1
|
Wang X, Dong YT, Hu XM, Zhang JZ, Shi NR, Zuo YQ, Wang X. The circadian regulation of extracellular ATP. Purinergic Signal 2023; 19:283-295. [PMID: 35939197 PMCID: PMC9984637 DOI: 10.1007/s11302-022-09881-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular ATP is a potent signaling molecule released from various cells throughout the body and is intimately involved in the pathophysiological functions of the nervous system and immune system by activating P2 purinergic receptors. Recent increasingly studies showed that extracellular ATP exhibits circadian oscillation with an approximately 24-h periodicity, which participates in regulatory pathways of central oscillator suprachiasmatic nucleus and peripheral oscillator bladder, respectively. Oscillators modulate the protein expression of ATP release channels and ectonucleotidase activity through clock genes; indeed, real-time alterations of ATP release and degradation determine outcomes of temporal character on extracellular ATP rhythm. The regulatory pathways on extracellular ATP rhythm are different in central and peripheral systems. In this review, we summarize the circadian rhythm of extracellular ATP and discuss several circadian regulatory pathways in different organs via ATP release and degradation, to provide a new understanding for purinergic signaling in the regulatory mechanism of circadian rhythm and a potential target to research the circadian regulation of extracellular ATP in other circadian oscillators.
Collapse
Affiliation(s)
- Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yu-Ting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xiu-Ming Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| | - Xu Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shi-er Qiao Road, Chengdu, 610075 China
| |
Collapse
|
2
|
Grković I, Mitrović N, Dragić M, Zarić Kontić M. Enzyme histochemistry: a useful tool for examining the spatial distribution of brain ectonucleotidases in (patho)physiological conditions. Histol Histopathol 2022; 37:919-936. [PMID: 35575291 DOI: 10.14670/hh-18-471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adenosine 5'-triphosphate (ATP) and other nucleotides and nucleosides, such as adenosine, are versatile signaling molecules involved in many physiological processes and pathological conditions in the nervous system, especially those with an inflammatory component. They can be released from nerve cells, glial cells, and vascular cells into the extracellular space where they exert their function via ionotropic (P2X) or metabotropic (P2Y) receptors. Signaling via extracellular nucleotides and adenosine is regulated by cell-surface located enzymes ectonucleotidases that hydrolyze the nucleotide to the respective nucleoside. This review summarizes a histochemical approach for detection of ectonucleotidase activities in the cryo-sections of brain tissue. The enzyme histochemistry (EHC) might be used as suitable replacement for immunohistochemistry, since it gives information about both localization and activity, thus adding a functional component to a classical histological approach. With this technique, it is possible to visualize spatial distribution and cell-specific localization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (eN/CD73) activities during brain development, after different hormonal manipulations, during neurodegeneration, etc. EHC is also suitable for investigation of microglial morphology in different (patho)physiological conditions. Furthermore, the review describes how to quantify EHC results.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zarić Kontić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Cardoso AM, Silvério MNO, de Oliveira Maciel SFV. Purinergic signaling as a new mechanism underlying physical exercise benefits: a narrative review. Purinergic Signal 2021; 17:649-679. [PMID: 34590239 PMCID: PMC8677870 DOI: 10.1007/s11302-021-09816-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil.
- Graduate Program in Physical Education, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Mauro Nicollas Oliveira Silvério
- Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| | - Sarah Franco Vieira de Oliveira Maciel
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| |
Collapse
|
5
|
Abbas S, Afzal S, Nadeem H, Hussain D, Langer P, Sévigny J, Ashraf Z, Iqbal J. Synthesis, characterization and biological evaluation of thiadiazole amide derivatives as nucleoside triphosphate diphosphohydrolases (NTPDases) inhibitors. Bioorg Chem 2021; 118:105456. [PMID: 34800887 DOI: 10.1016/j.bioorg.2021.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Importance of extracellular nucleotides is widely understood. These nucleotides act as ligand for P2X and P2Y receptors and modulate a variety of biological functions. However, their extracellular concentration is maintained by a chain of enzymes termed as ecto-nucleotidases. Amongst them, nucleoside triphosphate diphosphohydrolases (NTPDases) is an important enzyme family responsible for the dephosphorylation of these nucleotides. Overexpression of NTPDases leads to many pathological conditions such as cancer and thrombosis. So far, only a few NTPDase inhibitors have been reported. Considering this scarcity of (NTPDase) inhibitors, a number of thiadiazole amide derivatives were synthesized and screened against human (h)-NTPDases. Several compounds showed promising inhibitory activity; compound 5a (IC50 (µM); 0.05 ± 0.008) and 5g (IC50 (µM); 0.04 ± 0.006) appeared to be the most distinguished molecules corresponding to h-NTPDase1 and -2. However, h-NTPDase3 was the least susceptible isozyme and only three compounds (5d, 5e, 5j) strongly inhibited h-NTPDase3. Interestingly, compound 5e was recognized as the most active compound that showed dual inhibition against h-NTPDase3 as well as against h-NTPDase8. For better comprehension of binding mode of these inhibitors, most potent inhibitors were docked with their respective isozyme.
