1
|
Brandt F, Ullrich M, Laube M, Löser R, Kotzerke J, Kopka K, Pietzsch J, van den Hoff J, Wodtke R. Deciphering the Tumor Uptake of Heterobivalent (SST 2/Albumin) [ 64Cu]Cu-NODAGA-cLAB-TATEs. J Med Chem 2025. [PMID: 40393943 DOI: 10.1021/acs.jmedchem.5c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Radioligands with albumin-binding moieties exhibit a great potential for the treatment of tumor diseases owing to the general finding of an increased integral tumor uptake compared to radioligands without such moieties. However, the reasons for this pharmacokinetic behavior are less explored. Herein, we focused on identifying potential mechanisms for our previously developed heterobivalent (SST2/albumin) [64Cu]Cu-NODAGA-cLAB-TATEs. For this purpose, we designed two novel derivatives that show either negligible binding to albumin or lack the SST2-targeting capability. Based on the in vivo results, we hypothesize that binding of the albumin-bound radioligand to SST2 in addition to that of the free radioligand causes the increased tumor uptake. This is supported by saturation binding analyses in the presence of albumin and compartment modeling considerations. Overall, the results of this study provide a first tentative explanation for the phenomenon of increased tumor uptake for albumin-binding radioligands, which may support the prospective design of such radioligands.
Collapse
Affiliation(s)
- Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Klinik und Poliklinik für Nuklearmedizin, Fetscherstraße 74, Dresden 01307, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, Dresden 01069, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, Dresden 01069, Germany
| | - Jörg Kotzerke
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Klinik und Poliklinik für Nuklearmedizin, Fetscherstraße 74, Dresden 01307, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, Dresden 01069, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden 01307, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Center (UCC), Dresden 01307, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, Dresden 01069, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, Dresden 01069, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| |
Collapse
|
2
|
Vasilogianni AM, Achour B, Al-Majdoub ZM, Peters SA, Barber J, Rostami-Hodjegan A. The quest to define cancer-specific systems parameters for personalized dosing in oncology. Expert Opin Drug Metab Toxicol 2025; 21:599-615. [PMID: 40042382 DOI: 10.1080/17425255.2025.2476560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Clinical trials in oncology initially recruit heterogeneous populations, without catering for all types of variability. The target cohort is often not representative, leading to variability in pharmacokinetics (PK). To address enrollment challenges in clinical trials, physiologically based pharmacokinetic models (PBPK) models can be used as a guide in the absence of large clinical studies. These models require patient-specific systems data relevant to the handling of drugs in the body for each type of cancer, which are scarce. AREAS COVERED This review explores system parameters affecting PK in cancer and highlights important gaps in data. Changes in drug-metabolizing enzymes (DMEs) and transporters have not been fully investigated in cancer. Their impaired expression can significantly affect capacity for drug elimination. Finally, the use of PBPK modeling for precision dosing in oncology is highlighted. Google Scholar and PubMed were mainly used for literature search, without date restriction. EXPERT OPINION Model-informed precision dosing is useful for dosing in sub-groups of cancer patients, which might not have been included in clinical trials. Systems parameters are not fully characterized in cancer cohorts, which are required in PBPK models. Generation of such data and application of cancer models in clinical practice should be encouraged.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co., Ingelheim am Rhein, Germany
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
- Certara Predictive Technologies (CPT), Simcyp Division, Sheffield, UK
| |
Collapse
|
3
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025; 99:1643-1747. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
4
|
Panday SK, Lang BJ, Kapitanov GI, Subramanian K, Klopp-Schulze L, Venkatakrishnan K, Zutshi A, Alnaif AE. A Translational Model-Based Meta-Analysis to Predict Tremor Incidence Associated with Serotonin Reuptake Transporter Inhibition. Clin Pharmacol Ther 2025. [PMID: 40304421 DOI: 10.1002/cpt.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
The serotonin reuptake transporter (SERT) is responsible for the removal and recycling of the neurotransmitter serotonin from neuronal synapses and is an important pharmacological target for treating a variety of CNS disorders. However, excessive levels of extrasynaptic serotonin resulting from SERT inhibition can lead to serotonin toxicity, which manifests as a spectrum of adverse events (AEs) termed "serotonin syndrome" (SS), ranging in severity from mild to life-threatening. We hypothesized that, by performing a model-based meta-analysis (MBMA) of the data in the literature, the dose at which tremors (a characteristic manifestation of SS) occur could be predicted based on the pharmacokinetic properties and SERT inhibitory potency of a given drug. To investigate the relationship between tremors and the predicted relative strength of SERT inhibition, a literature survey was performed to collate observed tremor data, pharmacokinetic parameters, and SERT potency data for known SERT inhibitors. Using these data for 20 SERT inhibitors, an Emax model relationship between tremor incidence and the ratio between brain unbound exposure and SERT IC50 was observed. The identified relationship provides a valuable tool to predict the likelihood of tremor incidence for investigational drugs with SERT inhibitory activity and to inform safety assessment and dose selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anup Zutshi
- EMD Serono, Inc. (Billerica, MA. USA, a business of Merck KGaA), Darmstadt, Germany
| | - Abed E Alnaif
- EMD Serono, Inc. (Billerica, MA. USA, a business of Merck KGaA), Darmstadt, Germany
| |
Collapse
|
5
|
Maurer CK, Fang Z, Duevel HM, Harlfinger S, Petersson C. Beyond-Rule-of-Five Compounds Are Not Different: In Vitro-In Vivo Extrapolation of Female CD-1 Mouse Clearance Based on Merck Healthcare KGaA Compound Set. Pharmaceuticals (Basel) 2025; 18:568. [PMID: 40284003 PMCID: PMC12029992 DOI: 10.3390/ph18040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Extrapolation of intrinsic clearance from in vitro systems such as liver microsomes or hepatocytes is an established approach to predict clearance in preclinical species and in humans. A common discussion in the literature is whether the predictive accuracy of such extrapolations is influenced by the chemotype and whether these methods are also applicable to compounds studied in early drug discovery programs. Compounds in such programs are frequently lipophilic and show low solubility and low free fraction in plasma, which may pose challenges to the extrapolation of clearance different from those of the final clinical candidates. A similar discussion has been raised about compounds residing beyond the traditional small-molecule property space, such as PROTACs© and other molecules incompatible with Lipinski's rule-of-five. Methods: To further enlighten the field on these matters, we present a study comparing the predictive accuracy between mouse hepatocytes and microsomes for a set of molecules (N = 211) from the Merck Healthcare drug discovery pipeline. This set was dominated by compounds belonging to class 2 and 4 of the extended clearance classification systems (ECCS). It contained a similar proportion of molecules compliant with the Lipinski rule-of-five (N = 127) and molecules lacking such compliance (N = 84). Results: This study showed no or little differences in predictive accuracy nor bias between the two groups, with an average fold error close to 1, an absolute average fold error of just over 2, and around 50% being within 2-fold and >90% being within 5-fold of the predicted unbound clearance in both in vitro systems. Furthermore, no significant differences in accuracy were observed for compounds with an extremely low free fraction (down to 0.05%) in plasma. Conclusions: The accuracy of in vitro-in vivo extrapolation of female CD-1 mouse clearance was not affected by the physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | - Carl Petersson
- NCE DMPK, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| |
Collapse
|
6
|
Webborn PJH, Beaumont K, Martin IJ, Smith DA. Free Drug Concepts: A Lingering Problem in Drug Discovery. J Med Chem 2025; 68:6850-6856. [PMID: 40116772 DOI: 10.1021/acs.jmedchem.5c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
|
7
|
Adams K, Li X, Rohan L, Bies R. PBPK models of the female reproductive tract: current and future analysis. Expert Opin Drug Metab Toxicol 2025; 21:429-444. [PMID: 40009783 DOI: 10.1080/17425255.2025.2470794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Drug delivery via the female reproductive tract (FRT) has garnered increasing attention due to its potential for local and systemic therapies. Physiologically Based Pharmacokinetic (PBPK) models offer a mechanistic approach to understanding drug absorption, distribution, metabolism, and excretion (ADME) within the FRT, which is critical for optimizing treatments for conditions such as vaginal infections, contraception, and hormonal therapies. AREAS COVERED This review provides a comprehensive analysis of the current state of PBPK modeling for the FRT, focusing on its physiological and anatomical complexities. The paper reviews existing FRT PBPK models and discusses the challenges of simulating drug permeation and ADME processes in reproductive tissues. Data gaps, including tissue-specific physiological parameters and drug permeability, are identified. Methodological advances and biological factors influencing drug disposition in the FRT are explored, including hormonal cycles, interindividual variability, and disease states like polycystic ovary syndrome. EXPERT OPINION PBPK models for the FRT hold significant promise for improving drug delivery and therapy personalization. However, current limitations in data availability and model validation must be addressed. Future research integrating real-world patient data, advanced imaging techniques, and pharmacodynamic modeling will enhance these models' accuracy and clinical utility, advancing drug development and regulatory processes.
Collapse
Affiliation(s)
- Kimberly Adams
- School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Xinnong Li
- School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Lisa Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
- Department of Obstetrics, Gynecology, & Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Robert Bies
- School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
Niosi M, Zhang S, Burchett W, Heck CJS, Goetz GH, Federico JJ, Gernhardt S, Jordan S, Gilbert AM, Calabrese MF, Obach RS, Steyn SJ. Applications of contemporary tools to measure plasma protein binding of targeted protein degraders. Drug Metab Dispos 2025; 53:100066. [PMID: 40286535 DOI: 10.1016/j.dmd.2025.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
Assessing the fraction unbound in plasma (fu,p) for highly bound compounds (fu,p < 1%) is challenging, in part due to the compound-specific factors that can influence assay variability and performance. This study investigates human plasma protein binding obtained using the presaturation technique, and the results are compared with the standard equilibrium dialysis method and an orthogonal approach for an emerging class of compounds known as proteolysis targeting chimeras (PROTACs). Four exemplary PROTACs, cereblon-based ARV-110 and dTAG-13, and VHL-based ARV-771 and ERRα-degrader-3, were used to illustrate the challenges of obtaining accurate protein-binding results. The results reveal a protein-binding range from 0.03% to 3%. ARV-110 and dTAG-13 are highly bound to plasma proteins (fu,p ≤ 0.004). Under the standard equilibrium dialysis method, all compounds, except for ARV-771, had high variability or were unstable. Following presaturation and temperature adjustment (37 °C or 4 °C), fu,p values were obtained for ARV-771 (0.020, 95% confidence interval [CI]: 0.019-0.021), dTAG-13 (0.0028, 95% CI: 0.0024-0.0033), and ARV-110 (0.00042, 95% CI: 0.00033-0.00054). ERRα-degrader-3 remained unstable under all conditions. A comparative analysis of the binding values measured for ARV-110, dTAG-13, and ARV-771 by different techniques revealed good concordance (1.1-fold to 2.7-fold difference) between the methods evaluated. Utilizing a presaturation technique with low temperature is effective for measuring protein binding for challenging unstable degraders. Presaturation can reduce assay failures due to nonspecific binding to equipment by ensuring the system has reached equilibrium. This study provides valuable insights into the challenges encountered when measuring protein binding for lipophilic and highly bound PROTACs. SIGNIFICANCE STATEMENT: This paper details the evaluation of plasma protein binding for complex proteolysis targeting chimeras (PROTACs) molecules using contemporary binding assays. Given the higher protein-binding assay failure rates with challenging compounds such as PROTACs, this study outlines strategies to improve assay efficiency. The results show improved efficiency in measuring plasma protein binding with PROTACs and provide insights for enhancing widely accepted protein-binding methods currently employed in drug research.
