Gelation kinetics, degradation/swelling, and rheometric results demonstrated that the properties of the composite gels depend on the oligourethane functionalization number (derived from diols/triols and L-Lysine diisocyanate, LDI) and silica incorporation. Human or murine macrophages seeded or encapsulated in the composite gels showed good viability and the adoption of an anti-inflammatory phenotype in response to the silica in the composite gel, showing accelerated gelation when cell culture components are present in the liquid precursors. An increase in cell viability proportional to the storage modulus was observed. ELISA tests strongly suggest that the Si-Si nanoparticles in the composites can antagonize the pro-inflammatory stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ), even promoting an anti-inflammatory response in embedded cells after 24 h. Silicon-doped and crosslinked collagen gels have good potential to modulate macrophage inflammatory response, serving as a 3D immunomodulatory scaffold.
Collapse
Affiliation(s)
- Pedro U Muñoz-González
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, México
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
- Vicerrectoría de Investigación, Universidad La Salle México, Ciudad de México, México
| | - Jorge Delgado
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, México
| | | | | |
Collapse
|
3
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
4
|
Korzhikov-Vlakh V, Mikhailova A, Sinitsyna E, Korzhikova-Vlakh E, Tennikova T. Gradient Functionalization of Poly(lactic acid)-Based Materials with Polylysine for Spatially Controlled Cell Adhesion. Polymers (Basel) 2024; 16:2888. [PMID: 39458716 PMCID: PMC11511340 DOI: 10.3390/polym16202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide (polylysine, PLys) via a thiol-ene click reaction carried out under a light gradient. With this aim, PLA-based films were fabricated and modified with 2-aminoethyl methacrylate (AEMA) as a double bond source. The latter was introduced by reacting pre-formed and activated surface carboxyl groups with the amino group of AEMA. The success of the modification was confirmed by 1H NMR, Raman and X-ray photoelectron spectroscopy data. A further photoinduced thiol-ene click reaction in the presence of a photosensitive initiator as a radical source was further optimized using cysteine. For grafting of PLys via the thiol-ene click reaction, PLys with a terminal thiol group was synthesized by ring-opening polymerization using Cys(Acm) as an amine initiator. Deprotection of the polypeptide resulted in the formation of free thiol groups of Cys-PLys. Successful gradient grafting of Cys-PLys was evidenced by covalent staining with the fluorescent dye Cy3-NHS. In addition, PLys gradient-dependent adhesion and migration of HEK 293 cells on PLys-PLA-based surfaces was confirmed.
Collapse
Affiliation(s)
- Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- St. Petersburg State University Hospital, 199034 St. Petersburg, Russia
| | - Aleksandra Mikhailova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Ekaterina Sinitsyna
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| |
Collapse
|
5
|
Lan M, Liu Y, Liu J, Zhang J, Haider MA, Zhang Y, Zhang Q. Matrix Viscoelasticity Tunes the Mechanobiological Behavior of Chondrocytes. Cell Biochem Funct 2024; 42:e4126. [PMID: 39324844 DOI: 10.1002/cbf.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Minhua Lan
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Junjiang Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Muhammad Adnan Haider
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Gerrits L, Bakker B, Hendriks LD, Engels S, Hammink R, Kouwer PHJ. Tailoring of Physical Properties in Macroporous Poly(isocyanopeptide) Cryogels. Biomacromolecules 2024; 25:3464-3474. [PMID: 38743442 PMCID: PMC11170948 DOI: 10.1021/acs.biomac.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Bram Bakker
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Lynn D. Hendriks
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Sjoerd Engels
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Roel Hammink
- Department
of Medical BioSciences,Radboudumc, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, 6525 GA Nijmegen ,Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| |
Collapse
|
7
|
Melnik E, Kurzhals S, Mutinati GC, Beni V, Hainberger R. Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. SENSORS (BASEL, SWITZERLAND) 2024; 24:3678. [PMID: 38894467 PMCID: PMC11175328 DOI: 10.3390/s24113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1-10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43-9.24, as well as mesh sizes ξ of 3.58-6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1-10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing.
Collapse
Affiliation(s)
- Eva Melnik
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Steffen Kurzhals
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Giorgio C. Mutinati
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| | - Valerio Beni
- Bioelectronics and Organic Electronics, Smart Hardware, Digital Systems, RISE Research Institutes of Sweden, 60233 Norrköping, Sweden;
| | - Rainer Hainberger
- Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria; (S.K.); (G.C.M.); (R.H.)
| |
Collapse
|
8
|
Diaz-Lasprilla AM, McKee M, Jimenez-Vergara AC, Ravi S, Bellamy D, Ortega W, Crosby CO, Steele J, Plascencia-Villa G, Perry G, Munoz-Pinto DJ. Fabrication and Characterization of Quad-Component Bioinspired Hydrogels to Model Elevated Fibrin Levels in Central Nervous Tissue Scaffolds. Gels 2024; 10:203. [PMID: 38534621 DOI: 10.3390/gels10030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this work, we fabricated hydrogels made of collagen type I (Col I), fibrin, hyaluronic acid (HA), and poly (ethylene glycol) diacrylate (PEGDA) using a network-by-network fabrication approach. With these mIPNs, we aimed to develop a biomaterial platform that supports the in vitro culture of human astrocytes and potentially serves to assess the effects of the abnormal deposition of fibrin in cortex tissue and simulate key aspects in the progression of neuroinflammation typically found in human pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), and tissue trauma. Our resulting hydrogels closely resembled the complex modulus of AD human brain cortex tissue (~7.35 kPa), promoting cell spreading while allowing for the modulation of fibrin and hyaluronic acid levels. The individual networks and their microarchitecture were evaluated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Human astrocytes were encapsulated in mIPNs, and negligible cytotoxicity was observed 24 h after the cell encapsulation.
