1
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2025; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
3
|
Shetty K, Yadav KS. Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells. Drug Dev Ind Pharm 2024; 50:420-431. [PMID: 38502031 DOI: 10.1080/03639045.2024.2332906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The study was aimed at formulating temozolomide (TMZ) loaded gelatin nanoparticles (GNPs) encapsulated into polyvinyl alcohol (PVA) nanofibers (TMZ-GNPs-PVA NFs) as the nano-in-nanofiber delivery system. The secondary objective was to explore the sustained releasing ability of this system and to assess its enhanced cellular uptake against U87MG glioma cells in vitro. SIGNIFICANCE Nano-in-nanofibers are the emerging drug delivery systems for treating a wide range of diseases including cancers as they overcome the challenges experienced by nanoparticles and nanofibers alone. METHODS The drug-loaded GNPs were formulated by one-step desolvation method. The Design of Experiments (DoE) was used to optimize nanoparticle size and entrapment efficiency. The optimized drug-loaded nanoparticles were then encapsulated within nanofibers using blend electrospinning technique. The U87MG glioma cells were used to investigate the uptake of the formulation. RESULTS A 32 factorial design was used to optimize the mean particle size (145.7 nm) and entrapment efficiency (87.6%) of the TMZ-loaded GNPs which were subsequently ingrained into PVA nanofibers by electrospinning technique. The delivery system achieved a sustained drug release for up to seven days (in vitro). The SEM results ensured that the expected nano-in-nanofiber delivery system was achieved. The uptake of TMZ-GNPs-PVA NFs by cells was increased by a factor of 1.964 compared to that of the pure drug. CONCLUSION The nano-in-nanofiber drug delivery system is a potentially useful therapeutic strategy for the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
4
|
Qu H, Yao Q, Chen T, Wu H, Liu Y, Wang C, Dong A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv Colloid Interface Sci 2024; 325:103099. [PMID: 38330883 DOI: 10.1016/j.cis.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microbial contamination poses a serious threat to human life and health. Through the intersection of material science and modern medicine, advanced bionic hydrogels have shown great potential for biomedical applications due to their unique bioactivity and ability to mimic the extracellular matrix environment. In particular, as a promising antimicrobial material, the synthesis and practical biomedical applications of peptide-based antimicrobial hydrogels have drawn increasing research interest. The synergistic effect of peptides and hydrogels facilitate the controlled release of antimicrobial agents and mitigation of their biotoxicity while achieving antimicrobial effects and protecting the active agents from degradation. This review reports on the progress and trends of researches in the last five years and provides a brief outlook, aiming to provide theoretical background on peptide-based antimicrobial hydrogels and make suggestions for future related work.
Collapse
Affiliation(s)
- Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, People's Republic of China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
5
|
Abolfathi S, Zare M. The evaluation of chitosan hydrogel based curcumin effect on DNMT1, DNMT3A, DNMT3B, MEG3, HOTAIR gene expression in glioblastoma cell line. Mol Biol Rep 2023:10.1007/s11033-023-08531-0. [PMID: 37268862 DOI: 10.1007/s11033-023-08531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cancer is one of the most important causes of death worldwide. Some types of cancer, including glioblastoma, with a high potential for growth, invasion, and resistance to general treatments, chemotherapy, and radiotherapy, have a high potential for recurrence. Many chemical drugs have been used to treat it, but herbal drugs are more effective with fewer side effects; Therefore, this research aims to investigate the effect of curcumin-chitosan nano-complex on the expression of MEG3, HOTAIR, DNMT1, DNMT3A, DNMT3B genes in the glioblastoma cell line. METHODS In this research, glioblastoma cell line, PCR and spectrophotometry techniques, MTT test and transmission, field emission transmission, and fluorescent electron microscopes were used. RESULTS The morphological examination of the curcumin-chitosan nano-complex was without clumping, and the fluorescent microscope examination showed the nano-complex enters the cell and affects the genes expression. In its bioavailability studies, it was found that it significantly increases the death of cancer cells in a dose- and time-dependent manner. Gene expression tests showed that this nano-complex increased MEG3 gene expression compared to the control group, which is statistically significant (p < 0.05). It also decreased HOTAIR gene expression compared to the control group, which was not statistically significant (p > 0.05). It decreased the expression of DNMT1, DNMT3A, and DNMT3B genes compared to the control group, which is statistically significant (p < 0.05). CONCLUSION By using active plant substances such as curcumin, the active demethylation of brain cells can be directed to the path of inhibiting the growth of brain cancer cells and eliminating them.
