1
|
Nievergelt AP. Genome editing in the green alga Chlamydomonas: past, present practice and future prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70140. [PMID: 40186543 PMCID: PMC11971955 DOI: 10.1111/tpj.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
The green alga Chlamydomonas is an important and versatile model organism for research topics ranging from photosynthesis and metabolism, cilia, and basal bodies to cellular communication and the cellular cycle and is of significant interest for green bioengineering processes. The genome in this unicellular green alga is contained in 17 haploid chromosomes and codes for 16 883 protein coding genes. Functional genomics, as well as biotechnological applications, rely on the ability to remove, add, and change these genes in a controlled and efficient manner. In this review, the history of gene editing in Chlamydomonas is put in the context of the wider developments in genetics to demonstrate how many of the key developments to engineer these algae follow the global trends and the availability of technology. Building on this background, an overview of the state of the art in Chlamydomonas engineering is given, focusing primarily on the practical aspects while giving examples of recent applications. Commonly encountered Chlamydomonas-specific challenges, recent developments, and community resources are presented, and finally, a comprehensive discussion on the emergence and evolution of CRISPR/Cas-based precision gene editing is given. An outline of possible future paths for gene editing based on current global trends in genetic engineering and tools for gene editing is presented.
Collapse
Affiliation(s)
- Adrian P. Nievergelt
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 108Dresden01307Germany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1Potsdam14476Germany
| |
Collapse
|
2
|
Jankowski MS, Griffith D, Shastry DG, Pelham JF, Ginell GM, Thomas J, Karande P, Holehouse AS, Hurley JM. Disordered clock protein interactions and charge blocks turn an hourglass into a persistent circadian oscillator. Nat Commun 2024; 15:3523. [PMID: 38664421 PMCID: PMC11045787 DOI: 10.1038/s41467-024-47761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.
Collapse
Affiliation(s)
- Meaghan S Jankowski
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua Thomas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
3
|
Husťáková B, Trundová M, Adámková K, Kovaľ T, Dušková J, Dohnálek J. A highly active S1-P1 nuclease from the opportunistic pathogen Stenotrophomonas maltophilia cleaves c-di-GMP. FEBS Lett 2023; 597:2103-2118. [PMID: 37309731 DOI: 10.1002/1873-3468.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
A number of multidrug-resistant bacterial pathogens code for S1-P1 nucleases with a poorly understood role. We have characterized a recombinant form of S1-P1 nuclease from Stenotrophomonas maltophilia, an opportunistic pathogen. S. maltophilia nuclease 1 (SmNuc1) acts predominantly as an RNase and is active in a wide range of temperatures and pH. It retains a notable level of activity towards RNA and ssDNA at pH 5 and 9 and about 10% of activity towards RNA at 10 °C. SmNuc1 with very high catalytic rates outperforms S1 nuclease from Aspergillus oryzae and other similar nucleases on all types of substrates. SmNuc1 degrades second messenger c-di-GMP, which has potential implications for its role in the pathogenicity of S. maltophilia.
Collapse
Affiliation(s)
- Blanka Husťáková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Mária Trundová
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Kristýna Adámková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Kovaľ
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Jarmila Dušková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| |
Collapse
|
4
|
Mesa-Arango JA, Olave-Velandia AM, García-Montoya GM, Isaza-Agudelo JP, Jiménez-Ruiz A, Alzate JF. Evaluation of new Toxocara canis chimeric antigens as an alternative to conventional TES-Ag for anti- Toxocara antibodies detection. Heliyon 2022; 8:e11144. [PMID: 36299519 PMCID: PMC9589186 DOI: 10.1016/j.heliyon.2022.e11144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Human toxocariasis is one of the neglected helminthiases and it is caused by the zoonotic roundworm species Toxocara canis and Toxocara cati. Diagnosis of human toxocariasis is based on the combination of clinical, parasitological, and epidemiological criteria, as well as serology tests that detect anti-Toxocara antibodies. Notwithstanding, due to the absence of pathognomonic symptoms and signs of the disease, serology is the key evidence to support a conclusive diagnosis. TES-ELISA is the most widely used serological test for diagnosis. However, cross-reaction of TES antigens with antibodies produced to other helminth antigens is a major drawback for its application in countries with high parasitic prevalence. T. canis recombinant antigens have been described as an alternative to native TES for diagnosis. Nevertheless, the selection of antigenic proteins is a complex process that requires validation. In this paper, we developed an eGFP carrier-based system to express and purify blocks of recombinant polypeptides of T. canis antigenic proteins. Intense cross-reaction polypeptides were detected by Immunoblot and avoided to finally produce a chimeric prototype protein. Additionally, a control chimeric protein that harbors the complete tested proteins was produced. Purified chimeric antigens were tested in ELISA and Immunoblot assays with 310 sera samples of negative and positive control individuals. Our results showed that chimeric rCHITC0 and rCHITC1 antigens (with sensitivities of 62% 58%, 38% and 16% in IB-rCHITC0, ELISA-rCHITC0, ELISA-rCHITC1 and IB-rCHITC1 respectively for OLMS) can perform better in terms of specificity (being 91%, 89%, 87% and 76% for ELISA-rCHITC1, IB-rCHITC1, ELISA-rCHITC0 and IB-rCHITC0 respectively for OLMS) than T. canis TES-ELISA (with 61% specificity), giving a higher signal with serum samples of infected individuals as well the possibility to discriminate false positive cases with other parasitic infections. Our data suggest that T. canis chimeric proteins, represent candidate antigens for phase II studies.
Collapse
Affiliation(s)
- Jairo A. Mesa-Arango
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia,Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Ana M. Olave-Velandia
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Gisela M. García-Montoya
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia,Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Juan P. Isaza-Agudelo
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia,Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia,Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Colombia,Corresponding author.
| |
Collapse
|
5
|
Rohles C, Pauli S, Gießelmann G, Kohlstedt M, Becker J, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate. Metab Eng 2022; 73:168-181. [PMID: 35917915 DOI: 10.1016/j.ymben.2022.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
5-aminovalerate (AVA) is a platform chemical of substantial commercial value to derive nylon-5 and five-carbon derivatives like δ-valerolactam, 1,5-pentanediol, glutarate, and 5-hydroxyvalerate. De-novo bio-production synthesis of AVA using metabolically engineered cell factories is regarded as exemplary route to provide this chemical in a sustainable way. So far, this route is limited by low titers, rates and yields and suffers from high levels of by-products. To overcome these limitations, we developed a novel family of AVA producing C. glutamicum cell factories. Stepwise optimization included (i) improved AVA biosynthesis by expression balancing of the heterologous davAB genes from P. putida, (ii) reduced formation of the by-product glutarate by disruption of the catabolic y-aminobutyrate pathway (iii), increased AVA export, and (iv) reduced AVA re-import via native and heterologous transporters to account for the accumulation of intracellular AVA up to 300 mM. Strain C. glutamicum AVA-5A, obtained after several optimization rounds, produced 48.3 g L-1 AVA in a fed-batch process and achieved a high yield of 0.21 g g-1. Surprisingly in later stages, the mutant suddenly accumulated glutarate to an extent equivalent to 30% of the amount of AVA formed, tenfold more than in the early process, displaying a severe drawback toward industrial production. Further exploration led to the discovery that ArgD, naturally aminating N-acetyl-l-ornithine during l-arginine biosynthesis, exhibits deaminating side activity on AVA toward glutarate formation. This promiscuity became relevant because of the high intracellular AVA level and the fact that ArgD became unoccupied with the gradually stronger switch-off of anabolism during production. Glutarate formation was favorably abolished in the advanced strains AVA-6A, AVA-6B, and AVA-7, all lacking argD. In a fed-batch process, C. glutamicum AVA-7 produced 46.5 g L-1 AVA at a yield of 0.34 g g-1 and a maximum productivity of 1.52 g L-1 h-1, outperforming all previously reported efforts and stetting a milestone toward industrial manufacturing of AVA. Notably, the novel cell factories are fully genome-based, offering high genetic stability and requiring no selection markers.