Collapse
Affiliation(s)
- Sadia Abbas
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Dilawar Hussain
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
6
|
Haas CB, Lovászi M, Braganhol E, Pacher P, Haskó G. Ectonucleotidases in Inflammation, Immunity, and Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1983-1990. [PMID: 33879578 PMCID: PMC10037530 DOI: 10.4049/jimmunol.2001342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release. They do so by modulating nucleotide-mediated purinergic signaling through P2 purinergic receptors. NTPDases 1, 2, 3, and 8 also play a key role during infection, inflammation, injury, and cancer. Under these conditions, NTPDases can contribute and control the pathophysiology of infectious, inflammatory diseases and cancer. In this review, we discuss the role of NTPDases, focusing on the less understood NTPDases 2-8, in regulating inflammation and immunity during infectious, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elizandra Braganhol
- Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY;
| |
Collapse
|
7
|
Afzal S, Zaib S, Jafari B, Langer P, Lecka J, Sévigny J, Iqbal J. Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold. Med Chem 2021; 16:689-702. [PMID: 31203806 DOI: 10.2174/1573406415666190614095821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) terminate nucleotide signaling via the hydrolysis of extracellular nucleoside-5'-triphosphate and nucleoside- 5'-diphosphate, to nucleoside-5'-monophosphate and composed of eight Ca2+/Mg2+ dependent ectonucleotidases (NTPDase1-8). Extracellular nucleotides are involved in a variety of physiological mechanisms. However, they are rapidly inactivated by ectonucleotidases that are involved in the sequential removal of phosphate group from nucleotides with the release of inorganic phosphate and their respective nucleoside. Ectonucleoside triphosphate diphosphohydrolases (NTPDases) represent the key enzymes responsible for nucleotides hydrolysis and their overexpression has been related to certain pathological conditions. Therefore, the inhibitors of NTPDases are of particular importance in order to investigate their potential to treat various diseases e.g., cancer, ischemia and other disorders of the cardiovascular and immune system. METHODS Keeping in view the importance of NTPDase inhibitors, a series of thiadiazolopyrimidones were evaluated for their potential inhibitory activity towards NTPDases by the malachite green assay. RESULTS The results suggested that some of the compounds were found as non-selective inhibitors of isozyme of NTPDases, however, most of the compounds act as potent and selective inhibitors. In case of substituted amino derivatives (4c-m), the compounds 4m (IC50 = 1.13 ± 0.09 μM) and 4g (IC50 = 1.72 ± 0.08 μM) were found to be the most potent inhibitors of h-NTPDase1 and 2, respectively. Whereas, compound 4d showed the best inhibitory potential for both h-NTPDase3 (IC50 = 1.25 ± 0.06 μM) and h-NTPDase8 (0.21 ± 0.02 μM). Among 5a-t derivatives, compounds 5e (IC50 = 2.52 ± 0.15 μM), 5p (IC50 = 3.17 ± 0.05 μM), 5n (IC50 = 1.22 ± 0.06 μM) and 5b (IC50 = 0.35 ± 0.001 μM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. Interestingly, the inhibitory concentration values of above-mentioned inhibitors were several folds greater than suramin, a reference control. In order to determine the binding interactions, molecular docking studies of the most potent inhibitors were conducted into the homology models of NTPDases and the putative binding analysis further confirmed that selective and potent compounds bind deep inside the active pocket of the respective enzymes. CONCLUSION The docking analysis proposed that the inhibitory activity correlates with the hydrogen bonds inside the binding pocket. Thus, these derivatives are of interest and may further be investigated for their importance in medicinal chemistry.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Behzad Jafari
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany,Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| |
Collapse
|
8
|
Babou Kammoe RB, Kauffenstein G, Pelletier J, Robaye B, Sévigny J. NTPDase1 Modulates Smooth Muscle Contraction in Mice Bladder by Regulating Nucleotide Receptor Activation Distinctly in Male and Female. Biomolecules 2021; 11:biom11020147. [PMID: 33498759 PMCID: PMC7911947 DOI: 10.3390/biom11020147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic histochemistry, and biochemical activities that nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and ecto-5′-nucleotidase were the major ectonucleotidases expressed by SMCs in the bladder. RT-qPCR revealed that, among the nucleotide receptors, there was higher expression of P2X1, P2Y1, and P2Y6 receptors. Ex vivo, nucleotides induced a more potent contraction of bladder strips isolated from NTPDase1 deficient (Entpd1−/−) mice compared to wild type controls. The strongest responses were obtained with uridine 5′-triphosphate (UTP) and uridine 5′-diphosphate (UDP), suggesting the involvement of P2Y6 receptors, which was confirmed with P2ry6−/− bladder strips. Interestingly, this response was reduced in female bladders. Our results also suggest the participation of P2X1, P2Y2 and/or P2Y4, and P2Y12 in these contractions. A reduced response to the thromboxane analogue U46619 was also observed in wild type, Entpd1−/−, and P2ry6−/− female bladders showing another difference due to sex. In summary, NTPDase1 modulates the activation of nucleotide receptors in mouse bladder SMCs, and contractions induced by P2Y6 receptor activation were weaker in female bladders.
Collapse
Affiliation(s)
- Romuald Brice Babou Kammoe
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada; (R.B.B.K.); (G.K.); (J.P.)
- Département de Microbiologie-Infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Gilles Kauffenstein
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada; (R.B.B.K.); (G.K.); (J.P.)
- Département de Microbiologie-Infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- UMR INSERM 1260, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67084 Strasbourg, France
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada; (R.B.B.K.); (G.K.); (J.P.)
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, 10 rue Adrienne Bolland, 6041 Gosselies, Belgium;
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada; (R.B.B.K.); (G.K.); (J.P.)
