1
|
Su H, Huang H, Guo C, Sun J, Mao X. Biochemical Characterization of a Family GH18 Specific-Domain Chitinase: Chitin-Binding Domain Modulates the Reaction Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10389-10398. [PMID: 40209041 DOI: 10.1021/acs.jafc.4c12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Chitinase is an essential tool for the high-value utilization of chitin and the production of N-acetyl chito-oligosaccharides (N-acetyl COSs). The reaction specificity of chitinase is a key determinant of product composition. Previous studies have shown that carbohydrate-binding modules (CBMs) may influence the reaction specificity of glycoside hydrolases, though few studies have focused on this aspect in chitinases. Here, we identified a chitinase ChiZg from Zooshikella ganghwensis, characterized by the spatial separation of the chitin-binding domain (ChBD) from the catalytic domain (CD). ChiZg modulated product specificity for (GlcNAc)2 in an atypical exo-mode, and the (GlcNAc)2 yield ultimately maintained a relative balance as the substrate concentration and enzyme amount changed. Additionally, we found that the ChBD in ChiZg could modulate the enzyme's reaction specificity. A ChBD-truncated mutant exhibited additional N-acetylglucosaminidase activity, hydrolyzing (GlcNAc)2 to GlcNAc. We also engineered a mutant by translocating the ChBD from the N-terminus to the C-terminus, which aligned with the CD spatial configuration. It enhanced product specificity for (GlcNAc)3 with minimal GlcNAc production. This work expands the understanding of the ChBD-mediated reaction specificity in chitinases, providing an effective catalytic tool for the efficient degradation of chitin and the production of N-acetyl COSs with specific configurations.
Collapse
Affiliation(s)
- Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyan Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chaoran Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
2
|
Chen JY, Sang H, Chilvers MI, Wu CH, Chang HX. Characterization of soybean chitinase genes induced by rhizobacteria involved in the defense against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1341181. [PMID: 38405589 PMCID: PMC10884886 DOI: 10.3389/fpls.2024.1341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Rhizobacteria are capable of inducing defense responses via the expression of pathogenesis-related proteins (PR-proteins) such as chitinases, and many studies have validated the functions of plant chitinases in defense responses. Soybean (Glycine max) is an economically important crop worldwide, but the functional validation of soybean chitinase in defense responses remains limited. In this study, genome-wide characterization of soybean chitinases was conducted, and the defense contribution of three chitinases (GmChi01, GmChi02, or GmChi16) was validated in Arabidopsis transgenic lines against the soil-borne pathogen Fusarium oxysporum. Compared to the Arabidopsis Col-0 and empty vector controls, the transgenic lines with GmChi02 or GmChi16 exhibited fewer chlorosis symptoms and wilting. While GmChi02 and GmChi16 enhanced defense to F. oxysporum, GmChi02 was the only one significantly induced by Burkholderia ambifaria. The observation indicated that plant chitinases may be induced by different rhizobacteria for defense responses. The survey of 37 soybean chitinase gene expressions in response to six rhizobacteria observed diverse inducibility, where only 10 genes were significantly upregulated by at least one rhizobacterium and 9 genes did not respond to any of the rhizobacteria. Motif analysis on soybean promoters further identified not only consensus but also rhizobacterium-specific transcription factor-binding sites for the inducible chitinase genes. Collectively, these results confirmed the involvement of GmChi02 and GmChi16 in defense enhancement and highlighted the diverse inducibility of 37 soybean chitinases encountering F. oxysporum and six rhizobacteria.
Collapse
Affiliation(s)
- Jheng-Yan Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Master Program of Plant Medicine, National Taiwan University, Taipei, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Sueldo DJ, Godson A, Kaschani F, Krahn D, Kessenbrock T, Buscaill P, Schofield CJ, Kaiser M, van der Hoorn RAL. Activity-based proteomics uncovers suppressed hydrolases and a neo-functionalised antibacterial enzyme at the plant-pathogen interface. THE NEW PHYTOLOGIST 2024; 241:394-408. [PMID: 36866975 PMCID: PMC10952330 DOI: 10.1111/nph.18857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active β-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.