Collapse
Affiliation(s)
- Christina Rohles
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Sarah Pauli
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
6
|
Heterologous Production of Plant Terpenes in the Photosynthetic Bacterium Rhodobacter capsulatus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2379:125-154. [PMID: 35188660 DOI: 10.1007/978-1-0716-1791-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Terpenes are one of the largest classes of secondary metabolites that occur in all kingdoms of life and offer diverse valuable properties for food and pharma industry including pleasant odor or taste as well as antimicrobial or anticancer activities. A multitude of terpene biosynthesis pathways are known, but their efficient biotechnological exploitation requires an adequate microorganism as host which can ideally provide an optimal supply with biosynthetic isoprene precursors. Rhodobacter capsulatus, a Gram-negative, facultative anaerobic, photosynthetic non-sulfur purple bacterium belonging to the α-proteobacteria represents such a host particularly suitable for terpene production. Here, we describe methods for the expression of terpene biosynthetic enzymes in R. capsulatus and the extraction of products for analysis. At the same time, we summarize the current strategies to adjust the biosynthetic precursor supply via isoprenoid biosynthetic pathways.
Collapse
|
7
|
Vázquez-Franco N, Gutiérrez-Escobedo G, Juárez-Reyes A, Orta-Zavalza E, Castaño I, De Las Peñas A. Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes. Fungal Genet Biol 2021; 159:103656. [PMID: 34974188 DOI: 10.1016/j.fgb.2021.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022]
Abstract
C. glabrata is an opportunistic fungal pathogen and the second most common cause of opportunistic fungal infections in humans, that has evolved virulence factors to become a successful pathogen: strong resistance to oxidative stress, capable to adhere and form biofilms in human epithelial cells as well as to abiotic surfaces and high resistance to xenobiotics. Hst1 (a NAD+-dependent histone deacetylase), Sum1 (putative DNA binding protein) and Rfm1 (connector protein) form a complex (HRS-C) and control the resistance to oxidative stress, to xenobiotics (the antifungal fluconazole), and adherence to epithelial cells. Hst1 is functionally conserved within the Saccharomycetaceae family, Rfm1 shows a close phylogenetic relation within the Saccharomycetaceae family while Sum1 displays a distant phylogenetic relation with members of the family and is not conserved functionally. CDR1 encodes for an ABC transporter (resistance to fluconazole) negatively controlled by HRS-C, for which its binding site is located within 223 bp upstream from the ATG of CDR1. The absence of Hst1 and Sum1 renders the cells hyper-adherent, possibly due to the overexpression of AED1, EPA1, EPA22 and EPA6, all encoding for adhesins. Finally, in a neutrophil survival assay, HST1 and SUM1, are not required for survival. We propose that Sum1 in the HRS-C diverged functionally to control a set of genes implicated in virulence: adherence, resistance to xenobiotics and oxidative stress.
Collapse
Affiliation(s)
- Norma Vázquez-Franco
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro Juárez-Reyes
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Emmanuel Orta-Zavalza
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico.
| |
Collapse
|
8
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
9
|
Bhandari BK, Lim CS, Remus DM, Chen A, van Dolleweerd C, Gardner PP. Analysis of 11,430 recombinant protein production experiments reveals that protein yield is tunable by synonymous codon changes of translation initiation sites. PLoS Comput Biol 2021; 17:e1009461. [PMID: 34610008 PMCID: PMC8519471 DOI: 10.1371/journal.pcbi.1009461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/15/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Recombinant protein production is a key process in generating proteins of interest in the pharmaceutical industry and biomedical research. However, about 50% of recombinant proteins fail to be expressed in a variety of host cells. Here we show that the accessibility of translation initiation sites modelled using the mRNA base-unpairing across the Boltzmann's ensemble significantly outperforms alternative features. This approach accurately predicts the successes or failures of expression experiments, which utilised Escherichia coli cells to express 11,430 recombinant proteins from over 189 diverse species. On this basis, we develop TIsigner that uses simulated annealing to modify up to the first nine codons of mRNAs with synonymous substitutions. We show that accessibility captures the key propensity beyond the target region (initiation sites in this case), as a modest number of synonymous changes is sufficient to tune the recombinant protein expression levels. We build a stochastic simulation model and show that higher accessibility leads to higher protein production and slower cell growth, supporting the idea of protein cost, where cell growth is constrained by protein circuits during overexpression.
Collapse
Affiliation(s)
- Bikash K. Bhandari
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniela M. Remus
- Callaghan Innovation Protein Science and Engineering, University of Canterbury, Christchurch, New Zealand
| | - Augustine Chen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Craig van Dolleweerd
- Biomolecular Interaction Center, University of Canterbury, Christchurch, New Zealand
| | - Paul P. Gardner
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Biomolecular Interaction Center, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
10
|
Li J, Xie X, Cai J, Wang H, Yang J. Enhanced Secretory Expression and Surface Display Level of Bombyx mori Acetylcholinesterase 2 by Pichia pastoris Based on Codon Optimization Strategy for Pesticides Setection. Appl Biochem Biotechnol 2021; 193:3321-3335. [PMID: 34160750 DOI: 10.1007/s12010-021-03597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
The cholinesterase-based spectrophotometric assay, also called enzyme inhibition method, is a good choice for rapid detection of organophosphate pesticides (OPs) and carbamate pesticides (CPs). Obviously, the cholinesterase is the core reagent in enzyme inhibition method. In our previous work, a recombinant acetylcholinesterase 2 from Bombyx mori (rBmAChE2) was expressed in yeast successfully and exhibited great sensitivity. However, the yield of rBmAChE2 is not desirable. In this study, a codon optimization strategy was employed to enhance the yield of rBmAChE2 in Pichia pastoris GS115. Results showed that by replacing 6 key rare codons and increasing the percentage of bases G and C up to 46.85%, codon adaptation index (CAI) of Bombyx mori acetylcholinesterase 2 (bmace2) gene was improved from 0.70 to 0.81. After being transformed into Pichia pastoris GS115 via electroporation, the expression transformant can produce 139.7 U/mL secretory codon-optimized rBmAChE2 (opt-rBmAChE2) in the culture supernatant, 3.62 times higher than that of strain bearing the wild-type bmace2 gene. Meanwhile, opt-rBmAChE2 displayed on the yeast surface was up to 2280.02 U/g, 2.8 times higher than wild-type displayed rBmAChE2. In addition, either secretory or surface-displayed opt-rBmAChE2 maintained the similar sensitivities to the wild-type rBmAChE2 for tested inhibitors. Furthermore, the detection limits of the opt-rBmAChE2-based enzyme inhibition method for 10 kinds of OPs or CPs (0.01-2.69 mg/kg) were lower than most of the indexes present in current standard method (GB/T 5009.199-2003) or the maximum residue limits (GB 2763-2019) in China. The results might contribute to the utilization of rBmAChE2 for pesticide residue screening detection in practice.
Collapse
Affiliation(s)
- Jiadong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jun Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
11
|
Watts A, Sankaranarayanan S, Watts A, Raipuria RK. Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Kisly I, Kattel C, Remme J, Tamm T. Luciferase-based reporter system for in vitro evaluation of elongation rate and processivity of ribosomes. Nucleic Acids Res 2021; 49:e59. [PMID: 33684199 PMCID: PMC8191769 DOI: 10.1093/nar/gkab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The elongation step of translation is a key contributor to the abundance, folding and quality of proteins and to the stability of mRNA. However, control over translation elongation has not been thoroughly investigated. In this study, a Renilla-firefly luciferase fusion reporter system was further developed to investigate the in vitro elongation rate and processivity of ribosomes independent of the initiation and termination steps. The reporter mRNA was constructed to contain a single ORF encoding in-frame Renilla luciferase, a specific domain moiety and firefly luciferase. Such a reporter structure enables the quantitative and individual evaluation of the synthesis of a specific domain. As a proof of principle, the synthesis of three protein domains of different lengths and structures was analyzed. Using a cell-free translation assay, both the elongation rate and processivity of ribosomes were shown to vary depending on the domain synthesized. Additionally, a stalling sequence consisting of ten rare arginine codons notably reduced the elongation rate and the processivity of the ribosomes. All these results are consistent with the previously known dynamics of elongation in vivo. Overall, the methodology presented in this report provides a framework for studying aspects that contribute to the elongation step of translation.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Carolin Kattel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
13
|
Iyer A, Baranov M, Foster AJ, Chordia S, Roelfes G, Vlijm R, van den Bogaart G, Poolman B. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chem Biol 2021; 16:891-904. [PMID: 33913682 PMCID: PMC8154248 DOI: 10.1021/acschembio.1c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions.