- Département de Microbiologie-Infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46319); Fax: +1-418-654-2765
| |
Collapse
|
9
|
Gubert C, Andrejew R, Figueiro F, Bergamin L, Kapczinski F, Magalhães PVDS, Battastini AMO. Lithium-induced neuroprotective activity in neuronal and microglial cells: A purinergic perspective. Psychiatry Res 2021; 295:113562. [PMID: 33213934 DOI: 10.1016/j.psychres.2020.113562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Lithium is the mainstay of pharmacotherapy for treating bipolar disorder (BD). However, despite its wide use for over 60 years in the clinic, its mechanisms of action are not yet well defined. Elucidating lithium's mechanism of action will not only shed light on the pathophysiology of BD, but also potentially uncover new treatment targets. Previous studies suggest that the purinergic system may be involved in lithium's neuroprotective action; thus, the specific aim of this study is to better understand the neuroprotective action of lithium against ATP-induced cellular effect in both neuronal and microglial cellular lineages. We used PC12 neuronal and N9 microglial cells, evaluating cell death by cell counting and Annexin/PI cytometry assay, P2 × 7R immunocontent and ectonucleotidases activity, together with cytokine and nitrite assessment for microglial activity determination. Our results indicate that cells of different neural origins are responsive to ATP, in the sense of neuronal excitotoxicity and microglial switch into an activated M1-like phenotype respectively. Lithium, in turn, modulates the response in neuronal PC12 cells, preventing ATP-induced cell death. On the other hand, in N9 microglial cells, lithium was unable to prevent ATP-induced activation via P2 × 7R, indicating that lithium protective action against the effects of ATP more likely occurs in neurons rather than in microglia. Further studies are needed to better characterize the involvement of the purinergic system in the mechanism of action of lithium against neuronal death and microglial activation, in order to uncover new therapeutic adjunctive targets, such as antagonism of P2 × 7R, as potential approach for bipolar disorder treatment.
Collapse
Affiliation(s)
- Carolina Gubert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil.
| | - Roberta Andrejew
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Fabricio Figueiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Letícia Bergamin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioral Sciences, MacMaster University, Hamilton, Canada
| | - Pedro Vieira da Silva Magalhães
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Graduate Program in Psychiatry and Behavioral Sciences, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR. Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 2020; 256:117862. [PMID: 32473244 DOI: 10.1016/j.lfs.2020.117862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências UFRGS, Porto Alegre, RS, Brazil
| | | | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, UFCSPA, Porto Alegre, RS, Brazil; Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
12
|
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 2018; 123:298-313. [PMID: 30291944 DOI: 10.1016/j.fct.2018.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.
Collapse
Affiliation(s)
- Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção: Centro de Ciências Farmacêuticas, Químicas e de Alimentos, UFPel, Campus Capão do Leão 96010-900, Pelotas, RS, Brazil
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Lisiane Porciúncula
- Departamento de Bioquímica, UFRGS, 90040-060, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-graduação em Biologia Celular e Molecular Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Nardi-Schreiber A, Sapir G, Gamliel A, Kakhlon O, Sosna J, Gomori JM, Meiner V, Lossos A, Katz-Brull R. Defective ATP breakdown activity related to an ENTPD1 gene mutation demonstrated using 31P NMR spectroscopy. Chem Commun (Camb) 2018; 53:9121-9124. [PMID: 28759073 DOI: 10.1039/c7cc00426e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ecto-nucleoside triphosphate diphosphohydrolase-1 (E-NTPDase-1, CD39) enzyme is responsible for the breakdown of extracellular ATP to ADP and then to AMP by a two-step process. Defective CD39 activity has been described in a variety of medical conditions including malignancy and rheumatic diseases and has been proved to be of major diagnostic and clinical importance. Here we show for the first time that a 31P NMR spectroscopy methodology enables the quantification of these two steps in a single blood sample. We have applied this assay to determine the E-NTPDase activity on human mononuclear cells taken from two siblings affected by a stop-codon mutation in the ENTPD1 gene, their obligatory heterozygous parents, and healthy volunteers. The affected subjects presented low ATP breakdown activity, mainly expressed as low AMP production.
Collapse
|
14
|
Channar PA, Afzal S, Ejaz SA, Saeed A, Larik FA, Mahesar PA, Lecka J, Sévigny J, Erben MF, Iqbal J. Exploration of carboxy pyrazole derivatives: Synthesis, alkaline phosphatase, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase inhibition studies with potential anticancer profile. Eur J Med Chem 2018; 156:461-478. [DOI: 10.1016/j.ejmech.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
|
15
|
Mitrović N, Zarić M, Drakulić D, Martinović J, Sévigny J, Stanojlović M, Nedeljković N, Grković I. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes. J Mol Neurosci 2016; 61:412-422. [PMID: 27981418 DOI: 10.1007/s12031-016-0877-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia.
| |
Collapse
|
16
|
Nastasijev B, Milosevic M, Janjic G, Stanic V, Vasic V. Gentiana lutea Extracts and their Constituents as Inhibitors of Synaptosomal Ecto-NTPDase. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.272.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 2015; 362:163-76. [PMID: 25959293 DOI: 10.1007/s00441-015-2179-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
Abstract
Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5'-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5'-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.
Collapse
|
18
|
Fiene A, Baqi Y, Lecka J, Sévigny J, Müller CE. Fluorescence polarization immunoassays for monitoring nucleoside triphosphate diphosphohydrolase (NTPDase) activity. Analyst 2015; 140:140-8. [DOI: 10.1039/c4an01694g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel and very sensitive fluorescence polarization immunoassays (FPIA) for the screening of NTPDases have been successfully established and validated.