Collapse
Affiliation(s)
- Daniela J. Sueldo
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Alice Godson
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Daniel Krahn
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Till Kessenbrock
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchOxfordOX1 3TAUK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | | |
Collapse
|
4
|
Zhou YY, Wang YS, Sun CC. Molecular Cloning and Expression Analysis of the Typical Class III Chitinase Genes from Three Mangrove Species under Heavy Metal Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1681. [PMID: 37111902 PMCID: PMC10146221 DOI: 10.3390/plants12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Chitinases are considered to act as defense proteins when plants are exposed to heavy metal stresses. Typical class III chitinase genes were cloned from Kandelia obovate, Bruguiera gymnorrhiza, and Rhizophora stylosa by using RT-PCR and RACE and named KoCHI III, BgCHI III, and RsCHI III. Bioinformatics analysis revealed that the three genes encoding proteins were all typical class III chitinases with the characteristic catalytic structure belonging to the family GH18 and located outside the cell. In addition, there are heavy metal binding sites in the three-dimensional spatial structure of the type III chitinase gene. Phylogenetic tree analysis indicated that CHI had the closest relationship with chitinase in Rhizophora apiculata. In mangrove plants, the balance of the oxidative system in the body is disrupted under heavy metal stress, resulting in increased H2O2 content. Real-time PCR illustrated that the expression level under heavy metal stress was significantly higher than that in the control group. Expression levels of CHI III were higher in K. obovate than in B. gymnorrhiza and R. stylosa. With the increase in heavy metal stress time, the expression level increased continuously. These results suggest that chitinase plays an important role in improving the heavy metal tolerance of mangrove plants.
Collapse
Affiliation(s)
- Yue-Yue Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
5
|
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep 2023; 13:4951. [PMID: 36973333 PMCID: PMC10043034 DOI: 10.1038/s41598-023-32114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | | | - Verónica Cruz
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Rathinam M, Marimuthu SK, Tyagi S, Kesiraju K, Alagiamanavalan LP, Rao U, Sreevathsa R. Characterization and in planta validation of a CHI4 chitinase from Cajanus platycarpus (Benth.) Maesen for its efficacy against pod borer, Helicoverpa armigera (Hübner). PEST MANAGEMENT SCIENCE 2021; 77:2337-2349. [PMID: 33421295 DOI: 10.1002/ps.6260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pigeonpea, Cajanus cajan is one of the economically important legume food crops and a major source of dietary proteins. Management of pod borer, Helicoverpa armigera has been prominent among crop improvement programs. Lack of resistance sources in the cultivated germplasm and crossing incompatibility with pod borer-resistant wild relatives have prompted biotechnological interventions. Identification and exploitation of genes from pigeonpea wild relatives in host plant resistance towards the pod borer assumes pertinence. Dynamic transcriptome analysis of the wild relative vis a vis cultivated pigeonpea identified a CHI4 chitinase as one of the putative insect resistance genes. RESULTS The study presents variations in important amino acids in CHI4 chitinases from C. cajan and its wild relative C. platycarpus. Comparative protein modeling and docking analysis of the two proteins demonstrated differences in substrate binding efficacy of the chitinase from C. platycarpus which resulted in a minimum binding energy of -8.7 kcal mol-1 . Furthermore, we successfully evaluated the insecticidal activity of the chitinase from C. platycarpus against H. armigera challenge through heterologous expression in tobacco. Molecular characterization of transgenic plants confirmed that their efficacy against H. armigera was a result of the integration of CHI4 from C. platycarpus. CONCLUSION Docking analysis demonstrated effective substrate interaction as a possible reason for efficacy against pod borer in the chitinase from C. platycarpus. This was authenticated by successful overexpression and bioefficacy assessment against H. armigera in tobacco. The CHI4 gene from C. platycarpus can be useful in the mitigation of H. armegira in pigeonpea as well as in other crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sathish Kumar Marimuthu
