1
|
Akbar N, Khan AS, Siddiqui R, Ibrahim TH, Khamis MI, Alawfi BS, Al-Ahmadi BM, Khan NA. Phosphonium chloride-based deep eutectic solvents inhibit pathogenic Acanthamoeba castellanii belonging to the T4 genotype. Folia Microbiol (Praha) 2025; 70:101-113. [PMID: 38869777 DOI: 10.1007/s12223-024-01180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Amir Sada Khan
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
- Department of Chemistry, University of Science and Technology Bannu, Bannu, 28100, Khyber Pakhtunkhwa, Pakistan
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Taleb Hassan Ibrahim
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mustafa I Khamis
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Bassam M Al-Ahmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
2
|
Bedair HM, Samir TM, Mansour FR. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl Microbiol Biotechnol 2024; 108:198. [PMID: 38324052 PMCID: PMC10850035 DOI: 10.1007/s00253-024-13044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
The increasing antibiotic resistance towards a panel of microorganisms is one of the public health concerns. For this reason, the search for alternatives to the widely used antibiotic has been undertaken. In the era of sustainable chemistry, deep eutectic solvents (DESs) have emerged as promising antimicrobial agents. These solvents possess several advantages such as low volatility, low flammability, ease of preparation, and typically low cost of production. These properties make DES suitable for various applications, including extraction of biomolecules and preparation of cosmetics. Natural DESs (NADESs) are special category of DESs prepared from natural sources, which matched the recent trends of leaning back to nature, and decreasing dependence on synthetic precursors. NADES can be prepared by heating and stirring, freeze-drying, evaporation, grinding, and ultrasound-assisted and microwave-assisted synthesis. Utilizing NADESs as an alternative to traditional antibiotics, which become ineffective over time due to bacterial resistance, holds great promise for these reasons. This review aims to discuss the antimicrobial properties of multiple NADESs, including antibacterial and antifungal activities. To the best of our knowledge, this review is the first literature survey of the antimicrobial activities of NADESs. KEY POINTS: • Natural deep eutectic solvents are promising antimicrobial alternative to antibiotics • NADES holds high potential for their activity against bacterial resistance • NADES have also substantial antifungal activities.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
3
|
Huang X, Zheng L, Wang Y. The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin. INSECTS 2024; 15:95. [PMID: 38392514 PMCID: PMC10888613 DOI: 10.3390/insects15020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Insect-resistant substances from plants are important natural resources that human beings can potentially develop and use to control pests. In this study, we explored the adverse effects of rutin and quercetin on grasshopper (Calliptamus abbreviatus), as well as the insect's physiological response to these substances in laboratory and field experiments. These two plant compounds exhibited toxic effects on C. abbreviatus, with quercetin showing a stronger toxicity, indicated by a lower survival, slower development, and higher induced gene expression and activities of UDP-glucuronosyltransferase, cytochrome P450s, superoxide dismutase, peroxidase and catalase, compared to rutin. These compounds, especially quercetin, have the potential to be developed as biopesticides to control grasshoppers.
Collapse
Affiliation(s)
- Xunbing Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
| | - Li Zheng
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yueyue Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
| |
Collapse
|
4
|
Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, Singh BN, Thakur VK, Tabatabaei M, Gupta VK. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163002. [PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/01/2023]
Abstract
The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 ATH, Belgium
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
5
|
Ferreira IJ, Paiva A, Diniz M, Duarte AR. Uncovering biodegradability and biocompatibility of betaine-based deep eutectic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40218-40229. [PMID: 36607574 PMCID: PMC10067644 DOI: 10.1007/s11356-022-25000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Deep eutectic systems (DES) have shown increasing popularity in last decade; however, the number of studies on the potential toxicity towards living organisms remains scarce. These studies are of the utmost importance to infer on the claimed non-toxicity and biocompatibility of DES. Most articles published, at this moment, only evaluate the toxicity towards a cell model or in different strains of bacteria. For this purpose, in this work, the effect of two DES (betaine:sorbitol:water 1:1:3 and betaine:glycerol 1:2) and their individual components were evaluated at different concentrations after administered via intraperitoneal injection in zebrafish (Danio rerio). The total antioxidant capacity, lipoperoxidation, and the activity of various enzymes that work in different antioxidant pathways (superoxide dismutase, glutathione peroxidase, catalase, and glutathione S-transferase) were assessed. The results show no significant toxicity within the tested concentrations: up to 5000 µM and 3000 µM, for the assays using the system betaine:sorbitol:water 1:1:3 and for betaine:glycerol 1:2, respectively. The toxicity of individual components was studied up to 1000 µM. Based on the encouraging results that have been obtained, it is safe to conclude that these two deep eutectic systems can be used as the new class of environmentally friendly solvents.