Collapse
Affiliation(s)
- Amelie Fiene
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| | - Younis Baqi
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie
- Faculté de Médecine
- Université Laval
- Québec
- Canada
| | - Christa E. Müller
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- University of Bonn
- D-53121 Bonn
| |
Collapse
|
19
|
Abdalla FH, Cardoso AM, Pereira LB, Schmatz R, Gonçalves JF, Stefanello N, Fiorenza AM, Gutierres JM, Serres JDDS, Zanini D, Pimentel VC, Vieira JM, Schetinger MRC, Morsch VM, Mazzanti CM. Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats. Mol Cell Biochem 2014; 381:1-8. [PMID: 23797318 DOI: 10.1007/s11010-013-1659-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
This study investigated the effect of quercetin on nucleoside triphosphate diphosphohydrolase (NTP-Dase), 50-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes from cerebral cortex of adult rats exposed to cadmium (Cd). Rats were exposed to Cd (2.5 mg/Kg) and quercetin (5, 25 or 50 mg/Kg) by gavage for 45 days. Rats were randomly divided into eight groups (n = 8-10): saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. Results demonstrated that AChE activity increased in the Cd/ethanol group when compared to saline/ethanol group. Treatment with quercetin prevented the increase in AChE activity when compared to Cd/ethanol group. Quercetin treatment prevented the cadmium-induced increase in NTPDase, 5-nucleotidase, and ADA activities in Cd/ethanol group when compared to saline/ethanol group. Our data showed that quercetin have a protector effect against Cd intoxication. This way, is a promising candidate among the flavonoids to be investigated as a therapeutic agent to attenuate neurological disorders associated with Cd intoxication.
Collapse
Affiliation(s)
- Fátima Husein Abdalla
- Department of Chemistry, Center of Natural Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
al-Rashida M, Iqbal J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 2013; 34:703-43. [PMID: 24115166 DOI: 10.1002/med.21302] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.
Collapse
Affiliation(s)
- Mariya al-Rashida
- Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | | |
Collapse
|
21
|
Wujak M, Banach M, Porowińska D, Piskulak K, Komoszyński M. Isolation and bioinformatic analysis of seven genes encoding potato apyrase. Bacterial overexpresssion, refolding and initial kinetic studies on some recombinant potato apyrases. PHYTOCHEMISTRY 2013; 93:8-17. [PMID: 23663929 DOI: 10.1016/j.phytochem.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Here we have isolated seven apyrase encoding cDNA sequences (StAPY4-StAPY10) from the potato variety Saturna tuber cDNA library by affecting necessary modifications in the screening protocol. The cDNA sequences were identified with a pair of primers complementary to the most conserved sequences identified in potato variety Desiree apyrase genes. Our data strongly suggest the multigenic nature of potato apyrase. All deduced amino acid sequences contain a putative signal sequence, one transmembrane region at the amino terminus and five apyrase conserved regions (ACRs) (except StAPY6). Phylogenetic analysis revealed that encoded proteins shared high level of DNA sequence identity among themselves, representing a family of proteins markedly distinct from other eukaryotic as well as prokaryotic apyrases. Two cDNA sequences (StAPY4 and StAPY6) were overexpressed in bacteria and recombinant proteins were found accumulated in inclusion bodies, even thought they were fused with thioredoxin-tag. Additionally, we present the first successful in vitro attempt at reactivation and purification of recombinant potato apyrase StAPY6. The ratio of ATPase/ADPase hydrolysis of recombinant StAPY6 was determined as 1.5:1. Unlike other apyrases the enzyme lacked ACR5 and was endowed with lower molecular weight, high specificity for purine nucleotides and very low specificity for pyrimidine, suggesting that StAPY6 is a potato apyrase, not described so far.
Collapse
Affiliation(s)
- Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland
| | | | | | | | | |
Collapse
|
22
|
Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the "adenosine hypothesis". Purinergic Signal 2013; 9:599-608. [PMID: 23771238 DOI: 10.1007/s11302-013-9370-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5'-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5'-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.
Collapse
|
23
|
Okuhata R, Otsuka Y, Tsuchiya T, Kanzawa N. Mutagenesis of apyrase conserved region 1 alters the nucleotide substrate specificity. PLANT SIGNALING & BEHAVIOR 2013; 8:e24131. [PMID: 23470725 PMCID: PMC3908943 DOI: 10.4161/psb.24131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 05/29/2023]
Abstract
Two apyrases having different substrate specificity, MP67 and MpAPY2, are present in Mimosa pudica. The substrate specificity of MP67 is quite high against ADP, and is distinct from any other apyrase. This might be attributed to the nucleotide binding motif (DXG) in apyrase conserved region 1. We performed a single amino acid substitution at position X in the motif. The ratio of the velocity of ATP/ADP hydrolysis was higher (approximately 1) for the S63A-MP67 mutant than for wild type-MP67 (0.19). Binding affinity for ADP of A75S-MpAPY2 mutant was increased to a level higher than that of the wild type MpAPY2. Thus, the residue at position X in the DXG motif plays an important role in determining nucleotide preference.
Collapse
|
24
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 799] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
25
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
26
|
Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 2011; 193:387-98. [PMID: 21807070 DOI: 10.1016/j.neuroscience.2011.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/28/2011] [Accepted: 07/18/2011] [Indexed: 12/27/2022]
Abstract
Nucleotide-activated P2X channels and P2Y metabotropic receptors participate in nociceptive signaling. Agonist availability is regulated by nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, a family of enzymes that hydrolyze extracellular ATP to generate ADP (a P2Y agonist) and AMP. They provide a major source of extracellular AMP, the substrate for adenosine production by ecto-5'-nucleotidase (NT5E), and thereby regulate adenosine (P1) receptor signaling. NTPDases vary in their efficiency of tri- and diphosphate hydrolysis; therefore, which family members are expressed impacts nucleotide availability and half-life. This study employed enzyme activity histochemistry to examine the distribution of ATPase activity and immunohistochemistry for NTPDase1, 2, 3, and 8 in dorsal root ganglion (DRG) and spinal cord. Nucleotidase activity was robust in spinal dorsal horn, confirming that nociceptive pathways are a major site of nucleotide transmission. In DRG, extensive staining revealed ATPase activity in a subset of neurons and in non-neuronal cells. mRNA for NTPDase1-3, but not NTPDase8, was detected in lumbar DRG and spinal cord. Immunoreactivity for NTPDase3 closely matched the distribution of ATPase activity, labeling DRG central projections in the dorsal root and superficial dorsal horn, as well as intrinsic spinal neurons concentrated in lamina II. In DRG, NTPDase3 co-localized with markers of nociceptors and with NT5E. In addition, labeling of a subset of larger-diameter neurons in DRG was consistent with intense staining of Meissner corpuscle afferents in glabrous skin. Merkel cells and terminal Schwann cells of hair follicle afferents were also labeled, but the axons themselves were negative. We propose that NTPDase3 is a key regulator of nociceptive signaling that also makes an unexpected contribution to innocuous tactile sensation.
