1
|
Gu Y, Meng J, Duo J, Khim JS, Wang T, Su G, Li Q, Shi B, Sun B, Zhang Y, Ouyang K. Environmental fate and transformation mechanisms of chlorinated organic pollutants from the petrochemical industry: Insights for pollution control and remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136329. [PMID: 39488973 DOI: 10.1016/j.jhazmat.2024.136329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chlorinated organic pollutants (Cl-OPs), highly toxic and environmentally persistent, have become the spotlight, particularly from petrochemical industry. This study focuses on environmental fate of Cl-OPs from petrochemical industry, and transformation mechanisms in multi-media, aiming to enhance pollution control and remediation strategies. Emitted from leakage and waste discharge, Cl-OPs, encompassing chlorinated volatile organic compounds (Cl-VOCs), traditional and emerging persistent organic pollutants (POPs), were prevalent with average concentrations of 10-6-103 μg/m3 in the atmosphere, 10-2-105 μg/kg in soil and 100-105 μg/L in groundwater. Significantly, emerging POPs, particularly hexachlorobutadiene (HCBD) and short-chain chlorinated paraffins (SCCPs), with concentrations comparable to Cl-VOCs, urgently need attention. Once into the environment, Cl-OPs are naturally transformed primarily through atmospheric oxidation and water photolysis induced by hydroxyl radical (‧OH), and microbial degradation. Despite challenges in atmospheric complete degradation, ‧OH in water effectively photolytically degrade chlorinated benzenes and paraffins facilitated by dissolved oxygen and organic matter. Microbial degradation, influenced by oxygen, temperature, and pH, is essential for Cl-OPs removal from water and soil, where oxidation make complete mineralization possible whereas dechlorination may generate higher toxic intermediates. Hence, Cl-OPs control necessitates an attentive to leakage and waste management. Furthermore, advanced ‧OH oxidation and microbial treatment are of effective remediation prospect.
Collapse
Affiliation(s)
- Yangyang Gu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Duo
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaige Ouyang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
2
|
Riscassi AL, Scanlon TM, Galloway JN. Factors influencing seasonal chemistry patterns in Virginia mountain streams. BIOGEOCHEMISTRY 2024; 167:1175-1201. [PMID: 39430223 PMCID: PMC11489209 DOI: 10.1007/s10533-024-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/03/2024] [Indexed: 10/22/2024]
Abstract
The relative influence of seasonal patterns in hydrological flow and seasonal differences in biological and geochemical activity on stream chemistry patterns is difficult to discern because they covary; temperate systems are characterized by lower mean flow in the summer (i.e. corresponding to deeper flow paths, elevated temperature, and biological activity), and higher mean flow in the winter (i.e. corresponding to shallower flow paths, depressed temperature, and biological dormancy). Using 2018 data, when seasonal stream flow conditions reversed, and two prior conventional water years, the relationship between monthly acid-relevant analyte concentrations and streamflow were compared within and between winter and summer to provide insight into controls on characteristic seasonal chemistry patterns at two mid-Appalachian sites with distinct geology (weatherable mafic and weather resistant siliciclastic). Acid neutralizing capacity (ANC) increased (1) with lower flow, in both seasons and (2) in summer, for all flow conditions. The compounding impacts resulted in a doubling of concentration from typical winter with high flow to summer with low flow at both sites. Base cation patterns tracked ANC at the mafic site, resulting in an ~ 60% increase of from winter with high flow to summer with low flow; distinctions between summer and winter contributed more to the seasonal pattern (72%) than changes in flow. Sulfate increased at the mafic site (1) with higher flow, in both seasons and (2) in winter, for all flow conditions, resulting in an ~ 50% increase from summer with low flow to winter with high flow; distinctions between winter and summer conditions and flow contributed similarly (40-60%) to the typical seasonal chemical pattern. The biogeochemical mechanism driving differences in stream chemistry between summer and winter for the same flow conditions is likely increased rates of natural acidification from elevated soil respiration in summer, resulting in greater bedrock weathering and sulfate adsorption. Findings highlight the significance and consistency of growing vs dormant season variations in temperature and biological activity in driving intra-annual patterns of stream solutes. This data set informs parameterization of hydro-biogeochemical models of stream chemistry in a changing climate at a biologically relevant, seasonal, timescale. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01163-x.