Collapse
Affiliation(s)
- Inês João Ferreira
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - Mário Diniz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry / Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Ana Rita Duarte
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technolog, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Alam MS, Sharma M, Kumar R, Das J, Rode S, Kumar P, Prasad R, Sharma AK. In silico identification of potential phytochemical inhibitors targeting farnesyl diphosphate synthase of cotton bollworm ( Helicoverpa armigera). J Biomol Struct Dyn 2023; 41:1978-1987. [PMID: 35037838 DOI: 10.1080/07391102.2022.2025904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Helicoverpa armigera (Ha), a polyphagous pest, causes significant damage to several crop plants, including cotton. The control of this cosmopolitan pest is largely challenging due to the development of resistance to existing management practices. The Juvenile Hormone (JH) plays a pivotal role in the life cycle of insects by regulating their morphogenetic and gonadotropic development. Hence, enzymes involved in JH biosynthesis are an attractive target for the development of selective insecticides. Farnesyl diphosphate synthase (FPPS), a member protein of (E)-prenyl-transferases, is one of the most crucial enzymes in the biosynthetic pathway of JHs. It catalyzes the condensation of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), forming farnesyl diphosphate (FPP), a precursor of JH. The study was designed to identify an effective small inhibitory molecule that could inhibit the activity of Helicoverpa armigera - FPPS (HaFPPS) for an effective pest control intervention. Therefore, a 3D model of FPPS protein was generated using homology modeling. The FooDB database library of small molecules was selected for virtual screening, following which binding affinities were evaluated using docking studies. Three top-scored molecules were analyzed for various pharmacophore properties. Further, molecular dynamics (MD) simulation analysis showed that the identified molecules (mitraphylline-ZINC1607834, chlorogenic acid-ZINC2138728 and llagate-ZINC3872446) had a reasonably acceptable binding affinity for HaFPPS and resulted in the formation of a stable HaFPPS-inhibitor(s) complex. The identified phytochemical molecules may be used as potent inhibitors of HaFPPS thus, paving the way for further developing environment-friendly insect growth regulator(s). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Antimicrobial Activity of Novel Deep Eutectic Solvents. Sci Pharm 2023. [DOI: 10.3390/scipharm91010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Herein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 µL dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.
Collapse
|
8
|
Marchel M, Cieśliński H, Boczkaj G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
9
|
Schnarr L, Segatto ML, Olsson O, Zuin VG, Kümmerer K. Flavonoids as biopesticides - Systematic assessment of sources, structures, activities and environmental fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153781. [PMID: 35176375 DOI: 10.1016/j.scitotenv.2022.153781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Biopesticides obtained from renewable resources and associated with biodegradability have the potential to address resource limitations and environmental pollution, often caused by many conventional pesticides, due to the facility of natural products to run in natural nutrient cycles. Flavonoids are considered benign substitutes for pesticides, however, little comprehensive information of their pesticidal activities and critical evaluation of their associated advantages is available. Therefore, this systematic review assessed sources, structures, activities and the environmental fate of flavonoids on a basis of 201 selected publications. We identified 281 different flavonoids that were investigated for their pesticidal activity as either a pure compound or a flavonoid-containing extract, with quercetin, kaempferol, apigenin, luteolin and their glycosides as the most studied compounds. Agricultural or food waste, a potential sustainable source for flavonoids, represent 10.6% of the plant sources of flavonoids within these studies, showing the currently underutilization of these preferable feedstocks. Analysis of pesticidal activities and target organisms revealed a broad target spectrum for the class of flavonoids, including fungi, insects, plants, bacteria, algae, nematodes, molluscs and barnacles. Little information is available on the environmental fate and biodegradation of flavonoids, and a connection to studies investigating pesticidal activities is largely missing. Emerging from these findings is the need for comprehensive understanding of flavonoids pesticidal activities with emphasis on structural features that influence activity and target specificity to avoid risks for non-target organisms. Only if the target spectrum and environmental fate of a potential biopesticide are known it can serve as a benign substitute. Then, flavonoids can be integrated in a valorization process of agricultural and food waste shifting the extract-produce-consume linear chain to a more circular economy.