Collapse
Affiliation(s)
- Aditya Iyer
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim Baranov
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alexander J. Foster
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
So you want to express your protein in Escherichia coli? Essays Biochem 2021; 65:247-260. [PMID: 33955451 DOI: 10.1042/ebc20200170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Recombinant proteins have been extensively employed as therapeutics for the treatment of various critical and life-threatening diseases and as industrial enzymes in high-value industrial processes. Advances in genetic engineering and synthetic biology have broadened the horizon of heterologous protein production using multiple expression platforms. Selection of a suitable expression system depends on a variety of factors ranging from the physicochemical properties of the target protein to economic considerations. For more than 40 years, Escherichia coli has been an established organism of choice for protein production. This review aims to provide a stepwise approach for any researcher embarking on the journey of recombinant protein production in E. coli. We present an overview of the challenges associated with heterologous protein expression, fundamental considerations connected to the protein of interest (POI) and designing expression constructs, as well as insights into recently developed technologies that have contributed to this ever-growing field.
Collapse
|
15
|
Generation of biologically active recombinant human OCT4 protein from E. coli. 3 Biotech 2021; 11:207. [PMID: 33927995 DOI: 10.1007/s13205-021-02758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) is vital for early embryonic development and is a master regulator of pluripotency in embryonic stem cells. Notably, OCT4 is a key reprogramming factor to derive induced pluripotent stem cells, which have tremendous prospects in regenerative medicine. In the current study, we report heterologous expression and purification of human OCT4 in E. coli to produce pure recombinant protein under native conditions. To achieve this, the 1083 bp coding sequence of the human OCT4 gene was codon-optimized for heterologous expression in E. coli. The codon-optimized sequence was fused with fusion tags, namely a cell-penetrating peptide sequence for intracellular delivery, a nuclear localization sequence for intranuclear delivery, and a His-tag for affinity purification. Subsequently, the codon-optimized sequence and the fusion tags were cloned in the protein expression vector, pET28a(+), and transformed into E. coli strain BL21(DE3) for expression. The recombinant OCT4 protein was purified from the soluble fraction under native conditions using immobilized metal ion affinity chromatography in a facile manner, and its identity was confirmed by Western blotting and mass spectrometry. Furthermore, the secondary structure of the recombinant protein was analyzed using far ultraviolet circular dichroism spectroscopy, which confirmed that the purified fusion protein maintained a secondary structure conformation, and it predominantly composed of α-helices. Next, the recombinant OCT4 protein was applied to human cells, and was found that it was able to enter the cells and translocate to the nucleus. Furthermore, the biological activity of the transduced OCT4 protein was also demonstrated on human cells. This recombinant tool can substitute for genetic and viral forms of OCT4 to enable the derivation of integration-free pluripotent cells. It can also be used to elucidate its biological role in various cellular processes and diseases and for structural and biochemical studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02758-z.
Collapse
|
16
|
Cotrim CA, Jarrott RJ, Whitten AE, Choudhury HG, Drew D, Martin JL. Heterologous Expression and Biochemical Characterization of the Human Zinc Transporter 1 (ZnT1) and Its Soluble C-Terminal Domain. Front Chem 2021; 9:667803. [PMID: 33996761 PMCID: PMC8120272 DOI: 10.3389/fchem.2021.667803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Human zinc transporter 1 (hZnT1) belongs to the cation diffusion facilitator (CDF) family. It plays a major role in transporting zinc (Zn2+) from the cytoplasm across the plasma membrane and into the extracellular space thereby protecting cells from Zn2+ toxicity. Through homology with other CDF family members, ZnT1 is predicted to contain a transmembrane region and a soluble C-terminal domain though little is known about its biochemistry. Here, we demonstrate that human ZnT1 and a variant can be produced by heterologous expression in Saccharomyces cerevisiae cells and purified in the presence of detergent and cholesteryl hemisuccinate. We show that the purified hZnT1 variant has Zn2+/H+ antiporter activity. Furthermore, we expressed, purified and characterized the soluble C-terminal domain of hZnT1 (hZnT1-CTD) in a bacterial expression system. We found that the hZnT1-CTD melting temperature increases at acidic pH, thus, we used an acetate buffer at pH 4.5 for purifications and concentration of the protein up to 12 mg/mL. Small-angle X-ray scattering analysis of hZnT1-CTD is consistent with the formation of a dimer in solution with a V-shaped core.
Collapse
Affiliation(s)
- Camila A. Cotrim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Russell J. Jarrott
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Hassanul G. Choudhury
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Vice-Chancellor's Unit, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
Zhou B, Takahashi S, Takemura T, Tanaka K, Imamura S. Establishment of a firefly luciferase reporter assay system in the unicellular red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2021; 67:42-46. [PMID: 32938840 DOI: 10.2323/jgam.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The firefly luciferase (Luc) reporter assay is a powerful tool used to analyze promoter activities in living cells. In this report, we established a firefly Luc reporter assay system in the unicellular model red alga Cyanidioschyzon merolae. A nitrite reductase (NIR) promoter-Luc fusion gene was integrated into the URA5.3 genomic region to construct the C. merolae NIR-Luc strain. Luc activities in the NIR-Luc strain were increased, correlating with the accumulation of endogenous NIR transcripts in response to nitrogen depletion. Luc activity was also significantly increased by the overexpression of the MYB1 gene, which encodes a transcription factor responsible for NIR promoter activation. Thus, our results demonstrate the utility of the Luc reporter system in C. merolae.
Collapse
Affiliation(s)
- Baifeng Zhou
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,School of Life Science and Technology, Tokyo Institute of Technology
| | - Sota Takahashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology.,School of Life Science and Technology, Tokyo Institute of Technology
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
18
|
Li L, Shen Y, Xu X, Yang W, Li J. Tracing and exploring the evolutionary origin and systematic function of fish complement C9. Mol Genet Genomics 2021; 296:665-676. [PMID: 33718983 DOI: 10.1007/s00438-021-01773-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
Complement C9, as a member of terminal complement component (TCC) protein, plays important roles in innate immunity. However, some complement components appear to show difference and evolutionary complexity between higher and lower vertebrates. Hence, it is essential to carry on a study of evolutionary origin and systematic function of C9 in fish and non-fish vertebrates. This study aims to explore the complement gene evolution and potential function in fish based on molecular and structural biology. Herein, we found complete divergence of C9 throughout the gene evolution. The optimal codons of C9 sequences tended to be closer to the genomes of lower vertebrates compared to higher vertebrates. Further, conserved amino acids in the C9 TMH1 region were identified, implying their potential functional association with MAC growth and pore formation. Transposons and simple repeats, as gene elements, exhibited a differential distribution in the genomic regions in different animal groups but were sparsely scattered around the sixth exon (TMH1 region). Notably, this demonstrated the regulatory complexity of the C9 gene in higher vertebrates. The negative selection pressures on fish and non-fish groups improved both the sequence conservation and similarity. Through gene/protein regulatory network and pathway analyses, the systematic function of C9 protein was showcased; thus, we could reveal the divergence of the systematic function of C9 across species from different evolutionary positions. In addition, more complicated functions of C9 in higher vertebrates could established by the altered spatial conformation of the protein. Collectively, the present study illustrates the C9 gene evolutionary process and the difference in its systematic function across multiple species. Such advances provide new insights for understanding the evolutionary and potential functions of complement C9.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
19
|
Wencker FDR, Marincola G, Schoenfelder SMK, Maaß S, Becher D, Ziebuhr W. Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay. Nucleic Acids Res 2021; 49:2192-2212. [PMID: 33450025 PMCID: PMC7913692 DOI: 10.1093/nar/gkaa1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022] Open
Abstract
In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.
