1
|
Govinda Rajoo TR, Ibrahim MSC, Ahmad A, Ng LC. Bio-efficacy of Nanosilicon in Regulating Oxidative Activity to Control Rice Seedlings Rot Disease Caused by Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2025; 41:153-166. [PMID: 40211620 PMCID: PMC11986358 DOI: 10.5423/ppj.oa.08.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 12/11/2024] [Indexed: 04/14/2025]
Abstract
Bacterial panicle blight and seedling rot diseases in rice plants (Oryza sativa L.) are caused by the pathogenic bacterial Burkholderia glumae. The nanosilicon treatment is gaining attraction but its effectiveness towards B. glumae infection in rice seedlings through regulating enzymatic activities remains largely unexplored. This study aimed to evaluate the bio-efficacy of nanosilicon in controlling seedling rot disease through regulation of peroxidase and polyphenol oxidase enzymes after challenge infected with B. glumae in rice variety MR297 and PadiU Putra. Nanosilicon was applied as seed priming in germination testing at 0, 300, 600, and 900 ppm on both rice varieties before B. glumae inoculation. Both rice seed varieties primed with nanosilicon at 600 ppm exhibited a significant increase in seedling germination performances over control. The rice seedling of MR297 was more responsive to nanosilicon at 600 ppm with only 17.78% of disease severity index over 26.67% in PadiU Putra and was therefore selected for the enzymatic activity screening. The results showed that the foliar spray of nanosilicon rice plants (MR297) significantly increased both peroxidase (POX) at 24 h and polyphenol oxidase (PPO) at 48 h after B. glumae inoculation with 20.44/min/g and 7.46/g activities, respectively. In addition, the plant growth performances were significantly increased compared with control under the same treatment. This demonstrates nanosilicon's potential to control rice seedling rot disease by regulating POX and PPO activities and hence promote plant growth. The application of nanosilicon is an environmentally friendly approach for controlling B. glumae infection at the early rice growing stage.
Collapse
Affiliation(s)
- Tamilselvan R. Govinda Rajoo
- Research Interest Group of Resource Sustainability (Bio-interaction and Crop Health), Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhamad Syazlie Che Ibrahim
- Research Interest Group of Resource Sustainability (Bio-interaction and Crop Health), Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia
| | - Aziz Ahmad
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Lee Chuen Ng
- Research Interest Group of Resource Sustainability (Bio-interaction and Crop Health), Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
2
|
Babzada SA, Raja V, Bhat AH, Qadir SU, Radhakrishnan A, Kumar N, Alsahli AA, Ahmad P. Alleviating lanthanum stress in tomato plants using MnO nanoparticles and triacontanol: Impacts on growth, photosynthesis, and antioxidant defense. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137746. [PMID: 40122002 DOI: 10.1016/j.jhazmat.2025.137746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
The present study evaluated the synthesis, characterization, and ameliorative potential of manganese oxide nanoparticles (MnO NPs) against lanthanum (La)-induced stress in tomato plants. Biosynthesized MnO NPs exhibited a characteristic UV-Vis absorption peak at 276 nm and a cubic crystalline structure with an average crystallite size of 13 nm, as determined by XRD. TEM images confirmed pseudo-spherical morphology and homogenous distribution. Under La stress, tomato plants showed a significant reduction in shoot length (54.90 %), root length (62.39 %), shoot dry weight (49.71 %), and root dry weight (37.17 %). Application of MnO NPs and triacontanol (TRIA) mitigated these effects, with combined treatments enhanced shoot and root lengths by 155.81 % and 216.66 %, respectively, and dry weights by 116.58 % (shoot) and 173.06 % (root). La stressed plants demonstrated decreased accumulation of La in roots and shoots by about 36.64 % and 32.21 %, respectively, upon synergistic application of MnO NPs and TRIA. La stress decreased photosynthetic pigments, including chlorophyll a (53.56 %), chlorophyll b (51.28 %), total chlorophyll (53.10 %), and carotenoids (26.36 %). Combined MnO NPs and TRIA treatment significantly increased these pigments by 110.23 %, 263.15 %, 142.27 %, and 266.66 %, respectively. Photosynthetic efficiency parameters, such as net photosynthetic rate, stomatal conductance, and transpiration rate, also improved by up to 74.44 %, 119.00 %, and 89.44 %, respectively, under combined treatments. Relative water content (RWC) decreased by 49.83 % under La stress but increased by 84.75 % following combined treatments. Osmolytes like proline and glycine betaine were elevated by 20.13 % and 38.47 %, respectively. Reactive oxygen species (ROS)-related markers, including H₂O₂, malondialdehyde, and electrolyte leakage, were significantly reduced by 58.14 %, 28.46 %, and 39.81 %, respectively, with MnO NPs and TRIA. Antioxidant enzyme activities were enhanced, with combined treatments elevating SOD (27.02 %), CAT (15.38 %), APX (90.37 %), and GR (90.38 %). Moreover, activities of DHAR and MDHAR, previously suppressed by La, increased by 91.64 % and 81.75 %, respectively. The findings highlight the synergistic role of MnO NPs and TRIA in alleviating La toxicity by enhancing growth, photosynthetic efficiency, antioxidant defense, and reducing ROS, offering a sustainable approach for crop improvement under metal stress conditions.
Collapse
Affiliation(s)
- Shahid Ahmad Babzada
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India.
| | - Aashaq Hussain Bhat
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences, Govt Degree College Pampore, Pulwama, Jammu and Kashmir 192121, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Naveen Kumar
- Galgotias Multidisplinary Research and Development Cell (G-MRDC), Galgotias University,Greater Noida, Uttar Pradesh, 203201, India
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India; Research and Development Cell, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Xu X, Feng G, Li P, Yu S, Hao F, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals the function of DgSAUR71 in plant height improvement. BMC PLANT BIOLOGY 2025; 25:240. [PMID: 39987023 PMCID: PMC11846171 DOI: 10.1186/s12870-025-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.) is one of the four most economically important forage grasses cultivated globally and serves as an excellent perennial forage with high ecological value. Plant height is a key determinant of both biomass and grain yield. While numerous genes regulating plant height have been identified in annual crops, no such genes have been reported for orchardgrass. RESULTS In this study, we analyzed the relationship between plant height and biomass yield in a natural population of 264 orchardgrass genotypes and found that a plant height of 90-110 cm contributed to the maximum biomass yield. Genome-wide association analysis (GWAS) identified 23 candidate loci associated with plant height, corresponding to 62 candidate genes. Among these, DgSAUR71, a member of the small auxin-up RNA (SAUR) gene family, emerged as a novel candidate gene associated with plant height. Functional analysis revealed that DgSAUR71 slightly reduced plant height in rice (Oryza sativa L.) and was involved in regulating plant height in orchardgrass. CONCLUSIONS This study demonstrates that plant height is an important contributor for optimizing biomass yield in orchardgrass, with an optimal range identified. DgSAUR71 was identified as a gene associated with plant height through GWAS and shown to negatively regulate plant height. These findings provide new insights into plant height regulation in orchardgrass and contribute to advancing crop height diversification research.
Collapse
Affiliation(s)
- Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuai Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Tian W, Peng Z, Zhang X, Zheng Y, Wang Y, Feng B, Li Y, He G, Sang X. OsMAPKKKε regulates apical spikelet development by adjusting Reactive Oxygen Species accumulates in Oryza sativa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112280. [PMID: 39401544 DOI: 10.1016/j.plantsci.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Rice panicle abortion can significantly impact rice yield and food security. Recent research has revealed that panicle abortion is influenced by environmental factors as well as regulated by specific genes. Here we report a novel panicle apical abortion 4 (paa4) mutant with semi-dwarf and panicle apical abortion phenotype, and its abortion occurs when the panicle length is approximately 7 cm. Map-based cloning has identified that PAA4 encodes a Mitogen-activated Protein Kinase Kinase Kinase ε (OsMAPKKKε) protein, and a substitution of G to A in exon 19 of OsMAPKKKε that leads to panicle apical abortion. PAA4 has a higher expression in the spikelet although which expressed in all organs of rice. During panicle growth, excessive Reactive Oxygen Species (ROS) accumulate in the apical panicle of paa4, eventually inducing programmed cell death (PCD). Transcriptome sequencing indicates that PAA4 plays a role in both the generation and elimination of ROS. Therefore, PAA4 might be involved in the balance of ROS at the apical panicle and then affects spikelet development in Oryza sativa.