Collapse
Affiliation(s)
- Ana M Diaz-Lasprilla
- Engineering Science Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Meagan McKee
- Engineering Science Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Andrea C Jimenez-Vergara
- Engineering Science Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Swathisri Ravi
- Biology Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Devon Bellamy
- Chemistry Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Wendy Ortega
- Engineering Science Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Cody O Crosby
- Department of Physics, Southwestern University, Georgetown, TX 78626, USA
| | - Jennifer Steele
- Physics and Astronomy Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| | - Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, College of Sciences, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, College of Sciences, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Dany J Munoz-Pinto
- Engineering Science Department, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
- Neuroscience Program, D. R. Semmes School of Science, Trinity University, San Antonio, TX 78212, USA
| |
Collapse
|
9
|
Lee M, Kwak H, Eom Y, Park SA, Sakai T, Jeon H, Koo JM, Kim D, Cha C, Hwang SY, Park J, Oh DX. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. NATURE MATERIALS 2024; 23:414-423. [PMID: 38182810 DOI: 10.1038/s41563-023-01760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.
Collapse
Affiliation(s)
- Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Dowan Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-Do, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
10
|
Hassanpour P, Sadeghsoltani F, Haiaty S, Zakeri Z, Saghebasl S, Izadpanah M, Boroumand S, Mota A, Rahmati M, Rahbarghazi R, Talebi M, Rabbani S, Tafti SHA. Mitochondria-loaded alginate-based hydrogel accelerated angiogenesis in a rat model of acute myocardial infarction. Int J Biol Macromol 2024; 260:129633. [PMID: 38253146 DOI: 10.1016/j.ijbiomac.2024.129633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Here, mitochondria were isolated from mesenchymal stem cells (MSCs) after being treated with mitochondria-stimulating substrates, 50 μM metformin (Met), and 40 μM dichloroacetic acid (DCA). The isolated mitochondria (2 × 107 particles) were characterized and encapsulated inside 100 μl hydrogel composed of alginate (3 % w/v; Alg)/gelatin (Gel; 1 % w/v) enriched with 1 μM pyrrole (Pyr) solidified in the presence of 0.2 M FeCl3. The physicochemical properties and cytocompatibility of prepared hydrogels were assessed using FTIR, swelling, biodegradation, porosity assays, and scanning electron microscopy (SEM). The mitochondria-bearing hydrogel was injected into the ischemic area of rat hearts. FTIR absorption bands represented that the addition of FeCl3 led to polypyrrole (PPy) formation, polysaccharide oxidation, and interaction between Alg and Gel. SEM images exhibited porous structure and the size of pores was reduced in Alg/Gel + PPy group compared to Alg + PPy hydrogel. Based on the data, both Alg + PPy and Alg/Gel + PPy hydrogels can preserve the integrity and morphology of loaded mitochondria. It was noted that Alg/Gel + PPy hydrogel possessed a higher swelling ratio, degradation, and porosity compared to Alg + PPy group. Data confirmed that Alg/Gel + PPy hydrogel containing 1 μM Pyr yielded the highest survival rate compared to groups with 2 and 4 μM Pyr (p < 0.05). Injection of mitochondria-loaded Alg/Gel + PPy hydrogel yielded significant restoration of left ventricle thickness compared to the infarction, mitochondria, and Alg/Gel + PPy hydrogel groups 14 days post-injection (p < 0.05). Histological analyses revealed a significant increase of vWF+ capillaries and α-SMA+ arterioles in the mitochondria-loaded Alg/Gel + PPy hydrogel group (p < 0.05). Immunofluorescence imaging revealed the ability of rat cardiomyocytes to uptake mitochondria alone or after being loaded into Alg/Gel + PPy hydrogel. These effects were evident in the Alg/Gel + PPy group. Taken together, electroconductive Alg-based hydrogels are suitable platforms for the transplantation of cells and organelles and the regeneration of ischemic heart changes.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Zakeri
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melika Izadpanah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Johnston JT, Quoc BN, Abrahamson B, Candry P, Ramon C, Cash KJ, Saccomano SC, Samo TJ, Ye C, Weber PK, Winkler MKH, Mayali X. Increasing aggregate size reduces single-cell organic carbon incorporation by hydrogel-embedded wetland microbes. ISME COMMUNICATIONS 2024; 4:ycae086. [PMID: 38974332 PMCID: PMC11227278 DOI: 10.1093/ismeco/ycae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Microbial degradation of organic carbon in sediments is impacted by the availability of oxygen and substrates for growth. To better understand how particle size and redox zonation impact microbial organic carbon incorporation, techniques that maintain spatial information are necessary to quantify elemental cycling at the microscale. In this study, we produced hydrogel microspheres of various diameters (100, 250, and 500 μm) and inoculated them with an aerobic heterotrophic bacterium isolated from a freshwater wetland (Flavobacterium sp.), and in a second experiment with a microbial community from an urban lacustrine wetland. The hydrogel-embedded microbial populations were incubated with 13C-labeled substrates to quantify organic carbon incorporation into biomass via nanoSIMS. Additionally, luminescent nanosensors enabled spatially explicit measurements of oxygen concentrations inside the microspheres. The experimental data were then incorporated into a reactive-transport model to project long-term steady-state conditions. Smaller (100 μm) particles exhibited the highest microbial cell-specific growth per volume, but also showed higher absolute activity near the surface compared to the larger particles (250 and 500 μm). The experimental results and computational models demonstrate that organic carbon availability was not high enough to allow steep oxygen gradients and as a result, all particle sizes remained well-oxygenated. Our study provides a foundational framework for future studies investigating spatially dependent microbial activity in aggregates using isotopically labeled substrates to quantify growth.
