1
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2025; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Mayobre C, Garcia-Mas J, Pujol M. A matter of smell: The complex regulation of aroma production in melon. Food Chem 2024; 460:140640. [PMID: 39096801 DOI: 10.1016/j.foodchem.2024.140640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Melon fruit flavor is one of the most valuable traits for consumers. Aroma, formed by volatile organic compounds (VOCs), is a major component of flavor but has been neglected in breeding programs because of its complex regulation. Although the genetic regulation of VOCs biosynthesis is not fully understood, several advances have been recently achieved. VOCs originate from the degradation of fatty acids, aminoacids and terpenes, and the role of newly described enzymes, transcription factors and putative regulators is here discussed. Furthermore, ethylene plays a key role in fruit aroma production in melon, triggering the conversion of green-flavored aldehydes into fruity-flavored esters. A current challenge is to understand the ethylene-independent regulation of VOCs formation. Environmental conditions and human processing can also shape the melon volatile profile, and future research should focus on studying the effect of climate change in aroma formation.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
3
|
Pujol M, Garcia-Mas J. Regulation of climacteric fruit ripening in melon: recent advances and future challenges. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6224-6236. [PMID: 37399085 DOI: 10.1093/jxb/erad256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Fruit ripening is a complex and highly regulated process where tomato and strawberry have been the model species classically used for studying climacteric and non-climacteric fleshy fruit ripening types, respectively. Melon has emerged as an alternative ripening model because climacteric and non-climacteric cultivars exist, which makes it possible to dissect the regulation of ripening using a genetic approach. Several quantitative trait loci that regulate climacteric fruit ripening have been identified to date, and their combination in both climacteric and non-climacteric genetic backgrounds resulted in lines with different ripening behaviors, demonstrating that the climacteric intensity can be genetically modulated. This review discusses our current knowledge of the physiological changes observed during melon climacteric fruit ripening such as ethylene production, fruit abscission, chlorophyll degradation, firmness, and aroma, as well as their complex genetic control. From pioneer experiments in which ethylene biosynthesis was silenced, to the recent genetic edition of ripening regulators, current data suggest that the climacteric response is determined by the interaction of several loci under quantitative inheritance. The exploitation of the rich genetic diversity of melon will enable the discovery of additional genes involved in the regulation of the climacteric response, ultimately leading to breeding aromatic melon fruits with extended shelf life.
Collapse
Affiliation(s)
- Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T, Williams J, Rohwer J, Gershenzon J, Schmidt A. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. PLANT PHYSIOLOGY 2023; 192:767-788. [PMID: 36848194 DOI: 10.1093/plphys/kiad110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.
Collapse
Affiliation(s)
- Toni Krause
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Piera Wiesinger
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Diego González-Cabanelas
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Johann Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
5
|
Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Cultivar and Postharvest Storage Duration Influence Fruit Quality, Nutritional and Phytochemical Profiles of Soilless-Grown Cantaloupe and Honeydew Melons. PLANTS 2022; 11:plants11162136. [PMID: 36015439 PMCID: PMC9413578 DOI: 10.3390/plants11162136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
There is an increasing demand for sweet melon (Cucumis melo L.) fruit in fruit and vegetable markets due to its nutritional content, resulting in different cultivars being grown in different production systems. This study evaluated the nutritional and phytochemical contents of soilless-grown cantaloupe and honeydew sweet melon cultivars at harvest and postharvest. At harvest, vitamin C and β-carotene concentrations were higher in orange-fleshed (cantaloupe) cvs. Magritte, Divine, Majestic, Cyclone, MAB 79001, E25F.00185, E25F.00075 and Adore, compared to green-fleshed (honeydew) cvs. Honey Brew and Honey Star. The zinc (Zn), phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) contents were higher in orange-fleshed compared to green-fleshed cultivars. Total phenolics content (TPC) in cv. E25F.00075 was the highest (2.87 mg GAE∙g−1 dry weight). A significant, positive, correlation occurred between β-carotene and Zn, P, K, Ca and Mg contents. Postharvest storage duration affected TPC and total soluble solid content. The interaction of cultivar and postharvest storage duration affected flavonoid, vitamin C and β-carotene contents, free radical scavenging activity and fruit juice pH. Vitamin C and β-carotene contents decreased with increased postharvest storage duration while flavonoid content increased. The cantaloupe cultivars performed significantly better compared to the honeydew cultivars as evident in their high mineral element content, and vitamin C and β-carotene concentrations. Selection of appropriate cultivars in a production system should consider variation in nutritional traits of cultivars and postharvest storage duration. Soilless production of sweet melon cultivars in tunnels offers a viable alternative to open field to produce high-quality melons at harvest and postharvest.
Collapse
|
7
|
Zhang J, Gu X, Yan W, Lou L, Xu X, Chen X. Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods 2022; 11:foods11081101. [PMID: 35454687 PMCID: PMC9027996 DOI: 10.3390/foods11081101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The cucumber is characterized by the presence of a wide range of volatile organic compounds (VOCs), which are recognized as the main responsible for its unique flavor. However, research on the types and contents of VOCs in different cucumber cultivars remains fragmentary. Here, using an automatic headspace solid-phase microextraction coupled with the gas chromatography-mass spectrometry method, the VOCs were analyzed in three representative cucumber cultivars, including YX, KX, and GX, with the best, middle, and worst flavor quality, respectively, which were selected from 30 cultivars after flavor quality evaluation. Principal component analysis revealed that the six biological replicates were grouped, indicating high reliability of the data. A total of 163 VOCs were detected. There were 28 differential VOCs in YX compared to GX, 33 differential VOCs in YX compared to KX, and 10 differential VOCs in KX compared to GX. Furthermore, K-means clustering analysis showed that 38 of the 43 no-overlapping differential VOCs were represented by the most abundant compounds detected in YX. The prevailing VOCs in YX included: hydrocarbons, aldehydes, and ketones. The data obtained in the present study extend our understanding the impact of cultivars on VOCs in cucumber and will help facilitate targeted breeding.