Collapse
|
27
|
Expression and distribution of ectonucleotidases in mouse urinary bladder. PLoS One 2011; 6:e18704. [PMID: 21533188 PMCID: PMC3077397 DOI: 10.1371/journal.pone.0018704] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022] Open
Abstract
Background Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse bladder since mice offer the advantage of straightforward genetic modification for future studies. Principal Findings RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase (NTPD) family, as well as 5′-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific, occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells. Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1 suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes. Conclusions Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression and location of ectonucleotidases within the mammalian urinary bladder.
Collapse
|
28
|
Lavoie EG, Gulbransen BD, Martín-Satué M, Aliagas E, Sharkey KA, Sévigny J. Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 2011; 300:G608-20. [PMID: 21233276 DOI: 10.1152/ajpgi.00207.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides and adenosine are biologically active molecules that bind members of the P2 and P1 receptor families, respectively. In the digestive system, these receptors modulate various functions, including salivary, gastric, and intestinal epithelial secretion and enteric neurotransmission. The availability of P1 and P2 ligands is modulated by ectonucleotidases, enzymes that hydrolyze extracellular nucleotides into nucleosides. Nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase are the dominant ectonucleotidases at physiological pH. While there is some information about the localization of ecto-5'-nucleotidase and NTPDase1 and -2, the distribution of NTPDase3 in the digestive system is unknown. We examined the localization of these ectonucleotidases, with a focus on NTPDase3, in the gastrointestinal tract and salivary glands. NTPDase1, -2, and -3 are responsible for ecto-ATPase activity in these tissues. Semiquantitative RT-PCR, immunohistochemistry, and in situ enzyme activity revealed the presence of NTPDase3 in some epithelial cells in serous acini of salivary glands and mucous acini and duct cells of sublingual salivary glands, in cells from the stratified esophageal and forestomach epithelia, and in some enteroendocrine cells of the gastric antrum. Interestingly, NTPDase2 and ecto-5'-nucleotidase are coexpressed with NTPDase3 in salivary gland cells and stratified epithelia. In the colon, neurons express NTPDase3 and glial cells express NTPDase2. Ca(2+) imaging experiments demonstrate that NTPDases regulate P2 receptor ligand availability in the enteric nervous system. In summary, the specific localization of NTPDase3 in the digestive system suggests functional roles of the enzyme, in association with NTPDase2 and ecto-5'-nucleotidase, in epithelial functions such as secretion and in enteric neurotransmission.
Collapse
Affiliation(s)
- Elise G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Cognato GP, Vuaden FC, Savio LEB, Bellaver B, Casali E, Bogo MR, Souza DOG, Sévigny J, Bonan CD. Nucleoside triphosphate diphosphohydrolases role in the pathophysiology of cognitive impairment induced by seizure in early age. Neuroscience 2011; 180:191-200. [PMID: 21315806 DOI: 10.1016/j.neuroscience.2011.01.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 11/15/2022]
Abstract
Studies have shown that seizures in young animals lead to later cognitive deficits. There is evidence that long-term potentiation (LTP) and long-term depression (LTD) might contribute to the neural basis for learning and memory mechanism and might be modulated by ATP and/or its dephosphorylated product adenosine produced by a cascade of cell-surface transmembrane enzymes, such as E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolases) and ecto-5'-nucleotidase. Thus, we have investigated if hippocampal ecto-nucleotidase activities are altered at different time periods after one episode of seizure induced by kainic acid (KA) in 7 days old rats. We also have evaluated if 90 day-old rats previously submitted to seizure induced by KA at 7 days of age presented cognitive impairment in Y-maze behavior task. Our results have shown memory impairment of adult rats (Postnatal day 90) previously submitted to one single seizure episode in neonatal period (Postnatal day 7), which is accompanied by an increased ATP hydrolysis in hippocampal synaptosomes. The metabolism of ATP evaluated by HPLC confirmed that ATP hydrolysis was faster in adult rats treated with KA in neonatal period than in controls. Surprisingly, the mRNA and protein levels as seen by PCR and Western blot, respectively, were not altered by the KA administration in early age. Since we have found an augmented hydrolysis of ATP and this nucleotide seems to be important to LTP induction, we could assume that impairment of memory and learning observed in adult rats which have experienced a convulsive episode in postnatal period may be a consequence of the increased ATP hydrolysis. These findings correlate the purinergic signaling to the cognitive deficits induced by neonatal seizures and contribute to a better understanding about the mechanisms of seizure-induced memory dysfunction.