Collapse
Affiliation(s)
- Lena Schnarr
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Mateus L Segatto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905 São Carlos, SP, Brazil
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Vânia G Zuin
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís (SP-310), km 235, 13565-905 São Carlos, SP, Brazil; Green Chemistry Centre of Excellence, University of York, Heslington, York YO10 5DD, UK
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; Research and Education, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| |
Collapse
|
10
|
Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127963. [PMID: 34896723 DOI: 10.1016/j.jhazmat.2021.127963] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds used in their preparation. All these properties encouraged researchers to use them in diverse fields and applications e.g., as extractants for biomolecules and solvents in pharmaceutical and cosmetic industries. Nevertheless, despite undeniable potential of DESs, there is still controversy about their toxicity. Besides the low number of studies on this topic, there are also some contradicting reports on biocompatibility of these solvents. Such misleading reports could be mainly attributed to the lack of well design standard protocol for DESs toxicity determination or the use of out-off-purpose methodology. Thus, to better apply DESs in green and sustainable chemistry, more studies on their impact on organisms at different trophic levels and the use of proper techniques are required. This review focuses on DESs toxicity towards microorganisms and is divided into three parts: The first part provides a brief general introduction to DESs, the second part discusses the methodologies used for assessment of DESs microbial toxicity and the obtained results, and finally in the third part the critical evaluation of the methods is provided, as well as suggestions and guidelines for future research.
Collapse
Affiliation(s)
- Mateusz Marchel
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
11
|
Rodríguez-Juan E, López S, Abia R, J. G. Muriana F, Fernández-Bolaños J, García-Borrego A. Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Calvo‐Flores FG, Mingorance‐Sánchez C. Deep Eutectic Solvents and Multicomponent Reactions: Two Convergent Items to Green Chemistry Strategies. ChemistryOpen 2021; 10:815-829. [PMID: 34402596 PMCID: PMC8369850 DOI: 10.1002/open.202100137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
One of the highlights of green chemistry is the development of techniques and procedures with low environmental impact. In the last years, deep eutectic solvents (DES) have become an important alternative to conventional organic solvents. For a period ionic liquids have provoked remarkable interest, but they have been displaced by DES because they show easier preparation methods, lower prices, many of them are biodegradable and compatible with biological systems. In addition, they show adjustable physicochemical properties, high thermal stability, low volatility and are compatible with water. In this paper is reviewed the state of the art of the use of DES paying special attention to the role of reaction media in organic synthesis.
Collapse
Affiliation(s)
- Francisco G. Calvo‐Flores
- Grupo de Modelización MolecularDpto. de Química OrgánicaFacultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Cristina Mingorance‐Sánchez
- Grupo de Modelización MolecularDpto. de Química OrgánicaFacultad de CienciasUniversidad de Granada18071GranadaSpain
| |
Collapse
|
13
|
Mouden S, Bac-Molenaar JA, Kappers IF, Beerling EAM, Leiss KA. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. FRONTIERS IN PLANT SCIENCE 2021; 12:695908. [PMID: 34276745 PMCID: PMC8282209 DOI: 10.3389/fpls.2021.695908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna A. Bac-Molenaar
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Johanna A. Bac-Molenaar
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Ellen A. M. Beerling
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kirsten A. Leiss
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
15
|
Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103470] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Huang X, Lv S, Zhang Z, Chang BH. Phenotypic and Transcriptomic Response of the Grasshopper Oedaleus asiaticus (Orthoptera: Acrididae) to Toxic Rutin. Front Physiol 2020; 11:52. [PMID: 32153418 PMCID: PMC7047750 DOI: 10.3389/fphys.2020.00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Rutin, a widely distributed phytochemical flavonoid, can be used to control insect pests. In this study, we studied the growth performance of the grasshopper Oedaleus asiaticus Bey-Bienko given xenobiotic rutin using feeding experiments and transcriptomic analysis. O. asiaticus had reduced body size, lower survival rate, and reduced growth performance when fed with xenobiotic rutin. Rutin-fed nymphs had large variation in gene expression profiles, with a total of 308 genes significantly upregulated and 287 genes downregulated. The upregulated genes were significantly enriched in stress resistance-, immune-, and detoxification-related biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Downregulated genes mainly involved cuticle biosynthesis and nutrition metabolism-related pathways. The quantitative real-time PCR (qRT-PCR) analysis of 15 candidate genes also produced results consistent with the transcriptome data. These results suggested that grasshoppers’ capacity for biosynthesis and nutrition metabolism decreased, and stress resistance and metabolized capacity to toxic substances were significantly induced when O. asiaticus was fed on xenobiotic rutin. Rutin, as a phytotoxin, had detrimental effects and induced changes in gene expression profiles for O. asiaticus. This study can provide a molecular basis and offer future opportunities for the development of rutin-related insecticides and their application to grasshopper control.