Collapse
Affiliation(s)
- Ami L. Riscassi
- Environmental Sciences Department, University of Virginia, Charlottesville, VA USA
| | - Todd M. Scanlon
- Environmental Sciences Department, University of Virginia, Charlottesville, VA USA
| | - James N. Galloway
- Environmental Sciences Department, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
3
|
Bidleman TF, Ericson L, Liljelind P, Tysklind M. Drosophilin A methyl ether (DAME) and other chlorinated dimethoxybenzenes in fungi and forest litter from Sweden. CHEMOSPHERE 2024; 347:140685. [PMID: 37981018 DOI: 10.1016/j.chemosphere.2023.140685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Fungi and substrates undergoing fungal decomposition were collected from forests in northern and southern Sweden and analyzed for chlorinated dimethoxybenzenes (DMBs). Specimens were fungi fruiting bodies, rotting wood, forest litter and underlying humus. Targeted compounds were DAME (1,2,4,5-tetrachloro-3,6-DMB) and related fungal secondary metabolites. A screening procedure was developed which involved soaking the specimens in ethyl acetate followed by analysis by capillary gas chromatography - mass spectrometry with mass selective detection (GC-MSD). DAME was the most frequently found (62% of 47 specimens) and often the most abundant target compound, with range and mean ± SD concentrations of <0.0017-3.81 and 0.21 ± 0.63 mg kg-1 ww. Based on log-log correlations of partition coefficients of hydrophobic compounds between fungal biomass/water (KD) and octanol/water (KOW), five species of fungi are suggested to produce DAME de novo versus bioaccumulation from forest runoff water. Full-scan mass spectra of some high-concentration specimens indicated the presence of a Cl2DMB and a Cl3DMB, which could not be identified further due to lack of standards, and drosophilin A (DA = 2,3,5,6-tetrachloro-4-methoxyphenol), the precursor to DAME. Tetrachloroveratrole (TeCV = 1,2,3,4-tetrachloro-5,6-DMB) was found in only a few specimens. This study supports our hypothesis of fungi as a source of DAME in terrestrial runoff and indicates that other chlorinated secondary metabolites are present. DAME is widely distributed globally, and it would be good to have a better understanding of its sources and pathways as a marker of terrestrial organochlorines and their availability for bioaccumulation.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Lars Ericson
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Per Liljelind
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden.
| |
Collapse
|
4
|
Ju F, Chen L, Ma T, Wang X, Chen Z, Zheng J, Xia X. Driving factors influencing spatiotemporal variation of natural organic chlorine in Shennongjia forest soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122225. [PMID: 37479170 DOI: 10.1016/j.envpol.2023.122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Studying the geochemical behavior of chlorine is the basis of understanding the chlorine cycle in nature. To explore the spatiotemporal distribution of natural organic chlorine (Clorg), L layer (litter fall), F-H layer (humification zone), topsoil layer (0-20 cm), and deep soil layer (20-40 cm) samples were collected from 18 sampling sites at different altitudes (851-2918 m) in Shennongjia Forest in May, August, and December. Clorg content was analyzed, and the Clorg stocks were calculated. The major factors affecting the distribution of Clorg were explored. The results revealed that the sum of Clorg content in four layers varied from 7.958 to 184.686 mg/kg, and the highest value was observed in August. Clorg accounted for 46%-77% of total chlorine, with the highest mean ratio in soil layer (0-20 cm). Clorg content exhibited the following trend: F-H layer > L layer > topsoil layer (0-20 cm) > deep soil layer (20-40 cm). The seasonal patterns of Clorg in soil layers were different from that in L and F-H layers, which were mainly controlled by the content and humification degree of organic matter. Clorg storage was much higher in soil layers (61-246 kg/ha) than those in F-H layer (1.1-7.1 kg/ha) and in L layer (0.1-0.8 kg/ha) because of the large thickness of the soil layers. Overall, the Clorg content exhibited an increasing trend with altitude, except at an altitude of approximately 1800 m. Clorg content in L and F-H layers varied more obviously with altitude than that in soil layers. When inorganic chlorine (Clin) was not a limiting factor for the chlorination process, Clorg content in L and F-H layers was significantly affected by climate and organic matter controlled by altitude, while Clorg content in soil layers was also mediated by metal ions and pH, and soil particle size. This study could provide a scientific basis for assessing the chlorine cycle in nature.
