1
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Du W, Huang H, Kong W, Jiang W, Pang Y. Over-expression of Medicago Acyl-CoA-binding 2 genes enhance salt and drought tolerance in Arabidopsis. Int J Biol Macromol 2024; 268:131631. [PMID: 38631584 DOI: 10.1016/j.ijbiomac.2024.131631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiye Kong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Moradi A, Lung SC, Chye ML. Interaction of Soybean ( Glycine max (L.) Merr.) Class II ACBPs with MPK2 and SAPK2 Kinases: New Insights into the Regulatory Mechanisms of Plant ACBPs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1146. [PMID: 38674555 PMCID: PMC11055065 DOI: 10.3390/plants13081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.1 and GmACBP4.1 interact with two soybean kinases, a mitogen-activated protein kinase MPK2, and a serine/threonine-protein kinase SAPK2, highlighting the significance of the ankyrin-repeat (ANK) domain in facilitating protein-protein interactions. Moreover, an in vitro kinase assay and subsequent Phos-tag SDS-PAGE determined that GmMPK2 and GmSAPK2 possess the ability to phosphorylate Class II GmACBPs. Additionally, the kinase-specific phosphosites for Class II GmACBPs were predicted using databases. The HDOCK server was also utilized to predict the binding models of Class II GmACBPs with these two kinases, and the results indicated that the affected residues were located in the ANK region of Class II GmACBPs in both docking models, aligning with the findings of the Y2H and BiFC experiments. This is the first report describing the interaction between Class II GmACBPs and kinases, suggesting that Class II GmACBPs have potential as phospho-proteins that impact signaling pathways.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
4
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
5
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
6
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
7
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
8
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
9
|
Zhu J, Li W, Zhou Y, Pei L, Liu J, Xia X, Che R, Li H. Molecular characterization, expression and functional analysis of acyl-CoA-binding protein gene family in maize (Zea mays). BMC PLANT BIOLOGY 2021; 21:94. [PMID: 33588749 PMCID: PMC7883581 DOI: 10.1186/s12870-021-02863-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/01/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Acyl-CoA-binding proteins (ACBPs) possess a conserved acyl-CoA-binding (ACB) domain that facilitates binding to acyl-CoA esters and trafficking in eukaryotic cells. Although the various functions of ACBP have been characterized in several plant species, their structure, molecular evolution, expression profile, and function have not been fully elucidated in Zea mays L. RESULTS Genome-wide analysis identified nine ZmACBP genes in Z. mays, which could be divided into four distinct classes (class I, class II, class III, and class IV) via construction of a phylogenetic tree that included 48 ACBP genes from six different plant species. Transient expression of a ZmACBP-GFP fusion protein in tobacco (Nicotiana tabacum) epidermal cells revealed that ZmACBPs localized to multiple different locations. Analyses of expression profiles revealed that ZmACBPs exhibited temporal and spatial expression changes during abiotic and biotic stresses. Eight of the nine ZmACBP genes were also found to have significant association with agronomic traits in a panel of 500 maize inbred lines. The heterologous constitutive expression of ZmACBP1 and ZmACBP3 in Arabidopsis enhanced the resistance of these plants to salinity and drought stress, possibly through alterations in the level of lipid metabolic and stress-responsive genes. CONCLUSION The ACBP gene family was highly conserved across different plant species. ZmACBP genes had clear tissue and organ expression specificity and were responsive to both biotic and abiotic stresses, suggesting their roles in plant growth and stress resistance.
Collapse
Affiliation(s)
- Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Weijun Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Yuanyuan Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Laming Pei
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Jiajia Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Xinyao Xia
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
10
|
Candidate genes linked to QTL regions associated with fatty acid composition in oil palm. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Azlan NS, Guo ZH, Yung WS, Wang Z, Lam HM, Lung SC, Chye ML. In silico Analysis of Acyl-CoA-Binding Protein Expression in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:646938. [PMID: 33936134 PMCID: PMC8082252 DOI: 10.3389/fpls.2021.646938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/12/2021] [Indexed: 05/02/2023]
Abstract
Plant acyl-CoA-binding proteins (ACBPs) form a highly conserved protein family that binds to acyl-CoA esters as well as other lipid and protein interactors to function in developmental and stress responses. This protein family had been extensively studied in non-leguminous species such as Arabidopsis thaliana (thale cress), Oryza sativa (rice), and Brassica napus (oilseed rape). However, the characterization of soybean (Glycine max) ACBPs, designated GmACBPs, has remained unreported although this legume is a globally important crop cultivated for its high oil and protein content, and plays a significant role in the food and chemical industries. In this study, 11 members of the GmACBP family from four classes, comprising Class I (small), Class II (ankyrin repeats), Class III (large), and Class IV (kelch motif), were identified. For each class, more than one copy occurred and their domain architecture including the acyl-CoA-binding domain was compared with Arabidopsis and rice. The expression profile, tertiary structure and subcellular localization of each GmACBP were predicted, and the similarities and differences between GmACBPs and other plant ACBPs were deduced. A potential role for some Class III GmACBPs in nodulation, not previously encountered in non-leguminous ACBPs, has emerged. Interestingly, the sole member of Class III ACBP in each of non-leguminous Arabidopsis and rice had been previously identified in plant-pathogen interactions. As plant ACBPs are known to play important roles in development and responses to abiotic and biotic stresses, the in silico expression profiles on GmACBPs, gathered from data mining of RNA-sequencing and microarray analyses, will lay the foundation for future studies in their applications in biotechnology.