Collapse
Affiliation(s)
- Weijiang Tian
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Ziwei Peng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xin Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yumeng Zheng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yuanyuan Wang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Beiqi Feng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China.
| |
Collapse
|
5
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Zhou G, Nan N, Li N, Li M, Ma A, Ye Q, Wang J, Xu ZY. Active DNA Demethylation Mediated by OsGADD45a2 Regulates Growth, Development, and Blast ( Magnaporthe oryzea) Resistance in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24300-24310. [PMID: 39465494 DOI: 10.1021/acs.jafc.4c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OsGADD45a1, a member of the growth arrest and DNA damage-inducible 45 (GADD45) family in rice, has a newly identified homologue, OsGADD45a2, which differs from OsGADD45a1 in only three amino acids. The role and function of the OsGADD45a2 in DNA demethylation are not well-understood and were investigated in this study. Osgadd45a2 mutants exhibited reduced height, shorter panicle length, fewer grains per panicle, and a lower seed setting rate compared with wild-type plants. Moreover, the results showed that OsGADD45a2 negatively regulates rice blast fungus resistance and exhibited high expression in various tissues. Using the 3000 Rice Genomes Project database, we identified four major haplotypes (each with over 100 cultivars) based on single-nucleotide polymorphisms in the coding sequence of OsGADD45a2. Among these, Hap4 was associated with a significantly greater plant height than Hap1-3, possibly due to a functional alteration of OsGADD45a2 linked to the SNP at position 2614993. In OsGADD45a2 overexpression lines, significant decreases in CG and CHG methylation levels were observed in protein-coding genes, leading to their upregulation. Overall, our findings indicate that OsGADD45a2 acts as a methylation regulator, mediating the expression of genes essential for plant growth and development and blast resistance.
Collapse
Affiliation(s)
- Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Qixin Ye
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
7
|
Wu B, Luo H, Chen Z, Amin B, Yang M, Li Z, Wu S, Salmen SH, Alharbi SA, Fang Z. Rice Promoter Editing: An Efficient Genetic Improvement Strategy. RICE (NEW YORK, N.Y.) 2024; 17:55. [PMID: 39212859 PMCID: PMC11364747 DOI: 10.1186/s12284-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Hangfei Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongbo Chen
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Manyu Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Shuai Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Deng L, Liu M, Yu Y, Yang Y, Fang A, Tian B, Wang J, Bi C. Amino acid mutation of succinate dehydrogenase complex induced resistance to benzovindiflupyr in Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106027. [PMID: 39084785 DOI: 10.1016/j.pestbp.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
Magnaporthe oryzae is a rice blast pathogen that seriously threatens rice yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor (SDHI) fungicide that effectively controls many crop diseases. Benzovindiflupyr has a strong inhibitory effect on M. oryzae; however, control of rice blast by benzovindiflupyr and risk of resistance to benzovindiflupyr are not well studied in this pathogen. In this study, six benzovindiflupyr-resistant strains were obtained by domestication induced in the laboratory. The MoSdhBH245D mutation was the cause of M. oryzae resistance to benzovindiflupyr, which was verified through succinate dehydrogenase (SDH) activity assays, molecular docking, and site-specific mutations. Survival fitness analysis showed no significant difference between the benzovindiflupyr-resistant and parent strains. Positive cross-resistance to benzovindiflupyr and other SDHIs and negative cross-resistance to azoxystrobin were observed. Therefore, the risk of benzovindiflupyr resistance in M. oryzae might be medium to high. It should be combined with other classes of fungicides (tebuconazole and azoxystrobin) to slow the development of resistance.
Collapse
Affiliation(s)
- Liyuan Deng
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Mengqing Liu
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
9
|
da Costa GS, Cerqueira AF, de Brito CR, Mielke MS, Gaiotto FA. Epigenetics Regulation in Responses to Abiotic Factors in Plant Species: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2082. [PMID: 39124200 PMCID: PMC11314046 DOI: 10.3390/plants13152082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 08/12/2024]
Abstract
Plants have several mechanisms to adapt or acclimate to environmental stress. Morphological, physiological, or genetic changes are examples of complex plant responses. In recent years, our understanding of the role of epigenetic regulation, which encompasses changes that do not alter the DNA sequence, as an adaptive mechanism in response to stressful conditions has advanced significantly. Some studies elucidated and synthesized epigenetic mechanisms and their relationships with environmental change, while others explored the interplay between epigenetic modifications and environmental shifts, aiming to deepen our understanding of these complex processes. In this study, we performed a systematic review of the literature to analyze the progression of epigenetics studies on plant species' responses to abiotic factors. We also aimed to identify the most studied species, the type of abiotic factor studied, and the epigenetic technique most used in the scientific literature. For this, a search for articles in databases was carried out, and after analyzing them using pre-established inclusion criteria, a total of 401 studies were found. The most studied species were Arabidopsis thaliana and Oryza sativa, highlighting the gap in studies of non-economic and tropical plant species. Methylome DNA sequencing is the main technique used for the detection of epigenetic interactions in published studies. Furthermore, most studies sought to understand the plant responses to abiotic changes in temperature, water, and salinity. It is worth emphasizing further research is necessary to establish a correlation between epigenetic responses and abiotic factors, such as extreme temperatures and light, associated with climate change.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil; (G.S.d.C.)
| |
Collapse
|
10
|
Wang W, Zhang W, Jamil M, Tu J, Huang L. Editorial: Molecular and genetic mechanisms of plant architecture regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1421197. [PMID: 38803602 PMCID: PMC11128669 DOI: 10.3389/fpls.2024.1421197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Wenyi Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiwei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Wakeman A, Bennett T. Auxins and grass shoot architecture: how the most important hormone makes the most important plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6975-6988. [PMID: 37474124 PMCID: PMC10690731 DOI: 10.1093/jxb/erad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Cereals are a group of grasses cultivated by humans for their grain. It is from these cereal grains that the majority of all calories consumed by humans are derived. The production of these grains is the result of the development of a series of hierarchical reproductive structures that form the distinct shoot architecture of the grasses. Being spatiotemporally complex, the coordination of grass shoot development is tightly controlled by a network of genes and signals, including the key phytohormone auxin. Hormonal manipulation has therefore been identified as a promising potential approach to increasing cereal crop yields and therefore ultimately global food security. Recent work translating the substantial body of auxin research from model plants into cereal crop species is revealing the contribution of auxin biosynthesis, transport, and signalling to the development of grass shoot architecture. This review discusses this still-maturing knowledge base and examines the possibility that changes in auxin biology could have been a causative agent in the evolution of differences in shoot architecture between key grass species, or could underpin the future selective breeding of cereal crops.
Collapse
Affiliation(s)
- Alex Wakeman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, Li Q, Guo L, Yu S, Qian Q, Zhang G. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:819-838. [PMID: 36597711 PMCID: PMC10037157 DOI: 10.1111/pbi.13999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang ProvinceResearch Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhouChina
| | - Li Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Mengyu Zhou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jinqiang Nian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiong Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiangsu Cen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiting Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhihai Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene ResearchCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanyaChina
| |
Collapse
|
13
|
Sloan JM, Mujab AAM, Mashitah J, Zulkarami B, Wilson MJ, Toh LS, Nur Zahirah AJ, Afiq K, Asyraf AT, Zhu XG, Yaapar N, Fleming AJ. Elevated CO 2 Priming as a Sustainable Approach to Increasing Rice Tiller Number and Yield Potential. RICE (NEW YORK, N.Y.) 2023; 16:16. [PMID: 36947269 PMCID: PMC10033790 DOI: 10.1186/s12284-023-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.