Collapse
Affiliation(s)
- Juliet T Johnston
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Bao Nguyen Quoc
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Britt Abrahamson
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, United States
| | - Christina Ramon
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Sam C Saccomano
- Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States
| | - Ty J Samo
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Congwang Ye
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | - Peter K Weber
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| | | | - Xavier Mayali
- Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore CA 94550, United States
| |
Collapse
|
12
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
13
|
Carvalho DN, Gelinsky M, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int J Biol Macromol 2023; 241:124510. [PMID: 37080412 DOI: 10.1016/j.ijbiomac.2023.124510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
14
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
15
|
Shi T, Niu D, You J, Li S, Li G, Ren K, Yan S, Xu G, Yin J. Injectable macro-porous chitosan/polyethylene glycol-silicotungstic acid double-network hydrogels based on "smashed gels recombination" strategy for cartilage tissue engineering. Int J Biol Macromol 2023; 233:123541. [PMID: 36740115 DOI: 10.1016/j.ijbiomac.2023.123541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The lack of interconnected macro-porous structure of most injectable hydrogels lead to poor cell and tissue infiltration. Herein, we present the fabrication of injectable macro-porous hydrogels based on "smashed gels recombination" strategy. Chitosan/polyethylene glycol-silicotungstic acid (CS/PEG-SiW) double-network hydrogels were prepared via dual dynamic interactions. The bulk CS/PEG-SiW hydrogels were then smashed into micro-hydrogels with average sizes ranging from 47.6 to 63.8 μm by mechanical fragmentation. The CS/PEG-SiW micro-hydrogels could be continuously injected and rapidly recombined into a stable porous hydrogel based on the dual dynamic interactions between micro-hydrogels. The average pore size of the recombined porous CS/PEG-SiW hydrogels ranged from 52 to 184 μm. The storage modulus, compress modulus and maximum compressive strain of the recombined porous CS/PEG-SiW1.0 hydrogels reached about 47.2 %, 28.2 % and 127.6 % of the values for their corresponding bulk hydrogels, respectively. The recombined porous hydrogels were cytocompatible and could effectively support proliferation and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In a rat cartilage defect model, recombined porous CS/PEG-SiW hydrogels could promote cartilage regeneration. Hematoxylin and eosin (H&E), Safranin-O/Fast green and immunohistochemical staining confirmed the accumulation of glycosaminoglycans (GAG) and type II collagen (Col II) in regenerated cartilage.
Collapse
Affiliation(s)
- Tuhe Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jiahui You
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuang Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
16
|
Woo HJ, Kim SH, Kang HG, Kim T, Kim S, Kim JM, Kim JY, Lee SJ, Kim YZ, Oh SY, Lim JH, Ryu HM, Kim MS. Lossless Immunocytochemistry Based on Large-Scale Porous Hydrogel Pellicle for Accurate Rare Cell Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15059-15070. [PMID: 36809905 DOI: 10.1021/acsami.2c18321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rare cells, such as circulating tumor cells or circulating fetal cells, provide important information for the diagnosis and prognosis of cancer and prenatal diagnosis. Since undercounting only a few cells can lead to significant misdiagnosis and incorrect decisions in subsequent treatment, it is crucial to minimize cell loss, particularly for rare cells. Moreover, the morphological and genetic information on cells should be preserved as intact as possible for downstream analysis. The conventional immunocytochemistry (ICC), however, fails to meet these requirements, causing unexpected cell loss and deformation of the cell organelles which may mislead the classification of benign and malignant cells. In this study, a novel ICC technique for preparing lossless cellular specimens was developed to improve the diagnostic accuracy of rare cell analysis and analyze intact cellular morphology. To this end, a robust and reproducible porous hydrogel pellicle was developed. This hydrogel encapsulates cells to minimize cell loss from the repeated exchange of reagents and prevent cell deformation. The soft hydrogel pellicle allows stable and intact cell picking for further downstream analysis, which is difficult with conventional ICC methods that permanently immobilize cells. The lossless ICC platform will pave the way for robust and precise rare cell analysis toward clinical practice.
Collapse
Affiliation(s)
- Hyeong Jung Woo
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Taehoon Kim
- CTCELLS Inc., Daegu 42988, Republic of Korea
| | - Sooyeol Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | | | - Jae Young Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | | | - Young Zoon Kim
- Division of Neuro-oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - So Yeon Oh
- Oncology & Hematology Clinic, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hyae Lim
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Republic of Korea
| | - Hyun Mee Ryu
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Republic of Korea
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Minseok S Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
- CTCELLS Inc., Daegu 42988, Republic of Korea
| |
Collapse
|
17
|
Cadamuro F, Ardenti V, Nicotra F, Russo L. Alginate-Gelatin Self-Healing Hydrogel Produced via Static-Dynamic Crosslinking. Molecules 2023; 28:2851. [PMID: 36985823 PMCID: PMC10053920 DOI: 10.3390/molecules28062851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Alginate-gelatin hydrogels mimicking extracellular matrix (ECM) of soft tissues have been generated by static-dynamic double crosslinking, allowing fine control over the physical and chemical properties. Dynamic crosslinking provides self-healing and injectability attributes to the hydrogel and promotes cell migration and proliferation, while the static network improves stability. The static crosslinking was performed by enzymatic coupling of the tyrosine residues of gelatin with tyramine residues inserted in the alginate backbone, catalyzed by horseradish peroxidase (HRP). The dynamic crosslinking was obtained by functionalizing alginate with 3-aminophenylboronic acid which generates a reversible bond with the vicinal hydroxyl groups of the alginate chains. Varying the ratio of alginate and gelatin, hydrogels with different properties were obtained, and the most suitable for 3D soft tissue model development with a 2.5:1 alginate:gelatin molar ratio was selected. The selected hydrogel was characterized with a swelling test, rheology test, self-healing test and by cytotoxicity, and the formulation resulted in transparent, reproducible, varying biomaterial batch, with a fast gelation time and cell biocompatibility. It is able to modulate the loss of the inner structure stability for a longer time with respect to the formulation made with only covalent enzymatic crosslinking, and shows self-healing properties.
