1
|
Tang Y, Song Z, Xu X, Li Y, Wang L. Insights into the mechanism of substrate specificity in a novel PL15_3 subfamily oligo-alginate lyase VBAly15A. Appl Environ Microbiol 2025; 91:e0235124. [PMID: 40013786 PMCID: PMC11921355 DOI: 10.1128/aem.02351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Alginate is a major component of brown algae cell walls and can be degraded via β-elimination by alginate lyases. These enzymes are classified into polysaccharide lyases and oligo-alginate lyases (Oals), with Oals mainly represented by the PL15 and PL17 families. Unlike PL17 Oals, which are widely present in alginate-degrading microorganisms, PL15 enzymes are only identified in a limited number of microorganisms, and their biochemical characteristics remain poorly understood. In this research, a novel PL15 alginate lyase, VBAly15A, from the marine bacterium, Vibrio sp. B1Z05, was identified and characterized. It belongs to a new PL15_3 subfamily and exhibits high activity toward polyM substrates. VBAly15A is thermostable in medium temperatures, tolerant to alkaline up to 11.0, and polyM-specific Oal, and it can first degrade alginate polymers into disaccharides and subsequently catalyze disaccharides into monomers via an exolytic mode. Site-directed mutagenesis showed that Arg114, Tyr470, and Arg110 in the active groove are essential for the stable binding of the substrate. In addition, the amino acid His226 in VBAly15A, previously suggested to act as a catalytic base, is not essential for catalysis, whereas Tyr280, previously proposed to act as a catalytic acid, is required for enzyme activity. Structural bioinformatic and biochemical analyses revealed that His226 functions as a catalytic base, specifically abstracting protons from G-type substrates, while Tyr280 acts as both a catalytic acid and a base. This catalytic mechanism is likely conserved in PL15 family alginate lyases.IMPORTANCEAlginate, as a renewable resource for sustainability, has great application prospects. In addition to polysaccharide lyases, Oals are critical for the full degradation of alginate, a key prerequisite for biorefinery. So far, most identified and well-characterized Oals belong to the PL17 family. However, the catalytic mechanism of PL15 Oals is limited, and even the catalytic base and acid are not fully elucidated. The significance of this study lies in discovering and characterizing a novel Oal VBAly15A that divides into a new PL15 subfamily, PL15_3. Not only are key amino acid residues involved in enzyme activity identified, but residues acting as the catalytic base and acid are also demonstrated. The distance of the catalytic residues His and Tyr to the C5 proton of the sugar ring determines the substrate specificity. Therefore, this work provides new insights into the mechanism of substrate specificity in alginate lyases.
Collapse
Affiliation(s)
- Yongqi Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ziyan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Felton SM, Akula N, Kolling GL, Azadi P, Black I, Kumar A, Heiss C, Capobianco J, Uknalis J, Papin JA, Berger BW. Applying a polysaccharide lyase from Stenotrophomonas maltophilia to disrupt alginate exopolysaccharide produced by Pseudomonas aeruginosa clinical isolates. Appl Environ Microbiol 2025; 91:e0185324. [PMID: 39670718 PMCID: PMC11784403 DOI: 10.1128/aem.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa is considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment, P. aeruginosa undergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment for P. aeruginosa infection. Previously, we demonstrated polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia strain k279a can catalyze the degradation of multiple polyuronides in vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent of P. aeruginosa alginate, suggesting that Smlt1473 could have potential application against multidrug-resistant P. aeruginosa and perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate from P. aeruginosa. Additionally, we show that tested P. aeruginosa strains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degrade P. aeruginosa alginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCE Pseudomonas aeruginosa is a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronic P. aeruginosa infection. As a result, colonization with P. aeruginosa is the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen for P. aeruginosa infection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoid P. aeruginosa clinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producing P. aeruginosa, as well as have the potential to reduce P. aeruginosa EPS in non-clinical settings.
Collapse
Affiliation(s)
- Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nikki Akula
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Joseph Capobianco
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Joseph Uknalis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Wen H, Zhang Y, Mi Z, Zhang H, Sun C, Liu X, Fan X. Rational design of PspAlgL to improve its thermostability and anti-biofilm activity against Pseudomonas aeruginosa. Int J Biol Macromol 2024; 269:132084. [PMID: 38719003 DOI: 10.1016/j.ijbiomac.2024.132084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.