Collapse
Affiliation(s)
- Sanaz Abolfathi
- Department of Biology, Faculty of Sciences, Payame Noor University, Shahre Rey, Iran
| | - Maryam Zare
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran.
| |
Collapse
|
6
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
7
|
Peptide-Based Hydrogels and Nanogels Containing Gd(III) Complexes as T1 Relaxation Agents. Pharmaceuticals (Basel) 2022; 15:ph15121572. [PMID: 36559023 PMCID: PMC9787396 DOI: 10.3390/ph15121572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
New peptide-based hydrogels incorporating Gd(III) chelates with different hydration states, molecular structures and overall negative charges ([Gd(BOPTA)]2−), [Gd(DTPA)]2−, and ([Gd(AAZTA)]−) were prepared and characterized. N-terminal Fmoc- or acetyl-derivatized hexapeptides (K1, K2 and K3) containing five aliphatic amino acids (differently ordered Gly, Ala, Val, Leu and Ile) and a charged lysine at the amidated C-terminal were used for the formation of the hydrogels. Particular attention was paid to the investigation of the morphological and rheological properties of the nanoparticles, in addition to the assessment of the ability (relaxivity) of the confined complexes to accelerate the longitudinal relaxation rate of the water protons localized in the polymeric network. The relaxivity values at high magnetic fields (>0.5 T) of the paramagnetic hydrogels appear to be more than five times higher than those of isolated chelates in an aqueous solution, reaching a value of 25 mmol−1 s−1 for Fmoc-K2+[Gd(BOPTA)]2− at 0.5 T and 310 K. Furthermore, an interesting trend of decrease of relaxivity with increasing the degree of rigidity of the hydrogel was observed. The type of interactions between the various complexes and the polymeric network also plays a key role in influencing the relaxivity values of the final materials. Nanogels were also obtained from the submicronization of the hydrogel containing [Gd(BOPTA)]2− chelate. Circular dichroism, dynamic light scattering and relaxometric investigations on these nanoparticles revealed the formation of nanogels endowed with higher relaxivities (r1 = 41 mM−1 s−1 at 0.5 T MHz and 310 K) than the corresponding hydrogels.
Collapse
|
8
|
Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. Int J Pharm 2022; 628:122341. [DOI: 10.1016/j.ijpharm.2022.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
9
|
Pitz M, Elpers M, Nukovic A, Wilde S, Gregory AJ, Alexander-Bryant A. De Novo Self-Assembling Peptides Mediate the Conversion of Temozolomide and Delivery of a Model Drug into Glioblastoma Multiforme Cells. Biomedicines 2022; 10:biomedicines10092164. [PMID: 36140265 PMCID: PMC9495814 DOI: 10.3390/biomedicines10092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive central nervous system tumor, and standard treatment, including surgical resection, radiation, and chemotherapy, has not significantly improved patient outcomes over the last 20 years. Temozolomide (TMZ), the prodrug most commonly used to treat GBM, must pass the blood–brain barrier and requires a basic pH to convert to its active form. Due to these barriers, less than 30% of orally delivered TMZ reaches the central nervous system and becomes bioactive. In this work, we have developed a novel biomaterial delivery system to convert TMZ to its active form and that shows promise for intracellular TMZ delivery. Self-assembling peptides were characterized under several different assembly conditions and evaluated for TMZ loading and conversion. Both solvent and method of assembly were found to affect the supramolecular and secondary structure of peptide assemblies. Additionally, as peptides degraded in phosphate-buffered saline, TMZ was rapidly converted to its active form. This work demonstrates that peptide-based drug delivery systems can effectively create a local stimulus during drug delivery while remaining biocompatible. This principle could be used in many future biomedical applications in addition to cancer treatment, such as wound healing and regenerative medicine.