Collapse
Affiliation(s)
- Nur Syifaq Azlan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhili Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- *Correspondence: Shiu-Cheung Lung,
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Mee-Len Chye,
| |
Collapse
|
12
|
Jin J, Guo ZH, Hao Q, Chye ML. Crystal structure of the rice acyl-CoA-binding protein OsACBP2 in complex with C18:3-CoA reveals a novel pattern of binding to acyl-CoA esters. FEBS Lett 2020; 594:3568-3575. [PMID: 32888212 DOI: 10.1002/1873-3468.13923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that bind acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs maintain intracellular acyl-CoA pools to regulate lipid metabolism. Here, we report on the structure of rice OsACBP2 in complex with C18:3-CoA ester. The residues Y33, K34 and K56 of OsACBP2 play a crucial role in binding the CoA group, while residues N23, L27, K52 and Y55 in one molecule of OsACBP2 cooperate with L27, L28, A59 and A62 from another anchoring the fatty acyl group. Multiangle light scattering assays indicate that OsACBP2 binds C18:3-CoA as a monomer. The first complex structure of a plant ACBP binding with C18:3-CoA is therefore presented, providing a novel model for the interaction between an acyl-CoA ester and the acyl-CoA-binding domain(s).
Collapse
Affiliation(s)
- Jing Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T, China
| |
Collapse
|
13
|
Chen C, Liu C, Jiang A, Zhao Q, Zhang Y, Hu W. miRNA and Degradome Sequencing Identify miRNAs and Their Target Genes Involved in the Browning Inhibition of Fresh-Cut Apples by Hydrogen Sulfide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8462-8470. [PMID: 32697084 DOI: 10.1021/acs.jafc.0c02473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Surface browning is the major limit for the shelf life of fresh-cut apples, and hydrogen sulfide (H2S) treatment can effectively inhibit the browning. However, the molecular mechanism on how fresh-cut apples respond to H2S was poorly understood. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate multiple crucial biological processes in almost all aspects of the life cycle. Herein, 12 small RNA libraries and one mixed degradome library were constructed from control and H2S-treated fresh-cut apples immediately after treatment (C0 and S0) and 6 d of storage (C6 and S6) at 4 °C. The results identified nine (three upregulated and six downregulated) and 10 (two upregulated and eight downregulated) differentially expressed miRNAs (DEmiRNAs) in S0 versus C0 and S6 versus C6, respectively. The target genes of DEmiRNAs were transcription factors and functional proteins. The miR156 targeting SPL, miR164 targeting NAC, miR319 targeting TCP4, GAMYB, and acyl-CoA-binding protein 4, and miR6478 targeting patatin-like protein 2 might play important roles in the browning inhibition of fresh-cut apples by H2S via regulating the ROS, phenylpropanoid, and lipid metabolism. The results give valuable information for further studying the role of miRNA in regulating browning processes and the underlying molecular mechanism of H2S treatment on browning inhibition.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Chenghui Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Qiqi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yanhui Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
14
|
Wu Q, Cao Y, Chen C, Gao Z, Yu F, Guy RD. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. BMC PLANT BIOLOGY 2020; 20:121. [PMID: 32183691 PMCID: PMC7079523 DOI: 10.1186/s12870-020-2327-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Styrax tonkinensis (Pierre) Craib ex Hartwich has great potential as a woody biodiesel species having seed kernels with high oil content, excellent fatty acid composition and good fuel properties. However, no transcriptome information is available on the molecular regulatory mechanism of oil accumulation in developing S. tonkinensis kernels. RESULTS The dynamic patterns of oil content and fatty acid composition at 11 time points from 50 to 150 days after flowering (DAF) were analyzed. The percent oil content showed an up-down-up pattern, with yield and degree of unsaturation peaking on or after 140 DAF. Four time points (50, 70, 100, and 130 DAF) were selected for Illumina transcriptome sequencing. Approximately 73 million high quality clean reads were generated, and then assembled into 168,207 unigenes with a mean length of 854 bp. There were 5916 genes that were differentially expressed between different time points. These differentially expressed genes were grouped into 9 clusters based on their expression patterns. Expression patterns of a subset of 12 unigenes were confirmed by qRT-PCR. Based on their functional annotation through the Basic Local Alignment Search Tool and publicly available protein databases, specific unigenes encoding key enzymes, transmembrane transporters, and transcription factors associated with oil accumulation were determined. Three main patterns of expression were evident. Most unigenes peaked at 70 DAF, coincident with a rapid increase in oil content during kernel development. Unigenes with high expression at 50 DAF were associated with plastid formation and earlier stages of oil synthesis, including pyruvate and acetyl-CoA formation. Unigenes associated with triacylglycerol biosynthesis and oil body development peaked at 100 or 130 DAF. CONCLUSIONS Transcriptome changes during oil accumulation show a distinct temporal trend with few abrupt transitions. Expression profiles suggest that acetyl-CoA formation for oil biosynthesis is both directly from pyruvate and indirectly via acetaldehyde, and indicate that the main carbon source for fatty acid biosynthesis is triosephosphate originating from phosphohexose outside the plastid. Different sn-glycerol-3-phosphate acyltransferases are implicated in diacylglycerol biosynthesis at early versus late stages of oil accumulation. Triacylglycerol biosynthesis may be accomplished by both diacylglycerol and by phospholipid:diacylglycerol acyltransferases.