Collapse
Affiliation(s)
- Xunbing Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Babar Hussain Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology, Sindh Agriculture University, Tando Jam, Pakistan
| |
Collapse
|
17
|
Tarif E, Mondal J, Biswas R. Interaction and Dynamics in a Fully Biodegradable Glucose-Containing Naturally Abundant Deep Eutectic Solvent: Temperature-Dependent Time-Resolved Fluorescence Measurements. J Phys Chem B 2019; 123:9378-9387. [PMID: 31599593 DOI: 10.1021/acs.jpcb.9b06783] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new room-temperature deep eutectic solvent (DES) composed of glucose, urea, and water has been prepared and its relaxation dynamics explored via temperature-dependent time-resolved fluorescence measurements employing hydrophilic and hydrophobic solute probes. Differential scanning calorimetry measurements indicate a glass transition temperature (Tg) of ∼236 K. Measured viscosity coefficients (η) vary from ∼600 to ∼100 cP in the temperature range 318 ≤ T/K ≤ 343 and exhibit Arrhenius-type temperature dependence with an activation energy of ∼65 kJ mol-1. Interestingly, this DES forms a stable liquid at ∼300 K but is too viscous to be accurately measured by us below 318 K. Temperature-dependent dynamic fluorescence anisotropy measurements using hydrophobic and hydrophilic solutes of similar sizes reveal bi-exponential kinetics and Arrhenius-type temperature dependence for solute rotation times (⟨τr⟩) but with significantly decreased activation energies, ∼31 kJ mol-1 (hydrophobic) and ∼21 kJ mol-1 (hydrophilic). Deviation from hydrodynamics is further reflected in the strong fractional viscosity dependence of ⟨τr⟩: ⟨τr⟩ ∝ (η/T)p with p ≈ 0.3-0.5, indicating pronounced temporal heterogeneity in the relaxation dynamics. Dynamic fluorescence Stokes shift measurements (temporal resolution ∼85 ps) produce dynamic shifts of ∼500-700 cm-1, bi-exponential solvation energy relaxation with time constants in the range ∼0.2 ns and ∼4 ns, and estimated missing amplitudes of ∼65-75%. Impact of the density difference between a nonpolar solvent and this DES on the estimated missing amplitudes is explored via measuring the temperature-dependent densities and refractive indices of this DES. Lifetime measurements suggest considerable temperature dependence for the hydrophobic solute but no such dependence for the hydrophilic one. Excitation energy dependence of fluorescence emission of various solutes with widely different lifetimes indicates mild spatial heterogeneity for this DES.
Collapse
Affiliation(s)
- Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| | - Jayanta Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| |
Collapse
|
18
|
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis Optimized across Land Plant Phylogeny. TRENDS IN PLANT SCIENCE 2019; 24:947-958. [PMID: 31362860 DOI: 10.1016/j.tplants.2019.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity (Amax) increases from minimum values in bryophytes to maximum in tracheophytes, which is associated to an optimization of the balance between its limiting factors. From predominant mesophyll conductance limitation (lm) in bryophytes and lycophytes (fern allies) to stomatal conductance (ls) and lm colimitation in pteridophytes (ferns) and gymnosperms, a balanced colimitation by the three limitations is finally reached in angiosperms. We discuss the implications of this new knowledge for future biotechnological attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| |
Collapse
|
19
|
Silva JM, Pereira CV, Mano F, Silva E, Castro VIB, Sá-Nogueira I, Reis RL, Paiva A, Matias AA, Duarte ARC. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:4346-4355. [PMID: 32030369 PMCID: PMC6993812 DOI: 10.1021/acsabm.9b00598] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022]
Abstract
![]()
The breakthroughs
achieved in green solvents promote the emergence
of therapeutic deep eutectic solvents (THEDES), which possess intriguing
possible applications in the biomedical field. Herein, the main aim
was to unravel the biomedical potential of hydrophobic THEDES based
in menthol and saturated fatty acids with different chain lengths
(e.g., stearic acid (SA), myristic acid (MA), and lauric acid (LA)).