Collapse
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Valeria Ardenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
18
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
19
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Son M, Mehra P, Nguyen FT, Jin X, Koman VB, Gong X, Lee MA, Bakh NA, Strano MS. Molecular Recognition and In Vivo Detection of Temozolomide and 5-Aminoimidazole-4-carboxamide for Glioblastoma Using Near-Infrared Fluorescent Carbon Nanotube Sensors. ACS NANO 2023; 17:240-250. [PMID: 36524700 DOI: 10.1021/acsnano.2c07264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under in vivo conditions. Sensors can be engineered to be biocompatible by encapsulation in poly(ethylene glycol) diacrylate hydrogels. Selective detection of TMZ was demonstrated using U-87 MG human glioblastoma cells and SKH-1E mice with detection limits below 30 μM. As sensor implants, we show that such systems can provide spatiotemporal therapeutic information in vivo, as a valuable tool for pharmacokinetic evaluation. Sensor implants are also evaluated using intact porcine brain tissue implanted 2.1 cm below the cranium and monitored using a recently developed Wavelength-Induced Frequency Filtering technique. Additionally, we show that by taking the measurement of spatial and temporal analyte concentrations within each hydrogel implant, the direction of therapeutic flux can be resolved. In all, these types of sensors enable the real time detection of chemotherapeutic concentration, flux, directional transport, and metabolic activity, providing crucial information regarding therapeutic effectiveness.
Collapse
Affiliation(s)
- Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Punit Mehra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
21
|
The ability to control swelling and degradation processes of hydrogels based on a mixture of PEGMA/PEGDA monomers. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Lavickova B, Grasemann L, Maerkl SJ. Improved Cell-Free Transcription-Translation Reactions in Microfluidic Chemostats Augmented with Hydrogel Membranes for Continuous Small Molecule Dialysis. ACS Synth Biol 2022; 11:4134-4141. [PMID: 36475685 DOI: 10.1021/acssynbio.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing the protein production capacity of the PURE cell-free transcription-translation (TX-TL) system will be key to implementing complex synthetic biological circuits, and to establishing a fully self-regenerating system as a basis for the development of a synthetic cell. Under steady-state conditions, the protein synthesis capacity of the PURE system is likely at least one order of magnitude too low to express sufficient quantities of all PURE protein components. This is in part due to the fact that protein synthesis cannot be sustained during the entire dilution cycle, especially at low dilution rates. We developed a microfluidic chemostat augmented with semipermeable membranes that combines steady-state reactions and continuous dialysis as a possible solution to enhance protein synthesis at steady-state. In batch operation, the continuous dialysis of low molecular weight components via the membranes extended protein synthesis by over an order of magnitude from 2 h to over 30 h, leading to a 7-fold increase in protein yield. In chemostat operation, continuous dialysis enabled sustained protein synthesis during the entire dilution cycle even for low dilution rates, leading to 6-fold higher protein levels at steady state. The possibility to combine and independently manipulate continuous dialysis and chemostat operation renders our dialysis chemostat a promising technological basis for complex cell-free synthetic biology applications that require enhanced protein synthesis capacity.
Collapse
Affiliation(s)
- Barbora Lavickova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Grasemann
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
23
|
Sungkhaphan P, Risangud N, Hankamolsiri W, Sonthithai P, Janvikul W. Pluronic-F127 and Click chemistry-based injectable biodegradable hydrogels with controlled mechanical properties for cell encapsulation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Xu Y, Song D, Wang X. 3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers (Basel) 2022; 14:polym14235143. [PMID: 36501537 PMCID: PMC9741443 DOI: 10.3390/polym14235143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is the most common chronic disease in the world, and it brings a heavy burden to people's health. Against this background, diabetic research, including islet functionalization has become a hot topic in medical institutions all over the world. Especially with the rapid development of microencapsulation and three-dimensional (3D) bioprinting technologies, organ engineering and manufacturing have become the main trends for disease modeling and drug screening. Especially the advanced 3D models of pancreatic islets have shown better physiological functions than monolayer cultures, suggesting their potential in elucidating the behaviors of cells under different growth environments. This review mainly summarizes the latest progress of islet capsules and 3D printed pancreatic organs and introduces the activities of islet cells in the constructs with different encapsulation technologies and polymeric materials, as well as the vascularization and blood glucose control capabilities of these constructs after implantation. The challenges and perspectives of the pancreatic organ engineering/manufacturing technologies have also been demonstrated.
Collapse
|
25
|
Symons HE, Galanti A, Surmon JC, Trask RS, Rochat S, Gobbo P. Automated analysis of soft material microindentation. SOFT MATTER 2022; 18:8302-8314. [PMID: 36286486 DOI: 10.1039/d2sm00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An understanding of the mechanical properties of soft hydrogel materials over multiple length scales is important for their application in many fields. Typical measurement methods provide either bulk mechanical properties (compression, tensile, rheology) or probing of nano or microscale properties and heterogeneity (nanoindentation, AFM). In this work we demonstrate the complementarity of instrumented microindentation to these techniques, as it provides representative Young's moduli for soft materials with minimal influence of the experimental parameters chosen, and allows mechanical property mapping across macroscopic areas. To enable automated analysis of the large quantities of data required for these measurements, we develop a new fitting algorithm to process indentation data. This method allows for the determination of Young's moduli from imperfect data by automatic selection of a region of the indentation curve which does not display inelastic deformation or substrate effects. We demonstrate the applicability of our approach with a range of hydrogels, including materials with patterns and gradients in stiffness, and expect the techniques described here to be useful developments for the mechanical analysis of a wide range of soft and biological systems.