Collapse
Affiliation(s)
- Jennifer M Sloan
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Azzami Adam Muhamad Mujab
- Commercialization and Business Centre, Malaysian Agricultural Research and Development Institute, MARDI Parit, 32800, Parit, Perak, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Jusoh Mashitah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Berahim Zulkarami
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Matthew J Wilson
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Liang Su Toh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - A Jalil Nur Zahirah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Kamaruzali Afiq
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Tajuddin Asyraf
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Nazmin Yaapar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Andrew J Fleming
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
14
|
Yao F, Hu Q, Yu Y, Yang L, Jiao S, Huang G, Zhang S, Hu F, Huang L. Regeneration pattern and genome-wide transcription profile of rhizome axillary buds after perennial rice harvest. FRONTIERS IN PLANT SCIENCE 2022; 13:1071038. [PMID: 36518502 PMCID: PMC9742242 DOI: 10.3389/fpls.2022.1071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Perennial rice is a new type of rice that allows the harvest of rice for multiple years without growing new seedlings annually. This technology represents a green and sustainable agricultural production mode with many advantages for balancing agricultural ecology and food security. However, the differences in regeneration patterns between perennial and annual rice and the gene regulatory pathways of the apical dominance in axillary bud growth after harvest in perennial rice are still unclear. In this study, perennial rice (PR23) and annual rice (Chugeng28) were used to investigate axillary bud growth patterns before and after apical spike removal. After elimination of apical dominance at different development stages, perennial rice rhizome axillary buds at the compression nodes germinated more rapidly than others and developed into new seedlings. The axillary buds at the high-position nodes in annual rice grew faster than those at other nodes. Furthermore, the global gene expression patterns of PR23 rhizome buds at compression nodes grown for 1, 3, 4, and 5 days after apical spike removal were analyzed by transcriptome sequencing. Compared with the control buds without apical removal, 264, 3,484, 2,095, and 3,398 genes were up-regulated, and 674, 3,484, 1,594, and 1,824 genes were down-regulated in the buds grown for 1, 3, 4, and 5 days after apical spike removal, respectively. Trend analysis of the expressed genes at different time points was performed and co-expression network was constructed to identify key genes in rhizome axillary bud regrowth. The results showed that 85 hub genes involved in 12 co-regulatory networks were mainly enriched in the light system, photosynthesis-antenna protein, plant hormone signal transduction, ABC transporter and metabolic pathways, which suggested that hormone and photosynthetic signals might play important roles in the regulation of rhizome axillary bud regeneration in perennial rice. Overall, this study clarified the differences in the regeneration patterns of axillary buds between perennial and annual rice and provided insight into the complex regulatory networks during the regeneration of rhizome axillary buds in perennial rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengyi Hu
- *Correspondence: Liyu Huang, ; Fengyi Hu,
| | - Liyu Huang
- *Correspondence: Liyu Huang, ; Fengyi Hu,
| |
Collapse
|
15
|
Wang Y, Wang K, An T, Tian Z, Dun X, Shi J, Wang X, Deng J, Wang H. Genetic dissection of branch architecture in oilseed rape ( Brassica napus L.) germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:1053459. [PMID: 36388516 PMCID: PMC9650407 DOI: 10.3389/fpls.2022.1053459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.
Collapse
Affiliation(s)
- Ying Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Kaixuan Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Tanzhou An
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinwu Deng
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
16
|
Wu C, Cui K, Fahad S. Heat Stress Decreases Rice Grain Weight: Evidence and Physiological Mechanisms of Heat Effects Prior to Flowering. Int J Mol Sci 2022; 23:10922. [PMID: 36142833 PMCID: PMC9504709 DOI: 10.3390/ijms231810922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress during the preflowering panicle initiation stage seriously decreases rice grain weight in an invisible way and has not been given enough attention. The current review aims to (i) specify the heat effects on rice grain weight during the panicle initiation stage compared with the most important grain-filling stage; and (ii) discuss the physiological mechanisms of the decreased rice grain weight induced by heat during panicle initiation in terms of assimilate supply and phytohormone regulation, which are key physiological processes directly regulating rice grain weight. We emphasize that the effect of heat during the panicle initiation stage on rice grain weight is more serious than that during the grain-filling stage. Heat stress during the panicle initiation stage induces alterations in endogenous phytohormones, leading to the inhibition of the photosynthesis of functional leaves (source) and the formation of vascular bundles (flow), thus reducing the accumulation and transport of nonstructural carbohydrates and the growth of lemmata and paleae. The disruptions in the "flow" and restrictions in the preanthesis "source" tissue reduce grain size directly and decrease grain plumpness indirectly, resulting in a reduction in the final grain weight, which could be the direct physiological causes of the lower rice grain weight induced by heat during the panicle initiation stage. We highlight the seriousness of preflowering heat stress on rice grain weight, which can be regarded as an invisible disaster. The physiological mechanisms underlying the lower grain weight induced by heat during panicle initiation show a certain novelty because they distinguish this stage from the grain-filling stage. Additionally, a number of genes that control grain size through phytohormones have been summarized, but their functions have not yet been fully tested under heat conditions, except for the Grain Size and Abiotic stress tolerance 1 (GSA1) and BRASSINOSTEROID INSENSITIVE1 (OsBRI1) genes, which are reported to respond rapidly to heat stress. The mechanisms of reduced rice grain weight induced by heat during the panicle initiation stage should be studied in more depth in terms of molecular pathways.
Collapse
Affiliation(s)
- Chao Wu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Varshney V, Majee M. Emerging roles of the ubiquitin-proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. PLANT CELL REPORTS 2022; 41:1805-1826. [PMID: 35678849 DOI: 10.1007/s00299-022-02884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitin-proteasome pathway has the potential to modulate crop productivity by influencing agronomic traits. Being sessile, the plant often uses the ubiquitin-proteasome pathway to maintain the stability of different regulatory proteins to survive in an ever-changing environment. The ubiquitin system influences plant reproduction, growth, development, responses to the environment, and processes that control critical agronomic traits. E3 ligases are the major players in this pathway, and they are responsible for recognizing and tagging the targets/substrates. Plants have a variety of E3 ubiquitin ligases, whose functions have been studied extensively, ranging from plant growth to defense strategies. Here we summarize three agronomic traits influenced by ubiquitination: seed size and weight, seed germination, and accessory plant agronomic traits particularly panicle architecture, tillering in rice, and tassels branch number in maize. This review article highlights some recent progress on how the ubiquitin system influences the stability/modification of proteins that determine seed agronomic properties like size, weight, germination and filling, and ultimately agricultural productivity and quality. Further research into the molecular basis of the aforementioned processes might lead to the identification of genes that could be modified or selected for crop development. Likewise, we also propose advances and future perspectives in this regard.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
18
|
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z. Genetic and molecular factors in determining grain number per panicle of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:964246. [PMID: 35991390 PMCID: PMC9386260 DOI: 10.3389/fpls.2022.964246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Zhang L, MacQueen A, Weng X, Behrman KD, Bonnette J, Reilley JL, Rouquette FM, Fay PA, Wu Y, Fritschi FB, Mitchell RB, Lowry DB, Boe AR, Juenger TE. The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2577-2592. [PMID: 35780149 PMCID: PMC9325832 DOI: 10.1007/s00122-022-04096-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.