Collapse
Affiliation(s)
- Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Yuanyuan Cao
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Zhenzhou Gao
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
15
|
Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS One 2019; 14:e0218029. [PMID: 31199816 PMCID: PMC6568414 DOI: 10.1371/journal.pone.0218029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for cruciferous vegetables. Turnip (Brassica rapa ssp. rapifera) is one of the most important local cruciferous vegetables in China, cultivated for its fleshy root as a flat disc. Here, morphological characteristics of an Ogura-CMS line ‘BY10-2A’ and its maintainer fertile (MF) line ‘BY10-2B’ of turnip were investigated. Ogura-CMS turnip showed a reduction in the size of the fleshy root, and had distinct defects in microspore development and tapetum degeneration during the transition from microspore mother cells to tetrads. Defective microspore production and premature tapetum degeneration during microgametogenesis resulted in short filaments and withered white anthers, leading to complete male sterility of the Ogura-CMS line. Additionally, the mechanism regulating Ogura-CMS in turnip was investigated using inflorescence transcriptome analyses of the Ogura-CMS and MF lines. The de novo assembly resulted in a total of 84,132 unigenes. Among them, 5,117 differentially expressed genes (DEGs) were identified, including 1,339 up- and 3,778 down-regulated genes in the Ogura-CMS line compared to the MF line. A number of functionally known members involved in anther development and microspore formation were addressed in our DEG pool, particularly genes regulating tapetum programmed cell death (PCD), and associated with pollen wall formation. Additionally, 185 novel genes were proposed to function in male organ development based on GO analyses, of which 26 DEGs were genotype-specifically expressed. Our research provides a comprehensive foundation for understanding anther development and the CMS mechanism in turnip.
Collapse
|
16
|
Raboanatahiry N, Wang B, Yu L, Li M. Functional and Structural Diversity of Acyl-coA Binding Proteins in Oil Crops. Front Genet 2018; 9:182. [PMID: 29872448 PMCID: PMC5972291 DOI: 10.3389/fgene.2018.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Diversities in structure and function of ACBP were discussed in this review. ACBP are important proteins that could transport newly synthesized fatty acid, activated into -coA, from plastid to endoplasmic reticulum, where oil in the form of triacylglycerol occurs. ACBP were detected in various animal and plants species, which indicated their importance in biological function. In fact, involvement of ACBP in important process such as lipid metabolism, regulation of enzyme and gene expression, and in response to plant stresses has been proven in several studies. In this review, findings on ACBP of 11 well-known oil crops were reviewed to comprehend diversity, comparative analyses on ACBP structure were made, and link between structure and function, tissue expression and subcellular location of ACBP were also observed. Incomplete reports in some species were mentioned, which might be encouraging to start or to perform deeper studies. Similar characteristics were found in paralogs ACBP, and orthologs ACBP had different functions, despite the high identity in amino acid sequence. At the end, it is confirmed that ortholog proteins could not necessarily display the same function, even from closely related species.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
17
|
Nie Z, Wang Y, Wu C, Li Y, Kang G, Qin H, Zeng R. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). BMC Genomics 2018; 19:5. [PMID: 29295704 PMCID: PMC5751871 DOI: 10.1186/s12864-017-4419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Background Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and their various functions have been characterized in model plants, such as Arabidopsis thaliana (A. thaliana), Oryza sativa (rice), and other plant species. In the present study, genome-wide mining and expression analysis of ACBP genes was performed on Hevea brasiliensis (the para rubber tree), the most important latex-producing crop in the world. Results Six members of the H. brasiliensis ACBP family genes, designated HbACBP1-HbACBP6, were identified from the H. brasiliensis genome. They can be categorized into four classes with different amino acid sequences and domain structures based on the categorization of their A. thaliana counterparts. Phylogenetic analysis shows that the HbACBPs were clustered with those of other closely related species, such as Manihot esculenta, Ricinus communis, and Jatropha carcas, but were further from those of A. thaliana, a distantly related species. Expression analysis demonstrated that the HbACBP1 and HbACBP2 genes are more prominently expressed in H. brasiliensis latex, and their expression can be significantly enhanced by bark tapping (a mechanical wound) and jasmonic acid stimulation, whereas HbACBP3-HbACBP6 had almost the same expression patterns with relatively high levels in mature leaves and male flowers, but a markedly low abundance in the latex. HbACBP1 and HbACBP2 may have crucial roles in lipid and latex metabolism in laticifers, so their subcellular location was further investigated and the results indicated that HbACBP1 is a cytosol protein, whereas HbACBP2 is an endoplasmic reticulum-associated ACBP. Conclusions In this study, the H. brasiliensis ACBP family genes were identified. Phylogenetic analyses of the HbABCPs indicate that there is a high conservation and evolutionary relationship between ACBPs in land plants. The HbACBPs are organ/tissue-specifically expressed and have different expression patterns in response to stimulation by bark tapping or ethrel/jasmonic acid. HbACBP1 and HbACBP2 are two important latex ACBPs that might be involved in the lipid and latex metabolism. The results may provide valuable information for further investigations into the biological functions of HbACBPs during latex metabolism and stress responses in H. brasiliensis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4419-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyi Nie