Collapse
Affiliation(s)
- Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sonja M K Schoenfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
20
|
Li L, Yang W, Shen Y, Xu X, Li J. The evolutionary analysis of complement component C5 and the gene co-expression network and putative interaction between C5a and C5a anaphylatoxin receptor (C5AR/CD88) in human and two Cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103958. [PMID: 33290783 DOI: 10.1016/j.dci.2020.103958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The complement system is a complex network of soluble and membrane-associated serum proteins that regulate immune response. Activation of the complement C5 generates C5a and C5b which generate chemoattractive effect on myeloid cells and initiate the membrane attack complex (MAC) assembly. However, the study of evolutionary process and systematic function of C5 are still limited. In this study, we performed an evolutionary analysis of C5. Phylogeny analysis indicated that C5 sequences underwent complete divergence in fish and non-fish vertebrate. It was found that codon usage bias improved and provided evolution evidence of C5 in species. Notably, the codon usage bias of grass carp was evolutionarily closer to the zebrafish genome compared with humans and stickleback. This suggested that the zebrafish cell line may provide an alternative environment for heterologous protein expression of grass carp. Sequence comparison showed a higher similarity between human and mouse, grass carp, and zebrafish. Moreover, selective pressure analysis revealed that the C5 genes in fish and non-fish vertebrates exhibited different evolutionary patterns. To study the function of C5, gene co-expression networks of human and zebrafish were built which revealed the complexity of C5 function networks in different species. The protein structure simulation of C5 indicated that grass carp and zebrafish are more similar than to human, however, differences between species in C5a proteins are extremely smaller. Spatial conformations of C5a-C5AR (CD88) protein complex were constructed, which showed that possible interaction may exist between C5a and CD88 proteins. Furthermore, the protein docking sites/residues were measured and calculated according to the minimum distance for all atoms from C5a and CD88 proteins. In summary, this study provides insights into the evolutionary history, function and potential regulatory mechanism of C5 in fish immune responses.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Hilgers F, Habash SS, Loeschcke A, Ackermann YS, Neumann S, Heck A, Klaus O, Hage-Hülsmann J, Grundler FMW, Jaeger KE, Schleker ASS, Drepper T. Heterologous Production of β-Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms 2021; 9:microorganisms9010168. [PMID: 33466643 PMCID: PMC7828715 DOI: 10.3390/microorganisms9010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Terpenoids constitute one of the largest and most diverse groups within the class of secondary metabolites, comprising over 80,000 compounds. They not only exhibit important functions in plant physiology but also have commercial potential in the biotechnological, pharmaceutical, and agricultural sectors due to their promising properties, including various bioactivities against pathogens, inflammations, and cancer. In this work, we therefore aimed to implement the plant sesquiterpenoid pathway leading to β-caryophyllene in the heterologous host Rhodobacter capsulatus and achieved a maximum production of 139 ± 31 mg L-1 culture. As this sesquiterpene offers various beneficial anti-phytopathogenic activities, we evaluated the bioactivity of β-caryophyllene and its oxygenated derivative β-caryophyllene oxide against different phytopathogenic fungi. Here, both compounds significantly inhibited the growth of Sclerotinia sclerotiorum and Fusarium oxysporum by up to 40%, while growth of Alternaria brassicicola was only slightly affected, and Phoma lingam and Rhizoctonia solani were unaffected. At the same time, the compounds showed a promising low inhibitory profile for a variety of plant growth-promoting bacteria at suitable compound concentrations. Our observations thus give a first indication that β-caryophyllene and β-caryophyllene oxide are promising natural agents, which might be applicable for the management of certain plant pathogenic fungi in agricultural crop production.
Collapse
Affiliation(s)
- Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Samer S. Habash
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Yannic Sebastian Ackermann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Stefan Neumann
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Achim Heck
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Florian M. W. Grundler
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - A. Sylvia S. Schleker
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
- Correspondence: (A.S.S.S.); (T.D.)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Correspondence: (A.S.S.S.); (T.D.)
| |
Collapse
|
22
|
Li L, Shen Y, Xu X, Yang W, Li J. Fish complement C4 gene evolution and gene/protein regulatory network analyses and simulated stereo conformation of C4-MASP-2 protein complex. FISH & SHELLFISH IMMUNOLOGY 2020; 107:54-63. [PMID: 32980531 DOI: 10.1016/j.fsi.2020.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Complement C4 is a central protein by acting as pivotal molecule in the activation of the complement system. More than a decade ago, C4 gene duplication had been found in several species including fish, revealing the evolutionary origin of C4 gene. However, the evolutionary pattern and systematic function of C4 are still limited. In this study, C4 D and H types in different species groups were completely diverged. The codon usage of C4 H type in higher vertebrates were much closer to their own genome environment, in contrast to lower vertebrates, suggesting that the evolution may provide the dynamic for homogeneous codon usage between specific gene and genome. Multiple C4 sequence alignment showed that the sequences were conserved among different species. However, sequence similarity was obviously different between species C4 D and H type. Negative selection pressure was found on C4 gene evolution and it may be one of the possible reasons for the sequence broad similarity and conservation among interspecies. Proteins from C4 protein-protein interaction (PPI) network were enriched in more hematopoiesis, infections, diseases and immune-related pathways in human than zebrafish. The result suggested that the functional complexities of C4 isotypes are distinct in species from different evolutionary positions. The simulated C4 protein structures between human and grass carp shared structural similarity and the stereo structures of grass carp C4-MASP-2 protein complexes were further simulated according to a study of human. These results suggested that the interaction between C4 and MASP-2 proteins may also exist in grass carp. Our results can provide an insight for the evolutionary process of C4 and better understanding to the potential mechanism of interaction between C4 and MASP-2 in fish species.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
23
|
Zhang MP, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2020; 181:1-11. [PMID: 33227342 DOI: 10.1016/j.biochi.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a model organism with three sequenced genomes capable of genetic transformation. C. reinhardtii has the advantages of being low cost, non-toxic, and having a post-translational modification system that ensures the recombinant proteins have the same activity as natural proteins, thus making it a great platform for application in molecular biology and other fields. In this review, we summarize the existing methods for nuclear transformation of C. reinhardtii, genes for selection, examples of foreign protein expression, and factors affecting transformation efficiency, to provide insights into effective strategies for the nuclear transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Meng-Ping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Mou Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China.
| |
Collapse
|
24
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Savardashtaki A, Ghasemi Y. Non-adaptive Evolution of Trimeric Autotransporters in Brucellaceae. Front Microbiol 2020; 11:560667. [PMID: 33281759 PMCID: PMC7688925 DOI: 10.3389/fmicb.2020.560667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens. They are the main cause of brucellosis, which has led to a global health burden. Adherence of the pathogen to the host cells is the first step in the infection process. The bacteria can adhere to various biotic and abiotic surfaces using their outer membrane proteins. Trimeric autotransporter adhesins (TAAs) are modular homotrimers of various length and domain complexity. They are a diverse, and widespread gene family constituting the type Vc secretion pathway. These adhesins have been established as virulence factors in Brucellaceae. To date, no comprehensive and exhaustive study has been performed on the trimeric autotransporter family in the genus. In the present study, various bioinformatics tools were used to provide a novel evolutionary insight into the sequence and structure of this protein family in Brucellaceae. To this end, a dataset of all trimeric autotransporters from the Brucella genomes was built. Analyses included but were not limited to sequence alignment, phylogenetic tree constructions, codon-based test for selection, clustering of the sequences, and structure (primary to quaternary) predictions. Batch analyzes of the dataset suggested the existence of a few structural domains within the whole population. BatA from the B. abortus 2308 genome was selected as a reference to describe the features of these structural domains. Furthermore, we examined the structural basis for the observed rigidity and resiliency of the protein structure through a molecular dynamics evaluation, which led us to deduce that the random drift results in the non-adaptive evolution of the trimeric autotransporter genes in the Brucella genus. Notably, the modifications have occurred across the genus without interference of gene transmission.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Li L, Yang W, Shen Y, Xu X, Li J. Fish complement C8 evolution, functional network analyses, and the theoretical interaction between C8 alpha chain and CD59. Mol Immunol 2020; 128:235-248. [PMID: 33160183 DOI: 10.1016/j.molimm.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Complement C8, as a main component of the membrane attack complex, has only been identified in vertebrates. C8 comprises three subunits encoded by individual genes: C8a (alpha chain), C8b (beta chain), and C8g (gamma chain). However, in fish, there have been limited studies on the evolutionary history and systematic function of C8. In the present study, phylogenetic analysis indicated the complete divergence of C8 genes in different fish species. Codon usage bias analysis revealed the evolutionary complexity of C8 genes. Selective pressure analysis found that C8 genes have been affected by negative selection during evolution. Sequence alignment identified the sites that are under selective pressure. The systematic functions of C8 were revealed by gene co-expression and protein-protein interaction (PPI) network analyses. Notably, gene ontology enrichment analysis suggested that C8 proteins in zebrafish function mainly in the neuroendocrine system. Protein structural comparisons showed that putative functional residues and domains were conserved between the C8 subunits of human and grass carp. A preliminary study on the theoretical interaction between C8a and CD59 was performed according to the simulated protein stereo structure. The first functionally-related site was absent in the simulated conformation of the grass carp (Ctenopharyngodon idella) C8a-CD59 protein complex. We speculated that Tyr63 is involved in the functional loss of CD59 binding. The docking of CD59 to four potential sites (Met390, Ser391, Leu392, and Val405) in grass carp C8a was analyzed. The results of the present study provide a deeper understanding of the evolution and function of fish complement C8.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
26
|
Preussner M, Gao Q, Morrison E, Herdt O, Finkernagel F, Schumann M, Krause E, Freund C, Chen W, Heyd F. Splicing-accessible coding 3'UTRs control protein stability and interaction networks. Genome Biol 2020; 21:186. [PMID: 32727563 PMCID: PMC7392665 DOI: 10.1186/s13059-020-02102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3'-Untranslated regions (3'UTRs) play crucial roles in mRNA metabolism, such as by controlling mRNA stability, translation efficiency, and localization. Intriguingly, in some genes the 3'UTR is longer than their coding regions, pointing to additional, unknown functions. Here, we describe a protein-coding function of 3'UTRs upon frameshift-inducing alternative splicing in more than 10% of human and mouse protein-coding genes. RESULTS 3'UTR-encoded amino acid sequences show an enrichment of PxxP motifs and lead to interactome rewiring. Furthermore, an elevated proline content increases protein disorder and reduces protein stability, thus allowing splicing-controlled regulation of protein half-life. This could also act as a surveillance mechanism for erroneous skipping of penultimate exons resulting in transcripts that escape nonsense mediated decay. The impact of frameshift-inducing alternative splicing on disease development is emphasized by a retinitis pigmentosa-causing mutation leading to translation of a 3'UTR-encoded, proline-rich, destabilized frameshift-protein with altered protein-protein interactions. CONCLUSIONS We describe a widespread, evolutionarily conserved mechanism that enriches the mammalian proteome, controls protein expression and protein-protein interactions, and has important implications for the discovery of novel, potentially disease-relevant protein variants.