Collapse
Affiliation(s)
- Jie Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Xiuchao Gu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Wenjing Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Assessment and Classification of Volatile Profiles in Melon Breeding Lines Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. PLANTS 2021; 10:plants10102166. [PMID: 34685975 PMCID: PMC8540282 DOI: 10.3390/plants10102166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Cucumis melo L is one of the most commercial and economical crops in the world with several health beneficial compounds as such carotenoids, amino acids, vitamin A and C, minerals, and dietary fiber. Evaluation of the volatile organic compounds (VOCs) in different melon (Cucumis melo L.) breeding lines provides useful information for improving fruit flavor, aroma, and antimicrobial levels. In this study, the VOCs in 28 melon breeding lines harvested in 2019 were identified and characterized using head space solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). This identified 113 VOCs with significant differences in composition and contents of among the breeding lines, including 15 esters, 27 aldehydes, 35 alcohols, 14 ketones, 4 acids, 10 hydrocarbons, 5 sulfurs, and 3 other compounds. The highest average contents of all the VOCs were found in BL-30 (13,973.07 µg/kg FW) and the lowest were in BL-22 (3947.13 µg/kg FW). BL-9 had high levels of carotenoid-derived VOCs. The compounds with the highest contents were benzaldehyde, geranylacetone, and β-ionone. Quality parameters such as color and sugar contents of melons were also measured. All the melon color readings were within the typical acceptable range. BL-22 and BL-14 had the highest and lowest sugar contents, respectively. Principal component analysis (PCA) produced diverse clusters of breeding lines based on flavor and aroma. BL-4, BL-7, BL-12, BL-20, and BL-30 were thus selected as important breeding lines based on their organoleptic, antimicrobial, and health-beneficial properties.
Collapse
|
9
|
Characteristic volatile organic compounds in “HeTao” melon and other cultivars grown in Hetao region analyzed by HS-GC-IMS. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to compare the volatile organic components of the Hetao melon and six other cultivars of melon grown in the Hetao region of China. The results showed that the common VOCs that could be qualitatively identified from the 7 different melon samples were 35 monomers and dimers of certain compounds, mainly including alcohols, esters, aldehydes, terpenes, acids and pyridines. Hexyl acetate, 3-methylbutyl acetate, ethyl acetate and ethyl formate were predominant VOCs in seven melon cultivars. Among them, Xizhoumi No. 25 (XZM25) had 3 unique volatile organic components: 3-methylbutanal, benzaldehyde and nonanal. Xizhoumi No. 17 (XZM17) had 3 unique volatile organic components: alpha-pinene, linalool and (E)-2-hexenol. Jinhongmi (JHM) had 1 unique volatile organic component: ethyl pentanoate. The Hetao melon (HLS) contained 3 unique volatile organic components: heptanal, 2-ethyl-6-methyl pyrazine and 3-methyl valeric acid. Yinmi (YM) had 2 unique volatile organic components: 3-methylbutanol and 1-butanol, and Huangjinmi (HJM) had 1 unique volatile organic component: limonene. YM, GMB2010, HLS and JHM were similar based on the principal component analysis. This research analyzed the flavor components of different melon cultivars grown in the Hetao region of China for the first time.
Collapse
|
10
|
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics 2021; 22:341. [PMID: 33980145 PMCID: PMC8114506 DOI: 10.1186/s12864-021-07683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Panagiotis Boumpas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya‘ar Research Center, 3009500 Ramat Yishay, Israel
| | | | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| |
Collapse
|
11
|
Identification of key aromas of Chinese muskmelon and study of their formation mechanisms. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Mayobre C, Pereira L, Eltahiri A, Bar E, Lewinsohn E, Garcia-Mas J, Pujol M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem 2021; 353:129484. [PMID: 33812162 DOI: 10.1016/j.foodchem.2021.129484] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Aroma is an essential trait in melon fruit quality, but its complexity and genetic basis are still poorly understood. The aim of this study was the identification of quantitative trait loci (QTLs) underlying volatile organic compounds (VOCs) biosynthesis in melon rind and flesh, using a Recombinant Inbred Line (RIL) population from the cross 'Piel de Sapo' (PS) × 'Védrantais' (VED), two commercial varieties segregating for ripening behavior. A total of 82 VOCs were detected by gas chromatography-mass spectrometry (GC-MS), and 166 QTLs were identified. The main QTL cluster was on chromosome 8, collocating with the previously described ripening-related QTL ETHQV8.1, with an important role in VOCs biosynthesis. QTL clusters involved in esters, lipid-derived volatiles and apocarotenoids were also identified, and candidate genes have been proposed for ethyl 3-(methylthio)propanoate and benzaldehyde biosynthesis. Our results provide genetic insights for deciphering fruit aroma in melon and offer new tools for flavor breeding.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Lara Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Abdelali Eltahiri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Tiwari S, Kate A, Mohapatra D, Tripathi MK, Ray H, Akuli A, Ghosh A, Modhera B. Volatile organic compounds (VOCs): Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abstract
A melon core collection was analyzed for rind volatile compounds as, despite the fact that they are scarcely studied, these compounds play an important role in consumer preferences. Gas chromatography coupled to mass spectrometry allowed the detection of 171 volatiles. The high volatile diversity found was analyzed by Hierarchical Cluster Analysis (HCA), giving rise to two major clusters of accessions. The first cluster included climacteric and aromatic types such as Cantalupensis, Ameri, Dudaim and Momordica, rich in esters; the second one mainly included non-climacteric non-aromatic types such as Inodorus, Flexuosus, Acidulus, Conomon and wild Agrestis, with low volatiles content, specifically affecting esters. Many interesting accessions were identified, with different combinations of aroma profiles for rind and flesh, such as Spanish Inodorus landraces with low aroma flesh but rind levels of esters similar to those in climacteric Cantalupensis, exotic accessions sharing high contents of specific compounds responsible for the unique aroma of Dudaim melons or wild Agrestis with unexpected high content of some esters. Sesquiterpenes were present in rinds of some Asian Ameri and Momordica landraces, and discriminate groups of cultivars (sesquiterpene-rich/-poor) within each of the two most commercial melon horticultural groups (Cantalupensis and Inodorus), suggesting that the Asian germplasm is in the origin of specific current varieties or that this feature has been introgressed more recently from Asian sources. This rind characterization will encourage future efforts for breeding melon quality as many of the characterized landraces and wild accessions have been underexploited.