Collapse
Affiliation(s)
- Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kathrine D Behrman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - John L Reilley
- Kika de la Garza Plant Materials Center, National Resources Conservation Service, US Department of Agriculture, Kingsville, TX, 78363, USA
| | - Francis M Rouquette
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Overton, TX, 75684, USA
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, Agricultural Research Service, US Department of Agriculture, Temple, TX, 76502, USA
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert B Mitchell
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, US Department of Agriculture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David B Lowry
- Department of Plant Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Arvid R Boe
- Departmentof Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
20
|
Zhang Y, Zha Y, Jin X, Wang Y, Qiao H. Changes in Vertical Phenotypic Traits of Rice ( Oryza sativa L.) Response to Water Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:942110. [PMID: 35909725 PMCID: PMC9331173 DOI: 10.3389/fpls.2022.942110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Drought-rehydration irrigation has an enhancing impact on rice yield, but the current research on its yield-increasing effect is mainly experimental and empirical, lacking mechanism theoretical support. Image-based machine vision is rapidly developing and can estimate crop physical and chemical properties. A novel image processing method has been purposefully carried out to detect the real-time response shape of rice drought-rehydration. By application of this method, two new types of morphological descriptors were proposed to characterize and quantify the vertical phenotypic heterogeneity of rice, in which the relative height of the plant centroid (RHC) locates the growth focus, while the leaf angle distribution model describes the vertical characteristics of the leaf phenotypic traits. We verified the response of the vertical traits to different water treatments through designed experiments. The results showed that the RHC and leaf angle distribution parameters followed divergent trends under water stress, reflecting the drought characteristics of rice at different growth stages. The newly developed indicators were sensitive to drought response at specific growth stages and also efficient for evaluating rice growth, including determination of radiation interception capacity and assessment of nutrient accumulation. Furthermore, through the measurement and analysis of vertical structural traits, we found that a short-term water deficit and reasonable rehydration during the rice heading period could help to extend the spike-growing time and improve photosynthetic efficiency, thus benefiting yield formation.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yuanyuan Zha
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Xiuliang Jin
- Key Laboratory of Crop Physiology and Ecology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Yu Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Han Qiao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Zhao DD, Jang YH, Farooq M, Park JR, Kim EG, Du XX, Jan R, Kim KH, Lee SI, Lee GS, Kim KM. Identification of a Major QTL and Validation of Related Genes for Tiller Angle in Rice Based on QTL Analysis. Int J Mol Sci 2022; 23:ijms23095192. [PMID: 35563584 PMCID: PMC9105483 DOI: 10.3390/ijms23095192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023] Open
Abstract
An ideal plant architecture is an important condition to achieve high crop yields. The tiller angle is an important and complex polygenic trait of rice (Oryza sativa L.) plant architecture. Therefore, the discovery and identification of tiller angle-related genes can aid in the improvement of crop architecture and yield. In the present study, 222 SSR markers were used to establish a high-density genetic map of rice doubled haploid population, and a total of 8 quantitative trait loci (QTLs) were detected based on the phenotypic data of the tiller angle and tiller crown width over 2 years. Among them, four QTLs (qTA9, qCW9, qTA9-1, and qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as a stable major QTL. The selected promising related genes were further identified by relative gene expression analysis, which gives us a basis for the future cloning of these genes. Finally, OsSAURq9, which belongs to the SMALL AUXIN UP RNA (SAUR), an auxin-responsive protein family, was selected as a target gene. Overall, this work will help broaden our knowledge of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Xiao-Xuan Du
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| |
Collapse
|
22
|
Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol 2022; 40:1403-1411. [PMID: 35449414 DOI: 10.1038/s41587-022-01281-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Crop genetic improvement requires balancing complex tradeoffs caused by gene pleiotropy and linkage drags, as exemplified by IPA1 (Ideal Plant Architecture 1), a typical pleiotropic gene in rice that increases grains per panicle but reduces tillers. In this study, we identified a 54-base pair cis-regulatory region in IPA1 via a tiling-deletion-based CRISPR-Cas9 screen that, when deleted, resolves the tradeoff between grains per panicle and tiller number, leading to substantially enhanced grain yield per plant. Mechanistic studies revealed that the deleted fragment is a target site for the transcription factor An-1 to repress IPA1 expression in panicles and roots. Targeting gene regulatory regions should help dissect tradeoff effects and provide a rich source of targets for breeding complementary beneficial traits.
Collapse
Affiliation(s)
- Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiao Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Rashid MAR, Atif RM, Zhao Y, Azeem F, Ahmed HGMD, Pan Y, Li D, Zhao Y, Zhang Z, Zhang H, Li J, Li Z. Dissection of genetic architecture for tiller angle in rice ( Oryza sativa. L) by multiple genome-wide association analyses. PeerJ 2022; 10:e12674. [DOI: 10.7717/peerj.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Background
The rice plant architecture is determined by spatially and temporally domesticated tiller angle. The deeper insight into the genetic mechanism for rice plant architecture will allow more efficient light capture by increasing the planting density, reproducibility, and the ability to survive in a stressful environment.
Methods
In this study, a natural population of 795 genotypes further divided into japonica and indica subpopulations, was evaluated for tiller angle. A significant variation with a wide range was observed. Genome-wide association analysis was performed by the general linear model (GLM), and compressed mix linear model (cMLM) for three populations to disclose the genomic associations. The population principal components and kinship matrix in 1,000 permutations were used to remove the false positives. The candidate genes were evaluated for their functional annotations and specific molecular pathways. The sequencing-based haplotype analysis was further performed to reveal the functional variation among candidate genomic regions.
Results
As a result, 37 significant QTLs with 93 annotated loci were identified. Among the loci, a known tiller angle controlling locus TAC1 was also identified. The introduction of the sequence pooling technique was observed fruitful to screen the 12 significant QTLs with 22 annotated loci. For ten of these loci, the functional variations were identified by haplotype analysis. These results were not only providing a better understanding of the genetic bases of rice plant architecture but also provide significant information for future breeding programs.
Collapse
Affiliation(s)
- Muhammad Abdul Rehman Rashid
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yan Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Yong Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
A New RING Finger Protein, PLANT ARCHITECTURE and GRAIN NUMBER 1, Affects Plant Architecture and Grain Yield in Rice. Int J Mol Sci 2022; 23:ijms23020824. [PMID: 35055011 PMCID: PMC8777624 DOI: 10.3390/ijms23020824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Developing methods for increasing the biomass and improving the plant architecture is important for crop improvement. We herein describe a gene belonging to the RING_Ubox (RING (Really Interesting New Gene) finger domain and U-box domain) superfamily, PLANT ARCHITECTURE and GRAIN NUMBER 1 (PAGN1), which regulates the number of grains per panicle, the plant height, and the number of tillers. We used the CRISPR/Cas9 system to introduce loss-of-function mutations to OsPAGN1. Compared with the control plants, the resulting pagn1 mutant plants had a higher grain yield because of increases in the plant height and in the number of tillers and grains per panicle. Thus, OsPAGN1 may be useful for the genetic improvement of plant architecture and yield. An examination of evolutionary relationships revealed that OsPAGN1 is highly conserved in rice. We demonstrated that OsPAGN1 can interact directly with OsCNR10 (CELL NUMBER REGULATOR10), which negatively regulates the number of rice grains per panicle. A transcriptome analysis indicated that silencing OsPAGN1 affects the levels of active cytokinins in rice. Therefore, our findings have clarified the OsPAGN1 functions related to rice growth and grain development.