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Karthik Kesiraju
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
7
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
8
|
Liu M, Gong Y, Sun H, Zhang J, Zhang L, Sun J, Han Y, Huang J, Wu Q, Zhang C, Li Z. Characterization of a Novel Chitinase from Sweet Potato and Its Fungicidal Effect against Ceratocystis fimbriata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7591-7600. [PMID: 32585101 DOI: 10.1021/acs.jafc.0c01813] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black rot, caused by Ceratocystis fimbriata, is a destructive disease of sweet potatoes (Ipomoea batatas). In this study, a novel chitinase (IbChiA) was screened from sweet potatoes, which showed a remarkably higher expression level in resistant varieties than in susceptible ones after inoculation with C. fimbriata. Sequence analysis indicated that IbChiA belongs to family 19 class II extracellular chitinase with a MW of 26.3 kDa and pI of 5.96. Recombinant IbChiA, produced by Pichia pastoris, displayed antifungal activity and stability. IbChiA could restrain the mycelium extension of C. fimbriata. FDA/PI double staining combined with transmission electron microscopy observation revealed the remarkable fungicidal effect of IbChiA on the conidia of C. fimbriata. The disease symptoms on the surface of slices and tuberous roots of sweet potatoes were significantly reduced after treatment with IbChiA. These results indicated that IbChiA could be used as a potential biofungicide to replace chemical fungicides.
Collapse
Affiliation(s)
- Meiyan Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ying Gong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Jiangsu Xuzhou Sweet Potato Research Center, Xuzhou, Jiangsu Province 221131, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Jinjin Huang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Chengling Zhang
- Jiangsu Xuzhou Sweet Potato Research Center, Xuzhou, Jiangsu Province 221131, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
9
|
Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:62-70. [PMID: 28483054 DOI: 10.1016/j.plantsci.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
10
|
Kesari P, Patil DN, Kumar P, Tomar S, Sharma AK, Kumar P. Structural and functional evolution of chitinase-like proteins from plants. Proteomics 2015; 15:1693-705. [PMID: 25728311 DOI: 10.1002/pmic.201400421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
The plant genome contains a large number of sequences that encode catalytically inactive chitinases referred to as chitinase-like proteins (CLPs). Although CLPs share high sequence and structural homology with chitinases of glycosyl hydrolase 18 (TIM barrel domain) and 19 families, they may lack the binding/catalytic activity. Molecular genetic analysis revealed that gene duplication events followed by mutation in the existing chitinase gene have resulted in the loss of activity. The evidences show that adaptive functional diversification of the CLPs has been achieved through alterations in the flexible regions than in the rigid structural elements. The CLPs plays an important role in the defense response against pathogenic attack, biotic and abiotic stress. They are also involved in the growth and developmental processes of plants. Since the physiological roles of CLPs are similar to chitinase, such mutations have led to plurifunctional enzymes. The biochemical and structural characterization of the CLPs is essential for understanding their roles and to develop potential utility in biotechnological industries. This review sheds light on the structure-function evolution of CLPs from chitinases.