Collapse
|
15
|
Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmad KW, Yu R, Fan Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety 'Siberia'. PHYTOCHEMISTRY 2020; 173:112294. [PMID: 32058861 DOI: 10.1016/j.phytochem.2020.112294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Lilies are a commercially significant cut flower worldwide due not only to their elegant shape but also to their appealing scent. Among Lilium varieties, Lilium 'Siberia' is a cultivar that is prominent and highly favored by consumers due to its snowy white color and strong floral scent. Here, two terpene synthase genes (LoTPS2 and LoTPS4) that are responsible for floral scent production in Lilium 'Siberia' were cloned and functionally characterized. Recombinant LoTPS2 specifically catalyzed the formation of (E, E)-α-farnesene from FPP. Recombinant LoTPS4 is a multiproduct enzyme that produces D-limonene and β-myrcene as major volatile compounds and β-phellandrene, (+)-4-carene and 3-carene as minor products from GPP. Furthermore, LoTPS4 generates trans-α-bergamotene as a major product and di-epi-α-cedrene, α-cubebene and (E)-β-farnesene as minor compounds from FPP. Subcellular localization analysis using GFP fusion constructs revealed that LoTPS2 was localized in the cytosol, whereas LoTPS4 was localized in plastids. Real-time PCR analysis showed that LoTPS2 was highly expressed in the petals and sepals of the flower, while LoTPS4 was highly expressed in the filament of the flower. Moreover, mechanical wounding of flowers revealed that LoTPS2 showed a strong response to wounding via a rapid increase in its mRNA transcript level. Our results will assist scientists in exploring the molecular mechanisms of terpene biosynthesis in this species and will provide new insight into the biotechnological modification of the floral bouquet in Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kanwar Waqas Ahmad
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Wang M, Zhang L, Boo KH, Park E, Drakakaki G, Zakharov F. PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:112-125. [PMID: 30556202 DOI: 10.1111/tpj.14204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Plant pyruvate decarboxylases (PDC) catalyze the decarboxylation of pyruvate to form acetaldehyde and CO2 and are well known to play a key role in energy supply via fermentative metabolism in oxygen-limiting conditions. In addition to their role in fermentation, plant PDCs have also been hypothesized to be involved in aroma formation although, to date, there is no direct biochemical evidence for this function. We investigated the role of PDCs in fruit volatile biosynthesis, and identified a melon pyruvate decarboxylase, PDC1, that is highly expressed in ripe fruits. In vitro biochemical characterization of the recombinant PDC1 enzyme showed that it could not only decarboxylate pyruvate, but that it also had significant activity toward other straight- and branched-chain α-ketoacids, greatly expanding the range of substrates previously known to be accepted by the plant enzyme. RNAi-mediated transient and stable silencing of PDC1 expression in melon showed that this gene is involved in acetaldehyde, propanal and pentanal production, while it does not contribute to branched-chain amino acid (BCAA)-derived aldehyde biosynthesis in melon fruit. Importantly, our results not only demonstrate additional functions for the PDC enzyme, but also challenge the long standing hypothesis that PDC is involved in BCAA-derived aldehyde formation in fruit.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Lei Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kyung Hwan Boo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eunsook Park
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Vattekkatte A, Garms S, Brandt W, Boland W. Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Org Biomol Chem 2019; 16:348-362. [PMID: 29296983 DOI: 10.1039/c7ob02040f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The enormous diversity of terpenes found in nature is generated by enzymes known as terpene synthases, or cyclases. Some are also known for their ability to convert a single substrate into multiple products. This review comprises monoterpene and sesquiterpene synthases that are multiproduct in nature along with the regulation factors that can alter the product specificity of multiproduct terpene synthases without genetic mutations. Variations in specific assay conditions with focus on shifts in product specificity based on change in metal cofactors, assay pH and substrate geometry are described. Alterations in these simple cellular conditions provide the organism with enhanced chemodiversity without investing into new enzymatic architecture. This versatility to modulate product diversity grants organisms, especially immobile ones like plants with access to an enhanced defensive repertoire by simply altering cofactors, pH level and substrate geometry.