Collapse
Affiliation(s)
- Mark Niosi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut.
| | - Sam Zhang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Woodrow Burchett
- Global Biometrics and Data Management, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Carley J S Heck
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Gilles H Goetz
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - James J Federico
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Steven Gernhardt
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Samantha Jordan
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Adam M Gilbert
- Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Matthew F Calabrese
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Stefanus J Steyn
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| |
Collapse
|
9
|
Hossain MA, Brahme RR, Miller BC, Amin J, de Barros M, Schneider JL, Auclair JR, Mattos C, Wang Q, Agar NYR, Greenblatt DJ, Manetsch R, Agar JN. Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development. Nat Commun 2025; 16:1777. [PMID: 39971904 PMCID: PMC11839910 DOI: 10.1038/s41467-025-56985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an intact protein PK/PD model (iPK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the iPK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | - Rutali R Brahme
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Marcela de Barros
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jaime L Schneider
- Massachusetts General Hospital Cancer Center, Harvard Medical School;Boston, Massachusetts, 02114, USA
| | - Jared R Auclair
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Qingping Wang
- Sanofi US, Drug Metabolism and Pharmacokinetics;Cambridge, Massachusetts, 02141, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | | | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA.
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA.
| |
Collapse
|
10
|
Jeon SH, Kim MC, Lee H, Oh JH, Kim HS, Lee H, Park T, Lee YJ. A Sequential Ultrafiltration Method to Enhance the Accuracy and Throughput in Plasma Protein Binding Tests. Pharmaceutics 2025; 17:273. [PMID: 40006640 PMCID: PMC11859236 DOI: 10.3390/pharmaceutics17020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: Ultrafiltration (UF) is widely accepted as a method for assessing the plasma protein binding (PPB) of drugs. However, it is vulnerable to non-specific binding (NSB) to the device, which can result in inaccuracies. This study presents a straightforward, high-throughput modified UF method aimed at minimizing bias due to NSB. Methods: The modified UF method, sequential UF, features the addition of a 2 min pre-UF phase designed to saturate the NSB in the device, followed by the main 20 min UF procedure, compared to the conventional UF method. To evaluate the feasibility of this sequential UF method, we measured the PPB of nine compounds using sequential UF and compared these results to those obtained with the conventional mass balance UF method, recognized as a standard for NSB correction. Results: The PPB values determined through sequential UF were generally consistent with those derived from the mass balance UF method. The fold differences ranged from 97.9% to 113.8%, with an average of 103.5%. No significant differences were observed between the two methods for all compounds, with the exception of quercetin, which showed an unusually high PPB. Conclusions: Sequential UF was effective in correcting NSB to the device while providing advantages in terms of simplicity and efficiency.
Collapse
Affiliation(s)
- Sang Ho Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (S.H.J.); (M.C.K.); (H.L.); (H.L.); (T.P.)
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Min Chang Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (S.H.J.); (M.C.K.); (H.L.); (H.L.); (T.P.)
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Haejun Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (S.H.J.); (M.C.K.); (H.L.); (H.L.); (T.P.)
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Ju-Hee Oh
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Hyun Seo Kim
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Heawon Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (S.H.J.); (M.C.K.); (H.L.); (H.L.); (T.P.)
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Taehoon Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (S.H.J.); (M.C.K.); (H.L.); (H.L.); (T.P.)
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
| | - Young-Joo Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; (J.-H.O.); (H.S.K.)
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| |
Collapse
|
11
|
Apprato G, Caron G, Deshmukh G, Garcia-Jimenez D, Haid RTU, Pike A, Reichel A, Rynn C, Donglu Z, Wittwer MB. Finding a needle in the haystack: ADME and pharmacokinetics/pharmacodynamics characterization and optimization toward orally available bifunctional protein degraders. Expert Opin Drug Discov 2025. [PMID: 39956925 DOI: 10.1080/17460441.2025.2467195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Degraders are an increasingly important sub-modality of small molecules as illustrated by an ever-expanding number of publications and clinical candidate molecules in human trials. Nevertheless, their preclinical optimization of ADME and PK/PD properties has remained challenging. Significant research efforts are being directed to elucidate underlying principles and to derive rational optimization strategies. AREAS COVERED In this review the authors summarize current best practices in terms of in vitro assays and in vivo experiments. Furthermore, the authors collate and comment on the current understanding of optimal physicochemical characteristics and their impact on absorption, distribution, metabolism and excretion properties including the current knowledge of Drug-Drug interactions. Finally, the authors describe the Pharmacokinetic prediction and Pharmacokinetic/Pharmacodynamic -concepts unique to degraders and how to best implement these in research projects. EXPERT OPINION Despite many recent advances in the field, continued research will further our understanding of rational design regarding degrader optimization. Machine-learning and computational approaches will become increasingly important once larger, more robust datasets become available. Furthermore, tissue-targeting approaches (particularly regarding the Central Nervous System will be increasingly studied to elucidate efficacious drug regimens that capitalize on the catalytic mode of action. Finally, additional specialized approaches (e.g. covalent degraders, LOVdegs) can enrich the field further and offer interesting alternative approaches.
Collapse
Affiliation(s)
- Giulia Apprato
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | - Giulia Caron
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | | | - Diego Garcia-Jimenez
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | - Robin Thomas Ulrich Haid
- Preclinical Modeling & Simulation, Pharma R&D, Bayer AG, Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andreas Reichel
- Preclinical Modeling & Simulation, Pharma R&D, Bayer AG, Berlin, Germany
| | - Caroline Rynn
- Roche Products Ltd, Hexagon Place, 6 Falcon Way, Welwyn Garden City, UK
| | | | - Matthias Beat Wittwer
- pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. 4070 Basel, Switzerland
| |
Collapse
|
12
|
Dutheuil G, Oukoloff K, Korac J, Lenoir F, El Bousmaqui M, Probst N, Lapin A, Nakhabina G, Sorlet C, Parmentier N, Karila D, Ghavtadze N, Casault P, Claridge S, Sapmaz S, Slater MJ, Fraser GL. Discovery, Optimization, and Preclinical Pharmacology of EP652, a METTL3 Inhibitor with Efficacy in Liquid and Solid Tumor Models. J Med Chem 2025; 68:2981-3003. [PMID: 39883878 DOI: 10.1021/acs.jmedchem.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N6-methyladenosine (m6A), the most abundant modification to mRNA. The prevalence of m6A and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of EP652 as an in vivo proof-of-concept compound. EP652 potently inhibits the enzymatic activity of METTL3, has favorable PK parameters, and demonstrates efficacy in preclinical oncology models, indicating that pharmacological inhibition of METTL3 is a viable strategy for the treatment of liquid and solid tumors.
Collapse
Affiliation(s)
| | - Killian Oukoloff
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Julien Korac
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - François Lenoir
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Nicolas Probst
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Alexey Lapin
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Galina Nakhabina
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Catherine Sorlet
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Delphine Karila
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Nugzar Ghavtadze
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Paméla Casault
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Stephen Claridge
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Selma Sapmaz
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Martin J Slater
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Graeme L Fraser
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| |
Collapse
|
13
|
Giuliani M, Rizzi A, Pagano M, Raveglia LF, Saccani F, Di Lascia MR, Interlandi M, Nardella TS, Marchini G, Murgo A, Tigli L, Pappani A, Capelli AM, Fernandez SX, Puccini P, Villetti G, Civelli M, Beato C, Moro E, Mundi C, Remelli R, Armani E. Novel Cyclohexyl Amido Acid Antagonists of Lysophosphatidic Acid Type 1 Receptor for the Treatment of Pulmonary Fibrosis. ACS Med Chem Lett 2025; 16:317-326. [PMID: 39967626 PMCID: PMC11831564 DOI: 10.1021/acsmedchemlett.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid activating different biological functions by binding to G protein-coupled receptors (LPA1-6). Among these, the role of the LPA1 receptor in modulating fibrotic processes is well-known, making it a therapeutic target for pulmonary fibrosis and other fibrotic disorders. Herein we report the search for a new class of LPA1 antagonists for the oral treatment of idiopathic pulmonary fibrosis with a focus on hepatobiliary safety. Compound 7 excelled in in vitro and in vivo efficacy, showing significant efficacy both in PD studies and in a rodent lung fibrosis model, with a promising in vitro hepatic safety profile. However, in a dose range finding (DRF) toxicity study, compound 7 did not ensure safety regarding potential hepatobiliary toxicity, leading to its development being halted.
Collapse
Affiliation(s)
- Marta Giuliani
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrea Rizzi
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Mafalda Pagano
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Luca F. Raveglia
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Francesca Saccani
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | | | | | - Gessica Marchini
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Annalisa Murgo
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Laura Tigli
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alice Pappani
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Anna Maria Capelli
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Paola Puccini
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Claudia Beato
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Elisa Moro
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Claudia Mundi
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Rosaria Remelli
- Aptuit,
an Evotec Company, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Elisabetta Armani
- Chiesi
Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
14
|
Peterson K, Nilsson UJ, Gravelle L, Holyer I, Jansson K, Kahl-Knutson B, Leffler H, MacKinnon AC, Roper JA, Slack RJ, Wachenfeldt HV, Pedersen A, Zetterberg FR. Development and Characterization of a High-Affinity Selective Galectin-3 Mouse Tool Compound in Mouse Models of Cancer. J Med Chem 2024; 67:21905-21915. [PMID: 39668131 DOI: 10.1021/acs.jmedchem.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The interest in galectin-3 as a drug target in the cancer and fibrosis space has grown during the past few years with several new classes of compounds being developed. The first orally available galectin-3 inhibitor, GB1211 (h-galectin-3 Kd = 0.025 μM), is currently in phase 2 clinical trials. Due to structural differences between human and mouse galectin-3 a significant reduction in mouse galectin-3 affinity is observed for most highly potent human galectin-3 inhibitors including GB1211 (m-galectin-3 Kd = 0.77 μM). Pharmacokinetic experiments in mouse dosing GB1211 up to 100 mg/kg results in free plasma levels below m-galectin-3 Kd, which is not comparable to the data observed in humans. To better support translation into clinical studies, a new improved mouse galectin-3 tool compound, GB2095, was developed. Dosing this new compound in in vivo syngeneic mouse models of cancer resulted in reduction of the growth of breast and melanoma cancers.