Collapse
Affiliation(s)
- Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Dipak Narhari Patil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pramod Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
11
|
García-Fraga B, da Silva AF, López-Seijas J, Sieiro C. A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: Heterologous expression, characterization and antifungal activity. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Martínez-Caballero S, Cano-Sánchez P, Mares-Mejía I, Díaz-Sánchez AG, Macías-Rubalcava ML, Hermoso JA, Rodríguez-Romero A. Comparative study of two GH19 chitinase-like proteins fromHevea brasiliensis, one exhibiting a novel carbohydrate-binding domain. FEBS J 2014; 281:4535-54. [DOI: 10.1111/febs.12962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/12/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Affiliation(s)
| | - Patricia Cano-Sánchez
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria México
| | - Israel Mares-Mejía
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria México
| | - Angel G. Díaz-Sánchez
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria México
| | | | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural; Instituto de Química-Física ‘Rocasolano’; CSIC Madrid Spain
| | - Adela Rodríguez-Romero
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria México
| |
Collapse
|
13
|
Mokshina N, Gorshkova T, Deyholos MK. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS One 2014; 9:e97949. [PMID: 24918577 PMCID: PMC4053336 DOI: 10.1371/journal.pone.0097949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/26/2014] [Indexed: 11/19/2022] Open
Abstract
Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Chaudet MM, Naumann TA, Price NPJ, Rose DR. Crystallographic structure of ChitA, a glycoside hydrolase family 19, plant class IV chitinase from Zea mays. Protein Sci 2014; 23:586-93. [PMID: 24616181 DOI: 10.1002/pro.2437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Maize ChitA chitinase is composed of a small, hevein-like domain attached to a carboxy-terminal chitinase domain. During fungal ear rot, the hevein-like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization of truncated ChitA (ChitA ΔN), which lacks the hevein-like domain. ChitA ΔN and a mutant form (ChitA ΔN-EQ) were expressed and purified; enzyme assays showed that ChitA ΔN activity was comparable to the full-length enzyme. Mutation of Glu62 to Gln (ChitA ΔN-EQ) abolished chitinase activity without disrupting substrate binding, demonstrating that Glu62 is directly involved in catalysis. A crystal structure of ChitA ΔN-EQ provided strong support for key roles for Glu62, Arg177, and Glu165 in hydrolysis, and for Ser103 and Tyr106 in substrate binding. These findings demonstrate that the hevein-like domain is not needed for enzyme activity. Moreover, comparison of the crystal structure of this plant class IV chitinase with structures from larger class I and II enzymes suggest that class IV chitinases have evolved to accommodate shorter substrates.
Collapse
Affiliation(s)
- Marcia M Chaudet
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | | | | | | |
Collapse
|
15
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Renner T, Specht CD. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:436-42. [PMID: 23830995 PMCID: PMC3820484 DOI: 10.1016/j.pbi.2013.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 05/08/2023]
Abstract
The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales.
Collapse
Affiliation(s)
- Tanya Renner
- Center for Insect Science and Department of Entomology, University of Arizona, United States.
| | | |
Collapse
|
17
|
Renner T, Specht CD. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Mol Biol Evol 2012; 29:2971-85. [PMID: 22490823 DOI: 10.1093/molbev/mss106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins produced by the large and diverse chitinase gene family are involved in the hydrolyzation of glycosidic bonds in chitin, a polymer of N-acetylglucosamines. In flowering plants, class I chitinases are important pathogenesis-related proteins, functioning in the determent of herbivory and pathogen attack by acting on insect exoskeletons and fungal cell walls. Within the carnivorous plants, two subclasses of class I chitinases have been identified to play a role in the digestion of prey. Members of these two subclasses, depending on the presence or absence of a C-terminal extension, can be secreted from specialized digestive glands found within the morphologically diverse traps that develop from carnivorous plant leaves. The degree of homology among carnivorous plant class I chitinases and the method by which these enzymes have been adapted for the carnivorous habit has yet to be elucidated. This study focuses on understanding the evolution of carnivory and chitinase genes in one of the major groups of plants that has evolved the carnivorous habit: the Caryophyllales. We recover novel class I chitinase homologs from species of genera Ancistrocladus, Dionaea, Drosera, Nepenthes, and Triphyophyllum, while also confirming the presence of two subclasses of class I chitinases based upon sequence homology and phylogenetic affinity to class I chitinases available from sequenced angiosperm genomes. We further detect residues under positive selection and reveal substitutions specific to carnivorous plant class I chitinases. These substitutions may confer functional differences as indicated by protein structure homology modeling.
Collapse
Affiliation(s)
- Tanya Renner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
18
|
Ubhayasekera W. Structure and function of chitinases from glycoside hydrolase family 19. POLYM INT 2011. [DOI: 10.1002/pi.3028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Wohlkönig A, Huet J, Looze Y, Wintjens R. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS One 2010; 5:e15388. [PMID: 21085702 PMCID: PMC2976769 DOI: 10.1371/journal.pone.0015388] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. RESULTS Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46) share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. CONCLUSIONS The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.