Collapse
|
25
|
Wang Y, Du F, Wang J, Li Y, Zhang Y, Zhao X, Zheng T, Li Z, Xu J, Wang W, Fu B. Molecular Dissection of the Gene OsGA2ox8 Conferring Osmotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22179107. [PMID: 34502018 PMCID: PMC8430958 DOI: 10.3390/ijms22179107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8) gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8 significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-containing proteins. These results provide a basis for a future understanding of the networks and respective phenotypic effects associated with OsGA2ox8.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yingbo Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yue Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| |
Collapse
|
26
|
Tripathi RK, Wilkins O. Single cell gene regulatory networks in plants: Opportunities for enhancing climate change stress resilience. PLANT, CELL & ENVIRONMENT 2021; 44:2006-2017. [PMID: 33522607 PMCID: PMC8359182 DOI: 10.1111/pce.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Global warming poses major challenges for plant survival and agricultural productivity. Thus, efforts to enhance stress resilience in plants are key strategies for protecting food security. Gene regulatory networks (GRNs) are a critical mechanism conferring stress resilience. Until recently, predicting GRNs of the individual cells that make up plants and other multicellular organisms was impeded by aggregate population scale measurements of transcriptome and other genome-scale features. With the advancement of high-throughput single cell RNA-seq and other single cell assays, learning GRNs for individual cells is now possible, in principle. In this article, we report on recent advances in experimental and analytical methodologies for single cell sequencing assays especially as they have been applied to the study of plants. We highlight recent advances and ongoing challenges for scGRN prediction, and finally, we highlight the opportunity to use scGRN discovery for studying and ultimately enhancing abiotic stress resilience in plants.
Collapse
Affiliation(s)
- Rajiv K. Tripathi
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Olivia Wilkins
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
27
|
Wu D, Wu D, Feng H, Duan L, Dai G, Liu X, Wang K, Yang P, Chen G, Gay AP, Doonan JH, Niu Z, Xiong L, Yang W. A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits. PLANT COMMUNICATIONS 2021; 2:100165. [PMID: 33898978 PMCID: PMC8060729 DOI: 10.1016/j.xplc.2021.100165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/07/2020] [Accepted: 01/26/2021] [Indexed: 05/20/2023]
Abstract
Lodging is a common problem in rice, reducing its yield and mechanical harvesting efficiency. Rice architecture is a key aspect of its domestication and a major factor that limits its high productivity. The ideal rice culm structure, including major_axis_culm, minor axis_culm, and wall thickness_culm, is critical for improving lodging resistance. However, the traditional method of measuring rice culms is destructive, time consuming, and labor intensive. In this study, we used a high-throughput micro-CT-RGB imaging system and deep learning (SegNet) to develop a high-throughput micro-CT image analysis pipeline that can extract 24 rice culm morphological traits and lodging resistance-related traits. When manual and automatic measurements were compared at the mature stage, the mean absolute percentage errors for major_axis_culm, minor_axis_culm, and wall_thickness_culm in 104 indica rice accessions were 6.03%, 5.60%, and 9.85%, respectively, and the R2 values were 0.799, 0.818, and 0.623. We also built models of bending stress using culm traits at the mature and tillering stages, and the R2 values were 0.722 and 0.544, respectively. The modeling results indicated that this method can quantify lodging resistance nondestructively, even at an early growth stage. In addition, we also evaluated the relationships of bending stress to shoot dry weight, culm density, and drought-related traits and found that plants with greater resistance to bending stress had slightly higher biomass, culm density, and culm area but poorer drought resistance. In conclusion, we developed a deep learning-integrated micro-CT image analysis pipeline to accurately quantify the phenotypic traits of rice culms in ∼4.6 min per plant; this pipeline will assist in future high-throughput screening of large rice populations for lodging resistance.
Collapse
Affiliation(s)
- Di Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
- School of Information Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Dan Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lingfeng Duan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guoxing Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Peng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Alan P. Gay
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Zhiyou Niu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Key Laboratory of Agricultural Bioinformatics and College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
- Corresponding author
| |
Collapse
|
28
|
Zhou H, Yang M, Zhao L, Zhu Z, Liu F, Sun H, Sun C, Tan L. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1212-1224. [PMID: 33097962 DOI: 10.1093/jxb/eraa497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 05/27/2023]
Abstract
Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Mai Yang
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lei Zhao
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zuofeng Zhu
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongying Sun
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lubin Tan
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Mu S, Yamaji N, Sasaki A, Luo L, Du B, Che J, Shi H, Zhao H, Huang S, Deng F, Shen Z, Guerinot ML, Zheng L, Ma JF. A transporter for delivering zinc to the developing tiller bud and panicle in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:786-799. [PMID: 33169459 DOI: 10.1111/tpj.15073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 05/07/2023]
Abstract
Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members. The expression of OsZIP4 was highly detected in TB and nodes, and was induced by Zn deficiency. Immunostaining analysis revealed that OsZIP4 was mainly expressed in phloem of diffuse vascular bundles in the nodes and the axillary meristem. The mutation of OsZIP4 did not affect the total Zn uptake, but altered Zn distribution; less Zn was delivered to TB and new leaf, but more Zn was retained in the basal stems at the vegetative growth stage. Bioimaging analysis showed that the mutant aberrantly accumulated Zn in enlarged and transit vascular bundles of the basal node, whereas in wild-type high accumulation of Zn was observed in the meristem part. At the reproductive stage, mutation of OsZIP4 resulted in delayed panicle development, which is associated with decreased Zn distribution to the panicles. Collectively, OsZIP4 is involved in transporting Zn to the phloem of diffuse vascular bundles in the nodes for subsequent distribution to TBs and other developing tissues. It also plays a role in transporting Zn to meristem cells in the TBs.
Collapse
Affiliation(s)
- Shuai Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Le Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binbin Du
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Che
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Huichao Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Fenglin Deng
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
30
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
31
|
Jung YJ, Kim JH, Lee HJ, Kim DH, Yu J, Bae S, Cho YG, Kang KK. Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of SLR1 Using the CRISPR/Cas9 System in Rice. Int J Mol Sci 2020; 21:ijms21155492. [PMID: 32752068 PMCID: PMC7432230 DOI: 10.3390/ijms21155492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
The rice SLR1 gene encodes the DELLA protein (protein with DELLA amino acid motif), and a loss-of-function mutation is dwarfed by inhibiting plant growth. We generate slr1-d mutants with a semi-dominant dwarf phenotype to target mutations of the DELLA/TVHYNP domain using CRISPR/Cas9 genome editing in rice. Sixteen genetic edited lines out of 31 transgenic plants were generated. Deep sequencing results showed that the mutants had six different mutation types at the target site of the TVHYNP domain of the SLR1 gene. The homo-edited plants selected individuals without DNA (T-DNA) transcribed by segregation in the T1 generation. The slr1-d7 and slr1-d8 plants caused a gibberellin (GA)-insensitive dwarf phenotype with shrunken leaves and shortened internodes. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two GA-related genes, GA20OX2 (Gibberellin oxidase) and GA3OX2, were increased in the edited mutant plants, suggesting that GA20OX2 acts as a convert of GA12 signaling. These mutant plants are required by altering GA responses, at least partially by a defect in the phytohormone signaling system process and prevented cell elongation. The new mutants, namely, the slr1-d7 and slr1-d8 lines, are valuable semi-dominant dwarf alleles with potential application value for molecule breeding using the CRISPR/Cas9 system in rice.
Collapse
Affiliation(s)
- Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Dong Hyun Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (J.Y.); (S.B.)
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (J.Y.); (S.B.)