Our comprehensive strategy resulted in the thermophysical characterization
of different formulations, which allow one to identify the most suitable
molar ratio, as well as the intermolecular interactions behind the
successful formation of THEDES. The evaluation of their biological
performance was also performed toward bacteria and HaCaT cells. Among
the different formulations of THEDES, the one based on menthol and
SA establishes stronger hydrogen bonding interactions, being also
the most promising formulation because it did not elicit any relevant
cytotoxicity, and potentiated wound healing, while presenting antibacterial
properties against Staphylococcus epidermis and Staphylococcus aureus strains, some of which were methicillin
resistant. This work provides clues on the future use of THEDES based
on menthol:SA in wound dressings.
Collapse
Affiliation(s)
- Joana M Silva
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark Barco, Guimarães 4805-017, Portugal.,ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Carolina V Pereira
- Nutraceuticals and Bioactives Process Technology Laboratory, Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Francisca Mano
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Eduardo Silva
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark Barco, Guimarães 4805-017, Portugal.,ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Vânia I B Castro
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark Barco, Guimarães 4805-017, Portugal.,ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Isabel Sá-Nogueira
- Microbial Genetics Laboratory, UCIBIO/REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark Barco, Guimarães 4805-017, Portugal.,ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães 4806-909, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters, University of Minho, Avepark Barco, Guimarães 4805-017, Portugal
| | - Alexandre Paiva
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Ana A Matias
- Nutraceuticals and Bioactives Process Technology Laboratory, Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Ana Rita C Duarte
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark Barco, Guimarães 4805-017, Portugal.,ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães 4806-909, Portugal
| |
Collapse
|
20
|
Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH. The perspectives of natural deep eutectic solvents in agri-food sector. Crit Rev Food Sci Nutr 2019; 60:2564-2592. [DOI: 10.1080/10408398.2019.1650717] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Nađpal
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Jia Y, Ma Y, Zou P, Cheng G, Zhou J, Cai S. Effects of Different Oligochitosans on Isoflavone Metabolites, Antioxidant Activity, and Isoflavone Biosynthetic Genes in Soybean ( Glycine max) Seeds during Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4652-4661. [PMID: 30933513 DOI: 10.1021/acs.jafc.8b07300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five oligochitosans with increasing degrees of polymerization (DPs), i.e., from chitotriose to chitoheptaose, were examined to clarify the structure-bioactivity relationship between the DPs of oligochitosans and their effects on the isoflavone metabolites, total phenolic and flavonoid contents (TPC and TFC, respectively), and antioxidant activity of soybean ( Glycine max) seeds during germination. Oligochitosans of different DPs exhibited varying influences on the TPC, TFC, and antioxidant activities of soybean seeds. Chitohexaose exerted a strong effect and significantly increased the aforementioned parameters in soybean seeds 72 h after germination. Genistin, malonylgenistin, and genistein were the main isoflavones found, and the genistin and genistein contents were significantly enhanced by 67.32% and 131.38%, respectively, after chitohexaose treatment. Several critical genes involved in the isoflavone biosynthesis (i.e., PAL, CHS, CHI, IFS) of soybeans treated with and without chitohexaose were analyzed, and results suggested that chitohexaose application could dramatically stimulate the transcription of these genes.
Collapse
Affiliation(s)
- Yijia Jia
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Yanli Ma
- College of Food Science and Technology , Hebei Agricultural University , Baoding , Hebei Province 071001 , People's Republic of China
| | - Ping Zou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao , Shandong Province 266101 , People's Republic of China
| | - Guiguang Cheng
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Jiexin Zhou
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| |
Collapse
|
22
|
The problem of controlling segetal vegetation in agrophytocenoses in the context of biodiversity conservation. UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj75.06.552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|