Collapse
Affiliation(s)
- Abith Vattekkatte
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
18
|
He SM, Wang X, Yang SC, Dong Y, Zhao QM, Yang JL, Cong K, Zhang JJ, Zhang GH, Wang Y, Fan W. De novo Transcriptome Characterization of Rhodomyrtus tomentosa Leaves and Identification of Genes Involved in α/β-Pinene and β-Caryophyllene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1231. [PMID: 30197651 PMCID: PMC6117411 DOI: 10.3389/fpls.2018.01231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/03/2018] [Indexed: 06/01/2023]
Abstract
Plant-derived terpenes are effective in treating chronic dysentery, rheumatism, hepatitis, and hyperlipemia. Thus, understanding the molecular basis of terpene biosynthesis in some terpene-abundant Chinese medicinal plants is of great importance. Abundant in mono- and sesqui-terpenes, Rhodomyrtus tomentosa (Ait.) Hassk, an evergreen shrub belonging to the family Myrtaceae, is widely used as a traditional Chinese medicine. In this study, (+)-α-pinene and β-caryophyllene were detected to be the two major components in the leaves of R. tomentosa, in which (+)-α-pinene is higher in the young leaves than in the mature leaves, whereas the distribution of β-caryophyllene is opposite. Genome-wide transcriptome analysis of leaves identified 138 unigenes potentially involved in terpenoid biosynthesis. By integrating known biosynthetic pathways for terpenoids, 7 candidate genes encoding terpene synthase (RtTPS1-7) that potentially catalyze the last step in pinene and caryophyllene biosynthesis were further characterized. Sequence alignment analysis showed that RtTPS1, RtTPS3 and RtTPS4 do not contain typical N-terminal transit peptides (62-64aa), thus probably producing multiple isomers and enantiomers by terpenoid isomerization. Further enzyme activity in vitro confirmed that RtTPS1-4 mainly produce (+)-α-pinene and (+)-β-pinene, as well as small amounts of (-)-α-pinene and (-)-β-pinene with GPP, while RtTPS1 and RtTPS3 are also active with FPP, producing β-caryophyllene, along with a smaller amount of α-humulene. Our results deepen the understanding of molecular mechanisms of terpenes biosynthesis in Myrtaceae.
Collapse
Affiliation(s)
- Si-Mei He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Qi-Ming Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jian-Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kun Cong
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jia-Jin Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
19
|
Esteras C, Rambla JL, Sánchez G, López-Gresa MP, González-Mas MC, Fernández-Trujillo JP, Bellés JM, Granell A, Picó MB. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3915-3925. [PMID: 29369359 DOI: 10.1002/jsfa.8909] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Aroma profile and carotenoids content of melon flesh are two important aspects influencing the quality of this fruit that have been characterized using only selected genotypes. However, the extant variability of the whole species remains unknown. RESULTS A complete view of the volatile/carotenoid profiles of melon flesh was obtained analyzing 71 accessions, representing the whole diversity of the species. Gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze 200 volatile compounds and five carotenoids. Genotypes were classified into two main clusters (high/low aroma), but with a large diversity of differential profiles within each cluster, consistent with the ripening behavior, flesh color and proposed evolutionary and breeding history of the different horticultural groups. CONCLUSION Our results highlight the huge amount of untapped aroma diversity of melon germplasm, especially of non-commercial types. Also, landraces with high nutritional value with regard to carotenoids have been identified. All this knowledge will encourage melon breeding, facilitating the selection of the genetic resources more appropriate to develop cultivars with new aromatic profiles or to minimize the impact of breeding on melon quality. The newly characterized sources provide the basis for further investigations into specific genes/alleles contributing to melon flesh quality. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV) Universitat Politècnica de València, Valencia, Spain
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Gerardo Sánchez
- Estación Experimental Agropecuaria San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - M Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - M Carmen González-Mas
- Fundación AgroAlimed, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | - Jose María Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - M Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV) Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
20
|
Methodology to Remove Strong Outliers of Non-Climacteric Melon Fruit Aroma at Harvest Obtained by HS-SPME GC-MS Analysis. SEPARATIONS 2018. [DOI: 10.3390/separations5020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Gonda I, Davidovich-Rikanati R, Bar E, Lev S, Jhirad P, Meshulam Y, Wissotsky G, Portnoy V, Burger J, Schaffer AA, Tadmor Y, Giovannoni JJ, Fei Z, Fait A, Katzir N, Lewinsohn E. Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. PHYTOCHEMISTRY 2018; 148:122-131. [PMID: 29448137 DOI: 10.1016/j.phytochem.2017.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 05/23/2023]
Abstract
Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO4, producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit.
Collapse
Affiliation(s)
- Itay Gonda
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Rachel Davidovich-Rikanati
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shery Lev
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Pliaa Jhirad
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; ORT Braude College, Department of Biotechnology Engineering, Karmiel, Israel
| | - Yuval Meshulam
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; ORT Braude College, Department of Biotechnology Engineering, Karmiel, Israel
| | - Guy Wissotsky
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Vitaly Portnoy
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Joseph Burger
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Arthur A Schaffer
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, P.O. Box 6, Rishon LeZion, 76100, Israel
| | - Yaakov Tadmor
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - James J Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nurit Katzir
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Efraim Lewinsohn
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
22
|
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa'ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:169-191. [PMID: 29385635 DOI: 10.1111/tpj.13838] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.