Collapse
|
10
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Peng F, Liu J, Zhang Y, Zhao G, Gong D, He L, Zhang W, Qiu F. Interaction Between Ropivacaine and a Self-Assembling Peptide: A Nanoformulation for Long-Acting Analgesia. Int J Nanomedicine 2022; 17:3371-3384. [PMID: 35937079 PMCID: PMC9346411 DOI: 10.2147/ijn.s369706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jing Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yujun Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Guoyan Zhao
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Deying Gong
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Liu He
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Correspondence: Feng Qiu; Wensheng Zhang, Email ;
| |
Collapse
|
12
|
Rosa E, Diaferia C, Gianolio E, Sibillano T, Gallo E, Smaldone G, Stornaiuolo M, Giannini C, Morelli G, Accardo A. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Macromol Biosci 2022; 22:e2200128. [PMID: 35524744 DOI: 10.1002/mabi.202200128] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/10/2022]
Abstract
In the last years, peptide based hydrogels are being increasingly used as suitable matrices for biomedical and pharmaceutical applications, including drug delivery and tissue engineering. Recently, we decrived the synthesis and the gelation properties of a small library of cationic peptides, containing a Lys residue at the C-teminus and derivatized with a Fmoc group or with the Fmoc-diphenylalanine (FmocFF) at the N-terminus. Here, we demonstrate that the combination of these peptides with the well known hydrogelator FmocFF, in different weight/weight ratios, allows the achievement of seven novel self-sorted hydrogels, which share similar peptide organization of their supramolecular matrix. Rheological and relaxometric characterization highlighted a different mechanical rigidity and water mobility in the gels as demostrated by the storage modulus values (200 Pa<G'<35000 Pa) and by relaxometry, respectively. In vitro studied demonstrated that most of the tested mixed hydrogels do not disturb significantly the cell viability (>95%) over 72h of treatment. Moreover, in virtue to its capability to strongly favour adhesion, spreading and duplication of 3T3-L1 cells, one of the tested hydrogel may be eligible as sinthetic extracellular matrix. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | | | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| |
Collapse
|
13
|
nurP28, a New-to-Nature Zein-Derived Peptide, Enhances the Therapeutic Effect of Docetaxel in Breast Cancer Monolayers and Spheroids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092824. [PMID: 35566175 PMCID: PMC9105272 DOI: 10.3390/molecules27092824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
The development of novel cancer therapeutic strategies has garnered increasing interest in cancer research. Among the therapeutic choices, chemosensitizers have shown exciting prospects. Peptides are an attractive alternative among the molecules that may be used as chemosensitizers. We rationally designed a new-to-nature peptide, nurP28, derived from the 22-kDa α-zein protein sequence (entry Q00919_MAIZE). The resultant sequence of the nurP28 peptide after the addition of arginine residues was LALLALLRLRRRATTAFIIP, and we added acetyl and amide groups at the N- and C-terminus, respectively, for capping. We evaluated the cytotoxicity of the nurP28 peptide alone and in combination with docetaxel in fibroblast monolayers and breast cancer monolayers and spheroids. Our results indicated that nurP28 is not cytotoxic to human fibroblasts or cancer cells. Nevertheless, when combined with 1 µM docetaxel, 3 ng/mL nurP28 induced equivalent (in MCF7 monolayers) and higher (in MCF7 spheroids) cytotoxic effects than 10-fold higher doses of docetaxel alone. These findings suggest that nurP28 may act as a chemosensitizer in breast cancer treatment. This study describes the enhancing “anti-cancer” effects of nurP28 in breast cancer 2D and 3D cultures treated with docetaxel. Further studies should explore the mechanisms underlying these effects and assess the clinical potential of our findings using animal models.
