1
|
Ge P, Guo H, Li D, Zhu-Salzman K, Sun Y. A color morph-specific salivary carotenoid desaturase enhances plant photosynthesis and facilitates phloem feeding of Myzus persicae (Sulzer). PEST MANAGEMENT SCIENCE 2024; 80:5014-5025. [PMID: 38847471 DOI: 10.1002/ps.8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear. RESULTS Here we showed that the red morph of M. persicae had higher expression of a carotenoid desaturase CarD763 in the whole body, salivary gland and saliva relative to the green morph. Also, 18% individuals displayed faded red body color 5 days post dsCarD763 treatment. Furthermore, knockdown of CarD763 in the red morph significantly prolonged the time needed to locate phloem and shortened the duration of phloem feeding. Honeydew production and survival rate decreased as well. In contrast, overexpression of CarD763 in tobacco leaves facilitated aphid feeding, enhanced honeydew production and improved the survival rate of aphids. Compared with those fed by dsGFP aphids, plants infested by dsCarD763-treated aphids had higher ROS accumulation, lower lycopene content and photosynthetic rate, and maximum photon quantum yield. The reverse was true when plants overexpressed CarD763. CONCLUSION These findings demonstrated that CarD763, a red morph-specific salivary protein, could enhance aphid feeding and early colonization by promoting plant photosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Ge
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Danyang Li
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Yucheng Sun
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Dong W, Sun L, Jiao B, Zhao P, Ma C, Gao J, Zhou S. Evaluation of aphid resistance on different rose cultivars and transcriptome analysis in response to aphid infestation. BMC Genomics 2024; 25:232. [PMID: 38438880 PMCID: PMC10910744 DOI: 10.1186/s12864-024-10100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The rose is one of the most important ornamental flowers in the world for its aesthetic beauty but can be attacked by many pests such as aphids. Aphid infestation causes tremendous damage on plant tissues leading to harmed petals and leaves. Rose cultivars express different levels of resistance to aphid infestation yet the information remains unclear. Not only that, studies about the transcriptional analysis on defending mechanisms against aphids in rose are limited so far. RESULTS In this study, the aphid resistance of 20 rose cultivars was evaluated, and they could be sorted into six levels based on the number ratio of aphids. And then, a transcriptome analysis was conducted after aphid infestation in one high resistance (R, Harmonie) and one highly susceptibility (S, Carefree Wonder) rose cultivar. In open environment the majority of rose cultivars had the highest aphid number at May 6th or May 15th in 2020 and the resistance to infestation could be classified into six levels. Differential expression analysis revealed that there were 1,626 upregulated and 767 downregulated genes in the R cultivar and 481 upregulated and 63 downregulated genes in the S cultivar after aphid infestation. Pathway enrichment analysis of the differentially expressed genes revealed that upregulated genes in R and S cultivars were both enriched in defense response, biosynthesis of secondary metabolites (phenylpropanoid, alkaloid, and flavonoid), carbohydrate metabolism (galactose, starch, and sucrose metabolism) and lipid processing (alpha-linolenic acid and linolenic acid metabolism) pathways. In the jasmonic acid metabolic pathway, linoleate 13S-lipoxygenase was specifically upregulated in the R cultivar, while genes encoding other crucial enzymes, allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase were upregulated in both cultivars. Transcription factor analysis and transcription factor binding search showed that WRKY transcription factors play a pivotal role during aphid infestation in the R cultivar. CONCLUSIONS Our study indicated the potential roles of jasmonic acid metabolism and WRKY transcription factors during aphid resistance in rose, providing clues for future research.
Collapse
Affiliation(s)
- Wenqi Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Sun
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
4
|
Harner AD, Leach HL, Briggs L, Centinari M. Prolonged phloem feeding by the spotted lanternfly, an invasive planthopper, alters resource allocation and inhibits gas exchange in grapevines. PLANT DIRECT 2022; 6:e452. [PMID: 36226305 PMCID: PMC9533444 DOI: 10.1002/pld3.452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Spotted lanternfly (Lycorma delicatula White; SLF) is a phloem-feeding planthopper invasive to the Eastern United States that can feed on a range of wild and cultivated plant species. Since its 2014 introduction in the United States, large infestations and subsequent economic damage have been reported in cultivated grapevines, but no studies have detailed grapevine physiological responses to SLF phloem feeding. This study investigated grapevine-SLF interactions, detailing how different infestation densities affect leaf gas exchange and end-season concentrations of nonstructural carbohydrates and nitrogen in vegetative and perennial tissues of two Vitis species. Effects on fruit ripeness parameters and dormant bud freeze tolerance were examined, in addition to other year-after effects. Phloem feeding by low densities (≤4 SLF shoot-1) had minimal effects, whereas greater densities (5-15 SLF shoot-1) increasingly affected carbohydrate and nitrogen dynamics in both Vitis species. Phloem feeding substantially affected starch and, to a lesser extent, total nitrogen concentrations of woody roots. Prolonged exposure strongly reduced leaf gas exchange. We conclude that intensive late-season phloem feeding by large adult SLF population densities (≥8 SLF shoot-1) can induce carbon limitation, with the potential for negative year-after effects in cases of severe belowground carbon depletion. This work presents novel insights into SLF-grapevine interactions, identifies avenues of future SLF-plant research, and assists the development of action thresholds for SLF management in vineyards.
Collapse
Affiliation(s)
- Andrew D. Harner
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Heather L. Leach
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Lauren Briggs
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michela Centinari
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
5
|
Liu X, Kou X, Bai S, Luo Y, Wang Z, Xie L, Deng P, Zhang H, Wang C, Wang Y, Zhao J, Ji W. Identification of Differentially Expressed Genes in Resistant Tetraploid Wheat ( Triticum turgidum) under Sitobion avenae (F.) Infestation. Int J Mol Sci 2022; 23:ijms23116012. [PMID: 35682692 PMCID: PMC9180832 DOI: 10.3390/ijms23116012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The grain aphid Sitobion avenae (Fabricius) is one of the most destructive pests of wheat (Triticum aestivum). Deployment of resistant wheat germplasm appears as an excellent solution for this problem. Elite bread wheat cultivars only have limited resistance to this pest. The present study was carried out to investigate the potential of the tetraploid wheat (Triticum turgidum) variety Lanmai, which showed high resistance to S. avenae at both seedling and adult plant stages, as a source of resistance genes. Based on apterous adult aphids’ fecundity tests and choice bioassays, Lanmai has been shown to display antixenosis and antibiosis. Suppression subtractive hybridization (SSH) was employed to identify and isolate the putative candidate defense genes in Lanmai against S. avenae infestation. A total of 134 expressed sequence tags (ESTs) were identified and categorized based on their putative functions. RT-qPCR analysis of 30 selected genes confirmed their differential expression over time between the resistant wheat variety Lanmai and susceptible wheat variety Polan305 during S. avenae infestation. There were 11 genes related to the photosynthesis process, and only 3 genes showed higher expression in Lanmai than in Polan305 after S. avenae infestation. Gene expression analysis also revealed that Lanmai played a critical role in salicylic acid and jasmonic acid pathways after S. avenae infestation. This study provided further insights into the role of defense signaling networks in wheat resistance to S. avenae and indicates that the resistant tetraploid wheat variety Lanmai may provide a valuable resource for aphid tolerance improvement in wheat.