Collapse
Affiliation(s)
- Marco Preussner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Qingsong Gao
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Laboratory for Systems Biology and Functional Genomics, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Olga Herdt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps-University Marburg, Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Michael Schumann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Wei Chen
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| |
Collapse
|
27
|
Van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. Biomolecules 2020; 10:biom10030430. [PMID: 32164257 PMCID: PMC7175280 DOI: 10.3390/biom10030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of functional, folded, and isotopically enriched membrane proteins is an enduring bottleneck for nuclear magnetic resonance (NMR) studies. Indeed, historically, protein yield optimization has been insufficient to allow NMR analysis of many complex Eukaryotic membrane proteins. However, recent work has found that manipulation of plasmid codons improves the odds of successful NMR-friendly protein production. In the last decade, numerous studies showed that matching codon usage patterns in recombinant gene sequences to those in the native sequence is positively correlated with increased protein yield. This phenomenon, dubbed codon harmonization, may be a powerful tool in optimizing recombinant expression of difficult-to-produce membrane proteins for structural studies. Here, we apply this technique to an inward rectifier K+ Channel (Kir) 3.1-KirBac1.3 chimera. Kir3.1 falls within the G protein-coupled inward rectifier K+ (GIRK) channel family, thus NMR studies may inform on the nuances of GIRK gating action in the presence and absence of its G Protein, lipid, and small molecule ligands. In our hands, harmonized plasmids increase protein yield nearly two-fold compared to the traditional ‘fully codon optimized’ construct. We then employ a fluorescence-based functional assay and solid-state NMR correlation spectroscopy to show the final protein product is folded and functional.
Collapse
Affiliation(s)
- Evan Van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Anil K. Mehta
- National High Magnetic Field Laboratory and McKnight Brain Institute, University of Florida, Box 10015, Gainesville, FL 32610, USA;
| | - Isaac Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Benjamin Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
- Correspondence:
| |
Collapse
|
28
|
Good News for Nuclear Transgene Expression in Chlamydomonas. Cells 2019; 8:cells8121534. [PMID: 31795196 PMCID: PMC6952782 DOI: 10.3390/cells8121534] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Chlamydomonas reinhardtii is a well-established model system for basic research questions ranging from photosynthesis and organelle biogenesis, to the biology of cilia and basal bodies, to channelrhodopsins and photoreceptors. More recently, Chlamydomonas has also been recognized as a suitable host for the production of high-value chemicals and high-value recombinant proteins. However, basic and applied research have suffered from the inefficient expression of nuclear transgenes. The combined efforts of the Chlamydomonas community over the past decades have provided insights into the mechanisms underlying this phenomenon and have resulted in mutant strains defective in some silencing mechanisms. Moreover, many insights have been gained into the parameters that affect nuclear transgene expression, like promoters, introns, codon usage, or terminators. Here I critically review these insights and try to integrate them into design suggestions for the construction of nuclear transgenes that are to be expressed at high levels.
Collapse
|
29
|
Weihmann R, Domröse A, Drepper T, Jaeger KE, Loeschcke A. Protocols for yTREX/Tn5-based gene cluster expression in Pseudomonas putida. Microb Biotechnol 2019; 13:250-262. [PMID: 31162833 PMCID: PMC6922528 DOI: 10.1111/1751-7915.13402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX ‘gene cluster transplantation tool’: Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5‐based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX‐based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine‐1‐carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of β‐galactosidase‐encoding lacZ as a reporter of production levels.
Collapse
Affiliation(s)
- Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
30
|
D'Adamo S, Schiano di Visconte G, Lowe G, Szaub‐Newton J, Beacham T, Landels A, Allen MJ, Spicer A, Matthijs M. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:75-87. [PMID: 29754445 PMCID: PMC6330534 DOI: 10.1111/pbi.12948] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 05/23/2023]
Abstract
Plant triterpenoids constitute a diverse class of organic compounds that play a major role in development, plant defence and environmental interaction. Several triterpenes have demonstrated potential as pharmaceuticals. One example is betulin, which has shown promise as a pharmaceutical precursor for the treatment of certain cancers and HIV. Major challenges for triterpenoid commercialization include their low production levels and their cost-effective purification from the complex mixtures present in their natural hosts. Therefore, attempts to produce these compounds in industrially relevant microbial systems such as bacteria and yeasts have attracted great interest. Here, we report the production of the triterpenes betulin and its precursor lupeol in the photosynthetic diatom Phaeodactylum tricornutum, a unicellular eukaryotic alga. This was achieved by introducing three plant enzymes in the microalga: a Lotus japonicus oxidosqualene cyclase and a Medicago truncatula cytochrome P450 along with its native reductase. The introduction of the L. japonicus oxidosqualene cyclase perturbed the mRNA expression levels of the native mevalonate and sterol biosynthesis pathway. The best performing strains were selected and grown in a 550-L pilot-scale photobioreactor facility. To our knowledge, this is the most extensive pathway engineering undertaken in a diatom and the first time that a sapogenin has been artificially produced in a microalga, demonstrating the feasibility of the photo-bio-production of more complex high-value, metabolites in microalgae.