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Yihang Wang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.,College of Agriculture, Hainan University, Haikou, 570228, China
| | - Chuntai Wu
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Yu Li
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Guijuan Kang
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Huaide Qin
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | - Rizhong Zeng
- Rubber Research Institute & Key Laboratory of Biology and Genetic Resources of Rubber Trees, Ministry of Agriculture of China, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.
| |
Collapse
|
18
|
Guo ZH, Chan WHY, Kong GKW, Hao Q, Chye ML. The first plant acyl-CoA-binding protein structures: the close homologues OsACBP1 and OsACBP2 from rice. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:438-448. [PMID: 28471368 DOI: 10.1107/s2059798317004193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that facilitate the binding of long-chain acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs act to form intracellular acyl-CoA pools, transport acyl-CoA esters and regulate lipid metabolism. In the model plant Arabidopsis thaliana, a family of six ACBPs has been demonstrated to function in stress and development. Six ACBPs (OsACBPs) have also been identified in Oryza sativa (rice), but they are not as well characterized as those in Arabidopsis thaliana. To understand the need in rice for the two 10 kDa ACBPs, namely OsACBP1 and OsACBP2, which share 79% sequence identity, their crystal structures were elucidated and their affinities toward acyl-CoA esters were compared using isothermal titration calorimetry. OsACBP2 was found to display a higher binding affinity for unsaturated acyl-CoA esters than OsACBP1. A difference between the two proteins is observed at helix 3 and is predicted to lead to different ligand-binding modes in terms of the shape of the binding pocket and the residues that are involved. OsACBP1 thus resembles bovine ACBP, while OsACBP2 is similar to human liver ACBP, in both structure and binding affinity. This is the first time that ACBP structures have been reported from plants, and suggests that OsACBP1 and OsACBP2 are not redundant in function despite their high sequence identity and general structural similarity.
Collapse
Affiliation(s)
- Ze Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wallace H Y Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Geoffrey K W Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
19
|
Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 2017; 18:232. [PMID: 28292259 PMCID: PMC5351109 DOI: 10.1186/s12864-017-3607-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND B. napus (oilseed) is an important source of edible vegetable oil, and its nutritional and economic value is determined by its fatty acid composition and content. RESULTS Using the Brassica 60 K SNP array, we performed a genome-wide association study of fatty acid composition in a population of 520 genetically diverse oilseed accessions. Using the PCA + K model in TASSEL 5.2.1, we identified 62 genomic regions that were significantly associated with the composition of seven fatty acids, and five consensus regions that mapped to the A2, A8, A9, C1, and C3 chromosomes, respectively, of the Brassica napus Darmor-bzh genome. We then identified 24 orthologs of the functional candidate genes involved in fatty acid biosynthesis, excluding BnaA.FAE1 and BnaC.FAE1 on the A8 and C3 homologous genome blocks, which are known to have critical roles in the fatty acid biosynthesis pathway, and potential orthologs of these genes (e.g., LACS9, KCR1, FAB1, LPAT4, KCS17, CER4, TT16, and ACBP5). CONCLUSIONS Our results demonstrate the power of association mapping in identifying genes of interest in B. napus and provide insight into the genetic basis of fatty acid biosynthesis in B. napus. Furthermore, our findings may facilitate marker-based breeding efforts aimed at improving fatty acid composition and quality in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Shimeng Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
20
|
Ye ZW, Xu J, Shi J, Zhang D, Chye ML. Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism. PLANT MOLECULAR BIOLOGY 2017; 93:209-225. [PMID: 27826761 DOI: 10.1007/s11103-016-0557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/30/2016] [Indexed: 05/14/2023]
Abstract
We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11-14 in the mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter activity for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11-14 in mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter region for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
21
|
Ye ZW, Lung SC, Hu TH, Chen QF, Suen YL, Wang M, Hoffmann-Benning S, Yeung E, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. PLANT MOLECULAR BIOLOGY 2016; 92:717-730. [PMID: 27645136 DOI: 10.1007/s11103-016-0541-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yung-Lee Suen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
22
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
23
|
Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog Lipid Res 2016; 63:165-81. [DOI: 10.1016/j.plipres.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 01/22/2023]
|
24
|
Aznar-Moreno JA, Venegas-Calerón M, Du ZY, Garcés R, Tanner JA, Chye ML, Martínez-Force E, Salas JJ. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:141-50. [PMID: 26938582 DOI: 10.1016/j.plaphy.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 05/18/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013 Seville, Spain.