Collapse
Affiliation(s)
- Alexandre Wohlkönig
- Structural Biology Brussels and Molecular and Cellular Interactions, VIB, Brussels, Belgium
| | - Joëlle Huet
- Laboratoire de Chimie Générale, Institut de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Yvan Looze
- Laboratoire de Chimie Générale, Institut de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Laboratoire de Chimie Générale, Institut de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- Interdisciplinary Research Institute, USR 3078 CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Liu ZH, Yang CP, Qi XT, Xiu LL, Wang YC. Cloning, heterologous expression, and functional characterization of a chitinase gene, Lbchi32, from Limonium bicolor. Biochem Genet 2010; 48:669-79. [PMID: 20512617 DOI: 10.1007/s10528-010-9348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
Abstract
In the present study, an endochitinase gene, Lbchi32, was cloned from Limonium bicolor. The cDNA sequence of Lbchi32 was 1,443 bp in length and encoded 319 amino acid residues. The DNA sequence of Lbchi32 was 2,512 bp in length and contained three exons and two introns. The Lbchi32 gene was inserted into a pPIC9 vector and transferred into Pichia pastoris strains GS115 and KM71 for heterologous expression. SDS-PAGE analyses indicated that LbCHI32 was expressed in both GS115 and KM71 and that it was secreted extracellularly. The optimal reaction conditions for LbCHI32 activity are 45 degrees C, pH 5.0, and 5 mM Ba(2+). The LbCHI32 enzyme can efficiently degrade chitin, chitin derivatives, and the cell walls of different pathogenic fungi, including phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Valsa sordida, Septoria tritici, and Phytophthora sojae. These findings suggest that Lbchi32 has potential use in the degradation of chitin and chitin derivatives.
Collapse
Affiliation(s)
- Zhi Hua Liu
- Northeast Forestry University, Ministry of Education, Harbin, China
| | | | | | | | | |
Collapse
|
21
|
Evolution, Homology Conservation, and Identification of Unique Sequence Signatures in GH19 Family Chitinases. J Mol Evol 2010; 70:466-78. [DOI: 10.1007/s00239-010-9345-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 04/13/2010] [Indexed: 01/29/2023]
|
22
|
Ubhayasekera W, Rawat R, Ho SWT, Wiweger M, Von Arnold S, Chye ML, Mowbray SL. The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. PLANT MOLECULAR BIOLOGY 2009; 71:277-289. [PMID: 19629717 DOI: 10.1007/s11103-009-9523-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 07/04/2009] [Indexed: 05/28/2023]
Abstract
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, 751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cloning and characterization of a chitinase gene Lbchi31 from Limonium bicolor and identification of its biological activity. Mol Biol Rep 2009; 37:2447-53. [DOI: 10.1007/s11033-009-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|
24
|
Wu XF, Wang CL, Xie EB, Gao Y, Fan YL, Liu PQ, Zhao KJ. Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHI1 from Brassica juncea. PLANTA 2009; 229:1231-1242. [PMID: 19277702 DOI: 10.1007/s00425-009-0911-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/16/2009] [Indexed: 05/27/2023]
Abstract
We have previously isolated a Brassica juncea cDNA encoding a novel chitinase BjCHI1 with two chitin-binding domains (Zhao and Chye in Plant Mol Biol 40:1009-1018, 1999). The expression of BjCHI1 was highly inducible by methyl jasmonate (MeJA) treatment, wounding, caterpillar feeding, and pathogenic fungal infection. These observations suggest that the promoter of BjCHI1 gene might contain specific cis-acting elements for stress responses. Here, we report the cloning and characterization of the BjCHI1 promoter. A 1,098 bp BjCHI1 genomic DNA fragment upstream of the ATG start codon was isolated by PCR walking and various constructs were made by fusing the BjCHI1 promoter or its derivatives to beta-glucuronidase reporter gene. The transgenic Arabidopsis plants showed that the BjCHI1 promoter responded to wounding and MeJA treatment, and to treatments with either NaCl or polyethyleneglycol (PEG 6000), indicating that the BjCHI1 promoter responses to both biotic and abiotic stresses. A transient gene expression system of Nicotiana benthamiana leaves was adopted for promoter deletion analysis, and the results showed that a 76 bp region from -695 to -620 in the BjCHI1 promoter was necessary for MeJA-responsive expression. Furthermore, removal of a conserved T/G-box (AACGTG) at -353 to -348 of the promoter greatly reduced the induction by MeJA. This is the first T/G-box element identified in a chitinase gene promoter. Gain-of-function analysis demonstrated that the cis-acting element present in the 76 bp region requires coupling with the T/G-box to confer full magnitude of BjCHI1 induction by MeJA.