Collapse
Affiliation(s)
- Huamei Wen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Yanyu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Zhongwen Mi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Haichuan Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyang Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| |
Collapse
|
4
|
Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. Int J Mol Sci 2023; 24:ijms24054740. [PMID: 36902169 PMCID: PMC10002595 DOI: 10.3390/ijms24054740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Bacterial biofilms generally contribute to chronic infections, including wound infections. Due to the antibiotic resistance mechanisms protecting bacteria living in the biofilm, they are a serious problem in the wound healing process. To accelerate the wound healing process and avoid bacterial infection, it is necessary to select the appropriate dressing material. In this study, the promising therapeutic properties of alginate lyase (AlgL) immobilised on BC membranes for protecting wounds from Pseudomonas aeruginosa infection were investigated. The AlgL was immobilised on never dried BC pellicles via physical adsorption. The maximum adsorption capacity of AlgL was 6.0 mg/g of dry BC, and the equilibrium was reached after 2 h. The adsorption kinetics was studied, and it has been proven that the adsorption was consistent with Langmuir isotherm. In addition, the impact of enzyme immobilisation on bacterial biofilm stability and the effect of simultaneous immobilisation of AlgL and gentamicin on the viability of bacterial cells was investigated. The obtained results showed that the AlgL immobilisation significantly reduced the amount of polysaccharides component of the P. aeruginosa biofilm. Moreover, the biofilm disruption by AlgL immobilised on BC membranes exhibited synergism with the gentamicin, resulting in 86.5% more dead P. aeruginosa PAO-1 cells.
Collapse
|
5
|
Zhou L, Meng Q, Zhang R, Jiang B, Liu X, Chen J, Zhang T. Characterization of a Novel Polysaccharide Lyase Family 5 Alginate Lyase with PolyM Substrate Specificity. Foods 2022; 11:3527. [PMID: 36360141 PMCID: PMC9655155 DOI: 10.3390/foods11213527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Alginate lyases (ALyases) have been widely applied in enzymatically degrading alginate for the preparation of alginate oligosaccharides (AOS), which possess a range of excellent physiological benefits including immunoregulatory, antivirus, and antidiabetic properties. Among the characterized ALyases, the number of ALyases with strict substrate specificity which possess potential in directed preparation of AOS is quite small. ALyases of polysaccharides lyase (PL) 5 family have been reported to perform poly-β-D-mannuronic acid (Poly-M) substrate specificity. However, there have been fewer studies with a comprehensive characterization and comparison of PL 5 family ALyases. In this study, a putative PL 5 family ALyase PMD was cloned from Pseudomonas mendocina and expressed in Escherichia coli. The novel ALyase presented maximum activity at 30 °C and pH 7.0. PMD displayed pH stability properties under the range of pH 5 to pH 9, which retained more than 80% relative activity, even when incubated for 48 h. Product analysis indicated that PMD might be an endolytic ALyase with strict Poly M substrate specificity and yield disaccharide and trisaccharide as main products. In addition, residues K58, R66, Y248, and R344 were proposed to be the potential key residues for catalysis via site-directed mutation. Detailed characterization of PMD and comprehensive comparisons could supply some different information about properties of PL 5 ALyases which might be helpful for its application in the directed production of AOS.