Collapse
Affiliation(s)
- Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
- Correspondence: (X.L.); (W.J.)
| | - Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Shichao Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Lincai Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
- Correspondence: (X.L.); (W.J.)
| |
Collapse
|
6
|
Lohaus G. Review primary and secondary metabolites in phloem sap collected with aphid stylectomy. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153645. [PMID: 35217406 DOI: 10.1016/j.jplph.2022.153645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Phloem plays a central role in assimilate transport as well as in the transport of several secondary compounds. In order to study the chemical composition of phloem sap, different methods have been used for its collection, including stem incisions, EDTA-facilitated exudation or aphid stylectomy. Each collection method has several advantages and disadvantages and, unfortunately, the reported metabolite profiles and concentrations depend on the method used for exudate collection. This review therefore primarily focusses on sugars, amino acids, inorganic ions and further transported compounds like organic acids, nucleotides, phytohormons, defense signals, and lipophilic substances in the phloem sap obtained by aphid stylectomy to facilitate comparability of the data.
Collapse
Affiliation(s)
- Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
7
|
Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, D’Agostino N, Rao R. Zucchini Plants Alter Gene Expression and Emission of ( E)-β-Caryophyllene Following Aphis gossypii Infestation. FRONTIERS IN PLANT SCIENCE 2021; 11:592603. [PMID: 33488643 PMCID: PMC7820395 DOI: 10.3389/fpls.2020.592603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
Zucchini (Cucurbita pepo L.) is widely cultivated in temperate regions. One of the major production challenges is the damage caused by Aphis gossypii (Homoptera: Aphididae), a polyphagous aphid, which can negatively affect its host plant, both directly by feeding and indirectly by vectoring viruses. To gain insights into the transcriptome events that occur during the zucchini-aphid interaction and to understand the early-to-late defense response through gene expression profiles, we performed RNA-sequencing (RNA-Seq) on zucchini leaves challenged by A. gossypii (24, 48, and 96 h post-infestation; hpi). Data analysis indicated a complex and dynamic pattern of gene expression and a transient transcriptional reconfiguration that involved more than 700 differentially expressed genes (DEGs), including a large number of defense-related genes. The down-regulation of key genes of plant immunity, such as leucine-rich repeat (LRR) protein kinases, transcription factors, and genes associated with direct (i.e., protease inhibitors, cysteine peptidases, etc.) and indirect (i.e., terpene synthase) defense responses, suggests the aphid ability to manipulate plant immune responses. We also investigated the emission of volatile organic compounds (VOCs) from infested plants and observed a reduced emission of (E)-β-caryophyllene at 48 hpi, likely the result of aphid effectors, which reflects the down-regulation of two genes involved in the biosynthesis of terpenoids. We showed that (E)-β-caryophyllene emission was modified by the duration of plant infestation and by aphid density and that this molecule highly attracts Aphidius colemani, a parasitic wasp of A. gossypii. With our results we contributed to the identification of genes involved in cucurbit plant interactions with phloem feeders. Our findings may also help pave the way toward developing tolerant zucchini varieties and to identify molecules for sustainable management of harmful insect populations.
Collapse
Affiliation(s)
- Alessia Vitiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Laboratory of Entomology, Wageningen University, Wageningen, Netherlands
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Massimo Giorgini
- Sede Secondaria di Portici, Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Toby J. A. Bruce
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Książkiewicz M, Rychel-Bielska S, Plewiński P, Nuc M, Irzykowski W, Jędryczka M, Krajewski P. The Resistance of Narrow-Leafed Lupin to Diaporthe toxica Is Based on the Rapid Activation of Defense Response Genes. Int J Mol Sci 2021; 22:ijms22020574. [PMID: 33430123 PMCID: PMC7827158 DOI: 10.3390/ijms22020574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4–8 days earlier than in the susceptible germplasm.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Correspondence: ; Tel.: +48-616-550-268
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
| | - Maria Nuc
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| | - Witold Irzykowski
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Małgorzata Jędryczka
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| |
Collapse
|
9
|
Comparative Transcriptome Analysis of Two Root-Feeding Grape Phylloxera ( D. vitifoliae) Lineages Feeding on a Rootstock and V. vinifera. INSECTS 2020; 11:insects11100691. [PMID: 33053741 PMCID: PMC7601026 DOI: 10.3390/insects11100691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Grape phylloxera is an American native insect pest that caused heavy damages to the vineyards worldwide since its spreading to wine regions since the 1850s. This insect, able to feed on leaves and roots, induces plant galls and manipulates the grapevine physiology leading to plant damage and may cause plant death. The most successful treatment was the use of mostly partially resistant rootstocks. The degree of resistance is affected by environment, grapevine management and the insect biotype. In this study, we analyse the interaction of insect biotypes feeding on particular host plants. Therefore we evaluated the gene expression of Phylloxera feeding on a susceptible host versus feeding on a rootstock in two different developmental stages. We discovered (mainly in advanced insect developmental stages) genes expressed in higher proportion in one insect compared to the other. These genes related to chemosensory; in plant physiology manipulation and root deformation and insect digestive traits may play a role in the plant-insect interaction determining plant resistance in response to the pest attack. Abstract Grape phylloxera is one of the most dangerous insect pests for worldwide viticulture. The leaf- and root-galling phylloxerid has been managed by grafting European grapevines onto American rootstock hybrids. Recent reports pinpoint the appearance of host-adapted biotypes, but information about the biomolecular characteristics underlying grape phylloxera biotypisation and its role in host performance is scarce. Using RNA-sequencing, we sequenced the transcriptome of two larval stages: L1 (probing) and L2-3 (feeding) larvae of two root-feeding grape phylloxera lineages feeding on the rootstock Teleki 5C (biotype C) and V. vinifera Riesling (biotype A). In total, 7501 differentially expressed genes (DEGs) were commonly modulated by the two biotypes. For the probing larvae, we found an increased number of DEGs functionally associated with insect chemoreception traits, such as odorant-binding proteins, chemosensory proteins, ionotropic, odorant, and gustatory receptors. The transcriptomic profile of feeding larvae was enriched with DEGs associated with the primary metabolism. Larvae feeding on the tolerant rootstock Teleki 5C exhibited higher numbers of plant defense suppression-associated DEGs than larvae feeding on the susceptible host. Based on the identified DEGs, we discuss their potential role for the compatible grape phylloxera–Vitis interaction belowground. This study was the first to compare the transcriptomes of two grape phylloxera lineages feeding on a tolerant and susceptible host, respectively, and to identify DEGs involved in the molecular interaction with these hosts. Our data provide a source for future studies on host adaptation mechanisms of grape phylloxera and help to elucidate grape phylloxera resistance further.
Collapse
|
10
|
Ram C, Annamalai M, Koramutla MK, Kansal R, Arora A, Jain PK, Bhattacharya R. Characterization of STP4 promoter in Indian mustard Brassica juncea for use as an aphid responsive promoter. Biotechnol Lett 2020; 42:2013-2033. [PMID: 32676799 DOI: 10.1007/s10529-020-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.
Collapse
Affiliation(s)
- Chet Ram
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Muthuganeshan Annamalai
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
11
|
Zhang L, Kamphuis LG, Guo Y, Jacques S, Singh KB, Gao LL. Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21134657. [PMID: 32629952 PMCID: PMC7369913 DOI: 10.3390/ijms21134657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/02/2023] Open
Abstract
Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding.