Collapse
Affiliation(s)
- Navot Galpaz
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Itay Gonda
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Doron Shem-Tov
- NRGENE, Park HaMada Ness Ziona, Israel
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Galil Tzuri
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shery Lev
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rotem Harel-Beja
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Oren Tzfadia
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
| | - Einat Bar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Sa'ar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Halperin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Kenigswald
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Elazar Fallik
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nadia Lombardi
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | - Guy Kol
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Gil Ronen
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Yosef Burger
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gur
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ya'akov Tadmor
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Vitaly Portnoy
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Efraim Lewinsohn
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Nurit Katzir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
23
|
Yahyaa M, Ibdah M, Marzouk S, Ibdah M. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2378-2386. [PMID: 27673494 DOI: 10.1021/acs.jafc.6b03596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fruits from wild carrot ( Daucus carota L. ssp. carota) have been used for medicinal purposes since ancient times. The oil of its seeds, with their abundant monoterpenes and sesquiterpenes, has drawn attention in recent years because of its potential pharmaceutical application. A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of terpene volatiles in carrot fruits of wild accessions. This work reports a similarity-based cloning strategy identification and functional characterization of one carrot monoterpene terpene synthase, WtDcTPS1. Recombinant WtDcTPS1 protein produces mainly geraniol, the predominant monoterpene in carrot seeds of wild accession 23727. The results suggest a role for the WtDcTPS1 gene in the biosynthesis of carrot fruit aroma and flavor compounds.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| | - Muhammad Ibdah
- Sakhnin College Academic College for Teacher Education , Sakhnin , Israel
| | - Sally Marzouk
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| |
Collapse
|
24
|
Hattan JI, Shindo K, Sasaki T, Misawa N. Isolation and Functional Characterization of New Terpene Synthase Genes from Traditional Edible Plants. J Oleo Sci 2018; 67:1235-1246. [DOI: 10.5650/jos.ess18163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun-ichiro Hattan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| | | | | | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| |
Collapse
|
25
|
Portnoy V, Gonda I, Galpaz N, Tzuri G, Lev S, Kenigswald M, Fei Z, Barad O, Harel-Beja R, Doron-Faigenboim A, Bar E, Sa’ar U, Xu Y, Lombardi N, Mao L, Jiao C, Kol G, Gur A, Fallik E, Tadmor Y, Burger Y, Schaffer A, Giovannoni J, Lewinsohn E, Katzir N. Next-generation sequencing-based QTL mapping for unravelling causative genes associated with melon fruit quality traits. ACTA ACUST UNITED AC 2017. [DOI: 10.17660/actahortic.2017.1151.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
|
27
|
Tang Y, Zhang C, Cao S, Wang X, Qi H. The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo). PLoS One 2015; 10:e0143567. [PMID: 26599669 PMCID: PMC4657985 DOI: 10.1371/journal.pone.0143567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 11/08/2015] [Indexed: 01/02/2023] Open
Abstract
Lipoxygenases (LOXs) play important role in the synthesis of volatile organic compounds (VOCs), which influence the aroma of fruit. In this study, we elucidate that there is a positive relationship between LOXs activity and VOC production in melon (Cucumis melo), and CmLOX genes are involved in fruit aroma generation in melon. To this end, we tested four aroma types of melon that feature a thin pericarp: two aromatic cultivars of the oriental melons (C. melo var. makuwa Makino), ‘Yu Meiren’ (YMR) and ‘Cui Bao’ (CB); a non-aromatic oriental pickling melon (C. melo var. conomon), ‘Shao Gua’ (SHAO); and a non-aromatic snake melon (C. melo L. var. flexuosus Naud), ‘Cai Gua’ (CAI). A principal component analysis (PCA) revealed that the aromas of SHAO and CAI are similar in nature because their ester contents are lower than those of YMR and CB. Ethyl acetate, benzyl acetate, (E, Z)-2, 6-nonadienal and menthol are four principal volatile compounds that affect the aromatic characteristics of these four types of melons. The LOX activity and total ester content in YMR were the highest among the examined melon varieties. The expression patterns of 18 CmLOX genes were found to vary based on the aromatic nature of the melon. Four of them were highly expressed in YMR. Moreover, we treated the fruit disks of YMR with LOX substrates (linoleic acid and linolenic acid) and LOX inhibitors (n-propyl gallate and nordihydroguariaretic acid). Substrate application promoted LOX activity and induced accumulation of hexanal, (2E)-nonenal and straight-chain esters, such as ethyl acetate. In contrast, LOX inhibitors decreased the levels of these compounds. The effect of CmLOXs in the biosynthesis of esters in melons are discussed.
Collapse
Affiliation(s)
- Yufan Tang
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China
| | - Songxiao Cao
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China
| | - Xiao Wang
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Ministry of Education and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang City, Liaoning Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
28
|
Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, Zheng Y, Fei Z, Lewinsohn E, Katzir N, Schaffer AA, Gepstein S, Burger J, Li L, Tadmor Y. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC PLANT BIOLOGY 2015; 15:274. [PMID: 26553015 PMCID: PMC4640158 DOI: 10.1186/s12870-015-0661-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/03/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, β-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines. RESULTS Pooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress. CONCLUSIONS The differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.
Collapse
Affiliation(s)
- Noam Chayut
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Shachar Ohali
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yelena Yeselson
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Vitaly Portnoy
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Efraim Lewinsohn
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan, 50250, ISRAEL.
| | - Shimon Gepstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W Holly Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
29
|
Ibrahim SR, Mohamed GA. Cucumin S, a new phenylethyl chromone from Cucumis melo var. reticulatus seeds. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG, Karpe SD, Kaushik S, Kuravadi N, Lingu CS, Mahita J, Malarini R, Malhotra S, Malini M, Mathew OK, Mutt E, Naika M, Nitish S, Pasha SN, Raghavender US, Rajamani A, Shilpa S, Shingate PN, Singh HR, Sukhwal A, Sunitha MS, Sumathi M, Ramaswamy S, Gowda M, Sowdhamini R. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC PLANT BIOLOGY 2015; 15:212. [PMID: 26315624 PMCID: PMC4552454 DOI: 10.1186/s12870-015-0562-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/24/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.