Collapse
Affiliation(s)
- Kristoffer Peterson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lise Gravelle
- Galecto Biotech AB, Cobis Science Park, Ole Maaloes Vej 3, DK-2200, Copenhagen, Denmark
| | - Ian Holyer
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Karl Jansson
- Red Glead Discovery AB, Medicon Village, SE-223 63, Lund, Sweden
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Alison C MacKinnon
- Galecto Biotech ApS, Nine Edinburgh Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, U.K
| | - James A Roper
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Robert J Slack
- Galecto Biotech ApS, Stevenage Bioscience Catalyst, Stevenage, Hertfordshire SG1 2FX, U.K
| | | | - Anders Pedersen
- Galecto Biotech AB, Cobis Science Park, Ole Maaloes Vej 3, DK-2200, Copenhagen, Denmark
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
15
|
da Silva APM, da Silva GS, Oiram Filho F, Silva MFS, Zocolo GJ, de Brito ES. Structural Characterization and In Vitro and In Silico Studies on the Anti- α-Glucosidase Activity of Anacardic Acids from Anacardium occidentale. Foods 2024; 13:4107. [PMID: 39767049 PMCID: PMC11675133 DOI: 10.3390/foods13244107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The growing focus on sustainable use of natural resources has brought attention to cashew nut shell liquid (CNSL), a by-product rich in anacardic acids (AAs) with potential applications in diabetes treatment. In this study, three different AAs from CNSL, monoene (15:1, AAn1), diene (15:2, AAn2), and triene (15:3, AAn3), and a mixture of the three (mix) were evaluated as α-glucosidase inhibitors. The samples were characterized by combining 1D and 2D NMR spectroscopy, along with ESI-MS. In vitro assays revealed that AAn1 had the strongest inhibitory effect (IC50 = 1.78 ± 0.08 μg mL-1), followed by AAn2 (1.99 ± 0.76 μg mL-1), AAn3 (3.31 ± 0.03 μg mL-1), and the mixture (3.72 ± 2.11 μg mL-1). All AAs significantly outperformed acarbose (IC50 = 169.3 μg mL-1). In silico docking suggested that polar groups on the aromatic ring are key for enzyme-ligand binding. The double bond at C15, while not essential, enhanced the inhibitory effects. Toxicity predictions classified AAs as category IV, and pharmacokinetic analysis suggested moderately favorable drug-like properties. These findings highlight AAs as a promising option in the search for new hypoglycemic compounds.
Collapse
Affiliation(s)
- Ana Priscila Monteiro da Silva
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Department of Chemical Engineering, UFC, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Gisele Silvestre da Silva
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
| | - Francisco Oiram Filho
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Department of Chemical Engineering, UFC, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Maria Francilene Souza Silva
- Research and Development of Medicines, Federal University of Ceará, Rua Coronel Nunes de Melo 1000, Rodolfo Teófilo, Fortaleza 60420-275, CE, Brazil;
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Fortaleza 60511-110, CE, Brazil; (A.P.M.d.S.); (G.S.d.S.); (F.O.F.); (G.J.Z.)
- Embrapa Soja, Londrina 86085-981, PR, Brazil
| | | |
Collapse
|
16
|
Smith QR, Mandula H, Parepally JMR, Oki J, Thomas F, Thorsheim HR, Al-Ahmad AJ, Abbruscato TJ, Ask P, Hage DS, Robinson PJ. Brain endothelial permeability, transport, and flow assessed over 10 orders of magnitude using the in situ brain perfusion technique. Fluids Barriers CNS 2024; 21:100. [PMID: 39690422 DOI: 10.1186/s12987-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Cerebral blood flow normally places a limit on the magnitude of brain vascular permeability (P) that can be measured in vivo. At normal cerebral blood flow, this limit falls at the lower end of lipophilicity for most FDA-approved CNS drugs. In this study, we report on two methods that can be used to overcome this limitation and measure brain vascular permeability values that are up to ~1000 times higher using the in situ brain perfusion technique. METHODS Rat brain was perfused with physiological saline at increased flow rate and in the presence of various concentrations of plasma protein, serum albumin or alpha-acid glycoprotein. Plasma protein was added to the saline perfusion fluid to lower extraction into the measurable range using the Crone Renkin "diffusion-flow" equation to calculate brain PoS. RESULTS Cerebrovascular Po was determined for 125 solutes, of which 78 showed little or no evidence of active efflux transport. Fifty of the solutes were in the lipophilicity zone (Log Poct 1-5) of most FDA-approved CNS drugs. Care was taken to ensure the integrity of the brain vasculature during perfusion and to measure flow accurately using markers that had been verified for the flow rates. The results showed a linear relationship between Log Po and Log Poct over ~10 orders of magnitude with values for diazepam, estradiol, testosterone, and other agents that exceed prior published values by fivefold to 200-fold. CONCLUSIONS The results show that brain vascular permeability can be measured directly in vivo for highly lipophilic solutes and the PS values obtained match reasonably with that predicted by the Crone-Renkin flow diffusion equation with care taken to validate the accuracy for the component measurements and with no need to invoke "enhanced" or "induced" dissociation.
Collapse
Affiliation(s)
- Quentin R Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Haritha Mandula
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jagan Mohan R Parepally
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jun Oki
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Fancy Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Helen R Thorsheim
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Per Ask
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peter J Robinson
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Tess D, Harrison M, Lin J, Li R, Di L. Prediction of Drug-Drug Interactions for Highly Plasma Protein Bound Compounds. AAPS J 2024; 27:13. [PMID: 39663267 DOI: 10.1208/s12248-024-00987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Accurate prediction of drug-drug interactions (DDI) from in vitro data is important, as it provides insights on clinical DDI risk and study design. Historically, the lower limit of plasma fraction unbound (fu,p) is set at 1% for DDI prediction of highly bound compounds by the regulatory agencies due to the uncertainty of the fu,p measurements. This leads to high false positive DDI predictions for highly bound compounds. The recently published ICH M12 DDI guideline allows the use of experimental fu,p for DDI prediction of highly bound compounds. To further build confidence in DDI prediction of highly bound compounds using experimental fu,p values, we evaluated a set of drugs with fu,p < 1% and clinical DDI > 20% using both basic and mechanistic static models. All the compounds evaluated were flagged for DDI risk with the mechanistic model using experimental fu,p values. There was no false negative DDI prediction. Similarly, using the basic model, the DDI risk of all the compounds was identified except for CYP2D6 inhibition of almorexant. The totality of the data demonstrates that the DDI potential of highly bound compounds can be predicted accurately when actual protein binding numbers are measured.
Collapse
Affiliation(s)
- David Tess
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Makayla Harrison
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
- AstraZeneca, New Haven, Connecticut, USA
| | - Jian Lin
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA.
- Recursion Pharmaceuticals, Salt Lake City, Utah, USA.
| |
Collapse
|
18
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Reduced oxycodone brain delivery in rats due to lipopolysaccharide-induced inflammation: microdialysis insights into brain disposition and sex-specific pharmacokinetics. Fluids Barriers CNS 2024; 21:95. [PMID: 39623471 PMCID: PMC11613587 DOI: 10.1186/s12987-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Oxycodone, a widely used opioid analgesic, has an unbound brain-to-plasma concentration ratio (Kp,uu) greater than unity, indicating active uptake across brain barriers associated with the putative proton-coupled organic cation (H+/OC) antiporter system. With this study, we aimed to elucidate oxycodone's CNS disposition during lipopolysaccharide (LPS)-induced systemic inflammation in Sprague-Dawley rats. METHODS Using brain microdialysis, we dynamically and simultaneously monitored unbound oxycodone concentrations in blood, striatum, lateral ventricle, and cisterna magna following intravenous administration of oxycodone post-LPS challenge. RESULTS Our results indicated a reduced, sex-independent brain net uptake of oxycodone across the blood-brain barrier (BBB) measured in the striatum. Notably, the LPS challenge has significantly altered the systemic pharmacokinetics (PK) of oxycodone, in a sex-specific manner, leading to lower clearance and higher blood concentrations in females compared to LPS-treated males and healthy rats of both sexes. Proteomic analysis using Olink Target 96 Mouse Exploratory assay confirmed the induction of systemic inflammation and neuroinflammation. The inflammation led to an increased paracellular transport, measured using 4 kDa dextran, while preserving net active uptake of oxycodone across both BBB and the blood-cerebrospinal fluid barrier (BCSFB), with Kp,uu values of 2.7 and 2.5, respectively. The extent of uptake was 1.6-fold lower (p < 0.0001) at the BBB and unchanged at the BCSFB after the LPS challenge compared to that in healthy rats. However, the mean exposure of unbound oxycodone in the brain following LPS was similar to that in healthy rats, primarily due to the LPS-induced changes in systemic exposure. CONCLUSIONS These findings highlight the dissimilar responses at blood-brain interfaces during LPS-induced inflammation. Advancing the knowledge of neuropharmacokinetic mechanisms, specifically those involving the H+/OC antiporter system, will enable the development of more effective therapeutic strategies during inflammation conditions.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
19
|
Salisbury AL, Anderson GM, Yang A, Stika CS, Rasmussen-Torvik LJ, Gollan JK, Wisner KL. Fetal behavior and gestational serotonin reuptake inhibitor exposure: relationships between behavior, drug dosage, plasma drug level, and a measure of drug bioeffect. Neuropsychopharmacology 2024; 49:1968-1977. [PMID: 39127823 PMCID: PMC11480508 DOI: 10.1038/s41386-024-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Determination of the relationships between drug dosage, maternal and infant (cord blood) plasma drug concentrations, and serotonin reuptake inhibitor (SRI) bioeffect on offspring neurobehavior is crucial to assessing the effects of gestational SRI exposure. Measurement of maternal and cord blood platelet serotonin (5-HT) provides an index of inhibitory bioeffect at the 5-HT transporter and complements other measures of drug exposure. Three groups of mother-infant pairs were evaluated: (1) mothers with depression untreated with SRIs (DEP, n = 17), (2) mothers treated for depression with SRIs (DEP + SRI, n = 17), and (3) mothers who were not depressed and untreated (ND, n = 29). Fetal movement was assessed using a standardized ultrasound imaging and rating protocol. Maternal and cord blood platelet 5-HT levels were obtained from all participants. For the SRI + DEP group, maternal and infant plasma drug concentrations and an estimate of third-trimester maternal SRI drug exposure were obtained. As expected, substantially lower median platelet 5-HT levels were observed in the DEP + SRI group than in the non-exposed, combined ND and DEP groups. In non-exposed mothers and infants, platelet 5-HT levels were not affected by the presence of maternal depression. Lower maternal and infant platelet 5-HT levels were associated with more immature fetal movement quality. Although these data are limited by small sample size, the bioeffect index of in vivo platelet 5-HT transporter inhibition appears to provide a valuable approach for elucidating and possibly predicting the effects of gestational SRI exposure on fetal and perinatal neurobehavior.