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5104
| |
Collapse
|
32
|
Jia X, Yu L, Tang M, Tian D, Yang S, Zhang X, Traw MB. Pleiotropic changes revealed by in situ recovery of the semi-dwarf gene sd1 in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153141. [PMID: 32143117 DOI: 10.1016/j.jplph.2020.153141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The "Green Revolution" that dramatically reduced cultivar heights and sharply boosted rice production mid-century was achieved in large part through introgression of defective alleles of Semi-Dwarf 1 (SD1), which encodes a GA20ox oxidase involved in the final steps of the synthesis of bioactive gibberellin in rice. Here, we ask whether converting the defective sd1 version in a modern semi-dwarf cultivar back to wild-type SD1 in situ recovers ancestral plant traits, and more broadly, what it reveals about pleiotropic effects of this gene. We assess these effects of SD1 restoration in three independent recombinant lines recovered from F2 progeny of a cross between 93-11 and PA64s. We then used RNA-seq to dissect gene network changes that accompanied SD1 restoration. We report that this in situ restoration of wild-type SD1 nearly doubles plant height, increases total grain yield per panicle, and elongates the second-leaf length. Comparison of expression profiles reveals changes in key nodes of the gibberellin pathway, such as OsKO1 and OsGA2ox3, and more broadly in genes related to metabolic networks, defense response, and catabolic processes. Two JA-induced genes, RIR1b and OsPR1b, are extremely down-regulated after SD1 restoration, suggesting that SD1 restoration alters the balance between GA and JA to plant growth, at the cost of degrading the defense response. This in situ approach at the SD1 locus also provides a model example that is applicable to other systems and will further understanding of gene networks underlying high-yield traits in crops.
Collapse
Affiliation(s)
- Xianqing Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Menglu Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - M Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Kishor D, Seo J, Chin JH, Koh HJ. Evaluation of Whole-Genome Sequence, Genetic Diversity, and Agronomic Traits of Basmati Rice ( Oryza sativa L.). Front Genet 2020; 11:86. [PMID: 32153645 PMCID: PMC7046879 DOI: 10.3389/fgene.2020.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Basmati is considered a unique varietal group of rice (Oryza sativa L.) because of its aroma and superior grain quality. Previous genetic analyses of rice showed that most of the Basmati varieties are classified into the aromatic group. Despite various efforts, genomic relationship of Basmati rice with other varietal groups and genomic variation in Basmati rice are yet to be understood. In the present study, we resequenced the whole genome of three traditional Basmati varieties at a coverage of more than 25X using Illumina HiSeq2500 and mapped the obtained sequences to the reference genome sequences of Nipponbare (japonica rice), Kasalath (aus rice), and Zhenshan 97 (indica rice). Comparison of these sequences revealed common single nucleotide polymorphisms (SNPs) in the genic regions of three Basmati varieties. Analysis of these SNPs revealed that Basmati varieties showed fewer sequence variations compared with the aus group than with the japonica and indica groups. Gene ontology (GO) enrichment analysis indicated that SNPs were present in genes with various biological, molecular, and cellular functions. Additionally, functional annotation of the Basmati mutated gene cluster shared by Nipponbare, Kasalath, and Zhenshan 97 was found to be associated with the metabolic process involved in the cellular aromatic compound, suggesting that aroma is an important specific genomic feature of Basmati varieties. Furthermore, 30 traditional Basmati varieties were classified into three different groups, aromatic (22 varieties), aus (four varieties), and indica (four varieties), based on genome-wide SNPs. All 22 aromatic Basmati varieties harbored the fragrant-inducing Badh2 allele. We also performed comparative analysis of 13 key agronomic and grain quality traits of Basmati rice and other rice varieties. Three traits including length-to-width ratio of grain (L/W ratio), panicle length (PL), and amylose content (AC) showed significant (P < 0.05 and P < 0.01) differences between the aromatic and indica/aus groups. Comparative analysis of genome structure, based on genome sequence variation and GO analysis, revealed that the Basmati genome was derived mostly from the aus and japonica groups. Overall, whole-genome sequence data and genetic diversity information obtained in this study will serve as an important resource for molecular breeding and genetic analysis of Basmati varieties.
Collapse
Affiliation(s)
- D.S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Joong Hyoun Chin
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|
35
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
36
|
Liu Y, Zhu Y, Xu X, Sun F, Yang J, Cao L, Luo X. OstMAPKKK5, a truncated mitogen-activated protein kinase kinase kinase 5, positively regulates plant height and yield in rice. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc Natl Acad Sci U S A 2019; 116:21262-21267. [PMID: 31570620 PMCID: PMC6800328 DOI: 10.1073/pnas.1904964116] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice architecture is an important agronomic trait for determining yield; however, the complexity of this trait makes it difficult to elucidate the molecular mechanisms. This study applied a strategy of using principal components (PCs) as dependent variables for a genome-wide association study (GWAS). SPINDLY was identified to regulate rice architecture by suppressing gibberellin (GA) signaling. Further study using GA-signaling mutants confirmed that levels of GA responsiveness regulate rice architecture, suggesting that the utilization of a favorable SPINDLY allele will improve crop productivity. The strategy presented in this study of performing GWAS using PC scores will provide valuable information for plant genetics and will improve our understanding of complex traits at the molecular level. Elucidation of the genetic control of rice architecture is crucial due to the global demand for high crop yields. Rice architecture is a complex trait affected by plant height, tillering, and panicle morphology. In this study, principal component analysis (PCA) on 8 typical traits related to plant architecture revealed that the first principal component (PC), PC1, provided the most information on traits that determine rice architecture. A genome-wide association study (GWAS) using PC1 as a dependent variable was used to isolate a gene encoding rice, SPINDLY (OsSPY), that activates the gibberellin (GA) signal suppression protein SLR1. The effect of GA signaling on the regulation of rice architecture was confirmed in 9 types of isogenic plant having different levels of GA responsiveness. Further population genetics analysis demonstrated that the functional allele of OsSPY associated with semidwarfism and small panicles was selected in the process of rice breeding. In summary, the use of PCA in GWAS will aid in uncovering genes involved in traits with complex characteristics.
Collapse
|
38
|
Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. MOLECULAR PLANT 2019; 12:1143-1156. [PMID: 31200078 DOI: 10.1016/j.molp.2019.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 05/03/2023]
Abstract
Rice tiller angle is a key agronomic trait that contributes to ideal plant architecture and grain production. LAZY1 (LA1) was previously shown to control tiller angle via affecting shoot gravitropism, but the underlying molecular mechanism remains largely unknown. In this study, we identified an LA1-interacting protein named Brevis Radix Like 4 (OsBRXL4). We showed that the interaction between OsBRXL4 and LA1 occurs at the plasma membrane and that their interaction determines nuclear localization of LA1. We found that nuclear localization of LA1 is essential for its function, which is different from AtLA1, its Arabidopsis ortholog. Overexpression of OsBRXL4 leads to a prostrate growth phenotype, whereas OsBRXLs RNAi plants, in which the expression levels of OsBRXL1, OsBRXL4, and OsBRXL5 were decreased, display a compact phenotype. Further genetic analysis also supported that OsBRXL4 controls rice tiller angle by affecting nuclear localization of LA1. Consistently, we demonstrated that OsBRXL4 regulates the shoot gravitropism through affecting polar auxin transport as did LA1. Taken together, our study not only identifies OsBRXL4 as a regulatory component of rice tiller angle but also provides new insights into genetic regulation of rice plant architecture.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yundong Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agriculture University, Nanjing 210095, China
| | - Jie Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ningpei Han
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lekai Hua
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
39
|
Jiang S, Wang D, Yan S, Liu S, Liu B, Kang H, Wang GL. Dissection of the Genetic Architecture of Rice Tillering using a Genome-wide Association Study. RICE (NEW YORK, N.Y.) 2019; 12:43. [PMID: 31222528 PMCID: PMC6586736 DOI: 10.1186/s12284-019-0302-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/27/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Rice tiller number (TN) is one of the most important components associated with rice grain yield. Around one hundred rice TN genes have been identified, but dissecting the genetic architecture of rice TN variations remains difficult because of its complex trait and control by both major genes and quantitative trait loci (QTLs). RESULTS In this study, we used a subset of the rice diversity population II (S-RDP-II), genotyped with 700,000 single nucleotide polymorphisms (SNPs), to identify the loci associated with tiller number variations (LATNs) through a genome-wide association study (GWAS). The analysis revealed that 23 LATNs are significantly associated with TN variations. Among the 23 LATNs, eight are co-localized with previously cloned TN genes, and the remaining 15 LATNs are novel. DNA sequence analysis of the 15 novel LATNs led to the identification of five candidate genes using the accessions with extreme TN phenotypes. Genetic variations in two of the genes are mainly located in the promoter regions. qRT-PCR analysis showed that the expression levels of these two genes are also closely associated with TN variations. CONCLUSIONS We identified 15 novel LATNs that contribute significantly to the genetic variation of rice TN. Of these 15, the five identified TN-associated candidate genes will enhance our understanding of rice tillering and can be used as molecular markers for improving rice yield.