Collapse
Affiliation(s)
- Xue-Feng Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Genetics and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Guan Y, Chye ML. A Brassica juncea chitinase with two-chitin binding domains show anti-microbial properties against phytopathogens and Gram-negative bacteria. PLANT SIGNALING & BEHAVIOR 2008; 3:1103-1105. [PMID: 19704507 PMCID: PMC2634468 DOI: 10.4161/psb.3.12.7006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/16/2008] [Indexed: 05/28/2023]
Abstract
In our recent paper in the Journal of Experimental Botany, we demonstrated that Brassica juncea BjCHI1 shows anti-fungal properties against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea and Ascochyta rabiei. Furthermore, BjCHI1 which is an unusual plant chitinase with two (almost identical) chitin-binding domains, agglutinates Gram-negative bacteria, adversely affecting their growth. In contrast, BjCHI1 derivatives lacking one or both domains do not show agglutination activity, suggesting that both chitin-binding domains are essential for agglutination. Observations that agglutination could be relieved by addition of galactose, glucose or lactose, imply that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. We propose here, a model for BjCHI1-mediated agglutination between Gram-negative bacteria, through interaction of their adjacent cell walls mediated by the two chitin-binding domains of BjCHI1. BjCHI1 is a plant chitinase which has evolved towards acquiring an enhanced role in plant defense against fungi and Gram-negative bacteria. Hence, it is a promising candidate for applications against phytopathogens in plant genetic engineering via nuclear or plastid transformation.
Collapse
Affiliation(s)
- Y Guan
- School of Biological Sciences; The University of Hong Kong; Pokfulam;Hong Kong China
| | | |
Collapse
|
26
|
Guan Y, Ramalingam S, Nagegowda D, Taylor PWJ, Chye ML. Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3475-84. [PMID: 18669819 PMCID: PMC2529242 DOI: 10.1093/jxb/ern197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 05/26/2023]
Abstract
Brassica juncea BjCHI1 is a plant chitinase with two chitin-binding domains. Its expression, induced in response to wounding, methyl jasmonate treatment, Aspergillus niger infection, and caterpillar Pieris rapae feeding, suggests that it plays a role in defence. In this study, to investigate the potential of using BjCHI1 in agriculture, Pichia-expressed BjCHI1 and its deletion derivatives that lack one or both chitin-binding domains were tested against phytopathogenic fungi and bacteria. Transplastomic tobacco expressing BjCHI1 was also generated and its extracts assessed. In radial growth-inhibition assays, BjCHI1 and its derivative with one chitin-binding domain showed anti-fungal activities against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea, and Ascochyta rabiei. BjCHI1 also inhibited spore germination of C. truncatum. Furthermore, BjCHI1, but not its derivatives lacking one or both domains, inhibited the growth of Gram-negative bacteria (Escherichia coli, Ralstonia solanacearum, Pseudomonas aeruginosa) more effectively than Gram-positive bacteria (Micrococcus luteus and Bacillus megaterium), indicating that the duplicated chitin-binding domain, uncommon in chitinases, is essential for bacterial agglutination. Galactose, glucose, and lactose relieved agglutination, suggesting that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. Retention of chitinase and bacterial agglutination activities in transplastomic tobacco extracts implicates that BjCHI1 is potentially useful against both fungal and bacterial phytopathogens in agriculture.