| |
Collapse
|
25
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
27
|
Lung SC, Chye ML. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1409-1421. [PMID: 26747650 DOI: 10.1016/j.bbalip.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
28
|
Abstract
A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.
Collapse
|
29
|
Soupene E, Kuypers FA. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes. J Lipid Res 2015; 56:1961-71. [PMID: 26290611 PMCID: PMC4583085 DOI: 10.1194/jlr.m061937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes.
Collapse
Affiliation(s)
- Eric Soupene
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Frans A. Kuypers
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| |
Collapse
|
30
|
Raboanatahiry NH, Yin Y, Chen L, Li M. Genome-wide identification and Phylogenic analysis of kelch motif containing ACBP in Brassica napus. BMC Genomics 2015; 16:512. [PMID: 26156054 PMCID: PMC4497377 DOI: 10.1186/s12864-015-1735-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/29/2015] [Indexed: 11/18/2022] Open
Abstract
Background Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were identified in Arabidopsis thaliana: the small ACBPs, the large ACBPs, the ankyrin repeats containing ACBPs and the kelch motif containing ACBPs. They differed in structure and in size, and showed multiple important functions. In the present study, Brassica napus ACBPs were identified and characterized. Results Eight copies of kelch motif ACBPs were cloned, it showed that B. napus ACBPs shared high amino acid sequence identity with A. thaliana, Brassica rapa and Brassica oleracea. Furthermore, phylogeny based on domain structure and comparison map showed the relationship and the evolution of ACBPs within Brassicaceae family: ACBPs evolved into four separate classes with different structure. Chromosome locations comparison showed conserved syntenic blocks. Conclusions ACBPs were highly conserved in Brassicaceae. They evolved from a common ancestor, but domain duplication and rearrangement might separate them into four distinct classes, with different structure and functions. Otherwise, B. napus inherited kelch motif ACBPs from ancestor conserving chromosomal location, emphasizing preserved synteny block region. This study provided a first insight for exploring ACBPs in B. napus, which supplies a valuable tool for crop improvement in agriculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1735-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Haingotiana Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China.
| | - Yongtai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China.
| | - Li Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China.
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China.
| |
Collapse
|
31
|
Raboanatahiry NH, Lu G, Li M. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus. PLoS One 2015; 10:e0129650. [PMID: 26065422 PMCID: PMC4465970 DOI: 10.1371/journal.pone.0129650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.
Collapse
Affiliation(s)
- Nadia Haingotiana Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- * E-mail: (GL); (ML)
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China
- * E-mail: (GL); (ML)
| |
Collapse
|
32
|
Hsiao AS, Yeung EC, Ye ZW, Chye ML. The Arabidopsis cytosolic Acyl-CoA-binding proteins play combinatory roles in pollen development. PLANT & CELL PHYSIOLOGY 2015; 56:322-33. [PMID: 25395473 DOI: 10.1093/pcp/pcu163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing β-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
33
|
DU ZY, Chen MX, Chen QF, Gu JD, Chye ML. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. PLANT, CELL & ENVIRONMENT 2015; 38:101-17. [PMID: 24906022 DOI: 10.1111/pce.12382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, the expression of two genes encoding acyl-CoA-binding proteins (ACBPs) AtACBP1 and AtACBP4, were observed to be induced by lead [Pb(II)] in shoots and roots in qRT-PCR analyses. Quantitative GUS (β-glucuronidase) activity assays confirmed induction of AtACBP1pro::GUS by Pb(II). Electrophoretic mobility shift assays (EMSAs) revealed that Pas elements in the 5'-flanking region of AtACBP1 were responsive to Pb(II) treatment. AtACBP1 and AtACBP4 were further compared in Pb(II) uptake using Brassica juncea, a potential candidate for phytoremediation given its rapid growth, large roots, high biomass and good capacity to accumulate heavy metals. Results from atomic absorption analyses on transgenic B. juncea expressing AtACBP1 or AtACBP4 indicated Pb(II) accumulation in roots. Subsequent Pb(II)-tracing assays demonstrated Pb(II) accumulation in the cytosol of root tips and vascular tissues of transgenic B. juncea AtACBP1-overexpressors (OXs) and AtACBP4-OXs and transgenic Arabidopsis AtACBP1-OXs. Transgenic Arabidopsis AtACBP1-OXs sequestered Pb(II) in the trichomes and displayed tolerance to hydrogen peroxide (H2 O2 ) treatment. In addition, AtACBP1 and AtACBP4 were H2 O2 -induced in the roots of wild-type Arabidopsis, while lipid hydroperoxide (LOOH) measurements of B. juncea AtACBP1-OX and AtACBP4-OX roots suggested that AtACBP1 and AtACBP4 can protect lipids against Pb(II)-induced lipid peroxidation.