Collapse
Affiliation(s)
- Fanfan Ju
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Liuzhu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoli Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhanqiang Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jiejun Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xinxing Xia
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Svensson T, Löfgren A, Saetre P, Kautsky U, Bastviken D. Chlorine Distribution in Soil and Vegetation in Boreal Habitats along a Moisture Gradient from Upland Forest to Lake Margin Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37469326 PMCID: PMC10399286 DOI: 10.1021/acs.est.2c09571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The assumed dominance of chloride (Cl-) in terrestrial ecosystems is challenged by observations of extensive formation of organically bound Cl (Clorg), resulting in large soil Cl storage and internal cycling. Yet, little is known about the spatial distribution of Cl in ecosystems. We quantified patterns of Cl distribution in different habitats along a boreal hillslope moisture gradient ranging from relatively dry upland coniferous forests to wet discharge areas dominated by alder. We confirmed that dry habitats are important for Cl storage but found that Cl pools tended to be larger in moist and wet habitats. The storage of Clorg was less important in wet habitats, suggesting a shift in the balance between soil chlorination and dechlorination rates. Cl concentrations in the herb layer vegetation were high in wet and moist sites attributed to a shift in plant species composition, indicating plant community-dependent ecosystem Cl cycling. Mass-balance calculations showed that internal Cl cycling increased overall ecosystem Cl residence times at all sites and that plant uptake rates of Cl- were particularly high at wet sites. Our results indicate that habitat characteristics including plant communities and hydrology are key for understanding Cl cycling in the environment.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| | | | - Peter Saetre
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - Ulrik Kautsky
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
6
|
Gladkov EA, Gladkova OV. Ornamental plants adapted to urban ecosystem pollution: lawn grasses tolerating deicing reagents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22947-22951. [PMID: 34508315 DOI: 10.1007/s11356-021-16355-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Deicing reagents are priority soil pollutants in urban ecosystems. Sodium chloride is one of the priority deicing reagents. Sodium chloride is limiting the spread of lawn grass. We first showed the possibility of using environmental biotechnology in urban greening to obtain lawn grasses tolerant of sodium chloride. We have developed a cell selection technology to obtain salt-tolerant lawn grasses. A cell selection scheme with 1% sodium chloride was used. Most of the tested regenerants were more tolerant to NaCl than original plants. The descendants of the studied regenerants demonstrated the preservation of salt resistance. Most of the descendants of the regenerants Agrostis stolonifera retained high decorative qualities under salinity conditions. The tolerance remained in the next five generations. The descendants of the most salt-tolerant clones Agrostis stolonifera demonstrated resistance to 1% sodium chloride concentration in soil. These plants can serve as the basis for the creation of new salt-tolerant varieties.
Collapse
|
7
|
Tao M, Chen J, Huang K. Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Svensson T, Kylin H, Montelius M, Sandén P, Bastviken D. Chlorine cycling and the fate of Cl in terrestrial environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7691-7709. [PMID: 33400105 PMCID: PMC7854439 DOI: 10.1007/s11356-020-12144-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 05/11/2023]
Abstract
Chlorine (Cl) in the terrestrial environment is of interest from multiple perspectives, including the use of chloride as a tracer for water flow and contaminant transport, organochlorine pollutants, Cl cycling, radioactive waste (radioecology; 36Cl is of large concern) and plant science (Cl as essential element for living plants). During the past decades, there has been a rapid development towards improved understanding of the terrestrial Cl cycle. There is a ubiquitous and extensive natural chlorination of organic matter in terrestrial ecosystems where naturally formed chlorinated organic compounds (Clorg) in soil frequently exceed the abundance of chloride. Chloride dominates import and export from terrestrial ecosystems while soil Clorg and biomass Cl can dominate the standing stock Cl. This has important implications for Cl transport, as chloride will enter the Cl pools resulting in prolonged residence times. Clearly, these pools must be considered separately in future monitoring programs addressing Cl cycling. Moreover, there are indications that (1) large amounts of Cl can accumulate in biomass, in some cases representing the main Cl pool; (2) emissions of volatile organic chlorines could be a significant export pathway of Cl and (3) that there is a production of Clorg in tissues of, e.g. plants and animals and that Cl can accumulate as, e.g. chlorinated fatty acids in organisms. Yet, data focusing on ecosystem perspectives and combined spatiotemporal variability regarding various Cl pools are still scarce, and the processes and ecological roles of the extensive biological Cl cycling are still poorly understood.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden.