Collapse
Affiliation(s)
- Amy L Salisbury
- School of Nursing, Virginia Commonwealth University, Richmond, VA, 23298-0567, USA.
- Department of Pediatrics, Women & Infants Hospital, Alpert Medical School at Brown University, Providence, RI, USA.
| | - George M Anderson
- Child Study Center and the Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT, 06525, USA
| | - Amy Yang
- AY Analytics, Chicago, IL, 60611, USA
| | - Catherine S Stika
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1000, Chicago, IL, 60611, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Jacqueline K Gollan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1000, Chicago, IL, 60611, USA
| | - Katherine L Wisner
- Children's National Hospital, Developing Brain Institute, 111 Michigan Ave., NW, 20001, Washington, DC, USA
| |
Collapse
|
20
|
Ward SE, Demont EH. Journal of Medicinal Chemistry Collection: Drug Discovery in the UK. J Med Chem 2024; 67:18631-18632. [PMID: 39417571 DOI: 10.1021/acs.jmedchem.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Simon E Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3XQ, United Kingdom of Great Britain and Northern Ireland
| | - Emmanuel H Demont
- Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
21
|
Girdenytė M, Hu Y, Ginosyan A, Hammarlund-Udenaes M, Loryan I. Formulation-dependent differences in paclitaxel distribution to anatomical sites relevant to chemotherapy-induced peripheral neuropathy. Front Pharmacol 2024; 15:1486686. [PMID: 39568585 PMCID: PMC11576287 DOI: 10.3389/fphar.2024.1486686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse event observed in patients receiving paclitaxel, associated with initial pathological changes in the peripheral nervous system, i.e., distal nerves and dorsal root ganglia (DRG). The prevalence of CIPN in patients receiving paclitaxel formulated i) in polyethylated castor oil with ethanol (CreEL-PTX), ii) as albumin-bound (nab-PTX), and iii) in XR17 micelles (micellar-PTX), is unexpectedly varying. We hypothesize that the discrepancy in CIPN prevalence could be governed by differences in the extent of paclitaxel distribution across blood-to-tissue barriers at the CIPN-sites, caused by the specific formulation. Methods The recently developed Combinatory Mapping Approach for CIPN was used to determine the unbound tissue-to-plasma concentration ratio Kp,uu,tissue, after a 4-h infusion of 4 mg/kg CreEL-PTX, 4 mg/kg nab-PTX or 1 mg/kg micellar-PTX in male and female Sprague Dawley rats. Kp,uu,tissue was determined in conventional (DRG, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN-sites. Results Based on our data, the Cremophor-free paclitaxel formulations were associated with a higher distribution of paclitaxel to CIPN-sites than CreEL-PTX, e.g., Kp,uu,DRG of 0.70 and 0.60 for nab-PTX and micellar-PTX, respectively, in comparison to 0.27 for CreEL-PTX (p < 0.01). In addition, the fraction of unbound paclitaxel in plasma was on average 1.6-fold higher in nab- and micellar PTX arms and equal to 0.061 and 0.065, respectively, compared to 0.039 for the CreEL-PTX treatment arm (p < 0.0001). Discussion In the case of similar unbound paclitaxel concentration in the plasma of patients and assumed species-independent extent of paclitaxel transport across the barriers, nab- and micellar-PTX formulations can lead to higher paclitaxel exposure at CIPN-sites in comparison to CreEL-PTX.
Collapse
Affiliation(s)
- Milda Girdenytė
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
- Pharmacy and Pharmacology Center, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Yang Hu
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Pfeil AJ, Hale JD, Zhang TS, Wakayama K, Miyazaki I, Odintsov I, Somwar R. Preclinical evaluation of targeted therapies for central nervous system metastases. Dis Model Mech 2024; 17:dmm050836. [PMID: 39344915 PMCID: PMC11463968 DOI: 10.1242/dmm.050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The central nervous system (CNS) represents a site of sanctuary for many metastatic tumors when systemic therapies that control the primary tumor cannot effectively penetrate intracranial lesions. Non-small cell lung cancers (NSCLCs) are the most likely of all neoplasms to metastasize to the brain, with up to 60% of patients developing CNS metastases during the disease process. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have helped reduce lung cancer mortality but vary considerably in their capacity to control CNS metastases. The ability of these therapies to effectively target lesions in the CNS depends on several of their pharmacokinetic properties, including blood-brain barrier permeability, affinity for efflux transporters, and binding affinity for both plasma and brain tissue. Despite the existence of numerous preclinical models with which to characterize these properties, many targeted therapies have not been rigorously tested for CNS penetration during the discovery process, whereas some made it through preclinical testing despite poor brain penetration kinetics. Several TKIs have now been engineered with the characteristics of CNS-penetrant drugs, with clinical trials proving these efforts fruitful. This Review outlines the extent and variability of preclinical evidence for the efficacy of NSCLC-targeted therapies, which have been approved by the US Food and Drug Administration (FDA) or are in development, for treating CNS metastases, and how these data correlate with clinical outcomes.
Collapse
Affiliation(s)
- Alexander J. Pfeil
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Joshua D. Hale
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Tiger S. Zhang
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kentaro Wakayama
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Isao Miyazaki
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 021105, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
23
|
Goetz A, Shanahan F, Brooks L, Lin E, Mroue R, Dela Cruz D, Hunsaker T, Czech B, Dixit P, Segal U, Martin S, Foster SA, Gerosa L. Computational Modeling of Drug Response Identifies Mutant-Specific Constraints for Dosing panRAF and MEK Inhibitors in Melanoma. Cancers (Basel) 2024; 16:2914. [PMID: 39199684 PMCID: PMC11353013 DOI: 10.3390/cancers16162914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE This study explores the potential of pre-clinical in vitro cell line response data and computational modeling in identifying the optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. RESULTS In a drug combination screen of 43 melanoma cell lines, we identified specific dosage landscapes of panRAF and MEK inhibitors for NRAS vs. BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma (mean Bliss score of 0.27 in NRAS vs. 0.1 in BRAF mutants). Computational modeling and follow-up molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated the in vivo translatability of in vitro dose-response maps by predicting tumor growth in xenografts with high accuracy in capturing cytostatic and cytotoxic responses. We analyzed the pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. CONCLUSION Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range. Overall, this work presents a framework to aid dose selection in drug combinations.
Collapse
Affiliation(s)
- Andrew Goetz
- gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA;
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Logan Brooks
- Department of Modeling and Simulation Clinical Pharmacology, Genentech, South San Francisco, CA 94080, USA;
| | - Eva Lin
- Department of Functional Genomics, Genentech, South San Francisco, CA 94080, USA; (E.L.); (S.M.)
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, 02-672 Warsaw, Poland;
| | - Purushottam Dixit
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| | - Udi Segal
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Scott Martin
- Department of Functional Genomics, Genentech, South San Francisco, CA 94080, USA; (E.L.); (S.M.)
| | - Scott A. Foster
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Luca Gerosa
- gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA;
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| |
Collapse
|
24
|
Ryu S, Burchett W, Zhang S, Jia X, Modaresi SMS, Agudelo J, Rodrigues D, Zhu H, Sunderland EM, Fischer FC, Slitt AL. Unbound Fractions of PFAS in Human and Rodent Tissues: Rat Liver a Suitable Proxy for Evaluating Emerging PFAS? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14641-14650. [PMID: 39161261 PMCID: PMC11825104 DOI: 10.1021/acs.est.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adverse health effects associated with exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a concern for public health and are driven by their elimination half-lives and accumulation in specific tissues. However, data on PFAS binding in human tissues are limited. Accumulation of PFAS in human tissues has been linked to interactions with specific proteins and lipids in target organs. Additional data on PFAS binding and unbound fractions (funbound) in whole human tissues are urgently needed. Here, we address this gap by using rapid equilibrium dialysis to measure the binding and funbound of 16 PFAS with 3 to 13 perfluorinated carbon atoms (ηpfc = 3-13) and several functional headgroups in human liver, lung, kidney, heart, and brain tissue. We compare results to mouse (C57BL/6 and CD-1) and rat tissues. Results show that funbound decreases with increasing fluorinated carbon chain length and hydrophobicity. Among human tissues, PFAS binding was generally greatest in brain > liver ≈ kidneys ≈ heart > lungs. A correlation analysis among human and rodent tissues identified rat liver as a suitable surrogate for predicting funbound for PFAS in human tissues (R2 ≥ 0.98). The funbound data resulting from this work and the rat liver prediction method offer input parameters and tools for toxicokinetic models for legacy and emerging PFAS.
Collapse
Affiliation(s)
- Sangwoo Ryu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Woodrow Burchett
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Sam Zhang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
- Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana, 70112, United States
| | | | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
| | - David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Pfizer Inc., Groton, CT 06340 United States
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
- Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana, 70112, United States
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fabian Christoph Fischer
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Angela L. Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI United States
| |
Collapse
|
25
|
Goetz A, Shanahan F, Brooks L, Lin E, Mroue R, Cruz DD, Hunsaker T, Czech B, Dixit P, Segal U, Martin S, Foster SA, Gerosa L. Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606432. [PMID: 39149377 PMCID: PMC11326189 DOI: 10.1101/2024.08.02.606432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Purpose This study explores the potential of preclinical in vitro cell line response data and computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. Results In a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma. Computational modeling and molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated in vivo translatability of in vitro dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. Conclusion Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range.
Collapse
Affiliation(s)
- Andrew Goetz
- gRED Computational Sciences, Genentech, South San Francisco, CA, US
- Department of Biomedical Engineering, Yale University, New Haven, CT, US
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Logan Brooks
- Department of Modeling and Simulation Clinical Pharmacology, Genentech, South San Francisco, CA, US
| | - Eva Lin
- Department of Functional Genomics, Genentech, South San Francisco, CA, US
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | | | - Purushottam Dixit
- Department of Biomedical Engineering, Yale University, New Haven, CT, US
| | - Udi Segal
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | - Scott Martin
- Department of Functional Genomics, Genentech, South San Francisco, CA, US
| | - Scott A. Foster
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Luca Gerosa
- gRED Computational Sciences, Genentech, South San Francisco, CA, US
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| |
Collapse
|
26
|
Musteata FM. Dosing Adjustments in Cases of Altered Plasma Protein Binding are Most Needed for Drugs with a Volume of Distribution Below 1.3 L/kg. Clin Pharmacokinet 2024; 63:1111-1119. [PMID: 39044110 DOI: 10.1007/s40262-024-01403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND The present literature offers conflicting views on the importance of changes in plasma protein binding in clinical therapeutics. Furthermore, there are no methods to calculate a new dosing regimen when such changes occur. METHODS Previous models developed by Balaz et al. and Greenblat et al. were used to calculate a plasma protein binding (PPB) score for individual drugs based on the volume of distribution for total concentration and the bound fraction of drug. The models were further used to calculate a new drug dosing interval for cases of altered plasma protein binding. The equations apply best for drugs with fast absorption and fast distribution; they can be used as approximations for drugs with slow distribution by using the volume of distribution at steady state and the rate constant of the elimination phase. RESULTS The newly developed equations show that changes in plasma protein binding are relevant only for drugs with a positive PPB score; such drugs must have a volume of distribution for total concentration below 1.3 L/kg and high protein binding. It is further shown that the drug dosing interval should be reduced when the remaining fraction of plasma protein binding is below the PPB score. CONCLUSION A new method to rank drugs according to the impact of changes in plasma protein binding on their pharmacokinetic profile was developed. The new method was applied to show that drugs with high PPB scores need reductions in their dosing interval when the level of protein binding decreases.