Collapse
Affiliation(s)
- Zhi-Yan DU
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
34
|
Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 2014; 34:e00165. [PMID: 25423293 PMCID: PMC4274664 DOI: 10.1042/bsr20140139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. The binding affinities of the three Arabidopsis cytosolic ACBPs (AtACBP4, AtACBP5 and AtACBP6) with acyl-CoA esters were investigated by ITC. When the biological significance of these AtACBPs was analysed using mutants, results indicated their overlapping functions in seed acyl-lipid metabolism.
Collapse
|
35
|
Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5473-83. [PMID: 25053648 PMCID: PMC4157719 DOI: 10.1093/jxb/eru304] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.
Collapse
Affiliation(s)
- Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shi Xiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
36
|
Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML. Gene expression in plant lipid metabolism in Arabidopsis seedlings. PLoS One 2014; 9:e107372. [PMID: 25264899 PMCID: PMC4180049 DOI: 10.1371/journal.pone.0107372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard P. Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Louise V. Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Johnathan A. Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
37
|
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic 2014; 15:915-32. [PMID: 24931800 DOI: 10.1111/tra.12187] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies.
Collapse
Affiliation(s)
- Anna K Hurlock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
38
|
Meng W, Hsiao AS, Gao C, Jiang L, Chye ML. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes. THE NEW PHYTOLOGIST 2014; 203:469-482. [PMID: 24738983 DOI: 10.1111/nph.12809] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/12/2014] [Indexed: 05/08/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis.
Collapse
Affiliation(s)
- Wei Meng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
39
|
|
40
|
Du ZY, Chye ML. Interactions between Arabidopsis acyl-CoA-binding proteins and their protein partners. PLANTA 2013; 238:239-45. [PMID: 23743537 DOI: 10.1007/s00425-013-1904-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 05/20/2023]
Abstract
Protein-protein interactions are at the core of cellular interactomics and are essential for various biological functions. Since proteins commonly function as macromolecular complexes, it is important to identify their interacting partners to better understand their function and the significance in these interactions. The acyl-CoA-binding proteins (ACBPs) of eukaryotes show conservation in the presence of a lipid-binding acyl-CoA-binding domain. In Arabidopsis thaliana, four of six members from the AtACBP family possess ankyrin repeats (AtACBP1 and AtACBP2) or kelch motifs (AtACBP4 and AtACBP5), which can potentially mediate protein-protein interactions. Through yeast two-hybrid screens, a dozen putative protein partners interacting with AtACBPs have been isolated from an Arabidopsis cDNA library. Investigations in the past decade on the interaction between AtACBPs and their protein partners have revealed novel roles for AtACBPs, including functions in mediating oxidative stress responses, heavy metal tolerance and oxygen sensing. Recent progress and current questions on AtACBPs and their interactors are discussed in this review.
Collapse
Affiliation(s)
- Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
41
|
Du ZY, Chen MX, Chen QF, Xiao S, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:294-309. [PMID: 23448237 DOI: 10.1111/tpj.12121] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 05/08/2023]
Abstract
A family of six genes encoding acyl-CoA-binding proteins (ACBPs), ACBP1-ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1-over-expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over-production in 12-day-old seedlings up-regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress-responsive genes: ABA-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH-TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12-day-old seedlings of ACBP1-over-expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two-hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA-mediated seed germination and seedling development.
Collapse
Affiliation(s)
- Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
42
|
Padmalatha KV, Patil DP, Kumar K, Dhandapani G, Kanakachari M, Phanindra MLV, Kumar S, Mohan TC, Jain N, Prakash AH, Vamadevaiah H, Katageri IS, Leelavathi S, Reddy MK, Kumar PA, Reddy VS. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics 2012; 13:624. [PMID: 23151214 PMCID: PMC3556503 DOI: 10.1186/1471-2164-13-624] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/07/2012] [Indexed: 01/02/2023] Open
Abstract
Background Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it’s near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. Results Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5–15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15–20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. Conclusions Comparative transcriptome analysis of WT and its near isogenic fl mutant revealed key genes and pathways involved at various stages of fibre development. Our data implicated the significant role of mitochondria mediated energy metabolism during fibre elongation process. The delayed expression of genes involved in phytohormone signalling and stress responsive TFs in the fl mutant suggests the need for a coordinated expression of regulatory mechanisms in fibre cell initiation and differentiation.