Collapse
|
14
|
Santhini E, Parthasarathy R, Shalini M, Dhivya S, Mary LA, Padma VV. Bio inspired growth factor loaded self assembling peptide nano hydrogel for chronic wound healing. Int J Biol Macromol 2022; 197:77-87. [PMID: 34920072 DOI: 10.1016/j.ijbiomac.2021.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 01/11/2023]
Abstract
Self assembling peptidebased hydrogel has been explored for delivering growth factors, anticancer drugs, antibiotics etc. Here, RADA 16-I (RADARADARADARADA), an ionic self complementary peptide that forms a well defined nanohydrogel has been studied for its ability to deliver PDGF-BB in a sustained manner and to destruct biofilm formed by wound specific pathogens. Results of the structural analysis of the nanohydrogel studied through AFM, FeSEM, CD, FT-IR and Rheometry, revealed the hydrogel forming ability of RADA 16-I with stable β-sheet structure at room temperature. The nanohydrogel was also found to destruct the biofilm formed under in vitro condition using S. aureus, E. coli and P. aeruginosa. The growth factor incorporated in the nanohydrogel followed first order release kinetics and showed sustained release up to 48 h. Angiogenic potential and wound healing ability of PDGF-BB incorporated nanohydrogel was confirmed in both in vitro and in vivo conditions. The animals treated with PDGF-BB incorporated nanohydrogel exhibited 99.5% wound closure at day 21. The content of hydroxyproline and ascorbic acid was significantly high in the treated animals when compared to control and untreated animals. Overall, the study provides the essential information and data for using RADA 16-I for treating chronic wounds.
Collapse
Affiliation(s)
- E Santhini
- CoE-MedicalTextiles, The South India Textile Research Association (SITRA), Coimbatore 641 014, Tamil Nadu, India.
| | - R Parthasarathy
- CoE-MedicalTextiles, The South India Textile Research Association (SITRA), Coimbatore 641 014, Tamil Nadu, India
| | - M Shalini
- CoE-MedicalTextiles, The South India Textile Research Association (SITRA), Coimbatore 641 014, Tamil Nadu, India
| | - S Dhivya
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - L Amalorpava Mary
- CoE-MedicalTextiles, The South India Textile Research Association (SITRA), Coimbatore 641 014, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
15
|
Theodoroula NF, Karavasili C, Vlasiou MC, Primikyri A, Nicolaou C, Chatzikonstantinou AV, Chatzitaki AT, Petrou C, Bouropoulos N, Zacharis CK, Galatou E, Sarigiannis Y, Fatouros DG, Vizirianakis IS. NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics 2022; 14:133. [PMID: 35057029 PMCID: PMC8778326 DOI: 10.3390/pharmaceutics14010133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Fibrillar structures derived from plant or animal origin have long been a source of inspiration for the design of new biomaterials. The Asn-Gly-Ile-Trp-Tyr-NH2 (NGIWY-amide) pentapeptide, isolated from the sea cucumber Apostichopus japonicus, which spontaneously self-assembles in water to form hydrogel, pertains to this category. In this study, we evaluated this ultra-short cosmetic bioinspired peptide as vector for local drug delivery applications. Combining nuclear magnetic resonance, circular dichroism, infrared spectroscopy, X-ray diffraction, and rheological studies, the synthesized pentapeptide formed a stiff hydrogel with a high β-sheet content. Molecular dynamic simulations aligned well with scanning electron and atomic-force microscopy studies, revealing a highly filamentous structure with the fibers adopting a helical-twisted morphology. Model dye localization within the supramolecular hydrogel provided insights on the preferential distribution of hydrophobic and hydrophilic compounds in the hydrogel network. That was further depicted in the diffusion kinetics of drugs differing in their aqueous solubility and molecular weight, namely, doxorubicin hydrochloride, curcumin, and octreotide acetate, highlighting its versatility as a delivery vector of both hydrophobic and hydrophilic compounds of different molecular weight. Along with the observed cytocompatibility of the hydrogel, the NGIWY-amide pentapeptide may offer new approaches for cell growth, drug delivery, and 3D bioprinting tissue-engineering applications.