Collapse
Affiliation(s)
- Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ran Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd., Weihai 264333, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wei W, Zhang X, Hou Z, Hu X, Wang Y, Wang C, Yang S, Cui H, Zhu L. Microbial Regulation of Deterioration and Preservation of Salted Kelp under Different Temperature and Salinity Conditions. Foods 2021; 10:foods10081723. [PMID: 34441501 PMCID: PMC8394645 DOI: 10.3390/foods10081723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
High salinity is an effective measure to preserve kelp, but salted kelp can still deteriorate after long-term preservation. In order to clarify the key conditions and microbial behavior of salted kelp preservation, 10% (S10), 20% (S20), and 30% (S30) salt concentrations were evaluated at 25 °C (T25) and 4 °C (T4). After 30 days storage, these salted kelps showed different states including rot (T25S10), softening (T25S20), and undamaged (other samples). By detecting polysaccharide lyase activity and performing high-throughput sequencing of the prokaryotic 16S rRNA sequence and metagenome, we found that deteriorated kelps (T25S10 and T25S20) had significantly higher alginate lyase activity and bacterial relative abundance than other undamaged samples. Dyella, Saccharophagus, Halomonas, Aromatoleum, Ulvibacter, Rhodopirellula, and Microbulbifer were annotated with genes encoding endonuclease-type alginate lyases, while Bacillus and Thiobacillus were annotated as the exonuclease type. Additionally, no alginate lyase activity was detected in undamaged kelps, whose dominant microorganisms were halophilic archaea without alginate lyase-encoding genes. These results indicated that room-temperature storage may promote salted kelp deterioration due to the secretion of bacterial alginate lyase, while ultra-high-salinity and low-temperature storage can inhibit bacterial alginate lyase and promote the growth of halophilic archaea without alginate lyase, thus achieving the preservation of salted kelp.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Xin Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Zhaozhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Yuan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Caizheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Henglin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
- Correspondence: ; Tel.: +86-511-8878-0201
| |
Collapse
|
7
|
Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718 T. Mar Drugs 2021; 19:md19030155. [PMID: 33802659 PMCID: PMC8002439 DOI: 10.3390/md19030155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.
Collapse
|
8
|
Mahajan S, Ramya TNC. Cellulophaga algicola alginate lyase inhibits biofilm formation of a clinical Pseudomonas aeruginosa strain MCC 2081. IUBMB Life 2020; 73:444-462. [PMID: 33350564 DOI: 10.1002/iub.2442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG. Recombinant CaFLD bound to fucosylated glycans with a preference for H-type 2 glycan motif, and did not have any apparent effect on the enzyme activity of the co-associated alginate lyase domain in the recombinant protein construct, CaFLD_Aly. We assessed the potential of CaAly and other alginate lyases previously reported in published literature to inhibit biofilm formation by a clinical strain, Pseudomonas aeruginosa MCC 2081. Of all the alginate lyases tested, CaAly displayed most inhibition of in vitro biofilm formation on plastic surfaces. We also assessed its inhibitory ability against P. aeruginosa 2081 biofilms formed over a monolayer of A549 lung epithelial cells. Our study indicated that CaAly is efficacious in inhibition of biofilm formation even on A549 lung epithelial cell line monolayers.
Collapse
Affiliation(s)
- Sonal Mahajan
- Protein Science and Engineering Department, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
9
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol 2020; 104:6549-6564. [PMID: 32500267 DOI: 10.1007/s00253-020-10687-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa infection is a significant threat for clinicians. Increasing incidents of resistant biofilm infection result in high mortality rates worldwide. There is a considerable current interest in the field of extracellular DNA (eDNA)-mediated P. aeruginosa biofilm formation. eDNA acts as a glue to make biofilm more stable. This review focuses on the diverse mechanisms and factors, which enhance the eDNA release into the extracellular milieu. Furthermore, eDNA-mediated molecular interactions within the biofilm are emphasized. In addition, drug resistance mechanisms due to the versatility of eDNA are discussed. Spatial physiological diversity is expected due to different metabolic activity of bacterial subpopulation present in P. aeruginosa biofilm layers. In P. aeruginosa, eDNA release is accomplished by cell lysis and OMVs (outer membrane vesicles). eDNA release is a spontaneous and multifactorial process, which may be accomplished by PQS, pyocyanin, and lambda prophage induction. Hydrogen peroxide and pyocin trigger cell death, which may facilitate eDNA release. Lung mucosa of cystic fibrosis patients is enriched with eDNA, which acidifies biofilm and develops P. aeruginosa resistance to aminoglycosides. Further studies on spatial and molecular characterization of bacterial subpopulation in biofilm will shed light on eDNA-biofilm interaction more precisely.Key Points• Extracellular DNA (eDNA) is a key component of Pseudomonas aeruginosa biofilm.