Collapse
Affiliation(s)
- Lijun Zhang
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Lars G. Kamphuis
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yanqiong Guo
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Silke Jacques
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Karam B. Singh
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: (K.B.S.); (L.-L.G.); Tel.:+61-8-9333-6320 (K.B.S.); Fax: +61-8-9387-8991 (K.B.S.)
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- Correspondence: (K.B.S.); (L.-L.G.); Tel.:+61-8-9333-6320 (K.B.S.); Fax: +61-8-9387-8991 (K.B.S.)
| |
Collapse
|
12
|
Silva-Sanzana C, Estevez JM, Blanco-Herrera F. Influence of cell wall polymers and their modifying enzymes during plant-aphid interactions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3854-3864. [PMID: 31828324 PMCID: PMC7316967 DOI: 10.1093/jxb/erz550] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 05/05/2023]
Abstract
Aphids are a major issue for commercial crops. These pests drain phloem nutrients and transmit ~50% of the known insect-borne viral diseases. During aphid feeding, trophic structures called stylets advance toward the phloem intercellularly, disrupting cell wall polymers. It is thought that cell wall-modifying enzymes (CWMEs) present in aphid saliva facilitate stylet penetration through this intercellular polymer network. Additionally, different studies have demonstrated that host settling preference, feeding behavior, and colony performance of aphids are influenced by modulating the CWME expression levels in host plants. CWMEs have been described as critical defensive elements for plants, but also as a key virulence factor for plant pathogens. However, whether CWMEs are elements of the plant defense mechanisms or the aphid infestation process remains unclear. Therefore, in order to better consider the function of CWMEs and cell wall-derived damage-associated molecular patterns (DAMPs) during plant-aphid interactions, the present review integrates different hypotheses, perspectives, and experimental evidence in the field of plant-aphid interactions and discusses similarities to other well-characterized models such as the fungi-plant pathosystems from the host and the attacker perspectives.
Collapse
Affiliation(s)
- Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José M Estevez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES),Chile
| |
Collapse
|
13
|
Luo K, Yao XJ, Luo C, Hu XS, Hu ZQ, Zhang GS, Zhao HY. Previous Aphid Infestation Induces Different Expression Profiles of Genes Associated with Hormone-Dependent Responses in Near-Isogenic Winter Wheat Lines. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:461-470. [PMID: 32034919 DOI: 10.1093/jee/toz222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 05/24/2023]
Abstract
Hormone-dependent responses in host plants induced by herbivore infestation have species-specific effects. This study focused on determining the relative expression profiles of the genes associated with hormone-dependent pathways in two near-isogenic wheat lines when attacked by cereal aphids. Infestation with Rhopalosiphum padi Linnaeus (Hemiptera: Aphididae) and/or Sitobion avenae Fabricius (Hemiptera: Aphididae) significantly upregulated the expression of marker genes related to the salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways in the tested lines. In the resistant line 35-E4, previous infestation with R. padi significantly increased the relative expression of plant pathogenesis-related protein 1 at all sampling times but did not have a significant effect on the expression of the phenylalanine ammonia-lyase (PAL) gene. In addition, the expression levels of the lipoxygenase (LOX) and allene oxide synthase (AOS) genes immediately increased after the aphid attack. In susceptible line 35-A20, infestation with either R. padi or S. avenae led to significantly increased expression levels of the AOS and PAL genes. Moreover, sequential aphid infestation induced higher expression of AOS compared with a single-species aphid infestation, whereas the expression of the PAL gene was antagonistically affected by sequential aphid infestation. Overall, these results showed that aphid infestation induced SA- and JA-dependent responses in host plants. However, the expression profiles of these genes in resistant and susceptible host lines were significantly different.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xin-Jian Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chen Luo
- French National Institute for Agricultural Research (INRA), Univ. Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Xiang-Shun Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zu-Qing Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Gai-Sheng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hui-Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. HORTICULTURE RESEARCH 2020; 7:6. [PMID: 31908809 PMCID: PMC6938493 DOI: 10.1038/s41438-019-0231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| |
Collapse
|
15
|
Zhang XY, Sun XZ, Zhang S, Yang JH, Liu FF, Fan J. Comprehensive transcriptome analysis of grafting onto Artemisia scoparia W. to affect the aphid resistance of chrysanthemum (Chrysanthemum morifolium T.). BMC Genomics 2019; 20:776. [PMID: 31653200 PMCID: PMC6815057 DOI: 10.1186/s12864-019-6158-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. However, the effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze the self-rooted grafted chrysanthemum (Chrysanthemum morifolium T. 'Hangbaiju') and the grafted Artermisia-chrysanthemum (grafted onto Artemisia scoparia W.) transcription response to aphid stress. RESULTS The results showed that there were 1337 differentially expressed genes (DEGs), among which 680 were upregulated and 667 were downregulated, in the grafted Artemisia-chrysanthemum compared to the self-rooted grafted chrysanthemum. These genes were mainly involved in sucrose metabolism, the biosynthesis of secondary metabolites, the plant hormone signaling pathway and the plant-to-pathogen pathway. KEGG and GO enrichment analyses revealed the coordinated upregulation of these genes from numerous functional categories related to aphid stress responses. In addition, we determined the physiological indicators of chrysanthemum under aphid stress, and the results were consistent with the molecular sequencing results. All evidence indicated that grafting chrysanthemum onto A. scoparia W. upregulated aphid stress responses in chrysanthemum. CONCLUSION In summary, our study presents a genome-wide transcript profile of the self-rooted grafted chrysanthemum and the grafted Artemisia-chrysanthemum and provides insights into the molecular mechanisms of C. morifolium T. in response to aphid infestation. These data will contribute to further studies of aphid tolerance and the exploration of new candidate genes for chrysanthemum molecular breeding.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China
| | - Xian-Zhi Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China.
| | - Sheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China
| | - Jing-Hui Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China
| | - Fang-Fang Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China
| | - Jie Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, China
| |
Collapse
|
16
|
Naqvi RZ, Zaidi SSEA, Mukhtar MS, Amin I, Mishra B, Strickler S, Mueller LA, Asif M, Mansoor S. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One 2019; 14:e0210011. [PMID: 30730891 PMCID: PMC6366760 DOI: 10.1371/journal.pone.0210011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with ≥ 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- * E-mail:
| |
Collapse
|
17
|
Åhman I, Kim SY, Zhu LH. Plant Genes Benefitting Aphids-Potential for Exploitation in Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:1452. [PMID: 31798609 PMCID: PMC6874142 DOI: 10.3389/fpls.2019.01452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Aphids are phloem sap-feeding insects common as pests in various crops. Here we review 62 omics studies of aphid/plant interactions to search for indications of how aphids may manipulate the plants to make them more suitable as hosts, i.e. more susceptible. Our aim is to try to reveal host plant susceptibility (S) genes, knowledge which can be exploited for making a plant more resistant to its pest by using new plant breeding techniques to knock out or down such S genes. S genes may be of two types, those that are involved in reducing functional plant defense and those involved in further increasing plant factors that are positive to the aphid, such as facilitated access to food or improved nutritional quality. Approximately 40% of the omics studies we have reviewed indicate how aphids may modify their host to their advantage. To exploit knowledge obtained so far, we suggest knocking out/down candidate aphid S genes using CRISPR/Cas9 or RNAi techniques in crops to evaluate if this will be sufficient to keep the aphid pest at economically viable levels without severe pleiotropic effects. As a complement, we also propose functional studies of recessively inherited resistance previously discovered in some aphid-crop combinations, to potentially identify new types of S genes that later could be knocked out or down also in other crops to improve their resistance to aphids.