Collapse
Affiliation(s)
- Henry E Symons
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| | - Joseph C Surmon
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Richard S Trask
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Sebastien Rochat
- School of Chemistry, Department of Engineering Mathematics, and Bristol Composites Institute, University of Bristol, Bristol, BS8 1TS, UK
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
26
|
Wong CW, Tsai KC, Shrestha LK, Ariga K, Hsu SH. Effects of hydrophilic fullerene nanoarchitectured structures on the behaviour of neural stem cells. NANOSCALE 2022; 14:11152-11161. [PMID: 35876189 DOI: 10.1039/d2nr01817a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction between nanoarchitectonic fullerenes and cells is essential for their applications in the biological field. Herein we reported the preparation and investigation of the function of different types of water-dispersible self-assembled fullerenes. The hydrophobic self-assembled fullerenes were either surface-modified or chemically etched to become water dispersible. Different types of fullerenes were then examined for their effects on the behavior of neural stem cells (NSCs). Our results indicated that only the hydrophilic fullerene nanotubes (FNTs, diameter ∼480 nm) created by chemically etching were endocytosed by NSCs, which showed a spindle-like morphology after the uptake. Meanwhile, the FNTs did not increase the reactive oxygen species (ROS) production of the cells. The expression levels of neural-related genes (CNPase and β-tubulin) were upregulated 1.5-fold in the presence of FNTs. The differentiation of NSCs depended on the size, shape, and surface functional group of various fullerenes. Besides, the addition of FNTs in a chitosan self-healing hydrogel did not influence the integrity, injectability, and self-healing properties of the composite hydrogel. These results revealed that FNTs induced the neural differentiation of NSCs in the composite hydrogel. The addition of FNTs at a low concentration (50 μg mL-1) was enough to create such effects in the composite hydrogel. The expression levels of the oligodendrocytic marker gene CNPase and the neuronal marker gene β-tubulin were increased remarkably by ∼14.5- and ∼8.4-fold, respectively, by the composite self-healing hydrogel containing 50 μg mL-1 FNTs. The fullerene nanoarchitectured structures may have potential for use as nanovehicles and in neural tissue engineering in the future.
Collapse
Affiliation(s)
- Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Kun-Che Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lok Kumar Shrestha
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Ibaraki, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
27
|
Testore D, Zoso A, Kortaberria G, Sangermano M, Chiono V. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application. Front Bioeng Biotechnol 2022; 10:897575. [PMID: 35814009 PMCID: PMC9263513 DOI: 10.3389/fbioe.2022.897575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Electroconductive hydrogels (ECHs) have attracted interest for tissue engineering applications due to their ability to promote the regeneration of electroactive tissues. Hence, ECHs with tunable electrical and mechanical properties, bioactivity, biocompatibility and biodegradability are demanded. In this work, ECHs based on photo-crosslinked blends of polyethylene glycol diacrylate (PEGDA) and gelatin with different PEGDA:gelatin ratios (1:1, 1.5:1 and 2:1 wt./wt.), and containing poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) (0.0, 0.1, 0,3 and 0.5% w/v%) were prepared. Main novelty was the use of gelatin as bioactive component and co-initiator in the photo-crosslinking process, leading to its successful incorporation in the hydrogel network. Physical properties could be modulated by the initial PEGDA:gelatin weight ratio. Pristine hydrogels with increasing PEGDA:gelatin ratio showed: (i) an increasing compressive elastic modulus from 5 to 28 kPa; (ii) a decreasing weight loss from 62% to 43% after 2 weeks incubation in phosphate buffered saline at 37°C; (iii) reduced crosslinking time; (iv) higher crosslinking density and (v) lower water absorption. The addition of PEDOT:PSS in the hydrogels reduced photo-crosslinking time (from 60 to 10 s) increasing their surface and bulk electrical properties. Finally, in vitro tests with human cardiac fibroblasts showed that hydrogels were cytocompatible and samples with 1.5:1 initial PEGDA:gelatin ratio promoted the highest cell adhesion at 24 h. Results from this work suggested the potential of electroconductive photo-curable PEGDA-gelatin/PEDOT:PSS hydrogels for prospective cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Daniele Testore
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Galder Kortaberria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- *Correspondence: Valeria Chiono,
| |
Collapse
|
28
|
Modification of the alginate hydrogel with fibroblast‐ and Schwann cell‐derived extracellular matrix potentiates differentiation of mesenchymal stem cells toward neuron‐like cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
30
|
Rekowska N, Huling J, Brietzke A, Arbeiter D, Eickner T, Konasch J, Riess A, Mau R, Seitz H, Grabow N, Teske M. Thermal, Mechanical and Biocompatibility Analyses of Photochemically Polymerized PEGDA 250 for Photopolymerization-Based Manufacturing Processes. Pharmaceutics 2022; 14:628. [PMID: 35336002 PMCID: PMC8951438 DOI: 10.3390/pharmaceutics14030628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Novel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications. Additionally, knowledge of the properties of the starting materials enables subsequent tailoring of the biomaterials to meet individual implantation needs. In our study, we have analyzed the biological, chemical, mechanical and thermal properties of photopolymerized poly(ethyleneglycol) diacrylate (PEGDA) and specific copolymers with different photoinitiator (PI) concentrations before and after applying a post treatment washing process. As comonomers, 1,3-butanediol diacrylate, pentaerythritol triacrylate and pentaerythritol tetraacrylate were used. The in vitro studies confirm the biocompatibility of all investigated copolymers. Uniaxial tensile tests show significantly lower tensile strength (82% decrease) and elongation at break (76% decrease) values for washed samples. Altered tensile strength is also observed for different PI concentrations: on average, 6.2 MPa for 1.25% PI and 3.1 MPa for 0.5% PI. The addition of comonomers lowers elongation at break on average by 45%. Moreover, our observations show glass transition temperatures (Tg) ranging from 27 °C to 56 °C, which significantly increase with higher comonomer content. These results confirm the ability to generate biocompatible PEGDA copolymers with specific thermal and mechanical properties. These can be considered as resins for various additive manufacturing-based applications to obtain personalized medical devices, such as drug delivery systems (DDS). Therefore, our study has advanced the understanding of PEGDA multi-materials and will contribute to the future development of tools ensuring safe and effective individual therapy for patients.