Collapse
Affiliation(s)
- Sarah D'Adamo
- Eden LaboratoryAlgenuityStewartbyUK
- Wageningen Universiteit en ResearchcentrumBioprocess EngineeringWageningenThe Netherlands
| | | | | | | | | | - Andrew Landels
- PML: Plymouth Marine LaboratoryPlymouthUK
- Rothamsted ResearchHarpendenUK
| | - Michael J. Allen
- PML: Plymouth Marine LaboratoryPlymouthUK
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | | | |
Collapse
|
31
|
Vermeulen JG, Burt F, van Heerden E, Cason E, Meiring M. Evaluation of in vitro refolding vs cold shock expression: Production of a low yielding single chain variable fragment. Protein Expr Purif 2018; 151:62-71. [DOI: 10.1016/j.pep.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022]
|
32
|
Davidson P, Eutsey R, Redler B, Hiller NL, Laub MT, Durand D. Flexibility and constraint: Evolutionary remodeling of the sporulation initiation pathway in Firmicutes. PLoS Genet 2018; 14:e1007470. [PMID: 30212463 PMCID: PMC6136694 DOI: 10.1371/journal.pgen.1007470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
The evolution of signal transduction pathways is constrained by the requirements of signal fidelity, yet flexibility is necessary to allow pathway remodeling in response to environmental challenges. A detailed understanding of how flexibility and constraint shape bacterial two component signaling systems is emerging, but how new signal transduction architectures arise remains unclear. Here, we investigate pathway remodeling using the Firmicute sporulation initiation (Spo0) pathway as a model. The present-day Spo0 pathways in Bacilli and Clostridia share common ancestry, but possess different architectures. In Clostridium acetobutylicum, sensor kinases directly phosphorylate Spo0A, the master regulator of sporulation. In Bacillus subtilis, Spo0A is activated via a four-protein phosphorelay. The current view favors an ancestral direct phosphorylation architecture, with the phosphorelay emerging in the Bacillar lineage. Our results reject this hypothesis. Our analysis of 84 broadly distributed Firmicute genomes predicts phosphorelays in numerous Clostridia, contrary to the expectation that the Spo0 phosphorelay is unique to Bacilli. Our experimental verification of a functional Spo0 phosphorelay encoded by Desulfotomaculum acetoxidans (Class Clostridia) further supports functional phosphorelays in Clostridia, which strongly suggests that the ancestral Spo0 pathway was a phosphorelay. Cross complementation assays between Bacillar and Clostridial phosphorelays demonstrate conservation of interaction specificity since their divergence over 2.7 BYA. Further, the distribution of direct phosphorylation Spo0 pathways is patchy, suggesting multiple, independent instances of remodeling from phosphorelay to direct phosphorylation. We provide evidence that these transitions are likely the result of changes in sporulation kinase specificity or acquisition of a sensor kinase with specificity for Spo0A, which is remarkably conserved in both architectures. We conclude that flexible encoding of interaction specificity, a phenotype that is only intermittently essential, and the recruitment of kinases to recognize novel environmental signals resulted in a consistent and repeated pattern of remodeling of the Spo0 pathway. Survival in a changing world requires signal transduction circuitry that can evolve to sense and respond to new environmental challenges. The Firmicute sporulation initiation (Spo0) pathway is a compelling example of a pathway with a circuit diagram that has changed over the course of evolution. In Clostridium acetobutylicum, a sensor kinase directly activates the master regulator of sporulation, Spo0A. In Bacillus subtilis, Spo0A is activated indirectly via a four-protein phosphorelay. These early observations suggested that the ancestral Spo0A was directly phosphorylated by a kinase in the earliest spore-former and that the Spo0 phosphorelay arose later in Bacilli via gain of additional proteins and interactions. Our analysis, based on a much larger set of genomes, surprisingly reveals phosphorelays, not only in Bacilli, but in many Clostridia. These findings support a model wherein sporulation was initiated by a Spo0 phosphorelay in the ancestral spore-former and the direct phosphorylation Spo0 pathways, which are observed in distinct sets of Clostridial taxa, are the result of convergent, reductive evolution. Further, our evidence suggests that these remodeling events were mediated by changes in kinase specificity, implicating flexible pathway remodeling, potentially combined with the recruitment of kinases, in Spo0 pathway evolution.
Collapse
Affiliation(s)
- Philip Davidson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Brendan Redler
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Moser S, Strohmeier GA, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metab Eng Commun 2018; 7:e00077. [PMID: 30197866 PMCID: PMC6127371 DOI: 10.1016/j.mec.2018.e00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
The triterpenoid (+)-ambrein is a natural precursor for (-)-ambrox, which constitutes one of the most sought-after fragrances and fixatives for the perfume industry. (+)-Ambrein is a major component of ambergris, an intestinal excretion of sperm whales that is found only serendipitously. Thus, the demand for (-)-ambrox is currently mainly met by chemical synthesis. A recent study described for the first time the applicability of an enzyme cascade consisting of two terpene cyclases, namely squalene-hopene cyclase from Alicyclobacillus acidocaldarius (AaSHC D377C) and tetraprenyl-β-curcumene cyclase from Bacillus megaterium (BmeTC) for in vitro (+)-ambrein production starting from squalene. Yeasts, such as Pichia pastoris, are natural producers of squalene and have already been shown in the past to be excellent hosts for the biosynthesis of hydrophobic compounds such as terpenoids. By targeting a central enzyme in the sterol biosynthesis pathway, squalene epoxidase Erg1, intracellular squalene levels in P. pastoris could be strongly enhanced. Heterologous expression of AaSHC D377C and BmeTC and, particularly, development of suitable methods to analyze all products of the engineered strain provided conclusive evidence of whole-cell (+)-ambrein production. Engineering of BmeTC led to a remarkable one-enzyme system that was by far superior to the cascade, thereby increasing (+)-ambrein levels approximately 7-fold in shake flask cultivation. Finally, upscaling to 5 L bioreactor yielded more than 100 mg L-1 of (+)-ambrein, demonstrating that metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-ambrein.
Collapse
Key Words
- (+)-ambrein
- AOX1, alcohol oxidase
- AaSHC, Alicyclobacillus acidocaldarius squalene-hopene cyclase
- BSM, basal salt medium
- BmeTC, Bacillus megaterium terpene cyclase
- CDW, cell dry weight
- FLD1, formaldehyde dehydrogenase 1
- HRP, horse radish peroxidase
- Metabolic engineering
- PTM1, Pichia trace metals
- Pichia pastoris
- Squalene
- Terpene cyclase
- Triterpenoid
- YNB, yeast nitrogen base
- YPD, yeast extract peptone dextrose medium
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Gernot A Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Organic Chemistry, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Thomas J Plocek
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Koenraad Vanhessche
- ACS International S.A., 184 Route de St-Julien, CH-1228 Plan-les-Ouates, Switzerland
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14/2, 8010 Graz, Austria
| |
Collapse
|
34
|
Pacheco CC, Büttel Z, Pinto F, Rodrigo G, Carrera J, Jaramillo A, Tamagnini P. Modulation of Intracellular O 2 Concentration in Escherichia coli Strains Using Oxygen Consuming Devices. ACS Synth Biol 2018; 7:1742-1752. [PMID: 29952558 DOI: 10.1021/acssynbio.7b00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of cell factories for the production of bulk and value-added compounds is nowadays an advantageous alternative to the traditional petrochemical methods. Nevertheless, the efficiency and productivity of several of these processes can improve with the implementation of micro-oxic or anoxic conditions. In the industrial setting, laccases are appealing catalysts that can oxidize a wide range of substrates and reduce O2 to H2O. In this work, several laccase-based devices were designed and constructed to modulate the intracellular oxygen concentration in bacterial chassis. These oxygen consuming devices (OCDs) included Escherichia coli's native laccase (CueO) and three variants of this protein obtained by directed evolution. The OCDs were initially characterized in vitro using E. coli DH5α protein extracts and subsequently using extracts obtained from other E. coli strains and in vivo. Upon induction of the OCDs, no major effect on growth was observed in four of the strains tested, and analysis of the cell extract protein profiles revealed increased levels of laccase. Moreover, oxygen consumption associated with the OCDs occurred under all of the conditions tested, but the performance of the devices was shown to be strain-dependent, highlighting the importance of the genetic background even in closely related strains. One of the laccase variants showed 13- and 5-fold increases in oxidase activity and O2 consumption rate, respectively. Furthermore, it was also possible to demonstrate O2 consumption in vivo using l-DOPA as the substrate, which represents a proof of concept that these OCDs generate an intracellular oxygen sink, thereby manipulating the redox status of the cells. In addition, the modularity and orthogonality principles used for the development of these devices allow easy reassembly and fine-tuning, foreseeing their introduction into other chassis/systems.
Collapse
Affiliation(s)
- Catarina C. Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Zsófia Büttel
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Guillermo Rodrigo
- Instituto de Biologia Molecular y Celular de Plantas, CSIC, Universidad Politècnica de València, Camí de Vera s/n, 46022 València, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Javier Carrera
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305-4125, United States
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- CNRS-UMR8030, Laboratoire iSSB and Université Paris-Saclay and Université d’Évry and CEA, DRF, IG, Genoscope, Évry 91000, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
35
|
Preparation of Anti-Human Podoplanin Monoclonal Antibody and its application in Immunohistochemical Diagnosis. Sci Rep 2018; 8:10162. [PMID: 29976954 PMCID: PMC6033854 DOI: 10.1038/s41598-018-28549-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN), a 38 kDa transmembrane sialoglycoprotein from human, is expressed in lymphatic endothelial cells but not in vascular endothelial cells, and has been considered as a specific marker of lymph. In this study, the gene encoding the extracellular part of PDPN (ePDPN) was synthesized and used to expressed fusion protein ePDPN-His and GST-ePDPN, respectively, in E.coli. The purified GST-ePDPN fusion protein was mixed with QuickAntibody-Mouse5W adjuvant to immune mice, and the antiserum titer was determined by indirect ELISA. A stable cell line named 5B3 generating anti-PDPN monoclonal antibody (mAb) was obtained by hybridoma technology. The isotype of 5B3 cell line was IgG2b, and the chromosome number was 102 ± 4. The 5B3 mAb was purified successfully from ascites fluid through Protein G column, and its affinity constant was 2.94 × 108 L/mol. Besides, excellent specificity of the 5B3 mAb was further demonstrated in ELISA, western blot and immunohistochemistry experiments, suggesting that 5B3 mAb displays similar application value to D2-40, a commercial available antibody. Hence, the current study provides conclusive guidelines for preparation of other mAbs and their applications in immunohistochemistry diagnosis.