Collapse
Affiliation(s)
- Florin M Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
27
|
Krumpholz L, Klimczyk A, Bieniek W, Polak S, Wiśniowska B. Data set of fraction unbound values in the in vitro incubations for metabolic studies for better prediction of human clearance. Database (Oxford) 2024; 2024:baae063. [PMID: 39049520 PMCID: PMC11269425 DOI: 10.1093/database/baae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
In vitro-in vivo extrapolation is a commonly applied technique for liver clearance prediction. Various in vitro models are available such as hepatocytes, human liver microsomes, or recombinant cytochromes P450. According to the free drug theory, only the unbound fraction (fu) of a chemical can undergo metabolic changes. Therefore, to ensure the reliability of predictions, both specific and nonspecific binding in the model should be accounted. However, the fraction unbound in the experiment is often not reported. The study aimed to provide a detailed repository of the literature data on the compound's fu value in various in vitro systems used for drug metabolism evaluation and corresponding human plasma binding levels. Data on the free fraction in plasma and different in vitro models were supplemented with the following information: the experimental method used for the assessment of the degree of drug binding, protein or cell concentration in the incubation, and other experimental conditions, if different from the standard ones, species, reference to the source publication, and the author's name and date of publication. In total, we collected 129 literature studies on 1425 different compounds. The provided data set can be used as a reference for scientists involved in pharmacokinetic/physiologically based pharmacokinetic modelling as well as researchers interested in Quantitative Structure-Activity Relationship models for the prediction of fraction unbound based on compound structure. Database URL: https://data.mendeley.com/datasets/3bs5526htd/1.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Street, Kraków 30-688, Poland
- Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Łazarza Street 16, Kraków 31-530, Poland
| | - Aleksandra Klimczyk
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Street, Kraków 30-688, Poland
| | - Wiktoria Bieniek
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Street, Kraków 30-688, Poland
| | - Sebastian Polak
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Street, Krakow 30-688, Poland
- Certara UK Ltd (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, United Kingdom
| | - Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Street, Kraków 30-688, Poland
| |
Collapse
|
28
|
Bržezická T, Kohútová L, Glatz Z. Atypical applications of transverse diffusion of laminar flow profiles methodology for in-capillary reactions in capillary electrophoresis. J Sep Sci 2024; 47:e2400157. [PMID: 38982555 DOI: 10.1002/jssc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Capillary electrophoresis (CE) is a powerful separation technique offering quick and efficient analyses in various fields of bioanalytical chemistry. It is characterized by many well-known advantages, but one, which is perhaps the most important for this application field, is somewhat overlooked. It is the possibility to perform chemical and biochemical reactions at the nL scale inside the separation capillary. There are two basic formats applicable for this purpose, heterogeneous and homogeneous. In the former, one reactant is immobilized onto a particle or monolithic support or directly on the capillary wall, and the other is injected. In the latter, the reactant mixing inside a capillary is based on electromigration or diffusion. One of the diffusion-based methodologies, termed Transverse Diffusion of Laminar Flow Profiles, is the subject of this review. Since most studies utilizing in-capillary reactions in CE focus on enzymes, which are being continuously and exhaustively reviewed, this review covers the atypical applications of this methodology, but still in the bioanalytical field. As can be seen from the demonstrated applications, they are not limited to reactions, but can also be utilized for other biochemical systems.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Wang M, Kuldharan S, Shenoy A, Reddy S, Rex K, Osgood T, Wahlstrom J, Dahal UP. Xenografted Tumors Share Comparable Fraction Unbound and Can Be Surrogated by Mouse Lung Tissue. Drug Metab Dispos 2024; 52:644-653. [PMID: 38670798 DOI: 10.1124/dmd.124.001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024] Open
Abstract
Free (unbound) drug concentration at the site of action is the key determinant of biologic activity since only unbound drugs can exert pharmacological and toxicological effects. Unbound drug concentration in tumors for solid cancers is needed to understand/explain/predict pharmacokinetics, pharmacodynamics, and efficacy relations. Fraction unbound (fu ) in tumors is usually determined across several xenografted tumors derived from various cell lines in the drug discovery stage, which is time consuming and a resource burden. In this study, we determined the fu values for a set of diverse compounds (comprising acid, base, neutral, zwitterion, and covalent drugs) across five different xenografted tumors and five commercially available mouse tissues to explore the correlation of fu between tumors and the possibility of surrogate tissue(s) for tumor fu (fu,tumor) determination. The crosstumor comparison showed that fu,tumor values across tumors are largely comparable, and systematic tissue versus tumor comparison demonstrated that only lung tissue had comparable fu to all five tumors (fu values within twofold change for >80% compounds in both comparisons). These results indicated that mouse lung tissue can be used as a surrogate matrix for a fu,tumor assay. This study will increase efficiency in fu,tumor assessment and reduce animal use (adapting the replace, reduce, and refine principle) in drug discovery. SIGNIFICANCE STATEMENT: The free drug concept is a well accepted principle in drug discovery research. Currently, tumor fraction unbound (fu,tumor) is determined in several tumors derived from different cell lines to estimate free drug concentrations of a compound. The results from this study indicated that fu,tumor across xenografted tumors is comparable, and fu,tumor can be estimated using a surrogate tissue, mouse lung. The results will increase efficiency in fu,tumor assessment and reduce animal use in drug discovery.
Collapse
Affiliation(s)
- Min Wang
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Sandip Kuldharan
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Aravind Shenoy
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Satyanarayana Reddy
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Karen Rex
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Jan Wahlstrom
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| | - Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (M.W., U.P.D.); Pharmacokinetics and Drug Metabolism, Syngene Amgen Research & Development Center, Bangalore, India (S.K., A.S., S.R.); and Amgen Research (K.R., T.O.) and Pharmacokinetics and Drug Metabolism (J.W.), Amgen Inc., Thousand Oaks, California
| |
Collapse
|
30
|
Fitzpatrick G, Huang Y, Qiu F, Habgood MD, Medcalf RL, Ho H, Dziegielewska KM, Saunders NR. Entry of cannabidiol into the fetal, postnatal and adult rat brain. Cell Tissue Res 2024; 396:177-195. [PMID: 38366086 PMCID: PMC11055756 DOI: 10.1007/s00441-024-03867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Cannabidiol is a major component of cannabis but without known psychoactive properties. A wide range of properties have been attributed to it, such as anti-inflammatory, analgesic, anti-cancer, anti-seizure and anxiolytic. However, being a fairly new compound in its purified form, little is known about cannabidiol brain entry, especially during development. Sprague Dawley rats at four developmental ages: embryonic day E19, postnatal day P4 and P12 and non-pregnant adult females were administered intraperitoneal cannabidiol at 10 mg/kg with [3H] labelled cannabidiol. To investigate the extent of placental transfer, the drug was injected intravenously into E19 pregnant dams. Levels of [3H]-cannabidiol in blood plasma, cerebrospinal fluid and brain were estimated by liquid scintillation counting. Plasma protein binding of cannabidiol was identified by polyacrylamide gel electrophoresis and its bound and unbound fractions measured by ultrafiltration. Using available RNA-sequencing datasets of E19 rat brain, choroid plexus and placenta, as well as P5 and adult brain and choroid plexus, expression of 13 main cannabidiol receptors was analysed. Results showed that cannabidiol rapidly entered both the developing and adult brains. Entry into CSF was more limited. Its transfer across the placenta was substantially restricted as only about 50% of maternal blood plasma cannabidiol concentration was detected in fetal plasma. Albumin was the main, but not exclusive, cannabidiol binding protein at all ages. Several transcripts for cannabidiol receptors were expressed in age- and tissue-specific manner indicating that cannabidiol may have different functional effects in the fetal compared to adult brain.
Collapse
Affiliation(s)
- Georgia Fitzpatrick
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Yifan Huang
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Fiona Qiu
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Mark D Habgood
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Robert L Medcalf
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Heidi Ho
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Norman R Saunders
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
31
|
Thomas C, Byer-Alcorace A, Wang T. Human Serum Albumin Immobilized On Magnetizable Beads: A Rapid Method for Compound HSA Binding Study. J Pharm Sci 2024; 113:1359-1367. [PMID: 38325737 DOI: 10.1016/j.xphs.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Immobilized human serum albumin (HSA) was developed by coupling His-tagged HSA onto Ni2+-coupled magnetizable beads (HSA-beads), allowing the HSA to be easily removed from incubation components. The HSA-beads system provides a rapid and convenient method to study HSA compound binding. In this study, the HSA-beads system was characterized and evaluated as a tool for assessing compound HSA binding properties. The free fraction (fu) values of test compounds measured using HSA-beads were comparable to those determined by equilibrium dialysis (ED), which is commonly used to evaluate albumin binding in vitro. The equilibrium dissociation constant (Kd) values determined for a series of compounds using the HSA-beads method demonstrated good correlation with literature data. This good correlation also suggests that the binding of His-HSA to the beads does not impact the conformations of the two compound binding sites of HSA, as the range of compounds tested encompassed binding to both sites. Furthermore, the Kd values of representative compounds itraconazole and BIRT2584 that were difficult to assess using ED, due to significant cellulose membrane adsorption, were successfully determined. The HSA-beads provide several advantages over ED, such as simple preparation, short assay incubation duration, and the ability to quantify both free and HSA-bound species of the test compound, facilitated by the simple separation of HSA-beads from the solution phase using a magnetic field. These properties render the HSA-beads method suitable for high-throughput studies on compound HSA binding.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Alexander Byer-Alcorace
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Ting Wang
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.
| |
Collapse
|
32
|
Bodenlenz M, Yeoh T, Berstein G, Mathew S, Shah J, Banfield C, Hollingshead B, Steyn SJ, Osgood SM, Beaumont K, Kainz S, Holeček C, Trausinger G, Raml R, Birngruber T. Comparative Study of Dermal Pharmacokinetics Between Topical Drugs Using Open Flow Microperfusion in a Pig Model. Pharm Res 2024; 41:223-234. [PMID: 38158503 PMCID: PMC10879402 DOI: 10.1007/s11095-023-03645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations). METHODS Domestic pigs were topically administered seven different drugs twice daily in two studies. On day 7, drug exposures in the dermis were assessed in two ways: (1) dOFM provided the total and unbound drug concentrations in dermal interstitial fluid, and (2) clean punch biopsies after heat separation provided the total concentrations in the upper and lower dermis. RESULTS dOFM showed sufficient intra-study precision to distinguish interstitial fluid concentrations between different drugs, dose frequencies and dose strengths, and had good reproducibility between studies. Biopsy concentrations showed much higher and more variable values. Standard dOFM measurements were consistent with values obtained with the recirculation approach. CONCLUSIONS dOFM pig model is a robust and reproducible method to directly determine topical drug concentration in dermal interstitial fluid. Dermal biopsies were a less reliable measure of dermal exposure due to possible contributions from drug bound to tissue and drug associated with skin appendages.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thean Yeoh
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Gabriel Berstein
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Shibin Mathew
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA.