Collapse
Affiliation(s)
- Natalia Rekowska
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jennifer Huling
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Andreas Brietzke
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Daniela Arbeiter
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jan Konasch
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Alexander Riess
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Michael Teske
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| |
Collapse
|
31
|
Viray CM, van Magill B, Zreiqat H, Ramaswamy Y. Stereolithographic Visible-Light Printing of Poly(l-glutamic acid) Hydrogel Scaffolds. ACS Biomater Sci Eng 2022; 8:1115-1131. [PMID: 35179029 DOI: 10.1021/acsbiomaterials.1c01519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioprinting is a promising fabrication technique aimed at developing biologically functional, tissue-like constructs for various biomedical applications. Among the different bioprinting approaches, vat polymerization-based techniques offer the highest feature resolution compared to more commonly used extrusion-based methods and therefore have greater potential to be utilized for printing complex hierarchical tissue architectures. Although significant efforts have been directed toward harnessing digital light processing techniques for high-resolution bioprinting, the use of stereolithography (SLA) setups for producing distinct hydrogel filaments smaller than 20 μm has received less attention. Improving the bioprinting resolution is still a technical challenge that must consider both the practical limitations of the bioprinter apparatus and the formulation of the cytocompatible bioresin. In this study, we developed a novel bioresin compatible with SLA and capable of printing high-resolution features. This resin, composed of a biosynthetic polypeptide poly(l-glutamic acid) functionalized with tyramine moieties (PLGA-Tyr), was crosslinked using a visible-light photoinitiator system. Varying concentrations of PLGA-Tyr and the co-photoinitiator were evaluated for the hydrogel system's gelation ability, swelling characteristics, degradation profiles, mechanical properties, and cell viability post-encapsulation. This study introduces a custom-built, cost-effective, visible-light SLA bioprinting system named the "MicroNC". Using the newly developed visible-light bioresin, we demonstrated for the first time the ability to fabricate hydrogel scaffolds with well-resolved filaments (less than 8 μm in width) capable of supporting cell viability and proliferation and directing cellular morphology at the single-cell level for up to 14 days. Overall, these experiments have underscored the exciting potential of using the visible-light-photoinitiated PLGA-Tyr material system for developing physiologically relevant in vitro hydrogel scaffolds with feature resolutions comparable to the dimensions of individual human cells for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Christina Marie Viray
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Benjamin van Magill
- School of Aerospace, Mechanical, and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Aprile P, Whelan IT, Sathy BN, Carroll SF, Kelly DJ. Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromol Biosci 2022; 22:e2100365. [PMID: 35171524 DOI: 10.1002/mabi.202100365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell type for treating damaged and diseased synovial joints. The therapeutic potential of MSCs will be facilitated by the engineering of biomaterial environments capable of directing their fate. Here we explored the interplay between matrix elasticity and cell morphology in regulating the chondrogenic differentiation of MSCs when seeded onto or encapsulated within hydrogels made of interpenetrating networks (IPN) of alginate and collagen type I. This IPN system enabled the independent control of substrate stiffness (in 2D and in 3D) and cell morphology (3D only). In a 2D culture environment, the expression of chondrogenic markers SOX9, ACAN and COL2 increased on a soft substrate, which correlated with increased SMAD2/3 nuclear localization, enhanced MSCs condensation and the formation of larger cellular aggregates. The encapsulation of spread MSCs within a soft IPN dramatically increased the expression of cartilage-specific genes, which was linked to higher levels of cellular condensation and nuclear SMAD2/3 localization. Surprisingly, cells forced to adopt a more rounded morphology within the same soft IPNs expressed higher levels of the osteogenic markers RUNX2 and COL1. The insight provided by this study suggests that a mechanobiology informed approach to biomaterial development will be integral to the development of successful cartilage tissue engineering strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ian T Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Binulal N Sathy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Centre for Nanoscience and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland.,The Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland
| |
Collapse
|
33
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
34
|
Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets. J Mech Behav Biomed Mater 2022; 125:104877. [PMID: 34695661 PMCID: PMC8818123 DOI: 10.1016/j.jmbbm.2021.104877] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023]
Abstract
Although xenograft biomaterials have been used for decades in replacement heart valves, they continue to face multiple limitations, including limited durability, mineralization, and restricted design space due to their biological origins. These issues necessitate the need for novel replacement heart valve biomaterials that are durable, non-thrombogenic, and compatible with transcatheter aortic valve replacement devices. In this study, we explored the suitability of an electrospun poly(carbonate urethane) (ES-PCU) mesh coated with a poly(ethylene glycol) diacrylate (PEGDA) hydrogel as a synthetic biomaterial for replacement heart valve leaflets. In this material design, the mesh provides the mechanical support, while the hydrogel provides the required surface hemocompatibility. We conducted a comprehensive study to characterize the structural and mechanical properties of the uncoated mesh as well as the hydrogel-coated mesh (composite biomaterial) over the estimated operational range. We found that the composite biomaterial was functionally robust with reproducible stress-strain behavior within and beyond the functional ranges for replacement heart valves, and was able to withstand the rigors of mechanical evaluation without any observable damage. In addition, the composite biomaterial displayed a wide range of mechanical anisotropic responses, which were governed by fiber orientation of the mesh, which in turn, was controlled with the fabrication process. Finally, we developed a novel constitutive modeling approach to predict the mechanical behavior of the composite biomaterial under in-plane extension and shear deformation modes. This model identified the existence of fiber-fiber mechanical interactions in the mesh that have not previously been reported. Interestingly, there was no evidence of fiber-hydrogel mechanical interactions. This important finding suggests that the hydrogel coating can be optimized for hemocompatibility independent of the structural mechanical responses required by the leaflet. This initial study indicated that the composite biomaterial has mechanical properties well-suited for replacement heart valve applications and that the electrospun mesh microarchitecture and hydrogel biological properties can be optimized independently. It also reveals that the structural mechanisms contributing to the mechanical response are more complicated than what was previously established and paves the pathway for more detailed future studies.