| | - Henrik Kylin
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Malin Montelius
- Swedish Geotechnical Institute (SGI), SE-581 93, Linkoping, Sweden
| | - Per Sandén
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| |
Collapse
|
9
|
Tanaka T, Thiry Y. Assessing the recycling of chlorine and its long-lived 36Cl isotope in terrestrial ecosystems through dynamic modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134482. [PMID: 31689653 DOI: 10.1016/j.scitotenv.2019.134482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
It is unclear to what extent chlorine (Cl) and its long-lived isotope 36Cl are recycled in different terrestrial environments in response to time-variable inputs. A new version of a dynamic compartment model was developed to examine the transformation and transfer processes influencing the partitioning and persistence of both Cl and 36Cl in forest ecosystems. The model's performance was evaluated by comparing simulations and field observations of scenarios of stable Cl atmospheric deposition and of global 36Cl fallout. The model reproduced Cl storage in soil reasonably well, despite wide heterogeneity in environmental conditions and atmospheric deposits. Sensitivity analysis confirmed that the natural production of organochlorine in soil plays a major role in Cl build-up and affects long-term Cl dynamics. The timeframe required for the soil organochlorine pool to reach equilibrium in a steady-state system was several thousands of years. Interestingly, root uptake flux, a predominant pathway of the inorganic cycle, was found to affect both inorganic and organic pools in soil, highlighting the importance of plant-soil interactions in Cl dynamics. Model outputs agreed well with local 36Cl measurements, and demonstrated that 90% of the 36Cl found in soil may have come from bomb-test fallout. The pattern of estimated 36Cl/Cl ratios showed that soil 36Cl was not in equilibrium with 36Cl levels in rain input in the post-bomb period. Complete recovery of a natural isotopic ratio in drainage water will need a time close to the residence time of organic 36Cl in soil: i.e., 800 years. A simple dynamic model concept was found to be suitable to illustrate the plant-soil interactions combining both the inorganic and organic Cl cycles acting over different time scales.
Collapse
Affiliation(s)
- Taku Tanaka
- EDF R&D, LNHE, 6 Quai Watier, 78400 Chatou, France.
| | - Yves Thiry
- Andra, Research and Development Division, 1-7 Rue Jean-Monnet, 92298 Châtenay-Malabry cedex, France.
| |
Collapse
|
10
|
Smith CJ, Perfetti TA. Exposure to chemicals formed from natural processes is ubiquitous. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320922940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exposure to chemicals produced by natural processes is ubiquitous. First, in addition to the products of normal metabolism produced in humans of normal body weight, adipose tissue produces a large number of chemicals, including estrogen, testosterone from the produced estrogen, thyroid-stimulating hormone, leptin and approximately 500 other molecules termed adipokines, and a large number of inflammatory mediators. Second, the gut biome contains approximately the same number of bacteria as cells found in the entire body and produces a large number of small molecules. Third, the overwhelming majority (99.9%) of pesticide exposure occurs during ingestion of natural plant pesticides from eating vegetables. Fourth, consumption of cooked muscles meats leads to significant exposure to mutagenic and carcinogenic heterocyclic amines, polycyclic aromatic amines, and nitropyrenes. Fifth, many common beverages, for example, beer, coffee, and tea contain organic chemicals that display mutagenic activity. As compared with man-made production levels, from 1945 to 2015, an estimated 5000-fold more organic compounds were produced by a variety of natural processes, including common wood-degrading and forest litter-degrading fungi, microorganisms in temperate and boreal forest soils, bacteria in marine sponges, marine macro-algae, volcanoes, and forest fires. Exposure to these naturally produced organic compounds occurs via inhalation of ambient air, ingestion of food and water, and contact with soil, freshwater, and seawater. Contact with several thousand different endogenous or exogenous chemicals per day is unavoidable. This understanding might assist in better allocating resources toward controlling exposures to agents of highest concern as determined by current concepts of chronic disease causation.