Collapse
|
18
|
Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC, Sun G, Zhang C, Li J, Song D, Wu J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. THE NEW PHYTOLOGIST 2018; 218:1586-1596. [PMID: 29575001 DOI: 10.1111/nph.15083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/20/2023]
Abstract
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores.
Collapse
Affiliation(s)
- Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
19
|
Proteomic Analysis of Aphid-Resistant and -Sensitive Rose ( Rosa Hybrida) Cultivars at Two Developmental Stages. Proteomes 2018; 6:proteomes6020025. [PMID: 29799446 PMCID: PMC6027261 DOI: 10.3390/proteomes6020025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The rose is one the most commercially grown and costly ornamental plants because of its aesthetic beauty and aroma. A large number of pests attack its buds, flowers, leaves, and stem at every growing stage due to its high sugar content. The most common pest on roses are aphids which are considered to be the major cause for product loss. Aphid infestations lead to major changes in rose plants, such as large and irregular holes in petals, intact leaves and devouring tissues. It is hypothesized that different cut rose cultivars would have different levels of sensitivity or resistance to aphids, since different levels of infestation are observed in commercially cut rose production greenhouses. The present work compared four cut rose cultivars which were bred in Korea and were either resistant or sensitive to aphid infestation at different flower developmental stages. An integrative study was conducted using comprehensive proteome analyses. Proteins related to ubiquitin metabolism and the stress response were differentially expressed due to aphid infestation. The regulations and possible functions of identified proteins are presented in detail. The differential expressions of the identified proteins were validated by immunoblotting and blue native page. In addition, total sugar and carbohydrate content were also observed.
Collapse
|
20
|
Stolpe C, Giehren F, Krämer U, Müller C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. PHYTOCHEMISTRY 2017; 139:109-117. [PMID: 28437705 DOI: 10.1016/j.phytochem.2017.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 05/28/2023]
Abstract
Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences.
Collapse
Affiliation(s)
- Clemens Stolpe
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Franziska Giehren
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
21
|
Lee S, Cassone BJ, Wijeratne A, Jun TH, Michel AP, Mian MR. Transcriptomic dynamics in soybean near-isogenic lines differing in alleles for an aphid resistance gene, following infestation by soybean aphid biotype 2. BMC Genomics 2017; 18:472. [PMID: 28645245 PMCID: PMC5481885 DOI: 10.1186/s12864-017-3829-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/30/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Entomology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691 USA
- Present Address: Department of Crop Science, Chungnam National University, Daejeon, 34341 South Korea
| | - Bryan J. Cassone
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present Address: Department of Biology, Brandon University, Brandon, MB R7A 6A9 Canada
| | - Asela Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University/OARDC, Wooster, OH 44691 USA
- Present Address: Department of Biological Sciences, University of Memphis, 3774 Walker Avenue, Memphis, TN 38152 USA
| | - Tae-Hwan Jun
- Department of Entomology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691 USA
- Present Address: Department of Plant Bioscience, Pusan National University, Busan, 609-735 South Korea
| | - Andrew P. Michel
- Department of Entomology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691 USA
| | - M.A. Rouf Mian
- Corn, Soybean, Soft Wheat Quality Unit, USDA-ARS, Wooster, OH 44691 USA
- Present Address: Soybean Nitrogen Fixation Unit, USDA-ARS, 3127 Ligon Street, Raleigh, NC 27606 USA
| |
Collapse
|
22
|
Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS. Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 2017; 38:172-183. [PMID: 28423952 DOI: 10.1080/07388551.2017.1312275] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.
Collapse
Affiliation(s)
- Meng-Yao Li
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Xi-Lin Hou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Feng Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Guo-Fei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Zhi-Sheng Xu
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| | - Ai-Sheng Xiong
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
23
|
Verma C, Kumar Mani A, Mishra S. Biochemical and Molecular Characterization of Cell Wall Degrading Enzyme, Pectin Methylesterase Versus Banana Ripening: An Overview. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajbkr.2017.1.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1956-75. [PMID: 26923339 PMCID: PMC5042180 DOI: 10.1111/pbi.12554] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 05/19/2023]
Abstract
The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomic differences between two cotton cultivars that exhibit either strong resistance (HR) or sensitivity (ZS) to whitefly were compared at different time points (0, 12, 24 and 48 h after infection) using RNA-Seq. Approximately one billion paired-end reads were obtained by Illumina sequencing technology. Gene ontology and KEGG pathway analysis indicated that the cotton transcriptional response to whitefly infestation involves genes encoding protein kinases, transcription factors, metabolite synthesis, and phytohormone signalling. Furthermore, a weighted gene co-expression network constructed from RNA-Seq datasets showed that WRKY40 and copper transport protein are hub genes that may regulate cotton defenses to whitefly infestation. Silencing GhMPK3 by virus-induced gene silencing (VIGS) resulted in suppression of the MPK-WRKY-JA and ET pathways and lead to enhanced whitefly susceptibility, suggesting that the candidate insect resistant genes identified in this RNA-Seq analysis are credible and offer significant utility. Taken together, this study provides comprehensive insights into the cotton defense system to whitefly infestation and has identified several candidate genes for control of phloem-feeding pests.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Joe Hull
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Liang D, Chen M, Qi X, Xu Q, Zhou F, Chen X. QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. FRONTIERS IN PLANT SCIENCE 2016; 7:1000. [PMID: 27462331 PMCID: PMC4939294 DOI: 10.3389/fpls.2016.01000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/24/2016] [Indexed: 05/06/2023]
Abstract
Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphid is one of the most serious cucumber pests and frequently cause severe damage to commercially produced crops. Understanding the genetic mechanisms underlying pest resistance is important for aphid-resistant cucumber varieties breeding. In this study, two parental cucumber lines, JY30 (aphid susceptible) and EP6392 (aphid resistant), and pools of resistant and susceptible (n = 50 each) plants from 1000 F2 individuals derived from crossing JY30 with EP6392, were used to detect genomic regions associated with aphid resistance in cucumbers. The analysis was performed using specific length amplified fragment sequencing (SLAF-seq), bulked segregant analysis (BSA), and single nucleotide polymorphism index (SNP-index) methods. A main effect QTL (quantitative trait locus) of 0.31 Mb on Chr5, including 43 genes, was identified by association analysis. Sixteen of the 43 genes were identified as potentially associated with aphid resistance through gene annotation analysis. The effect of aphid infestation on the expression of these candidate genes screened by SLAF-seq was investigated in EP6392 plants by qRT-PCR. The results indicated that seven genes including encoding transcription factor MYB59-like (Csa5M641610.1), auxin transport protein BIG-like (Csa5M642140.1), F-box/kelch-repeat protein At5g15710-like (Csa5M642160.1), transcription factor HBP-1a-like (Csa5M642710.1), beta-glucan-binding protein (Csa5M643380.1), endo-1,3(4)-beta-glucanase 1-like (Csa5M643880.1), and proline-rich receptor-like protein kinase PERK10-like (Csa5M643900.1), out of the 16 genes were down regulated after aphid infestation, whereas 5 genes including encoding probable leucine-rich repeat (LRR) receptor-like serine/threonine-protein kinase At5g15730-like (Csa5M642150.1), Stress-induced protein KIN2 (Csa5M643240.1 and Csa5M643260.1), F-box family protein (Csa5M643280.1), F-box/kelch-repeat protein (Csa5M643290.1), were up-regulated after aphid infestation. The gene Csa5M642150.1, encoding probable LRR receptor-like serine/threonine-protein kinase At5g15730-like, was most likely a key candidate gene in cucumber plants in response to infestation. This study provides a certain theoretical basis of molecular biology for genetic improvement of cucumber aphid resistance and aphid resistant variety breeding.