Collapse
Affiliation(s)
- Su Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuangyong Yan
- Tian Jin Key Laboratory of crop genetic breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin, 300112, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
40
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
41
|
Wang R, Liu L, Kong J, Xu Z, Akhter Bhat J, Zhao T. QTL architecture of vine growth habit and gibberellin oxidase gene diversity in wild soybean (Glycine soja). Sci Rep 2019; 9:7393. [PMID: 31089185 PMCID: PMC6517428 DOI: 10.1038/s41598-019-43887-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/02/2019] [Indexed: 11/09/2022] Open
Abstract
Vine growth habit (VGH) is a beneficial phenotype in many wild plants, and is considered an important domesticated-related trait in soybean. However, its genetic basis remains largely unclear. Hence, in the present study we used an integrated strategy combining linkage mapping and population genome diversity analyses to reveal the genetics of VGH in soybean. In this regard, two recombinant inbred line (RIL) populations derived by crossing a common wild soybean genotype (PI342618B) with two cultivated lines viz., NN 86-4 and NN 493-1 were used to map quantitative trait loci (QTL) for VGH. Here, we identified seven and five QTLs at flowering stage (R1) and maturity stage (R8), respectively, and among them qVGH-18-1, qVGH-18-2, qVGH-19-3, qVGH-19-4 were identified as major loci (R2 > 10% and detection time ≥2). However, qVGH-18-2 was considered as a main QTL for VGH being consistently identified in both RIL populations as well as all growth stages and cropping years. Out of all the annotated genes within qVGH-18-2, Glyma18g06870 was identified as the candidate gene and named as VGH1, which was a gibberellin oxidase (GAox) belongs to 2-oxoglutarate-dependent dioxygenase (2- ODD). Interestingly, there was one member of 2-ODD/GAox in qVGH-18-1 and qVGH-19-4 named as VGH2 and VGH3, respectively. Moreover, from sequencing data analysis VGH1 and three other GAox genes were found significantly divergent between vine and erect soybean with FST value larger than 0.25. Hence, GAox was assumed to play a major role in governing inheritance of VGH in soybean. Therefore, elucidating the genetic mechanism of GAox is very useful for exploring VGH and other stem traits, as well as genetic improvement of plant type in soybean.
Collapse
Affiliation(s)
- Ruikai Wang
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Liu
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Kong
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Xu
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
42
|
Li P, Chang T, Chang S, Ouyang X, Qu M, Song Q, Xiao L, Xia S, Deng Q, Zhu XG. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1154-1180. [PMID: 30415497 DOI: 10.1111/jipb.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A large number of genes related to source, sink, and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow; then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level, and the non-linear complex interaction between source, sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Langtao Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Shitou Xia
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| |
Collapse
|
43
|
Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu G, Wang W, Li P, Wu X, Zhu L, Zhou JM, Ronald PC, Li S, Li J, Chen X. A single transcription factor promotes both yield and immunity in rice. Science 2018; 361:1026-1028. [PMID: 30190406 DOI: 10.1126/science.aat7675] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Plant immunity often penalizes growth and yield. The transcription factor Ideal Plant Architecture 1 (IPA1) reduces unproductive tillers and increases grains per panicle, which results in improved rice yield. Here we report that higher IPA1 levels enhance immunity. Mechanistically, phosphorylation of IPA1 at amino acid Ser163 within its DNA binding domain occurs in response to infection by the fungus Magnaporthe oryzae and alters the DNA binding specificity of IPA1. Phosphorylated IPA1 binds to the promoter of the pathogen defense gene WRKY45 and activates its expression, leading to enhanced disease resistance. IPA1 returns to a nonphosphorylated state within 48 hours after infection, resuming support of the growth needed for high yield. Thus, IPA1 promotes both yield and disease resistance by sustaining a balance between growth and immunity.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| | - Lian Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Hui Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yi
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jiali Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiaoqiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Hai Qing
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. .,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases and Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
44
|
Ge Y, Han J, Zhou G, Xu Y, Ding Y, Shi M, Guo C, Wu G. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. PLANTA 2018; 248:813-826. [PMID: 29934776 DOI: 10.1007/s00425-018-2942-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
Abstract
Silencing of miR156 in rice confers enhanced resistance to brown planthopper through reducing JA and JA-Ile biosynthesis. Rice brown planthopper (BPH, Nilaparvata lugens Stål) threatens the sustainability of rice production and global food security. Due to the rapid adaptation of BPH to current germplasms in rice, development of novel types of resistant germplasms becomes increasingly important. Plant ontogenetic defense against pathogen and herbivores offers a broad spectrum and durable resistance, and has been experimentally tested in many plants; however, the underlying molecular mechanism remains unclear. miR156 is the master regulator of ontogeny in plants; modulation of miR156 is, therefore, expected to cause corresponding changes in BPH resistance. To test this hypothesis, we silenced miR156 using a target mimicry method in rice, and analyzed the resistance of miR156-silenced plants (MIM156) to BPH. MIM156 plants exhibited enhanced resistance to BPH based on analyses of honeydew excretion, nymph survival, fecundity of BPH, and the survival ratio of rice plants after BPH infestation. Molecular analysis indicated that the expression of MPK3, MPK6, and WRKY70, three genes involved in BPH resistance and jasmonic acid (JA) signaling, was altered in MIM156 plants. The JA and bioactive jasmonoyl-isoleucine levels and the expression of genes involved in JA biosynthesis were significantly reduced in MIM156 plants. Restoration of JA level by exogenous application increased the number of BPH feeding on MIM156 plants and reduced its resistance to BPH. Our findings suggest that miR156 negatively regulates BPH resistance by increasing JA level in rice; therefore, modulation of miR156-SPLs' pathway may offer a promising way to breed rice varieties with enhanced resistance against BPH and elite agronomically important traits.