Collapse
|
11
|
Temme HR, Carlson A, Novak PJ. Presence, Diversity, and Enrichment of Respiratory Reductive Dehalogenase and Non-respiratory Hydrolytic and Oxidative Dehalogenase Genes in Terrestrial Environments. Front Microbiol 2019; 10:1258. [PMID: 31231342 PMCID: PMC6567934 DOI: 10.3389/fmicb.2019.01258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Organohalide-respiring bacteria have been linked to the cycling and possible respiration of chlorinated natural organic matter (Cl-NOM) in uncontaminated soils and sediments. The importance of non-respiratory hydrolytic/oxidative dechlorination processes in the cycling of Cl-NOM in terrestrial soil and sediment, however, is still not understood. This research analyzes the dechlorination potential of terrestrial systems through analysis of the metagenomes of urban lake sediments and cultures enriched with Cl-NOM. Even with the variability in sample type and enrichment conditions, the potential to dechlorinate was universal, with reductive dehalogenase genes and hydrolytic or oxidative dehalogenase genes found in all samples analyzed. The reductive dehalogenase genes detected grouped taxonomically with those from organohalide-respiring bacteria with broad metabolic capabilities, as opposed to those that obligately respire organohalides. Furthermore, reductive dehalogenase genes and two haloacid dehalogenase genes increased in abundance when sediment was enriched with high concentrations of Cl-NOM. Our data suggests that both respiratory and non-respiratory dechlorination processes are important for Cl-NOM cycling, and that non-obligate organohalide-respiring bacteria are most likely involved in these processes.
Collapse
Affiliation(s)
| | | | - Paige J. Novak
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Le Dizès S, Gonze MA. Behavior of 36Cl in agricultural soil-plant systems: A review of transfer processes and modelling approaches. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:82-90. [PMID: 30408682 DOI: 10.1016/j.jenvrad.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 05/25/2023]
Abstract
This article aims to review up-to-date knowledge and data acquired on 36Cl transfers to terrestrial soil-plant systems, evaluate the existing modelling approaches and identify priorities for future model improvements. This update has revealed the existence of fairly recent studies, whose results could be used for improving the modelling approaches which have been developed over the last decade. The priority areas include the consideration of the dry deposition process and the transfer of both gaseous and aerosol 36Cl to plants. The consideration of secondary processes such as the synthesis/mineralization of organochlorines and plant biomass litterfall is not recognized as a priority issue when assessing the impact of gaseous discharges. It was also identified that additional experimental studies had to be conducted to improve the understanding of the processes governing stable Cl and 36Cl dynamics in other terrestrial ecosystems (field crops, vegetables, grass) than forest environments on which most of the reported knowledge and data are reviewed.
Collapse
Affiliation(s)
- S Le Dizès
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SRTE/LR2T, Laboratoire de Recherche sur les Transferts de Radionucléides dans les écosystèmes Terrestres, CEN Cadarache, 13115, Saint-Paul-Lez-Durance, France.