Collapse
Affiliation(s)
- Danna Liang
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
- Sericulture/Chili Pepper Research Institute, Guizhou Academy of Agricultural SciencesGuiyang, China
| | - Minyang Chen
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Fucai Zhou
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
- *Correspondence: Xuehao Chen,
| |
Collapse
|
26
|
Koramutla MK, Bhatt D, Negi M, Venkatachalam P, Jain PK, Bhattacharya R. Strength, Stability, and cis-Motifs of In silico Identified Phloem-Specific Promoters in Brassica juncea (L.). FRONTIERS IN PLANT SCIENCE 2016; 7:457. [PMID: 27148290 PMCID: PMC4834444 DOI: 10.3389/fpls.2016.00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
Aphids, a hemipteran group of insects pose a serious threat to many of the major crop species including Brassica oilseeds. Transgenic strategies for developing aphid-resistant plant types necessitate phloem-bound expression of the insecticidal genes. A few known phloem-specific promoters, in spite of tissue-specific activity fail to confer high level gene-expression. Here, we identified seven orthologues of phloem-specific promoters in B. juncea (Indian mustard), and experimentally validated their strength of expression in phloem exudates. Significant cis-motifs, globally occurring in phloem-specific promoters showed variable distribution frequencies in these putative phloem-specific promoters of B. juncea. In RT-qPCR based gene-expression study promoter of Glutamine synthetase 3A (GS3A) showed multifold higher activity compared to others, across the different growth stages of B. juncea plants. A statistical method employing four softwares was devised for rapidly analysing stability of the promoter-activities across the plant developmental stages. Different statistical softwares ranked these B. juncea promoters differently in terms of their stability in promoter-activity. Nevertheless, the consensus in output empirically suggested consistency in promoter-activity of the six B. juncea phloem- specific promoters including GS3A. The study identified suitable endogenous promoters for high level and consistent gene-expression in B. juncea phloem exudate. The study also demonstrated a rapid method of assessing species-specific strength and stability in expression of the endogenous promoters.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Deepa Bhatt
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | | | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
| | - Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute CampusNew Delhi, India
- *Correspondence: Ramcharan Bhattacharya ;
| |
Collapse
|
27
|
Zytynska SE, Jourdie V, Naseeb S, Delneri D, Preziosi RF. Induced expression of defence-related genes in barley is specific to aphid genotype. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharon E. Zytynska
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technische Universität München; Hans-Carl-von-Carlowitz-Platz 2 85354 Freising Germany
- Faculty of Life Sciences; The University of Manchester; Oxford Road M13 9PT Manchester UK
| | - Violaine Jourdie
- Faculty of Life Sciences; The University of Manchester; Oxford Road M13 9PT Manchester UK
| | - Samina Naseeb
- Faculty of Life Sciences; The University of Manchester; Oxford Road M13 9PT Manchester UK
| | - Daniela Delneri
- Faculty of Life Sciences; The University of Manchester; Oxford Road M13 9PT Manchester UK
| | - Richard F. Preziosi
- Faculty of Life Sciences; The University of Manchester; Oxford Road M13 9PT Manchester UK
| |
Collapse
|
28
|
Du B, Wei Z, Wang Z, Wang X, Peng X, Du B, Chen R, Zhu L, He G. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:13-22. [PMID: 26072143 DOI: 10.1016/j.jplph.2015.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Ba Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhe Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhanqi Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoxiao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Sytykiewicz H. Transcriptional responses of catalase genes in maize seedlings exposed to cereal aphids' herbivory. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Liang D, Liu M, Hu Q, He M, Qi X, Xu Q, Zhou F, Chen X. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.). Sci Rep 2015; 5:9645. [PMID: 25959296 PMCID: PMC4429468 DOI: 10.1038/srep09645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/10/2015] [Indexed: 12/30/2022] Open
Abstract
Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns.
Collapse
Affiliation(s)
- Danna Liang
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Min Liu
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Qijing Hu
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Min He
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Fucai Zhou
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou
University, Yangzhou, Jiangsu 225009, P.R.
China
| |
Collapse
|
31
|
Wang F, Ning D, Chen Y, Dang C, Han NS, Liu Y, Ye GY. Comparing Gene Expression Profiles Between Bt and non-Bt Rice in Response to Brown Planthopper Infestation. FRONTIERS IN PLANT SCIENCE 2015; 6:1181. [PMID: 26734057 PMCID: PMC4689863 DOI: 10.3389/fpls.2015.01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 05/02/2023]
Abstract
Bt proteins are the most widely used insecticidal proteins in transgenic crops for improving insect resistance. We previously observed longer nymphal developmental duration and lower fecundity in brown planthopper (BPH) fed on Bt rice line KMD2, although Bt insecticidal protein Cry1Ab could rarely concentrate in this non-target rice pest. In the present study, we performed microarray analysis in an effort to detect Bt-independent variation, which might render Bt rice more defensive and/or less nutritious to BPH. We detected 3834 and 3273 differentially expressed probe-sets in response to BPH infestation in non-Bt parent Xiushui 11 and Bt rice KMD2, respectively, only 439 of which showed significant differences in expression between rice lines. Our analysis revealed a shift from growth to defense responses in response to BPH infestation, which was also detected in many other studies of plants suffering biotic and abiotic stresses. Chlorophyll biosynthesis and basic metabolism pathways were inhibited in response to infestation. IAA and GA levels decreased as a result of the repression of biosynthesis-related genes or the induction of inactivation-related genes. In accordance with these observations, a number of IAA-, GA-, BR-signaling genes were downregulated in response to BPH. Thus, the growth of rice plants under BPH attack was reduced and defense related hormone signaling like JA, SA and ET were activated. In addition, growth-related hormone signaling pathways, such as GA, BR, and auxin signaling pathways, as well as ABA, were also found to be involved in BPH-induced defense. On the other side, 51 probe-sets (represented 50 genes) that most likely contribute to the impact of Bt rice on BPH were identified, including three early nodulin genes, four lipid metabolic genes, 14 stress response genes, three TF genes and genes with other functions. Two transcription factor genes, bHLH and MYB, together with lipid transfer protein genes LTPL65 and early nodulin gene ENOD93, are the most likely candidates for improving herbivore resistance in plants.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Duo Ning
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Nai-Shun Han
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yu'e Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Gong-Yin Ye
| |
Collapse
|
32
|
Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 2014; 15:1050. [PMID: 25466867 PMCID: PMC4265409 DOI: 10.1186/1471-2164-15-1050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. RESULTS Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. CONCLUSIONS Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.