Collapse
Affiliation(s)
- Yafei Ge
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Guoxin Zhou
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yunmin Xu
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yue Ding
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Min Shi
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Changkui Guo
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Gang Wu
- State Key Laboratory of Subtropical Silviculture, School of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
45
|
Wu Z, Tang D, Liu K, Miao C, Zhuo X, Li Y, Tan X, Sun M, Luo Q, Cheng Z. Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4703-4713. [PMID: 29955878 PMCID: PMC6137977 DOI: 10.1093/jxb/ery243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/26/2018] [Indexed: 05/04/2023]
Affiliation(s)
- Zhigang Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Institute of Rice Research, Agriculture College, Yunnan Agricultural University, Kunming, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kai Liu
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Chunbo Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxuan Zhuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Tan
- Institute of Rice Research, Agriculture College, Yunnan Agricultural University, Kunming, China
| | - Mingfa Sun
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Kim SR, Ramos JM, Hizon RJM, Ashikari M, Virk PS, Torres EA, Nissila E, Jena KK. Introgression of a functional epigenetic OsSPL14 WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Sci Rep 2018; 8:3833. [PMID: 29497052 PMCID: PMC5832747 DOI: 10.1038/s41598-018-21355-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Rice yield potential has been stagnant since the Green Revolution in the late 1960s, especially in tropical rice cultivars. We evaluated the effect of two major genes that regulate grain number, Gn1a/OsCKX2 and IPA1/WFP/OsSPL14, in elite indica cultivar backgrounds. The yield-positive Gn1a-type 3 and OsSPL14WFP alleles were introgressed respectively through marker-assisted selection (MAS). The grain numbers per panicle (GNPP) were compared between the recipient allele and the donor allele groups using segregating plants in BC3F2 and BC3F3 generations. There was no significant difference in GNPP between the two Gn1a alleles, suggesting that the Gn1a-type 3 allele was not effective in indica cultivars. However, the OsSPL14WFP allele dramatically increased GNPP by 10.6–59.3% in all four different backgrounds across cropping seasons and generations, indicating that this allele provides strong genetic gain to elite indica cultivars. Eventually, five high-yielding breeding lines were bred using the OsSPL14WFP allele by MAS with a conventional breeding approach that showed increased grain yield by 28.4–83.5% (7.87–12.89 t/ha) vis-à-vis the recipient cultivars and exhibited higher yield (~64.7%) than the top-yielding check cultivar, IRRI 156 (7.82 t/ha). We demonstrated a strong possibility to increase the genetic yield potential of indica rice varieties through allele mining and its application.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Strategic Innovation Platform, International Rice Research Institute (IRRI), DAPO Box, 7777, Metro Manila, Philippines
| | - Joie M Ramos
- Strategic Innovation Platform, International Rice Research Institute (IRRI), DAPO Box, 7777, Metro Manila, Philippines
| | - Rona Joy M Hizon
- Strategic Innovation Platform, International Rice Research Institute (IRRI), DAPO Box, 7777, Metro Manila, Philippines
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Parminder S Virk
- International Center for Tropical Agriculture (CIAT), A.A, 6713, Cali, Colombia
| | | | - Eero Nissila
- Strategic Innovation Platform, International Rice Research Institute (IRRI), DAPO Box, 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Strategic Innovation Platform, International Rice Research Institute (IRRI), DAPO Box, 7777, Metro Manila, Philippines.
| |
Collapse
|
47
|
Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L. Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice. MOLECULAR PLANT 2018; 11:288-299. [PMID: 29253619 DOI: 10.1016/j.molp.2017.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/05/2023]
Abstract
Breeding semi-dwarf varieties to improve lodging resistance has been proven to be enormously successful in increasing grain yield since the advent of the "green revolution." However, the breeding of the majority of semi-dwarf rice varieties in Asia has been dependent mainly on genetic introduction of the mutant alleles of SD1, which encodes a gibberellin (GA) 20-oxidase, OsGA20ox2, for catalyzing GA biosynthesis. Here, we report a new rice lodging-resistance gene, Shortened Basal Internodes (SBI), which encodes a gibberellin 2-oxidase and specifically controls the elongation of culm basal internodes through deactivating GA activity. SBI is predominantly expressed in culm basal internodes. Genetic analyses indicate that SBI is a semi-dominant gene affecting rice height and lodging resistance. SBI allelic variants display different activities and are associated with the height of rice varieties. Breeding with higher activity of the SBI allele generates new rice varieties with improved lodging resistance and increased yield. The discovery of the SBI provides a desirable gene resource for producing semi-dwarf rice phenotypes and offers an effective strategy for breeding rice varieties with enhanced lodging resistance and high yield.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zheng
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenjian Fu
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | - Hasi Yu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Song
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Qin
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China
| | | | - Bin Han
- National Center of Plant Gene Research and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yuanzhu Yang
- Yuan Longping Agriculture High-Tech Co., Ltd., Hunan 410001, China; Hunan Ava Seed Research Institute, Hunan 410119, China; Hunan Engineering Laboratory for Disease and Insect-Resistant Rice Breeding, Hunan 410119, China.
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
48
|
Waqas M, Shahzad R, Hamayun M, Asaf S, Khan AL, Kang SM, Yun S, Kim KM, Lee IJ. Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory. PLoS One 2018; 13:e0191296. [PMID: 29373575 PMCID: PMC5786292 DOI: 10.1371/journal.pone.0191296] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 01/02/2018] [Indexed: 12/02/2022] Open
Abstract
Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world’s human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties (‘Cheongcheong’ and ‘Nagdong’) and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This study highlights the importance of investigating the effects of biochar on different rice varieties before application on a commercial scale to avoid potential crop losses.
Collapse
Affiliation(s)
- Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Buner, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Pakistan
| | - Sajjad Asaf
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sopheap Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
Xu D, Qi X, Li J, Han X, Wang J, Jiang Y, Tian Y, Wang Y. PzTAC and PzLAZY from a narrow-crown poplar contribute to regulation of branch angles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:571-578. [PMID: 28787659 DOI: 10.1016/j.plaphy.2017.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 05/18/2023]
Abstract
Plant architecture, as a basic element influenced by genetic and environmental factors, has an important effect on grain yield via light transmission in agroforestry systems. The molecular mechanism underlying control of branch angle, an important aspect of tree architecture, is not well understood in poplars. Here, we cloned two genes from Populus × zhaiguanheibaiyang (a narrow-crown poplar), designated PzTAC and PzLAZY, which were predicted to be members of the ITG gene family through sequence homology. Transcript levels of the homologous genes were estimated by reverse transcriptase quantitative PCR (RT-qPCR) in different organs of P. × zhaiguanheibaiyang and P. Deltoides 'Zhonglin2025' (a broad-crown poplar). TAC expression was mainly confined to the leaves and annual shoots, whereas LAZY was mainly expressed in the annual shoots and axillary buds. Beside, we detected the promoter expression patterns derived from the PzTAC and PzLAZY genes using the β-glucuronidase (GUS) reporter gene in transgenic Populus × euramericana 'Neva'. GUS activity driven by the PzTAC and PzLAZY promoters was detected in mature leaves, leaf axils and vascular tissues of roots. The PzTAC promoter was mainly active in leaf veins, whereas the PzLAZY promoter was mainly active in mesophyll cells and root tips. The average branch angle in transgenic 35S::PzTAC plants was larger than that of transgenic 35S::PzLAZY plants. The results provide strong evidence that the two genes affect the vascular tissues of transgenic plants to modify branch angles.
Collapse
Affiliation(s)
- Dong Xu
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xiao Qi
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China.
| | - Jinnan Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yuezhong Jiang
- Forestry Science Academy of Shandong, Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Ji'nan 250014, Shandong, PR China.
| | - Yanting Tian
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yiwei Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
50
|
Wang Y, Tong X, Qiu J, Li Z, Zhao J, Hou Y, Tang L, Zhang J. A phosphoproteomic landscape of rice (Oryza sativa) tissues. PHYSIOLOGIA PLANTARUM 2017; 160:458-475. [PMID: 28382632 DOI: 10.1111/ppl.12574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Protein phosphorylation is an important posttranslational modification that regulates various plant developmental processes. Here, we report a comprehensive, quantitative phosphoproteomic profile of six rice tissues, including callus, leaf, root, shoot meristem, young panicle and mature panicle from Nipponbare by employing a mass spectrometry (MS)-based, label-free approach. A total of 7171 unique phosphorylation sites in 4792 phosphopeptides from 2657 phosphoproteins were identified, of which 4613 peptides were differentially phosphorylated (DP) among the tissues. Motif-X analysis revealed eight significantly enriched motifs, such as [sP], [Rxxs] and [tP] from the rice phosphosites. Hierarchical clustering analysis divided the DP peptides into 63 subgroups, which showed divergent spatial-phosphorylation patterns among tissues. These clustered proteins are functionally related to nutrition uptake in roots, photosynthesis in leaves and tissue differentiation in panicles. Phosphorylations were specific in the tissues where the target proteins execute their functions, suggesting that phosphorylation might be a key mechanism to regulate the protein activity in different tissues. This study greatly expands the rice phosphoproteomic dataset, and also offers insight into the regulatory roles of phosphorylation in tissue development and functions.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yuxuan Hou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|