Collapse
|
36
|
Zhang D, Xie C, Wang R, Yang Q, Chen H, Ling S, Wang S, Jia K. Effective preparation of a monoclonal antibody against human chromogranin A for immunohistochemical diagnosis. BMC Biotechnol 2018; 18:25. [PMID: 29728076 PMCID: PMC5935939 DOI: 10.1186/s12896-018-0436-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human chromogranin A (CgA) is a ~ 49 kDa secreted protein mainly from neuroendocrine cells and endocrine cells. The CgA values in the diagnosis of tumor, and in the potential role in prognostic and predictive tumor as a biomarker. RESULTS The synthesized gene of CgA coding area was cloned and expressed as fusion protein CgA-His in procaryotic system. Then the purified CgA-His protein was mixed with QuickAntibody-Mouse5W adjuvant, and injected into mice. The CgA-His protein was also used as coating antigen to determine the antiserum titer. By screening, a stable cell line named 4E5, which can generate anti-CgA monoclonal antibody (mAb), was obtained. The isotype of 4E5 mAb was IgG2b, and the chromosome number was 102 ± 4. Anti-CgA mAb was purified from ascites fluid, and the affinity constant reached 9.23 × 109 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the mAb 4E5 was able to detect chromogranin A specifically and sensitively. CONCLUSIONS A sensitive and reliable method was successfully developed for rapid production of anti-CgA mAb for immunohistochemistry diagnosis in this study, and the current study also provides conclusive guidelines for preparation of mAbs and implements in immunohistochemistry diagnosis.
Collapse
Affiliation(s)
- Danping Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengjie Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinghai Yang
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Huiling Chen
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Gene Expression Analysis by Arylsulfatase Assays in the Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2018. [PMID: 29671269 DOI: 10.1007/978-1-4939-7724-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chlamydomonas reinhardtii, a single-celled green alga, is a powerful microbial experimental system for understanding gene function. As a consequence of a high-quality genome sequence, community-wide efforts for gene model refinement and annotation, resources for strain collections and robust molecular techniques, research with this organism has significantly expanded in the past few decades. In two companion chapters, we outline colorimetric and fluorescence-based methodologies for genetic reporter systems in Chlamydomonas, which can be used to investigate and delineate gene expression and regulatory mechanisms. Here, we describe protocols for arylsulfatase activity assays using ARS2, activity of which can be measured either quantitatively or qualitatively, and in low (individual sample) or high (96-well format) throughput.
Collapse
|
38
|
Milenkovic VM, Bader S, Sudria-Lopez D, Siebert R, Brandl C, Nothdurfter C, Weber BHF, Rupprecht R, Wetzel CH. Effects of genetic variants in the TSPO gene on protein structure and stability. PLoS One 2018; 13:e0195627. [PMID: 29641545 PMCID: PMC5895031 DOI: 10.1371/journal.pone.0195627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. Expression of TSPO is upregulated in activated microglia in various neuroinflammatory, neurodegenerative, and neoplastic disorders. Therefore, TSPO radioligands are used as biomarkers in positron emission tomography (PET) studies. In particular, a common A147T polymorphism in the TSPO gene affects binding of several high affinity TSPO radioligands. Given the relevance of TSPO as a diagnostic biomarker in disease processes, we systematically searched for mutations in the human TSPO gene by a wide array of evolution and structure based bioinformatics tools and identified potentially deleterious missense mutations. The two most frequently observed missense mutations A147T and R162H were further analysed in structural models of human wildtype and mutant TSPO proteins. The effects of missense mutations were studied on the atomic level using molecular dynamics simulations. To analyse putative effects of A147T and R162H variants on protein stability we established primary dermal fibroblast cultures from wt and homozygous A147T and R162H donors. Stability of endogenous TSPO protein, which is abundantly expressed in fibroblasts, was studied using cycloheximide protein degradation assay. Our data show that the A147T mutation significantly alters the flexibility and stability of the mutant protein. Furthermore both A147T and R162H mutations decreased the half-life of the mutant proteins by about 25 percent, which could in part explain its effect on reduced pregnenolone production and susceptibility to neuropsychiatric disorders. The present study is the first comprehensive bioinformatic analysis of genetic variants in the TSPO gene, thereby extending the knowledge about the clinical relevance of TSPO nsSNPs.
Collapse
Affiliation(s)
- Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Daniel Sudria-Lopez
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Ramona Siebert
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Weiner I, Atar S, Schweitzer S, Eilenberg H, Feldman Y, Avitan M, Blau M, Danon A, Tuller T, Yacoby I. Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:22-31. [PMID: 29383789 DOI: 10.1111/tpj.13836] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 05/11/2023]
Abstract
Various species of microalgae have recently emerged as promising host-organisms for use in biotechnology industries due to their unique properties. These include efficient conversion of sunlight into organic compounds, the ability to grow in extreme conditions and the occurrence of numerous post-translational modification pathways. However, the inability to obtain high levels of nuclear heterologous gene expression in microalgae hinders the development of the entire field. To overcome this limitation, we analyzed different sequence optimization algorithms while studying the effect of transcript sequence features on heterologous expression in the model microalga Chlamydomonas reinhardtii, whose genome consists of rare features such as a high GC content. Based on the analysis of genomic data, we created eight unique sequences coding for a synthetic ferredoxin-hydrogenase enzyme, used here as a reporter gene. Following in silico design, these synthetic genes were transformed into the C. reinhardtii nucleus, after which gene expression levels were measured. The empirical data, measured in vivo show a discrepancy of up to 65-fold between the different constructs. In this work we demonstrate how the combination of computational methods and our empirical results enable us to learn about the way gene expression is encoded in the C. reinhardtii transcripts. We describe the deleterious effect on overall expression of codons encoding for splicing signals. Subsequently, our analysis shows that utilization of a frequent subset of preferred codons results in elevated transcript levels, and that mRNA folding energy in the vicinity of translation initiation significantly affects gene expression.
Collapse
Affiliation(s)
- Iddo Weiner
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shimshi Atar
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shira Schweitzer
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Haviva Eilenberg
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Yael Feldman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Meital Avitan
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mor Blau
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avihai Danon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Iftach Yacoby
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
40
|
Baselga-Cervera B, Romero-López J, García-Balboa C, Costas E, López-Rodas V. Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChlSP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application. Front Microbiol 2018; 9:523. [PMID: 29662476 PMCID: PMC5890155 DOI: 10.3389/fmicb.2018.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g−1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g−1 DB, close to the theoretical maximum response (≈7.9 mg U g−1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g−1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Romero-López
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Camino García-Balboa
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Costas
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria López-Rodas
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
De Waele S, Vandenberghe I, Laukens B, Planckaert S, Verweire S, Van Bogaert I, Soetaert W, Devreese B, Ciesielska K. Optimized expression of the Starmerella bombicola lactone esterase in Pichia pastoris through temperature adaptation, codon-optimization and co-expression with HAC1. Protein Expr Purif 2018; 143:62-70. [DOI: 10.1016/j.pep.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
|
42
|
Mini P, Demurtas OC, Valentini S, Pallara P, Aprea G, Ferrante P, Giuliano G. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: a comparative study. BMC Biotechnol 2018; 18:11. [PMID: 29454346 PMCID: PMC5816537 DOI: 10.1186/s12896-018-0416-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
Background Chlamydomonas reinhardtii is an unicellular green alga used for functional genomics studies and heterologous protein expression. A major hindrance in these studies is the low level and instability of expression of nuclear transgenes, due to their rearrangement and/or silencing over time. Results We constructed dedicated vectors for Agrobacterium-mediated transformation carrying, within the T-DNA borders, the Paromomycin (Paro) selectable marker and an expression cassette containing the Luciferase (Luc) reporter gene. These vectors and newly developed co-cultivation methods were used to compare the efficiency, stability and insertion sites of Agrobacterium- versus electroporation-mediated transformation. The influence of different transformation methods, of the cell wall, of the virulence of different Agrobacterium strains, and of transgene orientation with respect to T-DNA borders were assessed. False positive transformants were more frequent in Agrobacterium-mediated transformation compared to electroporation, compensating for the slightly lower proportion of silenced transformants observed in Agrobacterium-mediated transformation than in electroporation. The proportion of silenced transformants remained stable after 20 cycles of subculture in selective medium. Next generation sequencing confirmed the nuclear insertion points, which occurred in exons or untraslated regions (UTRs) for 10 out of 10 Agrobacterium-mediated and 9 out of 13 of electroporation-mediated insertions. Electroporation also resulted in higher numbers of insertions at multiple loci. Conclusions Due to its labor-intensive nature, Agrobacterium transformation of Chlamydomonas does not present significant advantages over electroporation, with the possible exception of its use in insertional mutagenesis, due to the higher proportion of within-gene, single-locus insertions. Our data indirectly support the hypothesis that rearrangement of transforming DNA occurs in the Chlamydomonas cell, rather than in the extracellular space as previously proposed. Electronic supplementary material The online version of this article (10.1186/s12896-018-0416-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Mini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Silvia Valentini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.,University of Rome "La Sapienza", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Patrizia Pallara
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Giuseppe Aprea
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| |
Collapse
|
43
|
Green Algae Biomass Cultivation, Harvesting and Genetic Modifications for Enhanced Cellular Lipids. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
44
|
Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS One 2018; 13:e0192433. [PMID: 29408937 PMCID: PMC5800701 DOI: 10.1371/journal.pone.0192433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/22/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP) for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.