| | - Jaymin Shah
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | | | - Brett Hollingshead
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Stefanus J Steyn
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sarah M Osgood
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Kevin Beaumont
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sonja Kainz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Christian Holeček
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Gert Trausinger
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Reingard Raml
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
| |
Collapse
|
33
|
Dömötör O, Mathuber M, Kowol CR. In vitro biodistribution studies on clinically approved FGFR inhibitors ponatinib, nintedanib, erlotinib and the investigational inhibitor KP2692. Eur J Pharm Sci 2024; 192:106651. [PMID: 38013124 DOI: 10.1016/j.ejps.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Binding towards human serum albumin (HSA) and α1-acid glycoprotein (AGP) of three approved fibroblast growth factor receptor (FGFR) inhibitors ponatinib (PON), nintedanib (NIN) and erdafitinib (ERD), as well as the experimental drug KP2692 was studied by means of spectrofluorometric and UV-visible spectrophotometric methods. Additionally, proton dissociation processes, lipophilicity, and fluorescence properties of these four molecules were investigated in detail. The FGFR inhibitors were predominantly presented in their single protonated form (HL+) at pH 7.4 (at blood pH). At gastric pH (pH 1-2) the protonated forms (+1 - +3) are present, which provide relatively good aqueous solubility of the drugs. All of the four inhibitors are highly or extremely lipophilic at pH 7.4 (logD7.4 ≥ 2.7). At acidic pH 2.0 PON and ERD are rather lipophilic, NIN is amphiphilic, while KP2692 is highly hydrophilic. All four compounds bind to HSA and AGP. Moderate binding of PON, KP2692 and NIN was found towards albumin (logK' = 4.5-4.7), while their affinity for AGP was about one order of magnitude higher (logK' = 5.2-5.7). ERD shows a larger affinity for both proteins (logK'HSA ≈ 5.2, logK'AGP ≈ 7.0). The computed constants were used to model the distribution of the FGFR inhibitors in blood plasma under physiological and pathological (acute phase) conditions. The changing levels of the two proteins under pathological conditions compensate each other for PON and NIN, so that the free drug fractions do not change considerably. In the case of ERD the higher AGP levels distinctly reduce the free available fraction of the drug. Comparison with clinical pharmacokinetic data indicates that the here presented solution distribution studies can very well predict the conditions in cancer patients.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary.
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Viertel K, Feles E, Schulte M, Annecke T, Mattner F. Serum concentration of continuously administered vancomycin influences efficacy and safety in critically ill adults: a systematic review. Int J Antimicrob Agents 2023; 62:107005. [PMID: 37839714 DOI: 10.1016/j.ijantimicag.2023.107005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Vancomycin is used to treat Gram-positive infections in critically ill adults. For vancomycin administered by continuous infusion (CI), various target ranges have been used, ranging from 15-20 mg/L to 30-40 mg/L. This systematic literature review was conducted to investigate the impact of steady-state serum concentration (Css) of CI on safety and efficacy of therapy in critically ill adults. METHODS Relevant literature was identified by searching two electronic databases (PubMed, Cochrane Library) and Google Scholar from inception until July 2023, focusing on studies reporting measured Css and treatment outcomes (e.g. mortality, nephrotoxicity) with CI. Due to study heterogeneity, a narrative synthesis of the evidence was performed. RESULTS Twenty-one publications were included with a total of 2949 patients. Mortality was higher (two studies, n = 388 patients) and clinical cure was lower (one study, n = 40 patients) with Css < 15 mg/L measured 24 h after initiation of CI (C24). An adequate loading dose appeared most important for maintaining higher C24. Generally, higher Css was associated with higher rates of acute kidney injury (AKI) (15 studies, n = 2331 patients). It was calculated that Css < 25 mg/L (versus ≥25 mg/L) was preferable for reducing nephrotoxicity (three studies, n = 515 patients). CONCLUSIONS Despite sparse data availability, the target range of 15-25 mg/L in CI may increase clinical cure and reduce mortality and AKI. In future research, vancomycin Css cohorts should be formed to allow evaluation of the impact of Css of CI on treatment outcomes.
Collapse
Affiliation(s)
- Katrin Viertel
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany.
| | - Elisabeth Feles
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany
| | - Melanie Schulte
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Thorsten Annecke
- Department of Anaesthesiology and Intensive Care Medicine, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Frauke Mattner
- Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany
| |
Collapse
|
35
|
Christophersen P, Dyhring T. The shortcoming of using glibenclamide in exploratory clinical headache provocation studies. Cephalalgia 2023; 43:3331024231219475. [PMID: 38064318 DOI: 10.1177/03331024231219475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Preclinical and clinical studies implicate the vascular ATP-sensitive potassium (KATP) channel in the signaling cascades underlying headache and migraine. However, attempts to demonstrate that the KATP channel inhibitor glibenclamide would attenuate triggered headache in healthy volunteers have proven unsuccessful. It is questionable, however, whether target engagement was achieved in these clinical studies. METHODS Literature data for human glibenclamide pharmacokinetics, plasma protein binding and functional IC50 values were used to predict the KATP receptor occupancy (RO) levels obtained after glibenclamide dosing in the published exploratory clinical headache provocation studies. RO vs. time profiles of glibenclamide were simulated for the pancreatic KATP channel subtype Kir6.2/SUR1 and the vascular subtype Kir6.1/SUR2B. RESULTS At the clinical dose of 10 mg of glibenclamide used in the headache provocation studies, predicted maximal occupancy levels of up to 90% and up to 26% were found for Kir6.2/SUR1 and Kir6.1/SUR2B, respectively. CONCLUSIONS The findings of the present study indicate that effective Kir6.1/SUR2B target engagement was not achieved in the clinical headache provocation studies using glibenclamide. Therefore, development of novel selective Kir6.1/SUR2B inhibitors, with good bioavailability and low plasma protein binding, is required to reveal the potential of KATP channel inhibition in the treatment of migraine.
Collapse
|
36
|
Spreitzer I, Keife J, Strasser T, Kalaba P, Lubec J, Neuhaus W, Lubec G, Langer T, Wackerlig J, Loryan I. Pharmacokinetics of Novel Dopamine Transporter Inhibitor CE-123 and Modafinil with a Focus on Central Nervous System Distribution. Int J Mol Sci 2023; 24:16956. [PMID: 38069277 PMCID: PMC10707468 DOI: 10.3390/ijms242316956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
S-CE-123, a novel dopamine transporter inhibitor, has emerged as a potential candidate for cognitive enhancement. The objective of this study was to compare the tissue distribution profiles, with a specific focus on central nervous system distribution and metabolism, of S-CE-123 and R-modafinil. To address this objective, a precise liquid chromatography-high resolution mass spectrometry method was developed and partially validated. Neuropharmacokinetic parameters were assessed using the Combinatory Mapping Approach. Our findings reveal distinct differences between the two compounds. Notably, S-CE-123 demonstrates a significantly superior extent of transport across the blood-brain barrier (BBB), with an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 0.5, compared to R-modafinil's Kp,uu,brain of 0.1. A similar pattern was observed for the transport across the blood-spinal cord barrier. Concerning the drug transport across cellular membranes, we observed that S-CE-123 primarily localizes in the brain interstitial space, whereas R-modafinil distributes more evenly across both sides of the plasma membrane of the brain's parenchymal cells (Kp,uu,cell). Furthermore, our study highlights the substantial differences in hepatic metabolic stability, with S-CE-123 having a 9.3-fold faster metabolism compared to R-modafinil. In summary, the combination of improved BBB transport and higher affinity of S-CE-123 to dopamine transporters in comparison to R-modafinil makes S-CE-123 a promising candidate for further testing for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Iva Spreitzer
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (I.S.); (T.L.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria
| | - Josefin Keife
- Translational Pharmacokinetics/Pharmacodynamics Group, Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Tobias Strasser
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (I.S.); (T.L.)
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (I.S.); (T.L.)
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria (G.L.)
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria (G.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (I.S.); (T.L.)
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (I.S.); (T.L.)
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group, Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
37
|
Komura H, Watanabe R, Mizuguchi K. The Trends and Future Prospective of In Silico Models from the Viewpoint of ADME Evaluation in Drug Discovery. Pharmaceutics 2023; 15:2619. [PMID: 38004597 PMCID: PMC10675155 DOI: 10.3390/pharmaceutics15112619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Drug discovery and development are aimed at identifying new chemical molecular entities (NCEs) with desirable pharmacokinetic profiles for high therapeutic efficacy. The plasma concentrations of NCEs are a biomarker of their efficacy and are governed by pharmacokinetic processes such as absorption, distribution, metabolism, and excretion (ADME). Poor ADME properties of NCEs are a major cause of attrition in drug development. ADME screening is used to identify and optimize lead compounds in the drug discovery process. Computational models predicting ADME properties have been developed with evolving model-building technologies from a simplified relationship between ADME endpoints and physicochemical properties to machine learning, including support vector machines, random forests, and convolution neural networks. Recently, in the field of in silico ADME research, there has been a shift toward evaluating the in vivo parameters or plasma concentrations of NCEs instead of using predictive results to guide chemical structure design. Another research hotspot is the establishment of a computational prediction platform to strengthen academic drug discovery. Bioinformatics projects have produced a series of in silico ADME models using free software and open-access databases. In this review, we introduce prediction models for various ADME parameters and discuss the currently available academic drug discovery platforms.