| | - M A Gonze
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SEREN/LEREN, Laboratoire d'expertise et d'étude en Radioprotection des Populations et de la Radioactivité dans l'environnement, CEN Cadarache, 13115, Saint-Paul-Lez-Durance, France
| |
Collapse
|
13
|
Wojcik A, Pawłowski M, Wydro P, Broniatowski M. Effects of Polychlorinated Pesticides and Their Metabolites on Phospholipid Organization in Model Microbial Membranes. J Phys Chem B 2018; 122:12017-12030. [DOI: 10.1021/acs.jpcb.8b08989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aneta Wojcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pawłowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
14
|
Wever R, Barnett P. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment? Chem Asian J 2017; 12:1997-2007. [DOI: 10.1002/asia.201700420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/30/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Ron Wever
- Van't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Phil Barnett
- Department of Anatomy; Embryology and Physiology; Academic Medical Center Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
15
|
Kotik M, Vanacek P, Kunka A, Prokop Z, Damborsky J. Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Appl Microbiol Biotechnol 2017; 101:6385-6397. [PMID: 28674849 DOI: 10.1007/s00253-017-8393-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/30/2023]
Abstract
Haloalkane dehalogenases (HLDs) are environmentally relevant enzymes cleaving a carbon-halogen bond in a wide range of halogenated pollutants. PCR with degenerate primers and genome-walking was used for the retrieval of four HLD-encoding genes from groundwater-derived environmental DNA. Using specific primers and the environmental DNA as a template, we succeeded in generating additional amplicons, resulting altogether in three clusters of sequences with each cluster comprising 8-13 closely related putative HLD-encoding genes. A phylogenetic analysis of the translated genes revealed that three HLDs are members of the HLD-I subfamily, whereas one gene encodes an enzyme from the subfamily HLD-II. Two metagenome-derived HLDs, eHLD-B and eHLD-C, each from a different subfamily, were heterologously produced in active form, purified and characterized in terms of their thermostability, pH and temperature optimum, quaternary structure, substrate specificity towards 30 halogenated compounds, and enantioselectivity. eHLD-B and eHLD-C showed striking differences in their activities, substrate preferences, and tolerance to temperature. Profound differences were also determined in the enantiopreference and enantioselectivity of these enzymes towards selected substrates. Comparing our data with those of known HLDs revealed that eHLD-C exhibits a unique combination of high thermostability, high activity, and an unusually broad pH optimum, which covers the entire range of pH 5.5-8.9. Moreover, a so far unreported high thermostability for HLDs was determined for this enzyme at pH values lower than 6.0. Thus, eHLD-C represents an attractive and novel biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
- Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic.
| |
Collapse
|
16
|
Weigold P, El-Hadidi M, Ruecker A, Huson DH, Scholten T, Jochmann M, Kappler A, Behrens S. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Sci Rep 2016; 6:28958. [PMID: 27353292 PMCID: PMC4926216 DOI: 10.1038/srep28958] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.
Collapse
Affiliation(s)
- Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Mohamed El-Hadidi
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Alexander Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Daniel H. Huson
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Thomas Scholten
- Soil Science and Geomorphology, Geography, University of
Tuebingen, Germany
| | - Maik Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry,
University of Duisburg-Essen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo- Engineering,
University of Minnesota, MN, USA
- BioTechnology Institute, University of Minnesota,
MN, USA
| |
Collapse
|
17
|
Montelius M, Thiry Y, Marang L, Ranger J, Cornelis JT, Svensson T, Bastviken D. Experimental evidence of large changes in terrestrial chlorine cycling following altered tree species composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4921-8. [PMID: 25811074 DOI: 10.1021/acs.est.5b00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Organochlorine molecules (Clorg) are surprisingly abundant in soils and frequently exceed chloride (Cl(-)) levels. Despite the widespread abundance of Clorg and the common ability of microorganisms to produce Clorg, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl(-) and Clorg after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl(-) and Clorg content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl(-) and Clorg over the experiment period, and showed a 10 and 4 times higher Cl(-) and Clorg storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl(-) and Clorg in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.
Collapse
Affiliation(s)
- Malin Montelius
- †Department of Thematic Studies-Environmental Change, Linköping University, SE-581 83, Linköping, Sweden
| | - Yves Thiry
- ‡Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
| | - Laura Marang
- §EDF, Laboratoire National d'Hydraulique et Environnement, 78401 Chatou, France
| | - Jacques Ranger
- ∥Biogéochimie des écosystèmes forestiers, INRA Centre de Nancy, 54280 Champenoux, France
| | - Jean-Thomas Cornelis
- ⊥Soil Science Lab, Earth and Life Institute - Environmental Sciences, Université Catholique de Louvain, Croix du Sud 2/10, 1348 Louvain-la-Neuve, Belgium
| | - Teresia Svensson
- †Department of Thematic Studies-Environmental Change, Linköping University, SE-581 83, Linköping, Sweden
| | - David Bastviken
- †Department of Thematic Studies-Environmental Change, Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|
18
|
Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9170-9178. [PMID: 25073729 DOI: 10.1021/es501810g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions.