Collapse
Affiliation(s)
- Nikoleta F. Theodoroula
- Department of Molecular Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Manos C. Vlasiou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | | | - Christia Nicolaou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Alexandra V. Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece;
| | - Aikaterini-Theodora Chatzitaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Christos Petrou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Patras, Greece;
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Yiannis Sarigiannis
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Dimitrios G. Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Ioannis S. Vizirianakis
- Department of Molecular Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| |
Collapse
|
16
|
|
17
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
18
|
Production and Immunogenicity of a Tag-Free Recombinant Chimera Based on PfMSP-1 and PfMSP-3 Using Alhydrogel and Dipeptide-Based Hydrogels. Vaccines (Basel) 2021; 9:vaccines9070782. [PMID: 34358198 PMCID: PMC8310097 DOI: 10.3390/vaccines9070782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
A fusion chimeric vaccine comprising multiple protective domains of different blood-stage Plasmodium falciparum antigens is perhaps necessary for widening the protective immune responses and reducing the morbidity caused by the disease. Here we continue to build upon the prior work of developing a recombinant fusion chimera protein, His-tagged PfMSP-Fu24, by producing it as a tag-free recombinant protein. In this study, tag-free recombinant PfMSPFu24 (rFu24) was expressed in Escherichia coli, and the soluble protein was purified using a three-step purification involving ammonium sulphate precipitation followed by 2-step ion exchange chromatography procedures and shown that it was highly immunogenic with the human-compatible adjuvant Alhydrogel. We further investigated two dipeptides, phenylalanine-α, β-dehydrophenylalanine (FΔF) and Leucine-α, β-dehydrophenylalanine (LΔF) based hydrogels as effective delivery platforms for rFu24. These dipeptides self-assembled spontaneously to form a highly stable hydrogel under physiological conditions. rFu24 was efficiently entrapped in both the F∆F and L∆F hydrogels, and the three-dimensional (3D) mesh-like structures of the hydrogels remained intact after the entrapment of the antigen. The two hydrogels significantly stimulated rFu24-specific antibody titers, and the sera from the immunized mice showed an invasion inhibitory activity comparable to that of Alhydrogel. Easily synthesized dipeptide hydrogels can be used as an effective antigen delivery platform to induce immune responses.
Collapse
|
19
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
20
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
21
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
22
|
Diaferia C, Rosa E, Accardo A, Morelli G. Peptide-based hydrogels as delivery systems for doxorubicin. J Pept Sci 2021; 28:e3301. [PMID: 33491262 DOI: 10.1002/psc.3301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogels (HGs) and nanogels (NGs) have been recently identified as innovative supramolecular materials for many applications in biomedical field such as in tissue engineering, optoelectronic, and local delivery of active pharmaceutical ingredients (APIs). Due to their in vivo biocompatibility, synthetic accessibility, low cost, and tunability, peptides have been used as suitable building blocks for preparation of HGs and NGs formulations. Peptide HGs have shown an outstanding potential to deliver small drugs, protein therapeutics, or diagnostic probes, maintaining the efficacy of their loaded molecules, preventing degradation phenomena, and responding to external physicochemical stimuli. In this review, we discuss the possible use of peptide-based HGs and NGs as vehicles for the delivery of the anticancer drug doxorubicin (Dox). This anthracycline is clinically used for leukemia, stomach, lung, ovarian, breast, and bladder cancer therapy. The loading of Dox into supramolecular systems (liposomes, micelles, hydrogels, and nanogels) allows reducing its cardiotoxicity. According to a primary sequence classification of the constituent peptide, doxorubicin-loaded systems are here classified in short and ultra-short peptide-based HGs, RGD, or RADA-peptide-based HGs and peptide-based NGs.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| |