Collapse
Affiliation(s)
- Xiaolong Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Yafeng Shao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| |
Collapse
|
33
|
Botha AM, van Eck L, Burger NFV, Swanevelder ZH. Near-isogenic lines of Triticum aestivum with distinct modes of resistance exhibit dissimilar transcriptional regulation during Diuraphis noxia feeding. Biol Open 2014; 3:1116-26. [PMID: 25361582 PMCID: PMC4232770 DOI: 10.1242/bio.201410280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/09/2014] [Indexed: 01/04/2023] Open
Abstract
Russian wheat aphid (Diuraphis noxia, Kurdjumov) feeding on susceptible Triticum aestivum L. leads to leaf rolling, chlorosis and plant death - symptoms not present in resistant lines. Although the effects of several D. noxia (Dn) resistance genes are known, none have been isolated or characterized. Wheat varieties expressing different Dn genes exhibit distinct modes of D. noxia resistance, such as antibiosis (Dn1), tolerance (Dn2), and antixenosis (Dn5). However, the mechanism whereby feeding aphids are perceived, and how subsequent transcriptional responses are partitioned into resistance categories, remains unclear. Here we report on downstream events in near-isogenic wheat lines containing different Dn genes after D. noxia biotype SA1 feeding. Transcripts involved in stress, signal transduction, photosynthesis, metabolism and gene regulation were differentially regulated during D. noxia feeding. Expression analyses using RT-qPCR and RNA hybridization, as well as enzyme activity profiling, provide evidence that the timing and intensity of pathways induced are critical in the development of particular modes of resistance. Pathways involved include the generation of kinase signalling cascades that lead to a sustained oxidative burst, and a hypersensitive response that is active during antibiosis. Tolerance is a passive resistance mechanism that acts through repair or de novo synthesis of photosystem proteins. Results further suggest that ethylene-mediated pathways are possibly involved in generating volatile compounds and cell wall fortification during the antixenosic response.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa
| | - Leon van Eck
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa University of Minnesota, Saint Paul, Minneapolis, MN 55455-0213, USA
| | - N Francois V Burger
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa
| | | |
Collapse
|
34
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
35
|
Koramutla MK, Kaur A, Negi M, Venkatachalam P, Bhattacharya R. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). PLANTA 2014; 240:177-94. [PMID: 24771023 DOI: 10.1007/s00425-014-2073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/28/2014] [Indexed: 05/04/2023]
Abstract
The productivity of Brassica oilseeds is severely affected by its major pest: aphids. Unavailability of resistance source within the crossable germplasms has stalled the breeding efforts to derive aphid resistant cultivars. In this study, jasmonate-mediated host defense in Indian mustard Brassica juncea (L.) Czern. was evaluated and compared with regard to its elicitation in response to mustard aphid Lipaphis erysimi (Kalt.) and the defense elicitor methyl jasmonate (MeJ). Identification of jasmonate-induced unigenes in B. juncea revealed that most are orthologous to aphid-responsive genes, identified in taxonomically diverse plant-aphid interactions. The unigenes largely represented genes related to signal transduction, response to biotic and abiotic stimuli and homeostasis of reactive oxygen species (ROS), in addition to genes related to cellular and metabolic processes involved in cell organization, biogenesis, and development. Gene expression studies revealed induction of the key jasmonate biosynthetic genes (LOX, AOC, 12-OPDR), redox genes (CAT3 and GST6), and other downstream defense genes (PAL, ELI3, MYR, and TPI) by several folds, both in response to MeJ and plant-wounding. However, interestingly aphid infestation even after 24 h did not elicit any activation of these genes. In contrast, when the jasmonate-mediated host defense was elicited by exogenous application of MeJ the treated B. juncea plants showed a strong antibiosis effect on the infesting aphids and reduced the growth of aphid populations. The level of redox enzymes CAT, APX, and SOD, involved in ROS homeostasis in defense signaling, and several defense enzymes viz. POD, PPO, and PAL, remained high in treated plants. We conclude that in B. juncea, the jasmonate activated endogenous-defense, which is not effectively activated in response to mustard aphids, has the potential to reduce population growth of mustard aphids.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110 012, India
| | | | | | | | | |
Collapse
|
36
|
Botha AM, Burger NFV, Van Eck L. Hypervirulent Diuraphis noxia (Hemiptera: Aphididae) biotype SAM avoids triggering defenses in its host (Triticum aestivum) (Poales: Poaceae) during feeding. ENVIRONMENTAL ENTOMOLOGY 2014; 43:672-81. [PMID: 24874154 DOI: 10.1603/en13331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the molecular arms race between aphids and plants, both organisms rely on adaptive strategies to outcompete their evolutionary rival. In the current study, we investigated the difference in elicited defense responses of wheat (Triticum aestivum L.) near-isogenic lines with different Dn resistance genes, upon feeding by an avirulent and hypervirulent Diuraphis noxia Kurdjumov biotype. After measuring the activity of a suite of enzymes associated with plant defense, it became apparent that the host does not recognize the invasion by the hypervirulent aphid because none of these were induced, while feeding by the avirulent biotype did result in induction of enzyme activity. Genomic plasticity in D. noxia may be a likely explanation for the observed differences in virulence between D. noxia biotype SA1 and SAM, as demonstrated in the current study.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Genetics Department, Stellenbosch University, Private Bag X1, Matieland, 7601, South Africa
| | | | | |
Collapse
|
37
|
Mai VC, Drzewiecka K, Jeleń H, Narożna D, Rucińska-Sobkowiak R, Kęsy J, Floryszak-Wieczorek J, Gabryś B, Morkunas I. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:1-12. [PMID: 24656330 DOI: 10.1016/j.plantsci.2014.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 05/03/2023]
Abstract
This study demonstrates the sequence of enhanced generation of signal molecules such as phytohormones, i.e. jasmonic acid (JA), ethylene (ET), salicylic acid (SA), and a relatively stable free radical, nitric oxide (NO), in response of Pisum sativum L. cv. Cysterski seedling leaves to the infestation of pea aphid Acyrthosiphon pisum (Harris) at a varied population size. In time from 0 to 96h after A. pisum infestation these signal molecules accumulated transiently. Moreover, the convergence of these signaling pathways occurred. JA and its methyl derivative MeJA reached the first maximum of generation at 24th hour of infestation. An increase in ET and NO generation was observed at 48th hour of infestation. The increase in SA, JA/MeJA and ET concentrations in aphid-infested leaves occurred from the 72nd to 96th hour. In parallel, an increase was demonstrated for the activities of enzymes engaged in the biosynthesis of SA, such as phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H). Additionally, a considerable post-infestation accumulation of transcripts for PAL was observed. An increase in the activity of lipoxygenase (LOX), an important enzyme in the biosynthesis of JA was noted. This complex signaling network may contribute to the coordinated regulation of gene expression leading to specific defence responses.