Collapse
Affiliation(s)
- A Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen 72074, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Smith GM, Smith KL, Kowe R, Pérez-Sánchez D, Thorne M, Thiry Y, Read D, Molinero J. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 131:89-109. [PMID: 24238917 DOI: 10.1016/j.jenvrad.2013.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, www.bioprota.org.
Collapse
Affiliation(s)
| | - K L Smith
- RadEcol Consulting Ltd., Middletown, UK
| | - R Kowe
- Radioactive Waste Management Directorate, Nuclear Decommissioning Authority, Harwell, UK
| | - D Pérez-Sánchez
- Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Spain
| | - M Thorne
- Mike Thorne and Associates Ltd., Bishop Auckland, UK
| | - Y Thiry
- Agence Nationale pour la Gestion des Déchets Radioactifs, Paris, France
| | - D Read
- Loughborough University, Loughborough, Leics., UK
| | | |
Collapse
|
20
|
Bengtson P, Bastviken D, Oberg G. Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environ Microbiol 2012; 15:991-1000. [PMID: 22712445 DOI: 10.1111/j.1462-2920.2012.02807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural formation of organically bound chlorine is extensive in many environments. The enzymes associated with the formation of chlorinated organic matter are produced by a large variety of organisms. Little is known about the ecological role of the process, the key question being: why do microorganisms promote chlorination of organic matter? In a recent paper we discuss whether organic matter chlorination may be a result of antagonistic interactions among microorganisms. In the present paper we evaluate whether extracellular microbial formation of reactive chlorine may be used as a defence against oxygen stress, and we discuss whether this process is likely to contribute to the formation of chlorinated organic matter. Our analysis suggests that periodic exposure to elevated concentrations of reactive oxygen species is a common denominator among the multitude of organisms that are able to enzymatically catalyse formation of reactive chlorine. There is also some evidence suggesting that the production of such enzymes in algae and bacteria is induced by oxygen stress. The relative contribution from this process to the extensive formation of chlorinated organic matter in natural environments remains to be empirically assessed.
Collapse
Affiliation(s)
- Per Bengtson
- Department of Biology - Microbial Ecology, Lund University, The Ecology Building, Lund SE-223 62, Sweden
| | | | | |
Collapse
|
21
|
Hoof CVD, Thiry Y. Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 107:56-67. [PMID: 22370653 DOI: 10.1016/j.jenvrad.2011.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/25/2011] [Accepted: 12/13/2011] [Indexed: 05/25/2023]
Abstract
Considered as one of the most available radionuclide in soil-plant system, ³⁶Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of ³⁶Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of ³⁶Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.
Collapse
|
22
|
Gustavsson M, Karlsson S, Oberg G, Sandén P, Svensson T, Valinia S, Thiry Y, Bastviken D. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1504-10. [PMID: 22191661 DOI: 10.1021/es203191r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.
Collapse
Affiliation(s)
- Malin Gustavsson
- Department of Thematic Studies, Water and Environmental Studies, Linköping University, 58183 Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Terminal restriction fragment length polymorphism analysis of soil microbial communities reveals interaction of fungi and chlorine bound in organic matter. Folia Microbiol (Praha) 2011; 56:477-81. [PMID: 21922423 DOI: 10.1007/s12223-011-0071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
24
|
Redon PO, Abdelouas A, Bastviken D, Cecchini S, Nicolas M, Thiry Y. Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7202-8. [PMID: 21761932 DOI: 10.1021/es2011918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils. Concentrations of total chlorine (Cl(tot)) and organic chlorine (Cl(org)) were determined in litterfall, forest floor and mineral soil samples. Cl(org) constituted 11-100% of Cl(tot), with the highest concentrations being found in the humus layer (34-689 mg Cl(org) kg(-1)). In terms of areal storage (53 - 400 kg Cl(org) ha(-1)) the mineral soil dominated due to its greater thickness (40 cm). Cl(org) concentrations and estimated retention of organochlorine in the humus layer were correlated with Cl input, total Cl concentration, organic carbon content, soil pH and the dominant tree species. Cl(org) concentration in mineral soil was not significantly influenced by the studied environmental factors, however increasing Cl:C ratios with depth could indicate selective preservation of chlorinated organic molecules. Litterfall contributions of Cl were significant but generally minor compared to other fluxes and stocks. Assuming steady-state conditions, known annual wet deposition and measured inventories in soil, the theoretical average residence time calculated for total chlorine (inorganic (Cl(in)) and organic) was 5-fold higher than that estimated for Cl(in) alone. Consideration of the Cl(org) pool is therefore clearly important in studies of overall Cl cycling in terrestrial ecosystems.