Collapse
|
23
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
24
|
Anderson AR, Segura T. Injectable biomaterials for treatment of glioblastoma. ADVANCED MATERIALS INTERFACES 2020; 7:2001055. [PMID: 34660174 PMCID: PMC8513688 DOI: 10.1002/admi.202001055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/13/2023]
Abstract
Despite ongoing advancements in the field of medicine, glioblastoma multiforme (GBM) is presently incurable, making this advanced brain tumor the deadliest tumor type in the central nervous system. The primary treatment strategies for GBM (i.e. surgical resection, radiation therapy, chemotherapy, and newly incorporated targeted therapies) fail to overcome the challenging characteristics of highly aggressive GBM tumors and are presently given with the goal of increasing the quality of life for patients. With the aim of creating effective treatment solutions, research has shifted toward utilizing injectable biomaterial adjuncts to minimize invasiveness of treatment, provide spatiotemporal control of therapeutic delivery, and engage with cells through material-cell interfaces. This review aims to summarize the limitations of the current standard of care for GBM, discuss how these limitations can be addressed by local employment of injectable biomaterial systems, and highlight developments in the field of biomaterials for these applications.
Collapse
Affiliation(s)
- Alexa R. Anderson
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| | - Tatiana Segura
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| |
Collapse
|
25
|
Kaur H, Sharma P, Patel N, Pal VK, Roy S. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12107-12120. [PMID: 32988205 DOI: 10.1021/acs.langmuir.0c01472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Creating diverse nanostructures from a single gelator through modulating the self-assembly pathway has been gaining much attention in recent years. To this direction, we are exploring the effect of modulation of pH as a potential self-assembly pathway in governing the physicochemical properties of the final gel phase material. In this context, we used a classical nongelator with the ionic complementary sequence FEFK, which was rationally conjugated to an aromatic group naphthoxyacetic acid (Nap) at the N-terminal end to tune its gelation behavior. Interestingly, the presence of oppositely charged amino acids in the peptide amphiphile resulted in pH-responsive behavior, leading to the formation of hydrogels over a wide pH range (2.0-12.0); however, their structures differ significantly at the nanoscale. Thus, by simply manipulating the overall charge over the exposed surface of the peptide amphiphiles as a function of pH, we were able to access diverse self-assembled nanostructures within a single gelator domain. The charged state of the gelator at the extreme pH (2.0, 12.0) led to a thinner fiber formation, in contrast to the thicker fibers observed near the physiological pH owing to charge neutralization, thus promoting the lateral association. Such variation in molecular packing was found to be further reflected in the variable mechanical strengths of the peptide hydrogels obtained at different pH values. Moreover, the gelation of the peptide at physiological pH offers an additional advantage to explore this hydrogel as a cell culture scaffold. We anticipate that our study on controlling the self-assembly pathway of the ionic complementary peptide amphiphile can be an elegant approach to access diverse self-assembled materials, which can expand the zone of its applicability as a stimuli-responsive biomaterial.