Collapse
Affiliation(s)
- Kethireddy Venkata Padmalatha
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Leal Valentim F, Neven F, Boyen P, van Dijk ADJ. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana. PLoS One 2012; 7:e47022. [PMID: 23077539 PMCID: PMC3471968 DOI: 10.1371/journal.pone.0047022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.
Collapse
Affiliation(s)
| | - Frank Neven
- Hasselt University and Transnational University of Limburg, Hasselt, Belgium
| | - Peter Boyen
- Hasselt University and Transnational University of Limburg, Hasselt, Belgium
| | - Aalt D. J. van Dijk
- Plant Research International, Bioscience, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Zheng SX, Xiao S, Chye ML. The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2985-3000. [PMID: 22345636 PMCID: PMC3350915 DOI: 10.1093/jxb/ers009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
Collapse
Affiliation(s)
| | | | - Mee-Len Chye
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Xiao S, Chye ML. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. PLANT PHYSIOLOGY 2011; 156:2069-81. [PMID: 21670223 PMCID: PMC3149925 DOI: 10.1104/pp.111.176933] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
ACBP3 is one of six Arabidopsis (Arabidopsis thaliana) genes, designated ACBP1 to ACBP6, that encode acyl-coenzyme A (CoA)-binding proteins (ACBPs). These ACBPs bind long-chain acyl-CoA esters and phospholipids and are involved in diverse cellular functions, including acyl-CoA homeostasis, development, and stress tolerance. Recombinant ACBP3 binds polyunsaturated acyl-CoA esters and phospholipids in vitro. Here, we show that ACBP3 plays a role in the plant defense response to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. ACBP3 mRNA was up-regulated upon pathogen infection and treatments using pathogen elicitors and defense-related phytohormones. Transgenic Arabidopsis ACBP3 overexpressors (ACBP3-OEs) showed constitutive expression of pathogenesis-related genes (PR1, PR2, and PR5), cell death, and hydrogen peroxide accumulation in leaves. Consequently, ACBP3-OEs displayed enhanced resistance to the bacterial pathogen P. syringae DC3000. In contrast, the acbp3 T-DNA insertional mutant was more susceptible and exhibited lower PR gene transcript levels upon infection. Using the ACBP3 OE-1 line in combination with nonexpressor of PR genes1 (npr1-5) or coronatine-insensitive1 (coi1-2), we concluded that the enhanced PR gene expression and P. syringae DC3000 resistance in the ACBP3-OEs are dependent on the NPR1-mediated, but not the COI1-mediated, signaling pathway. Given that ACBP3-OEs showed greater susceptibility to infection by the necrotrophic fungus Botrytis cinerea while the acbp3 mutant was less susceptible, we suggest that ACBP3 plays a role in the plant defense response against biotrophic pathogens that is distinct from necrotrophic pathogens. ACBP3 function in plant defense was supported further by bioinformatics data showing up-regulation of many biotic and abiotic stress-related genes in ACBP3 OE-1 in comparison with the wild type.
Collapse
Affiliation(s)
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
46
|
Meng W, Su YCF, Saunders RMK, Chye ML. The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. THE NEW PHYTOLOGIST 2011; 189:1170-1184. [PMID: 21128943 DOI: 10.1111/j.1469-8137.2010.03546.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Acyl-CoA-binding proteins (ACBPs) show conservation in an acyl-CoA-binding domain (ACB domain) which binds acyl-CoA esters. Previous studies on plant ACBPs focused on eudicots, Arabidopsis and Brassica. Here, we report on the phylogeny and characterization of the ACBP family from the monocot Oryza sativa (rice). • Phylogenetic analyses were conducted using 16 plant genomes. Expression profiles of rice ACBPs under normal growth, as well as biotic and abiotic stress conditions, were examined by quantitative real-time reverse-transcription polymerase chain reactions. In vitro acyl-CoA-binding assays were conducted using recombinant (His)₆-tagged ACBPs. • The ACBP family diversified as land plants evolved. Classes I and IV show lineage-specific gene expansion. Classes II and III are closely related phylogenetically. As in the eudicot Arabidopsis, six genes (designated OsACBP1 to OsACBP6) encode rice ACBPs, but their distribution into various classes differed from Arabidopsis. Rice ACBP mRNAs showed ubiquitous expression and OsACBP4, OsACBP5 and OsACBP6 were stress-responsive. All recombinant rice ACBPs bind [¹⁴C]linolenoyl-CoA besides having specific substrates. • Phylogeny, gene expression and biochemical analyses suggest that paralogues within and across classes are not redundant proteins. In addition to performing conserved basal functions, multidomain rice ACBPs appear to be associated with stress responses.