Collapse
Affiliation(s)
- Paul-Olivier Redon
- Andra, Research and Development Division, 1-7 rue Jean Monnet, 92298 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
25
|
Albers CN, Hansen PE, Jacobsen OS. Trichloromethyl compounds--natural background concentrations and fates within and below coniferous forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6223-6234. [PMID: 20889185 DOI: 10.1016/j.scitotenv.2010.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/12/2010] [Accepted: 09/08/2010] [Indexed: 05/29/2023]
Abstract
Pollution with organochlorines has received major attention due to various environmental effects, but it is now increasingly recognized, that they also take part in biogeochemical cycles and that natural background concentrations exist for several chlorinated compounds. We here report the natural occurrence and cycling of organic compounds with a trichloromethyl moiety in common. The study areas are temperate coniferous forests. Trichloromethyl compounds can be found in all compartments of the forests (groundwater, soil, vegetation and throughfall), but not all compounds in all compartments. The atmospheric input of trichloromethyl compounds is found to be minor, with significant contributions for trichloroacetic acid (TCAA), only. In top soil, where the formation of the compounds is expected to occur, there is a clear positive relationship between chloroform and trichloroacetyl containing compounds. Other positive relations occur, which in combination with chlorination experiments performed in the laboratory, point to the fact that all the trichloromethyl compounds may be formed concurrently in the soil, and their subsequent fates then differ due to different physical, chemical and biological properties. TCAA cannot be detected in soil and groundwater, but sorption and mineralization experiments performed in the laboratory in combination with analyses of vegetation, show that TCAA is probably formed in the top soil and then partly taken up by the vegetation and partly mineralized in the soil. Based on this and previous studies, a conceptual model for the natural cycling of trichloromethyl compounds in forests is proposed.
Collapse
Affiliation(s)
- Christian Nyrop Albers
- Dept. Geochemistry, Geological Survey of Denmark & Greenland, Ø. Voldgade 10, DK-1350, Copenhagen, Denmark.
| | | | | |
Collapse
|
26
|
Heal MR, Dickey CA, Heal KV, Stidson RT, Matucha M, Cape JN. The production and degradation of trichloroacetic acid in soil: results from in situ soil column experiments. CHEMOSPHERE 2010; 79:401-407. [PMID: 20172585 DOI: 10.1016/j.chemosphere.2010.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/28/2023]
Abstract
Previous work has indicated that the soil is important to understanding biogeochemical fluxes of trichloroacetic acid (TCA) in the rural environment, in forests in particular. Here, the hydrological and TCA fluxes through 22 in situ soil columns in a forest and moorland-covered catchment and an agricultural grassland field in Scotland were monitored every 2 weeks for several months either as controls or in TCA manipulation (artificial dosing) experiments. This was supplemented by laboratory experiments with radioactively-labelled TCA and with irradiated (sterilised) soil columns. Control in situ forest soil columns showed evidence of net export (i.e. in situ production) of TCA, consistent with a net soil TCA production inferred from forest-scale mass balance estimations. At the same time, there was also clear evidence of substantial in situ degradation within the soil ( approximately 70% on average) of applied TCA. The laboratory experiments showed that both the formation and degradation processes operate on time scales of up to a few days and appeared related more with biological rather than abiotic processes. Soil TCA activity was greater in more organic-rich soils, particularly within forests, and there was strong correlation between TCA and soil biomass carbon content. Overall it appears that TCA soil processes exemplify the substantial natural biogeochemical cycling of chlorine within soils, independent of any anthropogenic chlorine flux.
Collapse
Affiliation(s)
- M R Heal
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK.
| | | | | | | | | | | |
Collapse
|