Collapse
|
35
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
36
|
Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front Bioeng Biotechnol 2021; 9:754113. [PMID: 34746106 PMCID: PMC8570130 DOI: 10.3389/fbioe.2021.754113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage defects pose a significant clinical challenge as they can lead to joint pain, swelling and stiffness, which reduces mobility and function thereby significantly affecting the quality of life of patients. More than 250,000 cartilage repair surgeries are performed in the United States every year. The current gold standard is the treatment of focal cartilage defects and bone damage with nonflexible metal or plastic prosthetics. However, these prosthetics are often made from hard and stiff materials that limits mobility and flexibility, and results in leaching of metal particles into the body, degeneration of adjacent soft bone tissues and possible failure of the implant with time. As a result, the patients may require revision surgeries to replace the worn implants or adjacent vertebrae. More recently, autograft - and allograft-based repair strategies have been studied, however these too are limited by donor site morbidity and the limited availability of tissues for surgery. There has been increasing interest in the past two decades in the area of cartilage tissue engineering where methods like 3D bioprinting may be implemented to generate functional constructs using a combination of cells, growth factors (GF) and biocompatible materials. 3D bioprinting allows for the modulation of mechanical properties of the developed constructs to maintain the required flexibility following implantation while also providing the stiffness needed to support body weight. In this review, we will provide a comprehensive overview of current advances in 3D bioprinting for cartilage tissue engineering for knee menisci and intervertebral disc repair. We will also discuss promising medical-grade materials and techniques that can be used for printing, and the future outlook of this emerging field.
Collapse
Affiliation(s)
- Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Ryan Ivone
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Evelina Natekin
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
| | - Cheryl. A. Wilga
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
37
|
Andress B, Kim JH, Cutcliffe HC, Amendola A, Goode AP, Varghese S, DeFrate LE, McNulty AL. Meniscus cell regional phenotypes: Dedifferentiation and reversal by biomaterial embedding. J Orthop Res 2021; 39:2177-2186. [PMID: 33325039 PMCID: PMC8203760 DOI: 10.1002/jor.24954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Meniscus injuries are common and a major cause of long-term joint degeneration and disability. Current treatment options are limited, so novel regenerative therapies or tissue engineering strategies are urgently needed. The development of new therapies is hindered by a lack of knowledge regarding the cellular biology of the meniscus and a lack of well-established methods for studying meniscus cells in vitro. The goals of this study were to (1) establish baseline expression profiles and dedifferentiation patterns of inner and outer zone primary meniscus cells, and (2) evaluate the utility of poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA) polymer hydrogels to reverse dedifferentiation trends for long-term meniscus cell culture. Using reverse transcription-quantitative polymerase chain reaction, we measured expression levels of putative meniscus phenotype marker genes in freshly isolated meniscus tissue, tissue explant culture, and monolayer culture of inner and outer zone meniscus cells from porcine knees to establish baseline dedifferentiation characteristics, and then compared these expression levels to PEGDA/GelMA embedded passaged meniscus cells. COL1A1 showed robust upregulation, while CHAD, CILP, and COMP showed downregulation with monolayer culture. Expression levels of COL2A1, ACAN, and SOX9 were surprisingly similar between inner and outer zone tissue and were found to be less sensitive as markers of dedifferentiation. When embedded in PEGDA/GelMA hydrogels, expression levels of meniscus cell phenotype genes were significantly modulated by varying the ratio of polymer components, allowing these materials to be tuned for phenotype restoration, meniscus cell culture, and tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Hattie C. Cutcliffe
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University
| | | | - Adam P. Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine,Duke Clinical Research Institute, Duke University School of Medicine,Department of Population Health Science, Duke University School of Medicine
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University,Department of Mechanical Engineering and Materials Science, Duke University
| | - Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine,Department of Biomedical Engineering, Duke University,Department of Mechanical Engineering and Materials Science, Duke University
| | - Amy L. McNulty
- Department of Pathology, Duke University School of Medicine,Department of Orthopaedic Surgery, Duke University School of Medicine,Address for Correspondence: Dr. Amy L. McNulty, Duke University School of Medicine, DUMC 3093, Durham NC 27710 USA, Phone: (919) 684-6882,
| |
Collapse
|
38
|
Zhang H, Yang Y, Dai J, Han A. Fabrication methods for a gel-based separation-free device for whole blood glucose detection. MethodsX 2021; 8:101236. [PMID: 34434759 PMCID: PMC8374154 DOI: 10.1016/j.mex.2021.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we describe two fabrication methods (well array-based and biopsy punching-based) of gel disks to construct a gel-based point-of-care (POC) diagnosis device for direct colorimetric measurement of human whole blood glucose without any extra blood separation step. The gel disks are made of Polyethylene glycol (PEG) diacrylate (PEG-DA) containing immobilized glucose colorimetric assay reagents. The performances of three types of PEG-DA gel (molecular weight: 575, 3,400, and 10,000) based sensors as well as the two fabrication methods were investigated.The fabricated devices enabled colorimetric whole blood glucose sensing assay without the need for blood cell separation The biopsy punching-based gel disk fabrication method provided less variation on the fabricated gel disks
Collapse
Affiliation(s)
- Han Zhang
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Yongjian Yang
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Jing Dai
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Arum Han
- Department of Electrical and Computer engineering, Texas A&M University, College Station, Texas 77843, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.,Center for Remote Health Technologies & Systems, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
39
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
40
|
Alonci G, Mocchi R, Sommatis S, Capillo MC, Liga E, Janowska A, Nachbaur L, Zerbinati N. Physico-Chemical Characterization and In Vitro Biological Evaluation of a Bionic Hydrogel Based on Hyaluronic Acid and l-Lysine for Medical Applications. Pharmaceutics 2021; 13:pharmaceutics13081194. [PMID: 34452157 PMCID: PMC8400252 DOI: 10.3390/pharmaceutics13081194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Hyaluronic acid (HA) is an endogenous polysaccharide, whose hydrogels have been used in medical applications for decades. Here, we present a technology platform for stabilizing HA with a biocrosslinker, the amino acid l-Lysine, to manufacture bionic hydrogels for regenerative medicine. We synthetized bionic hydrogels with tailored composition with respect to HA concentration and degree of stabilization depending on the envisaged medical use. The structure of the hydrogels was assessed by microscopy and rheology, and the resorption behavior through enzymatic degradation with hyaluronidase. The biological compatibility was evaluated in vitro with human dermal fibroblast cell lines. HA bionic hydrogels stabilized with lysine show a 3D network structure, with a rheological profile that mimics biological matrixes, as a harmless biodegradable substrate for cell proliferation and regeneration and a promising candidate for wound healing and other medical applications.