Collapse
Affiliation(s)
- Hiroshi Komura
- University Research Administration Center, Osaka Metropolitan University, 1-2-7 Asahimachi, Abeno-ku, Osaka 545-0051, Osaka, Japan
| | - Reiko Watanabe
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| | - Kenji Mizuguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| |
Collapse
|
38
|
Saleh MAA, Gülave B, Campagne O, Stewart CF, Elassaiss-Schaap J, de Lange ECM. Using the LeiCNS-PK3.0 Physiologically-Based Pharmacokinetic Model to Predict Brain Extracellular Fluid Pharmacokinetics in Mice. Pharm Res 2023; 40:2555-2566. [PMID: 37442882 PMCID: PMC10733198 DOI: 10.1007/s11095-023-03554-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION The unbound brain extracelullar fluid (brainECF) to plasma steady state partition coefficient, Kp,uu,BBB, values provide steady-state information on the extent of blood-brain barrier (BBB) transport equilibration, but not on pharmacokinetic (PK) profiles seen by the brain targets. Mouse models are frequently used to study brain PK, but this information cannot directly be used to inform on human brain PK, given the different CNS physiology of mouse and human. Physiologically based PK (PBPK) models are useful to translate PK information across species. AIM Use the LeiCNS-PK3.0 PBPK model, to predict brain extracellular fluid PK in mice. METHODS Information on mouse brain physiology was collected from literature. All available connected data on unbound plasma, brainECF PK of 10 drugs (cyclophosphamide, quinidine, erlotonib, phenobarbital, colchicine, ribociclib, topotecan, cefradroxil, prexasertib, and methotrexate) from different mouse strains were used. Dosing regimen dependent plasma PK was modelled, and Kpuu,BBB values were estimated, and provided as input into the LeiCNS-PK3.0 model to result in prediction of PK profiles in brainECF. RESULTS Overall, the model gave an adequate prediction of the brainECF PK profile for 7 out of the 10 drugs. For 7 drugs, the predicted versus observed brainECF data was within two-fold error limit and the other 2 drugs were within five-fold error limit. CONCLUSION The current version of the mouse LeiCNS-PK3.0 model seems to reasonably predict available information on brainECF from healthy mice for most drugs. This brings the translation between mouse and human brain PK one step further.
Collapse
Affiliation(s)
- Mohammed A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | | | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
39
|
Klock E, Kane MP, Musteata FM. Measurement of free fraction, total concentration and protein binding for testosterone, triiodothyronine and thyroxine. Bioanalysis 2023; 15:1355-1368. [PMID: 37847058 PMCID: PMC10619191 DOI: 10.4155/bio-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023] Open
Abstract
Aims: Measuring the total and free concentrations of hormones is useful, but the technology to do this simultaneously is lacking. Methods: A new method offers the ability to measure these parameters concurrently for testosterone, thyroxine and triiodothyronine. Results: The free concentrations showed significant correlations with patients' vital statistics. Overall, 67% of correlations for total concentration showed that the new and classical methods had equal accuracy, or that comprehensive ultrafiltration was more accurate. The protein binding term was found to correlate significantly with the patients' luteinizing hormone, prostate-specific antigen and height. Conclusion: Comprehensive ultrafiltration for measuring the total concentration, free concentration and protein binding term uses less sample and is much faster than measuring these parameters with three separate methods.
Collapse
Affiliation(s)
- Emily Klock
- Albany College of Pharmacy & Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Michael P Kane
- Albany College of Pharmacy & Health Sciences, Department of Pharmacy Practice, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Florin M Musteata
- Albany College of Pharmacy & Health Sciences, Department of Pharmaceutical Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
40
|
Mader MM, Rudolph J, Hartung IV, Uehling D, Workman P, Zuercher W. Which Small Molecule? Selecting Chemical Probes for Use in Cancer Research and Target Validation. Cancer Discov 2023; 13:2150-2165. [PMID: 37712569 DOI: 10.1158/2159-8290.cd-23-0536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Small-molecule chemical "probes" complement the use of molecular biology techniques to explore, validate, and generate hypotheses on the function of proteins in diseases such as cancer. Unfortunately, the poor selection and use of small-molecule reagents can lead to incorrect conclusions. Here, we illustrate examples of poor chemical tools and suggest best practices for the selection, validation, and use of high-quality chemical probes in cancer research. We also note the complexity associated with tools for novel drug modalities, exemplified by protein degraders, and provide advice and resources to facilitate the independent identification of appropriate small-molecule probes by researchers. SIGNIFICANCE Validation of biological targets and pathways will be aided by a shared understanding of the criteria of potency, selectivity, and target engagement associated with small-molecule reagents ("chemical probes") that enable that work. Interdisciplinary collaboration between cancer biologists, medicinal chemists, and chemical biologists and the awareness of available resources will reduce misleading data generation and interpretation, strengthen data robustness, and improve productivity in academic and industrial research.
Collapse
Affiliation(s)
- Mary M Mader
- Indiana Biosciences Research Institute, Indianapolis, Indiana
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
| | - Joachim Rudolph
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
- Genentech, Inc., South San Francisco, California
| | - Ingo V Hartung
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
- Merck Healthcare KGaA, Darmstadt, Germany
| | - David Uehling
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Paul Workman
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
- Centre for Cancer Drug Discovery, The Institute of Cancer Research (London), Sutton, United Kingdom
- Chemical Probes Portal (www.chemicalprobes.org)
| | - William Zuercher
- Chemistry in Cancer Research (CICR) Working Group of the American Association for Cancer Research, Philadelphia, Pennsylvania
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
41
|
Volak LP, Duevel HM, Humphreys S, Nettleton D, Phipps C, Pike A, Rynn C, Scott-Stevens P, Zhang D, Zientek M. Industry Perspective on the Pharmacokinetic and Absorption, Distribution, Metabolism, and Excretion Characterization of Heterobifunctional Protein Degraders. Drug Metab Dispos 2023; 51:792-803. [PMID: 37041086 DOI: 10.1124/dmd.122.001154] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Targeted protein degraders (TPDs), specifically the bifunctional protein degraders discussed in this manuscript, consist of two linked ligands for a protein of interest and an E3 ligase, resulting in molecules that largely violate accepted physicochemical limits (e.g., Lipinski's Rule of Five) for oral bioavailability. In 2021, the IQ Consortium Degrader DMPK/ADME Working Group undertook a survey of 18 IQ member and nonmember companies working on degraders to understand whether the characterization and optimization of these molecules were different from any other beyond the Rule of Five (bRo5) compounds. Additionally, the working group sought to identify pharmacokinetic (PK)/absorption, distribution, metabolism, and excretion (ADME) areas in need of further evaluation and where additional tools could aid in more rapid advancement of TPDs to patients. The survey revealed that although TPDs reside in a challenging bRo5 physicochemical space, most respondents focus their efforts on oral delivery. Physicochemical properties required for oral bioavailability were generally consistent across the companies surveyed. Many of the member companies used modified assays to address challenging degrader properties (e.g., solubility, nonspecific binding), but only half indicated that they modified their drug discovery workflows. The survey also suggested the need for further scientific investigation in the areas of central nervous system penetration, active transport, renal elimination, lymphatic absorption, in silico/machine learning, and human pharmacokinetic prediction. Based on the survey results, the Degrader DMPK/ADME Working Group concluded that TPD evaluation does not fundamentally differ from other bRo5 compounds but requires some modification compared with traditional small molecules and proposes a generic workflow for PK/ADME evaluation of bifunctional TPDs. SIGNIFICANCE STATEMENT: Based on an industry survey, this article provides an understanding of the current state of absorption, distribution, metabolism, and excretion science pertaining to characterizing and optimizing targeted protein degraders, specifically bifunctional protein degraders, based upon responses by 18 IQ consortium members and non-members developing targeted protein degraders. Additionally, this article puts into context the differences / similarities in methods and strategies utilized for heterobifunctional protein degraders compared to other beyond Rule of Five molecules and conventional small molecule drugs.
Collapse
Affiliation(s)
- Laurie P Volak
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Heide Marika Duevel
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Sara Humphreys
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - David Nettleton
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Colin Phipps
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Andy Pike
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Caroline Rynn
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Paul Scott-Stevens
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Donglu Zhang
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| | - Michael Zientek
- Janssen Research & Development, LLC, San Diego, California (L.P.V.); The Healthcare Business of Merck KGaA, Darmstadt, Germany (H.M.D.); Amgen Inc, San Francisco, California (S.H.); Novartis Institutes for Biomedical Research, Cambridge, Massachusetts (D.N.); AbbVie Inc, North Chicago, Illinois (C.P.); AstraZeneca, Cambridge, United Kingdom (A.P.); Roche pRED, Basel, Switzerland (C.R.); GlaxoSmithKline, Stevenage, United Kingdom (P.S.-S.); Genentech, San Francisco, California (D.Z.); and Takeda Development Center Americas, San Diego, California (M.Z.)
| |
Collapse
|
42
|
Tastet V, Le Vée M, Bruyère A, Fardel O. Interactions of human drug transporters with chemical additives present in plastics: Potential consequences for toxicokinetics and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121882. [PMID: 37236587 DOI: 10.1016/j.envpol.2023.121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
43
|
Melander E, Eriksson C, Wellens S, Hosseini K, Fredriksson R, Gosselet F, Culot M, Göransson U, Hammarlund-Udenaes M, Loryan I. Differential Blood-Brain Barrier Transport and Cell Uptake of Cyclic Peptides In Vivo and In Vitro. Pharmaceutics 2023; 15:pharmaceutics15051507. [PMID: 37242750 DOI: 10.3390/pharmaceutics15051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) poses major challenges to drug delivery to the CNS. SFTI-1 and kalata B1 are cyclic cell-penetrating peptides (cCPPs) with high potential to be used as scaffolds for drug delivery. We here studied their transport across the BBB and distribution within the brain to gauge the potential of these two cCPPs as scaffolds for CNS drugs. In a rat model, SFTI-1 exhibited, for a peptide, high extent of BBB transport with a partitioning of unbound SFTI-1 across the BBB, Kp,uu,brain, of 13%, while only 0.5% of kalata B1 equilibrated across the BBB. By contrast, kalata B1, but not SFTI-1, readily entered neural cells. SFTI-1, but not kalata B1, could be a potential CNS delivery scaffold for drugs directed to extracellular targets. These findings indicate that differences between the BBB transport and cellular uptake abilities of CPPs are crucial in the development of peptide scaffolds.
Collapse
Affiliation(s)
- Erik Melander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Sara Wellens
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
44
|
Qi T, Cao Y. Dissecting sources of variability in patient response to targeted therapy: anti-HER2 therapies as a case study. Eur J Pharm Sci 2023; 186:106467. [PMID: 37196833 DOI: 10.1016/j.ejps.2023.106467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/21/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND PURPOSE Despite their use to treat cancers with specific genetic aberrations, targeted therapies elicit heterogeneous responses. Sources of variability are critical to targeted therapy drug development, yet there exists no method to discern their relative contribution to response heterogeneity. EXPERIMENTAL APPROACH We use HER2-amplified breast cancer and two agents, neratinib and lapatinib, to develop a platform for dissecting sources of variability in patient response. The platform comprises four components: pharmacokinetics, tumor burden and growth kinetics, clonal composition, and sensitivity to treatment. Pharmacokinetics are simulated using population models to capture variable systemic exposure. Tumor burden and growth kinetics are derived from clinical data comprising over 800,000 women. The fraction of sensitive and resistant tumor cells is informed by HER2 immunohistochemistry. Growth rate-corrected drug potency is used to predict response. We integrate these factors and simulate clinical outcomes for virtual patients. The relative contribution of these factors to response heterogeneity are compared. KEY RESULTS The platform was verified with clinical data, including response rate and progression-free survival (PFS). For both neratinib and lapatinib, the growth rate of resistant clones influenced PFS to a higher degree than systemic drug exposure. Variability in exposure at labeled doses did not significantly influence response. Sensitivity to drug strongly influenced responses to neratinib. Variability in patient HER2 immunohistochemistry scores influenced responses to lapatinib. Exploratory twice daily dosing improved PFS for neratinib but not lapatinib. CONCLUSION AND IMPLICATIONS The platform can dissect sources of variability in response to target therapy, which may facilitate decision-making during drug development.