Collapse
Affiliation(s)
- G P Cognato
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 2600 Anexo, 90035-000 Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
31
|
Lavoie EG, Fausther M, Kauffenstein G, Kukulski F, Künzli BM, Friess H, Sévigny J. Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion. Am J Physiol Endocrinol Metab 2010; 299:E647-56. [PMID: 20682839 DOI: 10.1152/ajpendo.00126.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular nucleotides and adenosine regulate endocrine pancreatic functions such as insulin secretion by Langerhans islet β-cells via the activation of specific P2 and P1 receptors. Membrane-bound ectonucleotidases regulate the local concentration of these ligands and consequently control the activation of their receptors. The objective of this study was to identify and localize the major ectonucleotidases, namely NTPDases and ecto-5'-nucleotidase, present in the endocrine pancreas. In addition, the potential implication of ecto-ATPase activity on insulin secretion was investigated in the rat β-cell line INS-1 (832/13). The localization of ectonucleotidase activity and protein was carried out in situ by enzyme histochemistry and immunolocalization in mouse, rat, and human pancreas sections. NTPDase1 was localized in all blood vessels and acini, and NTPDase2 was localized in capillaries of Langerhans islets and in peripheral conjunctive tissue, whereas NTPDase3 was detected in all Langerhans islet cell types. Interestingly, among the mammalian species tested, ecto-5'-nucleotidase was present only in rat Langerhans islet cells, where it was coexpressed with NTPDase3. Notably, the inhibition of NTPDase3 activity by BG0136 and NF279 facilitated insulin release from INS-1 (832/13) cells under conditions of low glycemia, probably by affecting P2 receptor activation. NTPDase3 activity also regulated the inhibitory effect of exogenous ATP in the presence of a high glucose concentration most likely by controlling adenosine production. In conclusion, all pancreatic endocrine cells express NTPDase3 that was shown to modulate insulin secretion in rat INS-1 (832/13) β-cells. Ecto-5'-nucleotidase is expressed in rat Langerhans islet cells but absent in human and mouse endocrine cells.
Collapse
Affiliation(s)
- Elise G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Ricatti MJ, Alfie LD, Lavoie EG, Sévigny J, Schwarzbaum PJ, Faillace MP. Immunocytochemical localization of NTPDases1 and 2 in the neural retina of mouse and zebrafish. Synapse 2009; 63:291-307. [PMID: 19116950 DOI: 10.1002/syn.20605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are a family of membrane-bound enzymes that hydrolyze extracellular di- and triphosphate nucleosides. E-NTPDases have been proposed to control extracellular nucleotide levels that mediate intercellular communication by binding to specific membrane receptors. Here we show a detailed immunocytochemical localization of two enzymes of the E-NTPDase family in the retinal layers of two vertebrate species, namely, the mouse and the zebrafish. In the mouse retina, NTPDase2 was chiefly localized in Müller glia and ganglion cell processes. NTPDase1 was located on neurons as well, since it was expressed by horizontal and ganglion cell processes, suggesting that nucleotides such as ATP and ADP can be hydrolyzed at the surface of these cells. NTPDase1 was also detected in intraretinal blood vessels of the mouse. Regarding zebrafish, NTPDases1 and 2 seem to be differentially localized in horizontal cell processes, photoreceptor segments, and ganglion cell dendrites and axons, but absent from Müller glia. Moreover, NTPDases1 and 2 appear to be expressed within the germinal margin of the zebrafish retina that contains proliferative and differentiating cells. Retinal homogenates from both species exhibited ecto-ATPase activity which might be attributed at least to NTPDases1 and 2, whose expression is described in this report. Our results suggest a compartmentalized regulation of extracellular nucleotide/nucleoside concentration in the retinal layers, supporting a relevant role for extracellular nucleotide mediated-signaling in vertebrate retinas.
Collapse
Affiliation(s)
- María Jimena Ricatti
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Munkonda MN, Pelletier J, Ivanenkov VV, Fausther M, Tremblay A, Künzli B, Kirley TL, Sévigny J. Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3 : partial characterization of the inhibitory epitope and potential applications. FEBS J 2009; 276:479-96. [PMID: 19120451 DOI: 10.1111/j.1742-4658.2008.06797.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study and therapeutic modulation of purinergic signaling is hindered by a lack of specific inhibitors for NTP diphosphohydrolases (NTPDases),which are the terminating enzymes for these processes. In addition, little is known of the NTPDase protein structural elements that affect enzymatic activity and which could be used as targets for inhibitor design. In the present study, we report the first inhibitory monoclonal antibodies specific for an NTPDase, namely human NTPDase3 (EC 3.6.1.5), as assessed by ELISA, western blotting, flow cytometry, immunohistochemistry and inhibition assays. Antibody recognition of NTPDase3 is greatly attenuated by denaturation with SDS, and abolished by reducing agents, indicating the significance of the native conformation and the disulfide bonds for epitope recognition. Using site-directed chemical cleavage, the SDS-resistant parts of the epitope were located in two fragments of the C-terminal lobe ofNTPDase3 (i.e. Leu220-Cys347 and Cys347-Pro485), which are both required for antibody binding. Additional site-directed mutagenesis revealed the importance of Ser297 and the fifth disulfide bond (Cys399-Cys422) for antibody binding, indicating that the discontinuous inhibitory epitope is located on the extracellular C-terminal lobe of NTPDase3. These antibodies inhibit recombinant NTPDase3 by 60-90%, depending on the conditions. More importantly, they also efficiently inhibit the NTPDase3expressed in insulin secreting human pancreatic islet cells in situ. Because insulin secretion is modulated by extracellular ATP and purinergic receptors, this finding suggests the potential application of these inhibitory antibodies for the study and control of insulin secretion.
Collapse
Affiliation(s)
- Mercedes N Munkonda
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 2008; 5:91-106. [PMID: 18528783 PMCID: PMC2721768 DOI: 10.1007/s11302-008-9103-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 04/10/2008] [Indexed: 12/03/2022] Open
Abstract
Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM).