Collapse
|
45
|
Blaby-Haas CE, Page MD, Merchant SS. Using YFP as a Reporter of Gene Expression in the Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2018; 1755:135-148. [PMID: 29671268 PMCID: PMC6448394 DOI: 10.1007/978-1-4939-7724-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable experimental system in plant biology for studying metal homeostasis. Analyzing transcriptional regulation with promoter-fusion constructs in C. reinhardtii is a powerful method for connecting metal-responsive regulation with cis-regulatory elements, but overcoming expression-level variability between transformants and optimizing experimental conditions can be laborious. Here, we provide detailed protocols for the high-throughput cultivation of C. reinhardtii and assaying Venus fluorescence as a reporter for promoter activity. We also describe procedural considerations for relating metal supply to transcriptional activity.
Collapse
Affiliation(s)
| | - M Dudley Page
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
46
|
Brown SD. Multivalent Display Using Hybrid Virus Nanoparticles. Methods Mol Biol 2018; 1798:119-140. [PMID: 29868956 DOI: 10.1007/978-1-4939-7893-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many important biological interactions are multivalent and often sensitive to spatial organization. Nonenveloped viruses are a natural source of scaffolds for building multivalent ligands to probe these types of interactions which avoid complex synthetic schemes required for other types of scaffolds. The coat protein (CP) of bacteriophage Qβ can be fused to protein domains and coexpressed with the unfused CP to produce hybrid nanoparticles with high exterior loading of xenogenic protein domains. These hybrid nanoparticles are simple to produce in large quantity. Starting from cDNAs for the virus CP and a codon-optimized ligand domain of interest, bulk purification can be completed in as little as 3 weeks. Major phases of the work involve the cloning of cDNAs into plasmid vectors, test expressions for hybrid nanoparticle formation, and purification by selective precipitation and ultracentrifugation. For uncomplicated protein domains, laboratory culture yields as high as 50 mg/L and 30 protein domains per particle have been routinely achieved.
Collapse
Affiliation(s)
- Steven D Brown
- Department of Gastroenterology, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
47
|
Ramos‐Martinez EM, Fimognari L, Sakuragi Y. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1214-1224. [PMID: 28207991 PMCID: PMC5552477 DOI: 10.1111/pbi.12710] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 05/11/2023]
Abstract
Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n , wherein n = 10 or 20]. The yields of the (SP)n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins.
Collapse
Affiliation(s)
- Erick Miguel Ramos‐Martinez
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| |
Collapse
|
48
|
Vanier G, Lucas PL, Loutelier-Bourhis C, Vanier J, Plasson C, Walet-Balieu ML, Tchi-Song PC, Remy-Jouet I, Richard V, Bernard S, Driouich A, Afonso C, Lerouge P, Mathieu-Rivet E, Bardor M. Heterologous expression of the N-acetylglucosaminyltransferase I dictates a reinvestigation of the N-glycosylation pathway in Chlamydomonas reinhardtii. Sci Rep 2017; 7:10156. [PMID: 28860654 PMCID: PMC5578997 DOI: 10.1038/s41598-017-10698-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic N-glycosylation pathways are dependent of N-acetylglucosaminyltransferase I (GnTI), a key glycosyltransferase opening the door to the formation of complex-type N-glycans by transferring a N-acetylglucosamine residue onto the Man5GlcNAc2 intermediate. In contrast, glycans N-linked to Chlamydomonas reinhardtii proteins arise from a GnTI-independent Golgi processing of oligomannosides giving rise to Man5GlcNAc2 substituted eventually with one or two xylose(s). Here, complementation of C. reinhardtii with heterologous GnTI was investigated by expression of GnTI cDNAs originated from Arabidopsis and the diatom Phaeodactylum tricornutum. No modification of the N-glycans was observed in the GnTI transformed cells. Consequently, the structure of the Man5GlcNAc2 synthesized by C. reinhardtii was reinvestigated. Mass spectrometry analyses combined with enzyme sequencing showed that C. reinhardtii proteins carry linear Man5GlcNAc2 instead of the branched structure usually found in eukaryotes. Moreover, characterization of the lipid-linked oligosaccharide precursor demonstrated that C. reinhardtii exhibit a Glc3Man5GlcNAc2 dolichol pyrophosphate precursor. We propose that this precursor is then trimmed into a linear Man5GlcNAc2 that is not substrate for GnTI. Furthermore, cells expressing GnTI exhibited an altered phenotype with large vacuoles, increase of ROS production and accumulation of starch granules, suggesting the activation of stress responses likely due to the perturbation of the Golgi apparatus.
Collapse
Affiliation(s)
- Gaëtan Vanier
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,UMR FARE 614, Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686, Reims Cedex, France
| | - Pierre-Louis Lucas
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Corinne Loutelier-Bourhis
- Normandie Univ, UNIROUEN, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 76000, Rouen, France
| | - Jessica Vanier
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Plate-Forme de Protéomique PISSARO, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76000, Rouen, France
| | - Philippe Chan Tchi-Song
- Normandie Univ, UNIROUEN, Plate-Forme de Protéomique PISSARO, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76000, Rouen, France
| | - Isabelle Remy-Jouet
- Normandie Univ, UNIROUEN, Inserm UMR 1096, Plateforme BOSS, 76000, Rouen, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm UMR 1096, Plateforme BOSS, 76000, Rouen, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme, PRIMACEN, Cell Imaging Platform of Normandy, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme, PRIMACEN, Cell Imaging Platform of Normandy, 76000, Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 76000, Rouen, France
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Elodie Mathieu-Rivet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France. .,Institut Universitaire de France (I.U.F.) 1, rue Descartes, 75231, Paris, Cedex 05, France.
| |
Collapse
|
49
|
Damasceno L, Ritter G, Batt CA. Process development for production and purification of the Schistosoma mansoni Sm14 antigen. Protein Expr Purif 2017; 134:72-81. [DOI: 10.1016/j.pep.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/22/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
50
|
Pina-Pedrero S, Olvera À, Bensaid A. The extended leader peptide of Haemophilus parasuis trimeric autotransporters conditions their protein expression in Escherichia coli. Protein Expr Purif 2017; 133:15-24. [PMID: 28254554 DOI: 10.1016/j.pep.2017.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Trimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated. The 13 genes encoding the VtaA1 to VtaA13 passenger domains of the strain Nagasaki were cloned in the pASK-IBA33plus plasmid and expressed in E. coli. Recombinant protein production was higher for truncated forms in which the entire leader peptide was deleted, and the recombinant protein accumulated in the cytoplasm of the cells. The yield of protein production of the different VtaAs was size dependent, and reached maximal amount at 2-4 h post -induction. The optimization of these conditions allowed to scale-up the production to obtain enough recombinant protein to immunize large animals.
Collapse
Affiliation(s)
- Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Àlex Olvera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|