Collapse
Affiliation(s)
- Harsimran Kaur
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Pooja Sharma
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Nidhi Patel
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Vijay Kumar Pal
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Sangita Roy
- Habitat Centre, Institute of Nano Science and Technology, Sector 64, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
26
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Taka E, Karavasili C, Bouropoulos N, Moschakis T, Andreadis DD, Zacharis CK, Fatouros DG. Ocular co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation. Pharmaceuticals (Basel) 2020; 13:E126. [PMID: 32575910 PMCID: PMC7344471 DOI: 10.3390/ph13060126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 02/01/2023] Open
Abstract
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time could therefore constitute a promising therapeutic intervention. The in-situ gel forming self-assembling peptide ac-(RADA)4-CONH2 was evaluated as carrier for the ocular co-delivery of timolol maleate (TM) and brimonidine tartrate (BR). The hydrogel's microstructure and mechanical properties were assessed with atomic force microscopy and rheology, respectively. Drug diffusion from the hydrogel was evaluated in vitro in simulated tear fluid and ex vivo across porcine corneas and its effect on the treated corneas was assessed through physicochemical characterization and histological analysis. Results indicated that TM and BR co-delivery affected hydrogel's microstructure resulting in shorter nanofibers and a less rigid hydrogel matrix. Rapid and complete release of both drugs was achieved within 8 h, while a 2.8-fold and 5.4-fold higher corneal permeability was achieved for TM and BR, respectively. No significant alterations were induced in the structural integrity of the corneas treated with the hydrogel formulation, suggesting that self-assembling peptide hydrogels might serve as promising systems for combination anti-glaucoma therapy.
Collapse
Affiliation(s)
- Elissavet Taka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| | - Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| | - Nikolaos Bouropoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, GR-26504 Patras, Greece;
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University, GR-54124 Thessaloniki, Greece;
| | - Dimitrios D. Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios G. Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (E.T.); (D.G.F.)
| |
Collapse
|
28
|
Shahcheraghi SH, Zangui M, Lotfi M, Ghayour-Mobarhan M, Ghorbani A, Jaliani HZ, Sadeghnia HR, Sahebkar A. Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Curr Pharm Des 2020; 25:333-342. [PMID: 30864499 DOI: 10.2174/1381612825666190313123704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite standard multimodality treatment, the highly aggressive nature of GBM makes it one of the deadliest human malignancies. The anti-cancer effects of dietary phytochemicals like curcumin provide new insights to cancer treatment. Evaluation of curcumin's efficacy against different malignancies including glioblastoma has been a motivational research topic and widely studied during the recent decade. In this review, we discuss the recent observations on the potential therapeutic effects of curcumin against glioblastoma. Curcumin can target multiple signaling pathways involved in developing aggressive and drug-resistant features of glioblastoma, including pathways associated with glioma stem cell activity. Notably, combination therapy with curcumin and chemotherapeutics like temozolomide, the GBM standard therapy, as well as radiotherapy has shown synergistic response, highlighting curcumin's chemo- and radio-sensitizing effect. There are also multiple reports for curcumin nanoformulations and targeted forms showing enhanced therapeutic efficacy and passage through blood-brain barrier, as compared with natural curcumin. Furthermore, in vivo studies have revealed significant anti-tumor effects, decreased tumor size and increased survival with no notable evidence of systemic toxicity in treated animals. Finally, a pharmacokinetic study in patients with GBM has shown a detectable intratumoral concentration, thereby suggesting a potential for curcumin to exert its therapeutic effects in the brain. Despite all the evidence in support of curcumin's potential therapeutic efficacy in GBM, clinical reports are still scarce. More studies are needed to determine the effects of combination therapies with curcumin and importantly to investigate the potential for alleviating chemotherapy- and radiotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Modern Sciences & Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Zangui
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Eleftheriadis GK, Katsiotis CS, Bouropoulos N, Koutsopoulos S, Fatouros DG. FDM-printed pH-responsive capsules for the oral delivery of a model macromolecular dye. Pharm Dev Technol 2020; 25:517-523. [PMID: 31903821 DOI: 10.1080/10837450.2019.1711396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Katsiotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci 2019; 40:747-762. [DOI: 10.1016/j.tips.2019.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
31
|
Liu C, Zhang Q, Zhu S, Liu H, Chen J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv 2019; 9:28299-28311. [PMID: 35530460 PMCID: PMC9071167 DOI: 10.1039/c9ra05934b] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023] Open
Abstract
In situ injectable hydrogels have shown tremendous potential application in the biomedical field due to their significant drug accumulation at lesion sites, sustained release and markedly reduced systemic side effects. Specifically, peptide-based hydrogels, with unique biodegradation, biocompatibility, and bioactivity, are attractive molecular skeletons. In addition, peptides play a prominent role in normal metabolism, mimicking the natural tissue microenvironment and responding to stimuli in the lesion environment. Their advantages endow peptide-based hydrogels with great potential for application as biomedical materials. In this review, the fabrication and production of peptide-based hydrogels are presented. Several promising candidates, which are smart and environment-sensitive, are briefly reviewed. Then, the recent developments of these hydrogels for biomedical applications in tissue engineering, as drug/gene vehicles, and anti-bacterial agents are discussed. Finally, the development of peptide-based injectable hydrogels for biomedical applications in the future is surveyed.