• P. aeruginosa eDNA acts as a glue to make biofilm more stronger.• Bacterial cell death or lysis may be the potential way to release P. aeruginosa eDNA into extracellular milieu.• P. aeruginosa eDNA contributes to develop resistance to antimicrobials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
13
|
Zhu Z, Cheng X, Gao D, Xu P, Guo Q, Sun D, Qin HM, Lu F. Research progress of alginate lyases on function and application. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/199/5/052016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Tavafi H, Ali AA, Ghadam P, Gharavi S. Screening, cloning and expression of a novel alginate lyase gene from P. aeruginosa TAG 48 and its antibiofilm effects on P. aeruginosa biofilm. Microb Pathog 2018; 124:356-364. [DOI: 10.1016/j.micpath.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
|
15
|
AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity. Mar Drugs 2018; 16:md16040120. [PMID: 29642383 PMCID: PMC5923407 DOI: 10.3390/md16040120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Alginate lyases are a group of enzymes that catalyze the depolymerization of alginates into oligosaccharides or monosaccharides. These enzymes have been widely used for a variety of purposes, such as producing bioactive oligosaccharides, controlling the rheological properties of polysaccharides, and performing structural analyses of polysaccharides. The algM4 gene of the marine bacterium Vibrio weizhoudaoensis M0101 encodes an alginate lyase that belongs to the polysaccharide lyase family 7 (PL7). In this study, the kinetic constants Vmax (maximum reaction rate) and Km (Michaelis constant) of AlgM4 activity were determined as 2.75 nmol/s and 2.72 mg/mL, respectively. The optimum temperature for AlgM4 activity was 30 °C, and at 70 °C, AlgM4 activity dropped to 11% of the maximum observed activity. The optimum pH for AlgM4 activity was 8.5, and AlgM4 was completely inactive at pH 11. The addition of 1 mol/L NaCl resulted in a more than sevenfold increase in the relative activity of AlgM4. The secondary structure of AlgM4 was altered in the presence of NaCl, which caused the α-helical content to decrease from 12.4 to 10.8% and the β-sheet content to decrease by 1.7%. In addition, NaCl enhanced the thermal stability of AlgM4 and increased the midpoint of thermal denaturation (Tm) by 4.9 °C. AlgM4 exhibited an ability to degrade sodium alginate, poly-mannuronic acid (polyM), and poly-guluronic acid (polyG), resulting in the production of oligosaccharides with a degree of polymerization (DP) of 2–9. AlgM4 possessed broader substrate, indicating that it is a bifunctional alginate lyase. Thus, AlgM4 is a novel salt-activated and bifunctional alginate lyase of the PL7 family with endolytic activity.
Collapse
|
16
|
Abstract
Alginate oligosaccharides with different bioactivities can be prepared through the specific degradation of alginate by alginate lyases. Therefore, alginate lyases that can be used to degrade alginate under mild conditions have recently attracted public attention. Although various types of alginate lyases have been discovered and characterized, few can be used in industrial production. In this study, AlgA, a novel alginate lyase with high specific activity, was purified from the marine bacterium Bacillus sp. Alg07. AlgA had a molecular weight of approximately 60 kDa, an optimal temperature of 40 °C, and an optimal pH of 7.5. The activity of AlgA was dependent on sodium chloride and could be considerably enhanced by Mg2+ or Ca2+. Under optimal conditions, the activity of AlgA reached up to 8306.7 U/mg, which is the highest activity recorded for alginate lyases. Moreover, the enzyme was stable over a broad pH range (5.0–10.0), and its activity negligibly changed after 24 h of incubation at 40 °C. AlgA exhibited high activity and affinity toward poly-β-d-mannuronate (polyM). These characteristics suggested that AlgA is an endolytic polyM-specific alginate lyase (EC 4.2.2.3). The products of alginate and polyM degradation by AlgA were purified and identified through fast protein liquid chromatography and electrospray ionization mass spectrometry, which revealed that AlgA mainly produced disaccharides, trisaccharides, and tetrasaccharide from alginate and disaccharides and trisaccharides from polyM. Therefore, the novel lysate AlgA has potential applications in the production of mannuronic oligosaccharides and poly-α-l-guluronate blocks from alginate.