Collapse
Affiliation(s)
- Giuseppe Alonci
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Roberto Mocchi
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Sabrina Sommatis
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Maria Chiara Capillo
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Elsa Liga
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Agata Janowska
- Department of Dermatology, University of Pisa, 56121 Pisa, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Lidia Nachbaur
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Correspondence: (L.N.); (N.Z.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.N.); (N.Z.)
| |
Collapse
|
41
|
Abstract
Hydrogels are polymeric networks highly swollen with water. Because of their versatility and properties mimicking biological tissues, they are very interesting for biomedical applications. In this aim, the control of porosity is of crucial importance since it governs the transport properties and influences the fate of cells cultured onto or into the hydrogels. Among the techniques allowing for the elaboration of hydrogels, photopolymerization or photo-cross-linking are probably the most powerful and versatile synthetic routes. This Review aims at giving an overview of the literature dealing with photopolymerized hydrogels for which the generation or characterization of porosity is studied. First, the materials (polymers and photoinitiating systems) used for synthesizing hydrogels are presented. The different ways for generating porosity in the photopolymerized hydrogels are explained, and the characterization techniques allowing adequate study of the porosity are presented. Finally, some applications in the field of controlled release and tissue engineering are reviewed.
Collapse
Affiliation(s)
- Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
42
|
Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021; 147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, Wales, UK.
| |
Collapse
|
43
|
Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Sci Rep 2021; 11:5687. [PMID: 33707502 PMCID: PMC7952722 DOI: 10.1038/s41598-021-84405-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration.
Collapse
|
44
|
Dubbin K, Dong Z, Park DM, Alvarado J, Su J, Wasson E, Robertson C, Jackson J, Bose A, Moya ML, Jiao Y, Hynes WF. Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. NANO LETTERS 2021; 21:1352-1359. [PMID: 33508203 DOI: 10.1021/acs.nanolett.0c04100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two E. coli strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered Caulobacter crescentus strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.
Collapse
Affiliation(s)
- Karen Dubbin
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Dan M Park
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Javier Alvarado
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jimmy Su
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Elisa Wasson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Claire Robertson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Julie Jackson
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Arpita Bose
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Monica L Moya
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Yongqin Jiao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - William F Hynes
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
45
|
Blacutt J, Lan Z, Cosgriff-Hernandez EM, Gordon VD. Quantitative confocal microscopy and calibration for measuring differences in cyclic-di-GMP signalling by bacteria on biomedical hydrogels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201453. [PMID: 33614081 PMCID: PMC7890475 DOI: 10.1098/rsos.201453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as 'standard candles' for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1.
Collapse
Affiliation(s)
- Jacob Blacutt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Vernita D. Gordon
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, USA
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
46
|
Dai J, Zhang H, Huang C, Chen Z, Han A. A Gel-Based Separation-Free Point-of-Care Device for Whole Blood Glucose Detection. Anal Chem 2020; 92:16122-16129. [DOI: 10.1021/acs.analchem.0c03801] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zheyuan Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Center for Remote Health Technologies & Systems, Texas A&M University, College Station, Texas 77843 United States
| |
Collapse
|
47
|
Frassica MT, Jones SK, Suriboot J, Arabiyat AS, Ramirez EM, Culibrk RA, Hahn MS, Grunlan MA. Enhanced Osteogenic Potential of Phosphonated-Siloxane Hydrogel Scaffolds. Biomacromolecules 2020; 21:5189-5199. [DOI: 10.1021/acs.biomac.0c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael T. Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Sarah K. Jones
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Jakkrit Suriboot
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-31590, United States
| | - Esteban M. Ramirez
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Robert A. Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-31590, United States
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-31590, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
48
|
|
49
|
Kim M, Cha C. Graft Architecture Guided Simultaneous Control of Degradation and Mechanical Properties of In Situ Forming and Fast Dissolving Polyaspartamide Hydrogels. Biomacromolecules 2020; 21:3693-3703. [PMID: 32786519 DOI: 10.1021/acs.biomac.0c00806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polyaspartamide, derived from polysuccinimide (PSI), has the advantage of conveniently presenting desired functional groups by ring-opening addition of amine-based nucleophiles to the succinimidyl ring moieties of PSI. Using diamines with varying lengths of poly(ethylene glycol) linker, polyaspartamide presenting amine groups with controllable grafting density and length, namely, poly(2-hydroxyethyl aspartamide)-g-amino-poly(ethylene glycol) (PHEA-PEGAm) could be synthesized. This PHEA-PEGAm was then used to develop in situ forming hydrogels by Schiff base formation with aldehyde-containing alginate (Alg-ALD). By modulating the graft architecture (i.e., grafting length and density), the mechanical properties of the resulting Alg-PHEA hydrogels could be controlled in a broad range. Remarkably, the hydrogels were shown to undergo facile degradation and complete dissolution in physiological conditions, regardless of hydrogel mechanics, by the expedited hydrolysis through the action of remaining amine groups, which was also heavily influenced by the graft architecture. Moreover, the rate of degradation could be further controlled by additional ionic cross-linking of alginate. The potential application as an injectable drug delivery system was demonstrated by measuring drug release kinetics and monitoring degradation ex vivo.
Collapse
Affiliation(s)
- Mirae Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaenyung Cha
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
50
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|