Collapse
Affiliation(s)
- Chang Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Qingguo Zhang
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Song Zhu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Hong Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
32
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Karavasili C, Andreadis DA, Katsamenis OL, Panteris E, Anastasiadou P, Kakazanis Z, Zoumpourlis V, Markopoulou CK, Koutsopoulos S, Vizirianakis IS, Fatouros DG. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol Pharm 2019; 16:2326-2341. [DOI: 10.1021/acs.molpharmaceut.8b01221] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K
| | | | | | | | | | | | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
34
|
Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019; 9:2299-2314. [PMID: 31149045 PMCID: PMC6531311 DOI: 10.7150/thno.30577] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy, an attractive option for cancer treatment, necessitates the direct stimulation of immune cells in vivo and the simultaneous effective inhibition of immunosuppressive tumor microenvironments. Methods: In the present study, we developed an injectable PEG-b-poly(L-alanine) hydrogel for co-delivery of a tumor vaccine and dual immune checkpoint inhibitors to increase tumor immunotherapy efficacy. Tumor cell lysates, granulocyte-macrophage colony stimulating factor (GM-CSF), and immune checkpoint inhibitors (anti-CTLA-4/PD-1 antibody) were readily encapsulated in the porous hydrogel during the spontaneous self-assembly of polypeptide in aqueous solution. Results: Sustained release of tumor antigens and GM-CSF persistently recruited and activated dendritic cells (DCs) and induced a strong T-cell response in vivo, which was further enhanced by the immune checkpoint therapy. The hydrogel vaccine also upregulated the production of IgG and the secretion of cytokines including IFN-γ, IL-4, and TNF-α. Importantly, the hydrogel-based combination therapy had superior immunotherapy effects against melanoma and 4T-1 tumor in comparison with the vaccine alone or in addition with a single immune checkpoint blockade. In studying the underlying mechanism, we found that the hydrogel-based combinatorial immunotherapy not only significantly increased the activated effector CD8+ T cells within the spleens and tumors of vaccinated mice, but also reduced the ratio of Tregs. Conclusion: Our findings indicate that the polypeptide hydrogel can be used as an effective sustained delivery platform for vaccines and immune checkpoint inhibitors, providing an advanced combinatorial immunotherapy approach for cancer treatment.
Collapse
|
35
|
Li J, Xing R, Bai S, Yan X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. SOFT MATTER 2019; 15:1704-1715. [PMID: 30724947 DOI: 10.1039/c8sm02573h] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Peptide-based hydrogels have been proven to be preeminent biomedical materials due to their high water content, tunable mechanical stability, great biocompatibility and excellent injectability. The ability of peptide-based hydrogels to provide extracellular matrix-mimicking environments opens up opportunities for their biomedical applications in fields such as drug delivery, tissue engineering, and wound healing. In this review, we first describe several methods commonly used for the fabrication of robust peptide-based hydrogels, including spontaneous hydrogelation, enzyme-controlled hydrogelation and cross-linking-enhanced hydrogelation. We then introduce some representative studies on their applications in drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering. We hope that this review facilitates the advances of hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Zhongguancun, 100190 Beijing, China.
| | | | | | | |
Collapse
|