Collapse
|
17
|
Urtuvia V, Maturana N, Acevedo F, Peña C, Díaz-Barrera A. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol 2017; 33:198. [DOI: 10.1007/s11274-017-2363-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
18
|
Nguyen TH, Nguyen VD. Characterization and Applications of Marine Microbial Enzymes in Biotechnology and Probiotics for Animal Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:37-74. [PMID: 28215328 DOI: 10.1016/bs.afnr.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture.
Collapse
Affiliation(s)
- T H Nguyen
- Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam.
| | - V D Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam.
| |
Collapse
|
19
|
Wang M, Chen L, Liu Z, Zhang Z, Qin S, Yan P. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer. Microbiologyopen 2016; 5:1038-1049. [PMID: 27440453 PMCID: PMC5221473 DOI: 10.1002/mbo3.387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 11/06/2022] Open
Abstract
Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
| | - Lei Chen
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Zhengyi Liu
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Zhaojie Zhang
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Song Qin
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Peisheng Yan
- School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
- School of Marine Science and TechnologyHarbin Institute of TechnologyWeihaiChina
| |
Collapse
|
20
|
Chen XL, Dong S, Xu F, Dong F, Li PY, Zhang XY, Zhou BC, Zhang YZ, Xie BB. Characterization of a New Cold-Adapted and Salt-Activated Polysaccharide Lyase Family 7 Alginate Lyase from Pseudoalteromonas sp. SM0524. Front Microbiol 2016; 7:1120. [PMID: 27486451 PMCID: PMC4949377 DOI: 10.3389/fmicb.2016.01120] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022] Open
Abstract
Marine bacterial alginate lyases play a role in marine alginate degradation and carbon cycling. Although a large number of alginate lyases have been characterized, reports on alginate lyases with special characteristics are still rather less. Here, a gene alyPM encoding an alginate lyase of polysaccharide lyase family 7 (PL7) was cloned from marine Pseudoalteromonas sp. SM0524 and expressed in Escherichia coli. AlyPM shows 41% sequence identity to characterized alginate lyases, indicating that AlyPM is a new PL7 enzyme. The optimal pH for AlyPM activity was 8.5. AlyPM showed the highest activity at 30°C and remained 19% of the highest activity at 5°C. AlyPM was unstable at temperatures above 30°C and had a low Tm of 37°C. These data indicate that AlyPM is a cold-adapted enzyme. Moreover, AlyPM is a salt-activated enzyme. AlyPM activity in 0.5–1.2 M NaCl was sixfolds higher than that in 0 M NaCl, probably caused by a significant increase in substrate affinity, because the Km of AlyPM in 0.5 M NaCl decreased more than 20-folds than that in 0 M NaCl. AlyPM preferably degraded polymannuronate and mainly released dimers and trimers. These data indicate that AlyPM is a new PL7 endo-alginate lyase with special characteristics.
Collapse
Affiliation(s)
- Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Sheng Dong
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Fang Dong
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China; Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China; Institute of Marine Science and Technology, Shandong UniversityJinan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| |
Collapse
|
21
|
Wang X, Wang L, Li X, Xu Y. Response surface methodology based optimization for degradation of align in Laminaria japonica feedstuff via fermentation by Bacillus in Apostichopus japonicas farming. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Wang X, Wang L, Che J, Li Z, Zhang J, Li X, Hu W, Xu Y. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1. Appl Microbiol Biotechnol 2015; 99:5843-53. [PMID: 25895094 DOI: 10.1007/s00253-015-6583-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/19/2015] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
Abstract