Collapse
Affiliation(s)
- Wei Meng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yvonne C F Su
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard M K Saunders
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
47
|
Schumann N, Navarro-Quezada A, Ullrich K, Kuhl C, Quint M. Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats. PLANT PHYSIOLOGY 2011; 155:835-50. [PMID: 21119043 PMCID: PMC3032470 DOI: 10.1104/pp.110.166579] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The F-box protein superfamily represents one of the largest families in the plant kingdom. F-box proteins phylogenetically organize into numerous subfamilies characterized by their carboxyl (C)-terminal protein-protein interaction domain. Among the largest F-box protein subfamilies in plant genomes are those with C-terminal kelch repeats. In this study, we analyzed the phylogeny and evolution of F-box kelch proteins/genes (FBKs) in seven completely sequenced land plant genomes including a bryophyte, a lycophyte, monocots, and eudicots. While absent in prokaryotes, F-box kelch proteins are widespread in eukaryotes. Nonplant eukaryotes usually contain only a single FBK gene. In land plant genomes, however, FBKs expanded dramatically. Arabidopsis thaliana, for example, contains at least 103 F-box genes with well-conserved C-terminal kelch repeats. The construction of a phylogenetic tree based on the full-length amino acid sequences of the FBKs that we identified in the seven species enabled us to classify FBK genes into unstable/stable/superstable categories. In contrast to superstable genes, which are conserved across all seven species, kelch domains of unstable genes, which are defined as lineage specific, showed strong signatures of positive selection, indicating adaptational potential. We found evidence for conserved protein features such as binding affinities toward A. thaliana SKP1-like adaptor proteins and subcellular localization among closely related FBKs. Pseudogenization seems to occur only rarely, but differential transcriptional regulation of close relatives may result in subfunctionalization.
Collapse
|
48
|
Yurchenko OP, Weselake RJ. Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. N Biotechnol 2010; 28:97-109. [PMID: 20933624 DOI: 10.1016/j.nbt.2010.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/11/2010] [Accepted: 09/29/2010] [Indexed: 01/03/2023]
Abstract
Acyl-CoA-binding protein (ACBP), a low molecular mass (m) (∼ 10 kDa) soluble protein ubiquitous in eukaryotes, plays an important housekeeping role in lipid metabolism by maintaining the intracellular acyl-CoA pool. ACBP is involved in lipid biosynthesis and transport, gene expression, and membrane biogenesis. In plants, low m ACBP and high m ACBPs participate in response mechanisms to biotic and abiotic factors, acyl-CoA transport in phloem, and biosynthesis of structural and storage lipids. In light of current research on the modification of seed oil, insight into mechanisms of substrate trafficking within lipid biosynthetic pathways is crucial for developing rational strategies for the production of specialty oils with the desired alterations in fatty acid composition. In this review, we summarize our knowledge of plant ACBPs with emphasis on the role of low m ACBP in seed oil biosynthesis, based on in vitro studies and analyses of transgenic plants. Future prospects and possible applications of low m ACBP in seed oil modification are discussed.
Collapse
Affiliation(s)
- Olga P Yurchenko
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, Canada
| | | |
Collapse
|
49
|
Gao W, Li HY, Xiao S, Chye ML. Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1025-7. [PMID: 20657176 PMCID: PMC3115187 DOI: 10.4161/psb.5.8.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.
Collapse
Affiliation(s)
- Wei Gao
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Hong-Ye Li
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
- Department of Biotechnology; Jinan University; Shipai, Guangzhou, China
| | - Shi Xiao
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| |
Collapse
|
50
|
Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye ML. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. THE NEW PHYTOLOGIST 2010; 186:843-855. [PMID: 20345632 PMCID: PMC4169659 DOI: 10.1111/j.1469-8137.2010.03231.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*In Arabidopsis thaliana, the amino acid sequences of membrane-associated acyl-CoA-binding proteins ACBP1 and ACBP2 are highly conserved. We have shown previously that, in developing seeds, ACBP1 accumulates in the cotyledonary cells of embryos and ACBP1 is proposed to be involved in lipid transfer. We show here by immunolocalization, using ACBP2-specific antibodies, that ACBP2 is also expressed in the embryos at various stages of seed development in Arabidopsis. *Phenotypic analyses of acbp1 and acbp2 single mutants revealed that knockout of either ACBP1 or ACBP2 alone did not affect their life cycle as both single mutants exhibited normal growth and development similar to the wild-type. However, the acbp1acbp2 double mutant was embryo lethal and was also defective in callus induction. *On lipid and acyl-CoA analyses, the siliques, but not the leaves, of the acbp1 mutant accumulated galactolipid monogalactosyldiacylglycerol and 18:0-CoA, but the levels of most polyunsaturated species of phospholipid, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, declined. *As recombinant ACBP1 and ACBP2 bind unsaturated phosphatidylcholine and acyl-CoA esters in vitro, we propose that ACBP1 and ACBP2 are essential in lipid transfer during early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mee-Len Chye
- Author for correspondence: Mee-Len Chye, Tel: +852-22990319, Fax: +852-28583477,
| |
Collapse
|