Collapse
Affiliation(s)
- Atul K Upadhyay
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Anita R Chacko
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - A Gandhimathi
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Pritha Ghosh
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - K Harini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Agnel P Joseph
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Adwait G Joshi
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
- Manipal University, Madhav Nagar, 576104, Manipal, Karnataka, India.
| | - Snehal D Karpe
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Swati Kaushik
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Nagesh Kuravadi
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Chandana S Lingu
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - J Mahita
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Ramya Malarini
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Sony Malhotra
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Manoharan Malini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Oommen K Mathew
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
- School of Chemical and Biotechnology, SASTRA (A University), 613401, Thanjavur, TamilNadu, India.
| | - Eshita Mutt
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Mahantesha Naika
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Sathyanarayanan Nitish
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Shaik Naseer Pasha
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
- Manipal University, Madhav Nagar, 576104, Manipal, Karnataka, India.
| | - Upadhyayula S Raghavender
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Anantharamanan Rajamani
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - S Shilpa
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Prashant N Shingate
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
- Manipal University, Madhav Nagar, 576104, Manipal, Karnataka, India.
| | | | - Anshul Sukhwal
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
- School of Chemical and Biotechnology, SASTRA (A University), 613401, Thanjavur, TamilNadu, India.
| | - Margaret S Sunitha
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Manojkumar Sumathi
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - S Ramaswamy
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Malali Gowda
- Centre for Cellular and Molecular Platforms, GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, 560 065, Bangalore, India.
| |
Collapse
|
31
|
Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057841] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Yahyaa M, Tholl D, Cormier G, Jensen R, Simon PW, Ibdah M. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4870-8. [PMID: 25924989 DOI: 10.1021/acs.jafc.5b00546] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| | - Dorothea Tholl
- ‡Department of Biological Sciences, Virginia Polytechnic Institute and State University, 409 Latham Hall, 220 Agquad Lane, Blacksburg, Virginia 24061, United States
| | - Guy Cormier
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Roderick Jensen
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Philipp W Simon
- ∥Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, United States
| | - Mwafaq Ibdah
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| |
Collapse
|
33
|
Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. ENERGIES 2015. [DOI: 10.3390/en8054253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC PLANT BIOLOGY 2015; 15:71. [PMID: 25887588 PMCID: PMC4448286 DOI: 10.1186/s12870-015-0449-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.
Collapse
Affiliation(s)
- Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Shery Lev
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Itay Gonda
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Eli Reuveni
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Vitaly Portnoy
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Elad Oren
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | | | - Navot Galpaz
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
- Migal Research Institute, Kiryat Shmona, 11016, Israel.
| | - Einat Bar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Galil Tzuri
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Guy Wissotsky
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Joseph Burger
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Yaakov Tadmor
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Arthur Schaffer
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Zhangjun Fei
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - James Giovannoni
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - Efraim Lewinsohn
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| |
Collapse
|
35
|
Electronic-nose applications for fruit identification, ripeness and quality grading. SENSORS 2015; 15:899-931. [PMID: 25569761 PMCID: PMC4327056 DOI: 10.3390/s150100899] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally utilize and rely on human testers or panels to evaluate fruit quality and aroma characters for assessing fruit salability in fresh markets. We explore the current and potential utilization of electronic-nose devices (with specialized sensor arrays), instruments that are very effective in discriminating complex mixtures of fruit volatiles, as new effective tools for more efficient fruit aroma analyses to replace conventional expensive methods used in fruit aroma assessments. We review the chemical nature of fruit volatiles during all stages of the agro-fruit production process, describe some of the more important applications that electronic nose (e-nose) technologies have provided for fruit aroma characterizations, and summarize recent research providing e-nose data on the effectiveness of these specialized gas-sensing instruments for fruit identifications, cultivar discriminations, ripeness assessments and fruit grading for assuring fruit quality in commercial markets.
Collapse
|
36
|
Characterization of conserved microRNAs from five different cucurbit species using computational and experimental analysis. Biochimie 2014; 102:137-44. [PMID: 24657600 DOI: 10.1016/j.biochi.2014.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) are ∼21 nt non-coding small RNAs which regulate gene expression at the post-transcriptional level in plants and animals. Until recently, only limited numbers of miRNAs were identified in Cucurbitaceae, a large flowering plant family. In this study, 220 potential miRNA candidates were identified from five species of Cucurbitaceae family using a comparative genome-based computational analysis. A comprehensive bioinformatic analysis of EST (expressed sequence tag) and GSS (genomic survey sequence) data of five cucurbit species showed that at least 41, 108, 21, 17 and 33 miRNAs existed in Cucumis sativus, Cucumis melo, Citrullus lanatus, Siraitia grosvenorii and Cucurbita pepo, respectively. Quantitative real-time PCR (qRT-PCR) analysis revealed the differentially expression levels of miRNAs in the four tissues of cucumber and melon. These identified miRNAs in the five species potentially targeted 578 protein-coding genes and one target of the C. melo miRNA cme-miR160a-5p was verified by 5' RLM-RACE. GO and KEGG analysis suggested that many melon miRNAs might involve in nucleotide metabolism, oxidative phosphorylation, cell redox homeostasis and signal transduction.
Collapse
|
37
|
Galpaz N, Burger Y, Lavee T, Tzuri G, Sherman A, Melamed T, Eshed R, Meir A, Portnoy V, Bar E, Shimoni-Shor E, Feder A, Saar Y, Saar U, Baumkoler F, Lewinsohn E, Schaffer AA, Katzir N, Tadmor Y. Genetic and chemical characterization of an EMS induced mutation in Cucumis melo CRTISO gene. Arch Biochem Biophys 2013; 539:117-25. [PMID: 23973661 DOI: 10.1016/j.abb.2013.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh 'Charentais' type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow-orange fruit flesh ('yofI'). HPLC analysis revealed that 'yofI' accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of 'yofI' is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of 'yofI' CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A-T transversion in 'yofI' which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.