Laminaria japonica feedstuff is used as a substitute for Sargassum thunbergii in the small-scale culturing of Apostichopus japonicus (sea cucumber) because of its abundant sources and low price in China. However, the difficulty associated with the degradation of algin by A. japonicus and, hence, its utilization have limited the practical value of L. japonica feedstuff in sea cucumber farming. In this study, A. japonicus individuals were fed with L. japonica feedstuff pretreated, via fermentation with the algin-degrading bacterial strain, Bacillus amyloliquefaciens WB1, and their growth performance, nonspecific immune responses, and resistance against Vibrio infection were then determined over a 60-day period. Growth performance of these individuals was similar to those fed with a commercial feedstuff made from S. thunbergii (mean weight gain of 5.79 versus 5.69 g on day 60), but was significantly (P < 0.05) increased compared to those fed with untreated L. japonica feedstuff (mean weight gain of 1.31 g). At the same time, they also showed significantly higher levels of amylase, protease, and alginate lyase activities than the other groups. These individuals and those fed with the commercial feedstuff or heat-inactivated but B. amyloliquefaciens WB1-treated L. japonicas feedstuff showed enhanced levels of activities for the immune enzymes nitric oxide synthase, lysozyme, peroxidase, and acid phosphatase, compared to those fed with nontreated L. japonica feedstuff. Furthermore, A. japonicus individuals fed with B. amyloliquefaciens WB1-treated L. japonica feedstuff exhibited greater resistance to disease following Vibrio splendidus challenge, as shown by the much lower cumulative symptom (10 %) compared to the rest, which showed as much as 73 % in the case of individuals fed with the untreated L. japonica feedstuff. Analysis of their intestinal tract revealed a much lower number of total Vibrio sp. These results demonstrated that L. japonica in which the algin content had been degraded by B. amyloliquefaciens WB1 could improve the growth performance of A. japonicus as well its resistance to bacterial infection. It could therefore act as an alternative to S. thunbergii and is economical at the same time.
Collapse
Affiliation(s)
- Xitao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp. Biotechnol Lett 2014; 37:409-15. [DOI: 10.1007/s10529-014-1685-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
24
|
MacDonald LC, Berger BW. A polysaccharide lyase from Stenotrophomonas maltophilia with a unique, pH-regulated substrate specificity. J Biol Chem 2013; 289:312-25. [PMID: 24257754 DOI: 10.1074/jbc.m113.489195] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-D-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-D-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity.
Collapse
|
25
|
Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr Polym 2013; 98:1476-82. [DOI: 10.1016/j.carbpol.2013.07.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/06/2013] [Accepted: 07/22/2013] [Indexed: 01/02/2023]
|
26
|
Zhang C, Kim SK. Application of marine microbial enzymes in the food and pharmaceutical industries. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:423-35. [PMID: 22361204 DOI: 10.1016/b978-0-12-416003-3.00028-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over billions of years, the ocean is regarded as the origin of life on Earth, and the ocean includes the largest habitats hosting the most life forms. Competition among microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to the evolution. The evolution prompts the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work done on the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- School of Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|
27
|
Kam N, Park YJ, Lee EY, Kim HS. Molecular identification of a polyM-specific alginate lyase from Pseudomonas sp. strain KS-408 for degradation of glycosidic linkages between two mannuronates or mannuronate and guluronate in alginate. Can J Microbiol 2011; 57:1032-41. [DOI: 10.1139/w11-106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An alginate lyase gene of a newly isolated Pseudomonas sp. strain KS-408 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. A partial protein sequence of KS-408 alginate lyase was homology-modeled on the basis of the crystal structure of A1-III alginate lyase from Sphingomonas sp. strain A1. The proposed 3-D structure of KS-408 alginate lyase shows that Asn-198, His-199, Arg-246, and Tyr-253 residues are conserved for the catalytic active site. The recombinant KS-408-1F (with signal peptide) and KS-408-2F (without signal peptide) alginate lyases with the (His)6 tag consist of 393 (44.5 kDa) and 372 (42.4 kDa) amino acids with isoelectric points of 8.64 and 8.46, respectively. The purified recombinant KS-408 alginate lyase was very stable when it was incubated at 40 °C for 30 min. Alginate oligosaccharides produced by the KS-408-2F alginate lyase were purified on a Bio-Gel P2 column and analyzed by thin-layer chromatography, fast-protein liquid chromatography, and electrospray ionization mass spectrometry. 1H NMR data showed that the KS-408-2F alginate lyase cleaved the glycosidic linkages between two mannuronates (mannuronate-β(1–4)-mannuronate) or mannuronate and guluronate (mannuronate-β(1–4)-guluronate), indicating that the KS-408 alginate lyase is a polyM-specific lyase.