Collapse
Affiliation(s)
- Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
45
|
Faresjö R, Sehlin D, Syvänen S. Age, dose, and binding to TfR on blood cells influence brain delivery of a TfR-transported antibody. Fluids Barriers CNS 2023; 20:34. [PMID: 37170266 PMCID: PMC10173660 DOI: 10.1186/s12987-023-00435-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Transferrin receptor 1 (TfR1) mediated brain delivery of antibodies could become important for increasing the efficacy of emerging immunotherapies in Alzheimer's disease (AD). However, age, dose, binding to TfR1 on blood cells, and pathology could influence the TfR1-mediated transcytosis of TfR1-binders across the blood-brain barrier (BBB). The aim of the study was, therefore, to investigate the impact of these factors on the brain delivery of a bispecific TfR1-transported Aβ-antibody, mAb3D6-scFv8D3, in comparison with the conventional antibody mAb3D6. METHODS Young (3-5 months) and aged (17-20 months) WT and tg-ArcSwe mice (AD model) were injected with 125I-labeled mAb3D6-scFv8D3 or mAb3D6. Three different doses were used in the study, 0.05 mg/kg (low dose), 1 mg/kg (high dose), and 10 mg/kg (therapeutic dose), with equimolar doses for mAb3D6. The dose-corrected antibody concentrations in whole blood, blood cells, plasma, spleen, and brain were evaluated at 2 h post-administration. Furthermore, isolated brains were studied by autoradiography, nuclear track emulsion, and capillary depletion to investigate the intrabrain distribution of the antibodies, while binding to blood cells was studied in vitro using blood isolated from young and aged mice. RESULTS The aged WT and tg-ArcSwe mice showed significantly lower brain concentrations of TfR-binding [125I]mAb3D6-scFv8D3 and higher concentrations in the blood cell fraction compared to young mice. For [125I]mAb3D6, no significant differences in blood or brain delivery were observed between young and aged mice or between genotypes. A low dose of [125I]mAb3D6-scFv8D3 was associated with increased relative parenchymal delivery, as well as increased blood cell distribution. Brain concentrations and relative parenchymal distribution of [125I]mAb3D6-scFv8D6 did not differ between tg-ArcSwe and WT mice at this early time point but were considerably increased compared to those observed for [125I]mAb3D6. CONCLUSION Age-dependent differences in blood and brain concentrations were observed for the bispecific antibody mAb3D6-scFv8D3 but not for the conventional Aβ antibody mAb3D6, indicating an age-related effect on TfR1-mediated brain delivery. The lowest dose of [125I]mAb3D6-scFv8D3 was associated with higher relative BBB penetration but, at the same time, a higher distribution to blood cells. Overall, Aβ-pathology did not influence the early brain distribution of the bispecific antibody. In summary, age and bispecific antibody dose were important factors determining brain delivery, while genotype was not.
Collapse
Affiliation(s)
- Rebecca Faresjö
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
46
|
Hammar R, Sellin ME, Artursson P. Epithelial and microbial determinants of colonic drug distribution. Eur J Pharm Sci 2023; 183:106389. [PMID: 36690119 DOI: 10.1016/j.ejps.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
A dynamic epithelium and a rich microbiota, separated by multi-layered mucus, make up the complex colonic cellular environment. Both cellular systems are characterized by high inter- and intraindividual differences, but their impact on drug distribution and efficacy remains incompletely understood. This research gap is pressing, as, e.g., inflammatory disorders of the colon are on the rise globally. In an effort to help close this gap, we provide considerations on determining colonic epithelial and microbial cellular parameters, and their impact on drug bioavailability. First, we cover the major cell types found in vivo within the epithelium and microbiota, and discuss how they can be modeled in vitro. We then draw attention to their structural similarities and differences with regard to determinants of drug distribution. Once a drug is solubilized in the luminal fluids, there are two main classes of such determinants: 1) binding processes, and 2) transporters and drug-metabolizing enzymes. Binding lowers the unbound intracellular fraction (fu,cell), which will, in turn, limit the amount of drug available for transport to desired sites. Transporters and drug metabolizing enzymes are ADME proteins impacting intracellular accumulation (Kp). Across cell types, we point out which processes are likely particularly impactful. Together, fu,cell and Kp can be used to describe intracellular bioavailability (Fic), which is a measure of local drug distribution, with consequences for efficacy. Determining these cellular parameters will be beneficial in understanding colonic drug distribution and will advance the field of drug delivery.
Collapse
Affiliation(s)
- Rebekkah Hammar
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
47
|
Schulz JA, Stresser DM, Kalvass JC. Plasma Protein-Mediated Uptake and Contradictions to the Free Drug Hypothesis: A Critical Review. Drug Metab Rev 2023:1-34. [PMID: 36971325 DOI: 10.1080/03602532.2023.2195133] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
According to the free drug hypothesis (FDH), only free, unbound drug is available to interact with biological targets. This hypothesis is the fundamental principle that continues to explain the vast majority of all pharmacokinetic and pharmacodynamic processes. Under the FDH, the free drug concentration at the target site is considered the driver of pharmacodynamic activity and pharmacokinetic processes. However, deviations from the FDH are observed in hepatic uptake and clearance predictions, where observed unbound intrinsic hepatic clearance (CLint,u) is larger than expected. Such deviations are commonly observed when plasma proteins are present and form the basis of the so-called plasma protein-mediated uptake effect (PMUE). This review will discuss the basis of plasma protein binding as it pertains to hepatic clearance based on the FDH, as well as several hypotheses that may explain the underlying mechanisms of PMUE. Notably, some, but not all, potential mechanisms remained aligned with the FDH. Finally, we will outline possible experimental strategies to elucidate PMUE mechanisms. Understanding the mechanisms of PMUE and its potential contribution to clearance underprediction is vital to improving the drug development process.
Collapse
|
48
|
Dzedulionytė K, Fuxreiter N, Schreiber-Brynzak E, Žukauskaitė A, Šačkus A, Pichler V, Arbačiauskienė E. Pyrazole-based lamellarin O analogues: synthesis, biological evaluation and structure-activity relationships. RSC Adv 2023; 13:7897-7912. [PMID: 36909769 PMCID: PMC9999251 DOI: 10.1039/d3ra00972f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
A library of pyrazole-based lamellarin O analogues was synthesized from easily accessible 3(5)-aryl-1H-pyrazole-5(3)-carboxylates which were subsequently modified by bromination, N-alkylation and Pd-catalysed Suzuki cross-coupling reactions. Synthesized ethyl and methyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were evaluated for their physicochemical property profiles and in vitro cytotoxicity against three human colorectal cancer cell lines HCT116, HT29, and SW480. The most active compounds inhibited cell proliferation in a low micromolar range. Selected ethyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were further investigated for their mode of action. Results of combined viability staining via Calcein AM/Hoechst/PI and fluorescence-activated cell sorting data indicated that cell death was triggered in a non-necrotic manner mediated by mainly G2/M-phase arrest.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| | - Nina Fuxreiter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Ekaterina Schreiber-Brynzak
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-78371 Olomouc Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
- Institute of Synthetic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology K. Baršausko g. 59 LT-51423 Kaunas Lithuania
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| |
Collapse
|
49
|
Yan Z, Ma L, Huang J, Carione P, Kenny JR, Hop CECA, Wright M. New Methodology for Determining Plasma Protein Binding Kinetics Using an Enzyme Reporter Assay Coupling with High-Resolution Mass Spectrometry. Anal Chem 2023; 95:4086-4094. [PMID: 36791153 DOI: 10.1021/acs.analchem.2c04864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Determination of drug binding kinetics in plasma is important yet extremely challenging. Accordingly, we introduce "dynamic free fraction" as a new binding parameter describing drug-protein binding kinetics. We demonstrate theoretically and experimentally that the dynamic free fraction can be determined by coupling the drug binding assay with a reporter enzyme in combination with high-resolution mass spectrometry measuring the relative initial steady-state rates of enzymatic reactions in the absence and presence of matrix proteins. This novel and simple methodology circumvents a long-standing challenge inherent in existing methods for determining binding kinetics constants, such as kon and koff, and enables assessment of the impact of protein binding kinetics on pharmaceutical properties of drugs. As demonstrated with nine model drugs, the predicted liver extraction ratio, a measure of efficiency of drug removal by the liver, correlates significantly better to the observed extraction ratio when using the dynamic free fraction (fD) in place of the unbound fraction (fu) of the drug in plasma. Similarly, the in vivo hepatic clearance of these drugs, a measure of liver drug elimination, is highly comparable to the clearance values calculated with the dynamic free fraction (fD), which is markedly better than those calculated with the unbound fraction (fu). In contrast to the prevailing view, these results indicate that protein binding kinetics is an important pharmacokinetic property of a drug. As plasma protein binding is one of the most important drug properties, this new methodology may represent a breakthrough and could have a real impact on the field.
Collapse
Affiliation(s)
- Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Li Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Julie Huang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Pasquale Carione
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
50
|
Qiu F, Dziegielewska KM, Huang Y, Habgood MD, Fitzpatrick G, Saunders NR. Developmental changes in the extent of drug binding to rat plasma proteins. Sci Rep 2023; 13:1266. [PMID: 36690711 PMCID: PMC9870879 DOI: 10.1038/s41598-023-28434-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of therapeutics to proteins in blood plasma is important in influencing their distribution as it is their free (unbound) form that is able to cross cellular membranes to enter tissues and exert their actions. The concentration and composition of plasma proteins vary during pregnancy and development, resulting in potential changes to drug protein binding. Here, we describe an ultrafiltration method to investigate the extent of protein binding of six drugs (digoxin, paracetamol, olanzapine, ivacaftor, valproate and lamotrigine) and two water soluble inert markers (sucrose and glycerol) to plasma proteins from pregnant and developing rats. Results showed that the free fraction of most drugs was lower in the non-pregnant adult plasma where protein concentration is the highest. However, plasma of equivalent protein concentration to younger pups obtained by diluting adult plasma did not always exhibit the same extent of drug binding, reinforcing the likelihood that both concentration and composition of proteins in plasma influence drug binding. Comparison between protein binding and brain drug accumulation in vivo revealed a correlation for some drugs, but not others. Results suggests that plasma protein concentration should be considered when using medications in pregnant and paediatric patients to minimise potential for fetal and neonatal drug exposure.
Collapse
Affiliation(s)
- Fiona Qiu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Yifan Huang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark D Habgood
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Georgia Fitzpatrick
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Norman R Saunders
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|