Collapse
Affiliation(s)
- Yuanfang Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Dinesh Nagegowda
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul W. J. Taylor
- BioMarka, School of Agriculture and Food Systems, The University of Melbourne, Victoria 3010, Australia
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
27
|
Shalom G, Pratten J, Wilson M, Nair SP. Cloning, heterologous gene expression and biochemical characterization of the alpha-1,3-glucanase from the filamentous fungus Penicillium purpurogenum. Protein Expr Purif 2008; 60:170-5. [PMID: 18490176 DOI: 10.1016/j.pep.2008.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
Abstract
There has been much recent interest in alpha-1,3-glucanases (mutanases) as they have the potential to be used in the treatment of dental caries. Mutanases have been reported in a number of bacteria, yeast and fungi but remain a relatively uncharacterised family of enzymes. In this study we heterologously expressed the mutanase gene from the filamentous fungus Penicillium purpurogenum to enable further characterization of its enzymatic activity. The mutanase cDNA was cloned and expressed in the methylotrophic yeast Pichia pastoris. The molecular mass of the secreted protein was about 102 kDa. The recombinant enzyme hydrolyzed mutan with a specific activity of 3.9 U/mg of protein. The recombinant enzyme was specific for mutan and could not cleave a variety of other polysaccharides demonstrating a specificity for alpha-1,3-glucosidic linkages. The pH and temperature optima were pH 4.6 and 45 degrees C, respectively. Synthetic compounds were also tested as substrates to assess whether the P. purpurogenum mutanase has an exo- or endo-type mechanism of hydrolysis. The results suggest an endo-hydrolytic mode of action. The type of mechanism was confirmed since mutanase activity was not suppressed in the presence of inhibitors of exo-type enzymes.
Collapse
Affiliation(s)
- Gil Shalom
- Division of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | | | | | |
Collapse
|
28
|
Ubhayasekera W, Tang CM, Ho SWT, Berglund G, Bergfors T, Chye ML, Mowbray SL. Crystal structures of a family 19 chitinase from Brassica juncea show flexibility of binding cleft loops. FEBS J 2007; 274:3695-3703. [PMID: 17608716 DOI: 10.1111/j.1742-4658.2007.05906.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brassica juncea chitinase is an endo-acting, pathogenesis-related protein that is classified into glycoside hydrolase family 19, with highest homology (50-60%) in its catalytic domain to class I plant chitinases. Here we report X-ray structures of the chitinase catalytic domain from wild-type (apo, as well as with chloride ions bound) and a Glu234Ala mutant enzyme, solved by molecular replacement and refined at 1.53, 1.8 and 1.7 A resolution, respectively. Confirming our earlier mutagenesis studies, the active-site residues are identified as Glu212 and Glu234. Glu212 is believed to be the catalytic acid in the reaction, whereas Glu234 is thought to have a dual role, both activating a water molecule in its attack on the anomeric carbon, and stabilizing the charged intermediate. The molecules in the various structures differ significantly in the conformation of a number of loops that border the active-site cleft. The differences suggest an opening and closing of the enzyme during the catalytic cycle. Chitin is expected to dock first near Glu212, which will protonate it. Conformational changes then bring Glu234 closer, allowing it to assist in the following steps. These observations provide important insights into catalysis in family 19 chitinases.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Ce Mun Tang
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Sharon W T Ho
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Gunnar Berglund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Terese Bergfors
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Mee-Len Chye
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Sherry L Mowbray
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
29
|
Cavada BS, Moreno FBB, da Rocha BAM, de Azevedo WF, Castellón RER, Goersch GV, Nagano CS, de Souza EP, Nascimento KS, Radis-Baptista G, Delatorre P, Leroy Y, Toyama MH, Pinto VPT, Sampaio AH, Barettino D, Debray H, Calvete JJ, Sanz L. cDNA cloning and 1.75 A crystal structure determination of PPL2, an endochitinase and N-acetylglucosamine-binding hemagglutinin from Parkia platycephala seeds. FEBS J 2006; 273:3962-74. [PMID: 16934035 DOI: 10.1111/j.1742-4658.2006.05400.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407+/-15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 A resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (betaalpha)8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.
Collapse
Affiliation(s)
- Benildo S Cavada
- BioMol-Laboratory, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|