Collapse
Affiliation(s)
- Navot Galpaz
- Department of Vegetable Crops & Plant Genetics, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay 30-095, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. Advances in fruit aroma volatile research. Molecules 2013; 18:8200-29. [PMID: 23852166 PMCID: PMC6270112 DOI: 10.3390/molecules18078200] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022] Open
Abstract
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Collapse
Affiliation(s)
- Muna Ahmed Mohamed El Hadi
- College of Horticulture and Plant Protection, Yangzhou University, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, China.
| | | | | | | | | |
Collapse
|
39
|
Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, Burger J, Schaffer AA, Tadmor Y, Giovannonni JJ, Huang M, Fei Z, Katzir N, Fait A, Lewinsohn E. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:458-72. [PMID: 23402686 DOI: 10.1111/tpj.12149] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/30/2013] [Indexed: 05/18/2023]
Abstract
Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.
Collapse
Affiliation(s)
- Itay Gonda
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rodríguez A, Alquézar B, Peña L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. THE NEW PHYTOLOGIST 2013; 197:36-48. [PMID: 23127167 DOI: 10.1111/j.1469-8137.2012.04382.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/11/2012] [Indexed: 05/08/2023]
Abstract
The dispersal of seeds away from parent plants seems to be the underlying selective force in the evolution of fleshy fruits attractive to animals. Secondary metabolites, which are not essential compounds for plant survival, are involved in the interaction of fleshy fruits with seed dispersers and antagonists. Plant volatile organic compounds (VOCs) are secondary metabolites that play important roles in biotic interactions and in abiotic stress responses. They are usually accumulated at high levels in specific plant tissues and organs, such as fleshy fruits. The study of VOCs emitted during fruit development and after different biotic challenges may help to determine the interactions of fleshy fruits not only with legitimate vertebrate dispersers, but also with insects and microorganisms. A knowledge of fruit VOCs could be used in agriculture to generate attraction or repellency to pests and resistance to pathogens in fruits. This review provides an examination of specific fruit VOC blends as signals for either seed dispersal or predation through simple or complex trophic chains, which may also have consequences for an understanding of the importance of biodiversity in wild areas.
Collapse
Affiliation(s)
- Ana Rodríguez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, Km. 4.5, 46113, Moncada, Valencia, Spain
| | - Berta Alquézar
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, Km. 4.5, 46113, Moncada, Valencia, Spain
| | - Leandro Peña
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Náquera, Km. 4.5, 46113, Moncada, Valencia, Spain
| |
Collapse
|
41
|
Güler Z, Karaca F, Yetisir H. Volatile Compounds and Sensory Properties in Various Melons, Which were Chosen from Different Species and Different Locations, Grown in Turkey. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2012. [DOI: 10.1080/10942912.2010.528110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MTJ, Zerbe P, Bohlmann J, Falara V, Matsuba Y, Pichersky E, Haring MA, Schuurink RC. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. PLANT MOLECULAR BIOLOGY 2011; 77:323-36. [PMID: 21818683 PMCID: PMC3193516 DOI: 10.1007/s11103-011-9813-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/16/2011] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants. This approach resulted initially in the discovery of six sesquiterpene synthase cDNAs from S. lycopersicum and five from S. habrochaites. Searches of other databases and the S. lycopersicum genome resulted in the discovery of two additional sesquiterpene synthases expressed in trichomes. The sesquiterpene synthases from S. lycopersicum and S. habrochaites have high levels of protein identity. Several of them appeared to encode for non-functional proteins. Functional recombinant proteins produced germacrenes, β-caryophyllene/α-humulene, viridiflorene and valencene from (E,E)-farnesyl diphosphate. However, the activities of these enzymes do not completely explain the differences in sesquiterpene production between the two tomato plants. RT-qPCR confirmed high levels of expression of most of the S. lycopersicum sesquiterpene synthases in stem trichomes. In addition, one sesquiterpene synthase was induced by jasmonic acid, while another appeared to be slightly repressed by the treatment. Our data provide a foundation to study the evolution of terpene synthases in cultivated and wild tomato.
Collapse
Affiliation(s)
- Petra M. Bleeker
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
- KeyGene NV, 6700 AE Wageningen, The Netherlands
| | - Eleni A. Spyropoulou
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | - Philipp Zerbe
- Michael Smith Laboratories, University of British Columbia, 321, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 321, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048 USA
| | - Yuki Matsuba
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048 USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048 USA
| | - Michel A. Haring
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
43
|
Misawa N. Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 2011; 22:627-33. [DOI: 10.1016/j.copbio.2011.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
|
44
|
Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, Hattan JI, Utsumi R, Misawa N. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. Appl Microbiol Biotechnol 2011; 90:467-76. [PMID: 21229242 DOI: 10.1007/s00253-010-3062-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/20/2010] [Accepted: 12/05/2010] [Indexed: 12/01/2022]
Abstract
Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses.