Collapse
|
35
|
Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci U S A 2008; 105:6882-7. [PMID: 18458329 DOI: 10.1073/pnas.0802535105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell surface-located nucleoside triphosphate diphosphohydrolases (NTPDase1, -2, -3, and -8) are oligomeric integral membrane proteins responsible for signal conversion and inactivation in extracellular nucleotide-mediated "purinergic" signaling. They catalyze the sequential hydrolysis of the signaling molecule ATP via ADP to AMP. Here we present the structure of the extracellular domain of Rattus norvegicus NTPDase2 in an active state at resolutions between 1.7 A and 2.1 A in four different forms: (i) apo form, (ii) ternary complex with the nonhydrolyzable ATP analog AMPPNP and cofactor Ca(2+), (iii) quaternary complex with Ca(2+) and bound products AMP and phosphate, and (iv) binary product complex with AMP only. Analysis of the ATP (analog) binding mode explains the importance of several residues for activity and allows suggestion of a catalytic mechanism. The carboxylate group of E165 serves as a catalytic base and activates a water molecule, which is well positioned for nucleophilic attack on the terminal phosphate. Based on analysis of the two product complex structures in which AMP adopts different conformations, a substrate binding mode for ADP hydrolysis is proposed. This allows for an understanding of how the same hydrolytic site can be engaged in ATP and ADP but not AMP hydrolysis.
Collapse
|
36
|
Bjelobaba I, Stojiljkovic M, Pekovic S, Dacic S, Lavrnja I, Stojkov D, Rakic L, Nedeljkovic N. Immunohistological determination of ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and 5'-nucleotidase in rat hippocampus reveals overlapping distribution. Cell Mol Neurobiol 2007; 27:731-43. [PMID: 17619139 PMCID: PMC11517217 DOI: 10.1007/s10571-007-9159-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Distribution of two enzymes involved in the ectonucleotidase enzyme chain, ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5'-nucleotidase, was assessed by immunohistochemistry in the rat hippocampus. Obtained results have shown co-expression of the enzymes in the hippocampal region, as well as wide and strikingly similar cellular distribution. Both enzymes were expressed at the surface of pyramidal neurons in the CA1 and CA2 sections, while cells in the CA3 section were faintly stained. The granule cell layer of the dentate gyrus was moderately stained for NTPDase1, as well as for ecto-5'-nucleotidase. Glial association for ecto-5'-nucleotidase was also observed, and fiber tracts were intensively stained for both enzymes. This is the first comparative study of NTPDase1 and ecto-5'-nucleotidase distribution in the rat hippocampus. Obtained results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Mirjana Stojiljkovic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Sanja Dacic
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Danijela Stojkov
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Ljubisav Rakic
- Department of Neurochemistry and Immunonology, Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute of Physiology and Biochemistry, Faculty of Biology, University Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| |
Collapse
|
37
|
Sperlágh B, Vizi ES. Extracellular interconversion of nucleotides reveals an ecto-adenylate kinase activity in the rat hippocampus. Neurochem Res 2007; 32:1978-89. [PMID: 17721817 DOI: 10.1007/s11064-007-9458-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Here, the extracellular interconversion of nucleotides and nucleosides was investigated in rat hippocampal slices and synaptosomes by an HPLC-UV technique. Adenosine 5'-triphosphate (ATP) was converted to adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), adenosine, inosine, and hypoxanthine in the slices, whereas ADP elicited parallel and concentration-dependent formation of ATP and AMP. The specific adenylate kinase inhibitor diadenosine pentaphosphate decreased the rate of decomposition of ADP and inhibited the formation of ATP. No substantial changes in the interconversion of ADP to ATP and AMP were found in the presence of dipyridamole, flufenamic acid, the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid tetrasodium (PPADS), and the alkaline phosphatase substrate para-nitrophenylphosphate. Negligible levels of nucleotides were generated when uridine 5'-diphosphate (UDP), AMP or adenosine were used as substrates. Ecto-adenylate kinase activity was also observed in purified synaptosomes. In summary, we demonstrate the presence of an ecto-adenylate kinase activity in the hippocampus, which is a previously unrecognized pathway that influences the availability of purines in the central nervous system.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Department of Pharmacology, Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest 1083, Hungary.
| | | |
Collapse
|
38
|
Buffon A, Wink MR, Ribeiro BV, Casali EA, Libermann TA, Zerbini LF, Robson SC, Sarkis JJF. NTPDase and 5' ecto-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor. Biochim Biophys Acta Gen Subj 2007; 1770:1259-65. [PMID: 17574764 DOI: 10.1016/j.bbagen.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/13/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we evaluated the NTPDases and ecto-5'-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5'-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth.