Collapse
Affiliation(s)
- Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; Department of Plant Physiology, Vinh University, Le Duan 182, Vinh City, Viet Nam
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Henryk Jeleń
- Institute of Plant Products Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Renata Rucińska-Sobkowiak
- Department of Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 60-614 Poznań, Poland
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| | | | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Szafrana 1, 65-516 Zielona Góra, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
38
|
Sharma A, Khan AN, Subrahmanyam S, Raman A, Taylor GS, Fletcher MJ. Salivary proteins of plant-feeding hemipteroids - implication in phytophagy. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:117-36. [PMID: 24280006 DOI: 10.1017/s0007485313000618] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many hemipteroids are major pests and vectors of microbial pathogens, infecting crops. Saliva of the hemipteroids is critical in enabling them to be voracious feeders on plants, including the economically important ones. A plethora of hemipteroid salivary enzymes is known to inflict stress in plants, either by degrading the plant tissue or by affecting their normal metabolism. Hemipteroids utilize one of the following three strategies of feeding behaviour: salivary sheath feeding, osmotic-pump feeding and cell-rupture feeding. The last strategy also includes several different tactics such as lacerate-and-flush, lacerate-and-sip and macerate-and-flush. Understanding hemipteroid feeding mechanisms is critical, since feeding behaviour directs salivary composition. Saliva of the Heteroptera that are specialized as fruit and seed feeders, includes cell-degrading enzymes, auchenorrhynchan salivary composition also predominantly consists of cell-degrading enzymes such as amylase and protease, whereas that of the Sternorhyncha includes a variety of allelochemical-detoxifying enzymes. Little is known about the salivary composition of the Thysanoptera. Cell-degrading proteins such as amylase, pectinase, cellulase and pectinesterase enable stylet entry into the plant tissue. In contrast, enzymes such as glutathione peroxidase, laccase and trehalase detoxify plant chemicals, enabling the circumvention of plant-defence mechanisms. Salivary enzymes such as M1-zinc metalloprotease and CLIP-domain serine protease as in Acyrthosiphon pisum (Aphididae), and non-enzymatic proteins such as apolipophorin, ficolin-3-like protein and 'lava-lamp' protein as in Diuraphis noxia (Aphididae) have the capacity to alter host-plant-defence mechanisms. A majority of the hemipteroids feed on phloem, hence Ca++-binding proteins such as C002 protein, calreticulin-like isoform 1 and calmodulin (critical for preventing sieve-plate occlusion) are increasingly being recognized in hemipteroid-plant interactions. Determination of a staggering variety of proteins shows the complexity of hemipteroid saliva: effector proteins localized in hemipteran saliva suggest a similarity to the physiology of pathogen-plant interactions.
Collapse
Affiliation(s)
- A Sharma
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - A N Khan
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - S Subrahmanyam
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - A Raman
- School of Agricultural & Wine Sciences, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia
| | - G S Taylor
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia
| | - M J Fletcher
- Orange Agricultural Institute, NSW Department of Primary Industries, Forest Road, Orange, NSW 2800, Australia
| |
Collapse
|
39
|
Smith CM, Chuang WP. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. PEST MANAGEMENT SCIENCE 2014; 70:528-40. [PMID: 24282145 DOI: 10.1002/ps.3689] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/05/2013] [Accepted: 11/26/2013] [Indexed: 05/06/2023]
Abstract
Aphids damage major world food and fiber crops through direct feeding and transmission of plant viruses. Fortunately, the development of many aphid-resistant crop plants has provided both ecological and economic benefits to food production. Plant characters governing aphid host selection often dictate eventual plant resistance or susceptibility to aphid herbivory, and these phenotypic characters have been successfully used to map aphid resistance genes. Aphid resistance is often inherited as a dominant trait, but is also polygenic and inherited as recessive or incompletely dominant traits. Most aphid-resistant cultivars exhibit constitutively expressed defenses, but some cultivars exhibit dramatic aphid-induced responses, resulting in the overexpression of large ensembles of putative aphid resistance genes. Two aphid resistance genes have been cloned. Mi-1.2, an NBS-LRR gene from wild tomato, confers resistance to potato aphid and three Meloidogyne root-knot nematode species, and Vat, an NBS-LRR gene from melon, controls resistance to the cotton/melon aphid and to some viruses. Virulence to aphid resistance genes of plants occurs in 17 aphid species--more than half of all arthropod biotypes demonstrating virulence. The continual appearance of aphid virulence underscores the need to identify new sources of resistance of diverse sequence and function in order to delay or prevent biotype development.
Collapse
Affiliation(s)
- C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
40
|
Cotton photosynthesis-related PSAK1 protein is involved in plant response to aphid attack. Mol Biol Rep 2014; 41:3191-200. [DOI: 10.1007/s11033-014-3179-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
41
|
Guo H, Sun Y, Li Y, Liu X, Zhang W, Ge F. Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. THE NEW PHYTOLOGIST 2014; 201:279-291. [PMID: 24015892 DOI: 10.1111/nph.12484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/06/2013] [Indexed: 05/08/2023]
Abstract
The performance of herbivorous insects is greatly affected by plant nutritional quality and resistance, which are likely to be altered by rising concentrations of atmospheric CO2 . We previously reported that elevated CO2 enhanced biological nitrogen (N) fixation of Medicago truncatula, which could result in an increased supply of amino acids to the pea aphid (Acyrthosiphon pisum). The current study examined the N nutritional quality and aphid resistance of sickle, an ethylene-insensitive mutant of M. truncatula with supernodulation, and its wild-type control A17 under elevated CO2 in open-top field chambers. Regardless of CO2 concentration, growth and amino acid content were greater and aphid resistance was lower in sickle than in A17. Elevated CO2 up-regulated N assimilation and transamination-related enzymes activities and increased phloem amino acids in both genotypes. Furthermore, elevated CO2 down-regulated expression of 1-amino-cyclopropane-carboxylic acid (ACC), sickle gene (SKL) and ethylene response transcription factors (ERF) genes in the ethylene signaling pathway of A17 when infested by aphids and decreased resistance against aphids in terms of lower activities of superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Our results suggest that elevated CO2 suppresses the ethylene signaling pathway in M. truncatula, which results in an increase in plant nutritional quality for aphids and a decrease in plant resistance against aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuefei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianghui Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenhao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Łukasik I, Goławska S. Effect of host plant on levels of reactive oxygen species and antioxidants in the cereal aphids Sitobion avenae and Rhopalosiphum padi. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Reddy SK, Weng Y, Rudd JC, Akhunova A, Liu S. Transcriptomics of induced defense responses to greenbug aphid feeding in near isogenic wheat lines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:26-36. [PMID: 24094051 DOI: 10.1016/j.plantsci.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 05/10/2023]
Abstract
The greenbug aphid, Schizaphis graminum (Rondani) is an important cereal pest, periodically threatening wheat yields in the United States and around the world. The single dominant gene, Gb3-based resistance is highly durable against prevailing greenbug biotypes under field conditions; however, the molecular mechanisms of Gb3-mediated defense responses remain unknown. We used Affymetrix GeneChip Wheat Genome Arrays to investigate the transcriptomics of host defense responses upon greenbug feeding on resistant and susceptible bulks (RB and SB, respectively) derived from two near-isogenic lines. The study identified 692 differentially expressed transcripts and further functional classification recognized 122 transcripts that are putatively associated to mediate biotic stress responses. In RB, Gb3-mediated resistance resulted in activation of transmembrane receptor kinases and signaling-related transcripts involved in early signal transduction cascades. While in SB, transcripts mediating final steps in jasmonic acid biosynthesis, redox homeostasis, peroxidases, glutathione S-transferases, and notable defense-related secondary metabolites were induced. Also transcripts involved in callose and cell wall decomposition were elevated SB, plausibly to facilitate uninterrupted feeding operations. These results suggest that Gb3-mediated resistance is less vulnerable to cell wall modification and the data provides ample tools for further investigations concerning R gene based model of resistance.