Collapse
Affiliation(s)
- Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co. Ltd., i-BIRD, Suematsu, Ishikawa 921-8836, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tadmor Y, Burger J, Yaakov I, Feder A, Libhaber SE, Portnoy V, Meir A, Tzuri G, Sa'ar U, Rogachev I, Aharoni A, Abeliovich H, Schaffer AA, Lewinsohn E, Katzir N. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10722-8. [PMID: 20815398 DOI: 10.1021/jf1021797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
External color has profound effects on acceptability of agricultural products by consumers. Carotenoids and chlorophylls are known to be the major pigments of melon (Cucumis melo L.) rinds. Flavonoids (especially chalcones and anthocyanins) are also prominent in other fruits but have not been reported to occur in melons fruit. We analyzed the pigments accumulating in rinds of different melon genotypes during fruit development. We found that melon rind color is based on different combinations of chlorophyll, carotenoids, and flavonoids according to the cultivar tested and their ratios changed during fruit maturation. Moreover, in "canary yellow" type melons, naringenin chalcone, a yellow flavonoid pigment previously unknown to occur in melons, has been identified as the major fruit colorant in mature rinds. Naringenin chalcone is also prominent in other melon types, occurring together with carotenoids (mainly β-carotene) and chlorophyll. Both chlorophyll and carotenoid pigments segregate jointly in an F(2) population originating from a cross between a yellow canary line and a line with green rind. In contrast, the content of naringenin chalcone segregates as a monogenic trait independently to carotenoids and chlorophyll. Transcription patterns of key structural phenylpropanoid and flavonoid biosynthetic pathway genes were monitored in attempts to explain naringenin chalcone accumulation in melon rinds. The transcript levels of CHI were low in both parental lines, but C4H, C4L, and CHS transcripts were upregulated in "Noy Amid", the parental line that accumulates naringenin chalcone. Our results indicate that naringenin chalcone accumulates independently from carotenoids and chlorophyll pigments in melon rinds and gives an insight into the molecular mechanism for the accumulation of naringenin chalcone in melon rinds.
Collapse
Affiliation(s)
- Yaakov Tadmor
- Newe Yaar Research Center, ARO, PO Box 1021, Ramat Yishay 30095, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:511-33. [PMID: 20401460 DOI: 10.1007/s00122-010-1327-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/22/2010] [Indexed: 05/03/2023]
Abstract
A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and 'Dulce' (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.
Collapse
Affiliation(s)
- R Harel-Beja
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fujisawa M, Harada H, Kenmoku H, Mizutani S, Misawa N. Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. PLANTA 2010; 232:121-30. [PMID: 20229191 DOI: 10.1007/s00425-010-1137-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Ginger, Zingiber officinale Roscoe, contains a fragrant oil mainly composed of sesquiterpenes and monoterpenes. We isolated a cDNA that codes for a sesquiterpene synthase from young rhizomes of ginger, Z. officinale Roscoe, Japanese cultivar "Kintoki". The cDNA, designated ZoTps1, potentially encoded a protein that comprised 550 amino acid residues and exhibited 49-53% identity with those of the sesquiterpene synthases already isolated from the genus Zingiber. Recombinant Escherichia coli cells, in which ZoTps1 was coexpressed along with genes for D-mevalonate utilization, resulted in the production of a sesquiterpene (S)-beta-bisabolene exclusively with a D-mevalonolactone supplement. This result indicated that ZoTps1 was the (S)-beta-bisabolene synthase gene in ginger. ZoTPS1 was suggested to catalyze (S)-beta-bisabolene formation with the conversion of farnesyl diphosphate to nerolidyl diphosphate followed by the cyclization between position 1 and 6 carbons. The ZoTps1 transcript was detected in young rhizomes, but not in leaves, roots and mature rhizomes of the ginger "Kintoki".
Collapse
Affiliation(s)
- Masaki Fujisawa
- Central Laboratories for Frontier Technology, Kirin Holdings Co. Ltd., i-BIRD, Nonoichi, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
48
|
Ibrahim SRM. New 2-(2-Phenylethyl)chromone Derivatives from the Seeds of Cucumis melo L var. reticulatus. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of the methanolic extract of the seeds of Cucumis melo L. var. reticulatus (Cucurbitaceae) afforded three new chromone derivatives; 5,7-dihydroxy-2-[2-(4-hydroxyphenyl)ethyl]chromone 3, 5,7-dihydroxy-2-[2-(3,4-dihydroxyphenyl)ethyl]chromone 4, and 7-glucosyloxy-5-hydroxy-2-[2-(4-hydroxyphenyl)ethyl]chromone 6, together with three known compounds; β-amyrin 1, β-sitosterol 2, and β-sitosterol-3- O-β-glucopyranoside 5. Their structures were established by UV, IR, 1D and 2D NMR, in addition to mass spectroscopic data and comparison with literature data. The n-hexane and methanolic extracts were evaluated for their antimicrobial activity, as well as cytotoxic activity using the brine shrimp bioassay.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
49
|
Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1111-23. [PMID: 20065117 PMCID: PMC2826658 DOI: 10.1093/jxb/erp390] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/29/2009] [Accepted: 12/02/2009] [Indexed: 05/18/2023]
Abstract
The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.
Collapse
Affiliation(s)
- Itay Gonda
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Einat Bar
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Vitaly Portnoy
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Shery Lev
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Joseph Burger
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Arthur A. Schaffer
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Ya'akov Tadmor
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Shimon Gepstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - James J. Giovannoni
- United States Department of Agriculture and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | - Nurit Katzir
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Efraim Lewinsohn
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| |
Collapse
|
50
|
Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK, Beuning LL, Nagegowda DA, Dudareva N, Atkinson RG. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3203-19. [PMID: 19516075 PMCID: PMC2718223 DOI: 10.1093/jxb/erp162] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 05/18/2023]
Abstract
Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar 'Hayward' and its male pollinator 'Chieftain'. Terpene volatile levels showed a profile dominated by the sesquiterpenes alpha-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-beta-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a 'Hayward' petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-alpha-farnesene and small amounts of (E)-beta-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers.
Collapse
Affiliation(s)
- Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92 169, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|