Collapse
Affiliation(s)
- A Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, ICBS, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, de Freitas Sarkis JJ, Bonan CD. Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 2007; 80:1784-91. [PMID: 17363004 DOI: 10.1016/j.lfs.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/21/2022]
Abstract
ATP exerts a proinflammatory role and induces cytokine release by acting at P2X(7) receptors. The product of ATP hydrolysis is the nucleoside adenosine, an important immunomodulator. The main source of extracellular adenosine is the hydrolysis of extracellular ATP by a group of ecto-enzymes: ENTPDase family, NPP family and ecto-5'-nucleotidase. Considering the role of ATP and adenosine in inflammatory processes, we investigated the effect of lipopolysaccharide on ectonucleotidases activities and expression in lymphocytes from mesenteric lymph nodes and serum of rats, in order to better understand the involvement of extracellular nucleotide hydrolysis in an endotoxemia model. We observed significant changes on nucleotidase activities from lymphocytes and serum of rats after in vitro and in vivo exposure to LPS. In vitro results have shown an increase on nucleotide hydrolysis in lymphocytes and a decrease on the enzyme activity of NPP in blood serum. In vivo, we observed an increase on nucleotide hydrolysis in lymphocytes and a decrease in the hydrolysis of all nucleotides tested in blood serum. After 24 and 48 h of LPS treatment, there was a reduction in NTPDase1, 2, 3 and ecto-5'-nucleotidase transcripts. These results suggest that there is a time-dependent enhancement of extracellular nucleotides metabolism in lymphocytes and blood serum after the induction of an endotoxemic model. The changes observed suggest that these enzymes can act in the regulation of extracellular nucleosides and nucleotides in a model able to trigger inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Schetinger MRC, Morsch VM, Bonan CD, Wyse ATS. NTPDase and 5'-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors 2007; 31:77-98. [PMID: 18806312 DOI: 10.1002/biof.5520310205] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular nucleotides and nucleosides act as signaling molecules involved in a wide spectrum of biological effects. Their levels are controlled by a complex cell surface-located group of enzymes called ectonucleotidases. There are four major families of ectonucleotidases, nucleoside triphosphate diphosphohydrolases (NTPDases/CD39), ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline phosphatases and ecto-5'-nucleotidase. In the last few years, substantial progress has been made toward the molecular identification of members of the ectonucleotidase families and their enzyme structures and functions. In this review, there is an emphasis on the involvement of NTPDase and 5'-nucleotidase activities in disease processes in several tissues and cell types. Brief background information is given about the general characteristics of these enzymes, followed by a discussion of their roles in thromboregulatory events in diabetes, hypertension, hypercholesterolemia and cancer, as well as in pathological conditions where platelets are less responsive, such as in chronic renal failure. In addition, immunomodulation and cell-cell interactions involving these enzymes are considered, as well as ATP and ADP hydrolysis under different clinical conditions related with alterations in the immune system, such as acute lymphoblastic leukemia (ALL), B-chronic lymphocytic leukemia (B-CLL) and infections associated with human immunodeficiency virus (HIV). Finally, changes in ATP, ADP and AMP hydrolysis induced by inborn errors of metabolism, seizures and epilepsy are discussed in order to highlight the importance of these enzymes in the control of neuronal activity in pathological conditions. Despite advances made toward understanding the molecular structure of ectonucleotidases, much more investigation will be necessary to entirely grasp their role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Rosa C Schetinger
- Laboratório de Enzimologia Toxicológica, Departamento de Química, CCNE, Universidade Federal de Santa Maria, Avenida Roraima, no 1000, Cidade Universitária, Bairro Camobi, Santa Maria-RS, 97105-900, Brazil.
| | | | | | | |
Collapse
|
41
|
Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal 2006; 2:371-7. [PMID: 18404477 PMCID: PMC2254483 DOI: 10.1007/s11302-005-5304-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 02/07/2023] Open
Abstract
The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification.
Collapse
|
42
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
43
|
White N, Burnstock G. P2 receptors and cancer. Trends Pharmacol Sci 2006; 27:211-7. [PMID: 16530853 DOI: 10.1016/j.tips.2006.02.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/07/2005] [Accepted: 02/21/2006] [Indexed: 12/20/2022]
Abstract
Purinergic signalling has been implicated in many biological processes, and ATP and other extracellular nucleotides might have therapeutic potential in the treatment of cancer by signalling through P2 receptors. Different P2 receptor subtypes have been identified in a variety of different cancer types, in both primary samples of human cancer tissue and cell lines. Recent evidence suggests that different receptor subtypes mediate different pathophysiological functions such as proliferation, differentiation and apoptosis. In vivo studies of the use of ATP suggest that it can decrease the rate of cancer growth, and the first clinical trials have been undertaken. Thus, agents acting at P2 receptors might provide novel therapeutic tools in the treatment of cancer. In this article, background information about purinergic signalling and purinoceptor subtypes will be provided and then the proposed role of ATP in different cancers will be discussed in detail, including a discussion of in vivo studies and animal models, clinical trials and the specific P2 receptor subtypes involved.
Collapse
Affiliation(s)
- Nicholas White
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London, UK, NW3 2PF
| | | |
Collapse
|
44
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
45
|
Wink MR, Braganhol E, Tamajusuku ASK, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AMO, Robson SC. Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 2006; 138:421-32. [PMID: 16414200 DOI: 10.1016/j.neuroscience.2005.11.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 11/15/2005] [Accepted: 11/16/2005] [Indexed: 11/23/2022]
Abstract
Inflammatory and degenerative pathophysiological processes within the CNS are important causes of human disease. Astrocytes appear to modulate these reactions and are a major source of inflammatory mediators, e.g. extracellular adenine nucleotides, in nervous tissues. Actions following extracellular nucleotides binding to type 2 purinergic receptors are regulated by ectonucleotidases, including members of the CD39/ecto-nucleoside triphosphate diphosphohydrolase family. The ectonucleotidases of astrocytes expressed by rat brain rapidly convert extracellular ATP to ADP, ultimately to AMP. RT-PCR, immunocytochemistry as well as Western blotting analysis demonstrated expression of multiple ecto-nucleoside triphosphate diphosphohydrolase family members at both the mRNA and protein level. By quantitative real-time PCR, we identified Entpd2 (CD39L1) as the dominant Entpd gene expressed by rat hippocampal, cortical and cerebellar astrocytes. These data in combination with the elevated ecto-ATPase activity observed in these brain regions, suggest that NTPDase2, an ecto-enzyme that preferentially hydrolyzes ATP, is the major ecto-nucleoside triphosphate diphosphohydrolase expressed by rat astrocytes. NTPDase2 may modulate inflammatory reactions within the CNS and could represent a useful therapeutic target in human disease.
Collapse
Affiliation(s)
- M R Wink
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signal 2005; 1:349-58. [PMID: 18404519 PMCID: PMC2096555 DOI: 10.1007/s11302-005-8076-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022] Open
Abstract
A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of -60 muA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis-Menten constants (K (m)) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and N (6)-diethyl-beta,gamma-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods.
Collapse
|