Collapse
|
44
|
Guo H, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. GLOBAL CHANGE BIOLOGY 2013; 19:3210-23. [PMID: 23686968 DOI: 10.1111/gcb.12260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 05/23/2023]
Abstract
Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Mai VC, Bednarski W, Borowiak-Sobkowiak B, Wilkaniec B, Samardakiewicz S, Morkunas I. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. PHYTOCHEMISTRY 2013; 93:49-62. [PMID: 23566717 DOI: 10.1016/j.phytochem.2013.02.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/15/2013] [Accepted: 02/20/2013] [Indexed: 05/20/2023]
Abstract
In this study we examined whether and to what extent oxidative stress is induced in seedling leaves of Pisum sativum L. cv. Cysterski in response to pea aphid (Acyrthosiphon pisum Harris) infestation. A. pisum caused oxidative stress conditions in pea leaves through enhanced production of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide anion radical (O2(·-)). Early, strong generation of H2O2 was observed at 24h in aphid-infested leaves. The highest level of H2O2 at this time point may be related to the functioning of H2O2 as a signaling molecule, triggering defense mechanisms in pea leaves against A. pisum. Additionally, the strong generation and continuous increase of O2(·-) production in aphid-infested leaves from 0 to 96 h enhanced the defense potential to protect against aphid herbivory. Also in the study cytochemical localization of H2O2 and O2(·-) in pea leaves after aphid infestation was determined using the confocal microscope. Relative release of H2O2 and O2(·-) was estimated by staining leaves with specific fluorochromes, i.e. dichlorodihydro-fluorescein diacetate (DCFH-DA) and dihydroethidium (DHE), respectively. DCFH-DA and DHE derived fluorescence was observed to cover a much larger tissue area in aphid-infested leaves, whereas little or no fluorescence was observed in the control leaves. Enhanced activity of the antioxidant enzymes superoxide dismutase (SOD, 1.15.1.1) and catalase (CAT, 1.11.1.6) is one of the most essential elements of defense responses in pea seedling leaves to oxidative stress. Additionally, generation of semiquinones, stable free radicals with g-values of 2.0020 and 2.0035, detected by electron paramagnetic resonance spectroscopy (EPR), was suggested as a protective action of pea that may contribute to build-up of a defensive barrier or activate other defense mechanisms. Concentrations of semiquinone radicals in aphid-infested seedling leaves not only were generally higher than in the control plants but also significantly increased with cultivation time. On the other hand, the small increase in content of thiobarbituric acid reactive substances (TBARS), a product of lipid peroxidation, and the percentage of injury (3-8%) indicated that the cellular damage was caused by oxidative stress. The induced changes in levels of H2O2, O2(·-) and semiquinone radicals as well as activities of antioxidant enzymes in the pea defense responses were proportional to the population size of A. pisum. These findings indicate that the defensive strategies against A. pisum infestation were stimulated in seedling leaves of P. sativum L. cv. Cysterski. Our observations of the enhanced defense responses of P. sativum to infestation by A. pisum reveal some aspects and contribute to current knowledge of regulatory mechanisms in plant-aphid interactions.
Collapse
Affiliation(s)
- Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | | | | | | | | | | |
Collapse
|
46
|
Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, Renzone G, Martinelli R, Scaloni A, Pennacchio F, Rao R, Corrado G. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics 2013; 14:515. [PMID: 23895395 PMCID: PMC3733717 DOI: 10.1186/1471-2164-14-515] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aphids are among the most destructive pests in temperate climates, causing significant damage on several crops including tomato. We carried out a transcriptomic and proteomic study to get insights into the molecular mechanisms and dynamics of the tomato response to the Macrosyphum euphorbiae aphid. RESULTS The time course analysis of aphid infestation indicated a complex, dynamic pattern of gene expression. Several biological functions were affected and genes related to the stress and defence response were the most represented. The Gene Ontology categories of the differentially expressed genes (899) and identified proteins (57) indicated that the tomato response is characterized by an increased oxidative stress accompanied by the production of proteins involved in the detoxification of oxygen radicals. Aphids elicit a defense reaction based on the cross-communication of different hormone-related signaling pathways such as those related to the salicylic acid (SA), jasmonic acid (JA), ethylene and brassinosteroids. Among them, the SA-signaling pathway and stress-responsive SA-dependent genes play a dominant role. Furthermore, tomato response is characterized by a reduced accumulation of photosynthetic proteins and a modification of the expression of various cell wall related genes. CONCLUSIONS Our work allowed a more comprehensive understanding of the signaling events and the defense dynamics of the tomato response to aphids in a compatible interaction and, based on experimental data, a model of the tomato-aphid molecular interaction was proposed. Considering the rapid advancement of tomato genomics, this information will be important for the development of new protection strategies.
Collapse
Affiliation(s)
- Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 561] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
48
|
Kerchev PI, Karpińska B, Morris JA, Hussain A, Verrall SR, Hedley PE, Fenton B, Foyer CH, Hancock RD. Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis. Antioxid Redox Signal 2013; 18:2091-105. [PMID: 23343093 DOI: 10.1089/ars.2012.5097] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS Aphids, like other insects, are probably unable to synthesize vitamin C (ascorbic acid), which is therefore an essential dietary nutrient that has to be obtained from the host plant. Plant responses to aphids involve hormones such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), but hormone/redox interactions remain poorly characterized. We therefore investigated hormone/redox signaling in the response of Arabidopsis thaliana to infestation by the aphid Myzus persicae, focusing on the interactions between ascorbic acid and ABA, together with the influence of altered ascorbate and ABA signaling on the SA- and JA-dependent pathways. RESULTS Whole-genome microarray analysis revealed highly dynamic transcriptional responses to aphid infestation with extensive differences between transcript profiles of infested and systemic leaves, revealing aphid-dependent effects on the suites of transcripts involved in the redox, SA, and ABA responses. Central roles for ascorbate, ABA-insensitive 4 (ABI4), and oxidative signal-inducible 1 in plant resistance to aphids were demonstrated by altered fecundity on respective mutants. However, ABA had a negative effect on aphid resistance, as did ABI4 or redox-responsive transcription factor 1. The decrease in aphid fecundity observed in mutants defective in ascorbate accumulation (vtc2) was absent from abi4vtc2 double mutants that are also deficient in ABA signaling (abi4). Aphid-dependent transcriptome responses reveal a role for ascorbate-regulated receptor-like kinases in plant defenses against aphids. INNOVATION Vitamin C deficiency enhances plant resistance to aphids through redox signaling pathways rather than dietary requirements. CONCLUSION ABI4 is a linchpin of redox regulation of the innate immune response to aphids.
Collapse
Affiliation(s)
- Pavel I Kerchev
- Faculty of Biology, Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genomics 2013; 14:241. [PMID: 23577705 PMCID: PMC3637549 DOI: 10.1186/1471-2164-14-241] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/12/2013] [Indexed: 10/09/2024] Open
Abstract
Background Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche’s GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. Results A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. Conclusions A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic, abiotic stresses and enzymatic activities related to hydrolases, transferases, and kinases. The expression of some marker genes such as the overexpressors of cationic peroxidase 3, lipoxygenase I, TGA2, and non-specific lipase, which are involved in phytohormonal-mediated plant resistance development, was suppressed after infestation by aphids and whiteflies, indicating that insects suppressed plant resistance in order to facilitate their infestation. We also concluded that cotton shares several pathways such as phagosomes, RNA transport, and amino acid metabolism with Arabidopsis in response to the infestation by aphids and whiteflies.
Collapse
|
50
|
Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation. Int J Mol Sci 2013; 14:3921-45. [PMID: 23434671 PMCID: PMC3588078 DOI: 10.3390/ijms14023921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 01/02/2023] Open
Abstract
Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein “RS1” was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH.
Collapse
|