Collapse
Affiliation(s)
- Natania Kam
- Department of Food Science and Biotechnology, Kyungsung University, Busan 608-736, Korea
| | - Yoo Jung Park
- Department of Food Science and Biotechnology, Kyungsung University, Busan 608-736, Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Korea
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 608-736, Korea
| |
Collapse
|
28
|
Guo W, Song C, Kong M, Geng W, Wang Y, Wang S. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 2011; 92:791-801. [DOI: 10.1007/s00253-011-3333-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
29
|
Li L, Jiang X, Guan H, Wang P, Guo H. Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization. Appl Biochem Biotechnol 2010; 164:305-17. [DOI: 10.1007/s12010-010-9136-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
30
|
Uchimura K, Miyazaki M, Nogi Y, Kobayashi T, Horikoshi K. Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:526-533. [PMID: 19941025 DOI: 10.1007/s10126-009-9237-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/20/2009] [Indexed: 05/27/2023]
Abstract
Four alginate lyase genes were cloned and sequenced from the genomic DNAs of deep-sea bacteria, namely members of Vibrio and Agarivorans. Three of them were from Vibrio sp. JAM-A9m, which encoded alginate lyases, A9mT, A9mC, and A9mL. A9mT was composed of 286 amino acids and 57% homologous to AlxM of Photobacterium sp. A9mC (221 amino acids) and A9mL (522 amino acids) had the highest degree of similarity to two individual alginate lyases of Vibrio splendidus with 74% and 84% identity, respectively. The other gene for alginate lyase, A1mU, was shotgun cloned from Agarivorans sp. JAM-A1m. A1mU (286 amino acids) showed the highest homology to AlyVOA of Vibrio sp. with 76% identity. All alginate lyases belong to polysaccharide lyase family 7, although, they do not show significant similarity to one another with 14% to 58% identity. Among the above lyases, the recombinant A9mT was purified to homogeneity and characterized. The molecular mass of A9mT was around 28 kDa. The enzyme was remarkably salt activated and showed the highest thermal stability in the presence of NaCl. A9mT favorably degraded mannuronate polymer in alginate. We discussed substrate specificities of family 7 alginate lyases based on their conserved amino acid sequences.
Collapse
Affiliation(s)
- Kohsuke Uchimura
- Institute of Biogeoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Japan
| | | | | | | | | |
Collapse
|
31
|
Zhang C, Kim SK. Research and application of marine microbial enzymes: status and prospects. Mar Drugs 2010; 8:1920-34. [PMID: 20631875 PMCID: PMC2901830 DOI: 10.3390/md8061920] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/16/2022] Open
Abstract
Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Key laboratory of Molecular Enzymology and Enzyme Engineering of Ministry Education, Jilin University, Changchun, 130023, China; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Korea
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82 -51-629-7099
| |
Collapse
|
32
|
A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 2008; 13:121-9. [PMID: 19002649 DOI: 10.1007/s00792-008-0201-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
A high-alkaline, salt-activated alginate lyase is produced by Agarivorans sp. JAM-A1m from a deep-sea sediment off Cape Nomamisaki on Kyushu Island, Japan. Purified to homogeneity, as judged by SDS-PAGE, the enzyme (A1m) had a molecular mass of approximately 31 kDa. The optimal pH was around 10 in glycine-NaOH buffer, and the activity was increased to 1.8 times by adding 0.2 M NaCl. However, when the optimal pH in the presence of 0.2 M NaCl was shifted to pH 9.0, the activity was more than 10 times compared with that at pH 9 in the absence of NaCl. A1m showed the optimal temperature at around 30 degrees C and was stable to incubation between pH 6 and 9. The enzyme degraded favorably mannuronate-guluronate and guluronate-rich fragments in alginate. Shotgun cloning and sequencing of the gene for A1m revealed a 930-bp open reading frame, which encoded a mature enzyme of 289 amino acids (32,295 Da) belonging to polysaccharide lyase family 7. The deduced amino acid sequence showed the highest similarity to that of a Klebsiella enzyme, with only 54% identity.
Collapse
|
33
|
Shi XC, Gong QH, Cheng RB. Detection of the key enzyme of alginate biosynthesis in Vibrio sp. QY102. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|