1
|
Lyu Y, He Y, Li Y, Tang Z. Tissue-specific distributions of organic ultraviolet absorbents in free-range chickens and domestic pigeons from Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 246:118108. [PMID: 38184061 DOI: 10.1016/j.envres.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The ecological risks of organic ultraviolet absorbents (UVAs) have been of increasing concern. Studies have found that these chemicals could be accumulated in terrestrial animals and pose toxicities. However, tissue distribution of UVAs in terrestrial species was far from well understood. In this study, free-range chickens and domestic pigeons were selected to investigate the occurrence and tissue distribution of UVAs. Total concentrations of eleven UVAs in muscles ranged from 778 to 2874 (mean 1413 ± 666) ng/g lipid weight, which were higher than those in aquatic species worldwide. Since low UVA concentrations in local environment were previously reported, the results implied the strong accumulation of UVAs in studied species. Brain, stomach and kidney were main target organs for studied UVAs, differentiating from the strong liver sequestration in aquatic species. The mean tissue-to-muscle ratios of 1.02-4.23 further indicated the preferential accumulation of target UVAs in these tissues. The tissue-to-blood ratios of benzophenone (BP), 2-ethylhexyl salicylate (EHS) and homosalate (HMS) in brain were 370, 1207 and 52.0, respectively, implying their preferential accumulation in brain. More research is needed to characterize the toxicokinetics and tissue distribution of UVAs in terrestrial wild species, in order to further understand their potential risks.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Jiang Y, Zeng Y, Lu R, Zhang Y, Long L, Zheng X, Luo X, Mai B. Application of amino acids nitrogen stable isotopic analysis in bioaccumulation studies of pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163012. [PMID: 36965734 DOI: 10.1016/j.scitotenv.2023.163012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Accurately quantifying trophic positions (TP) to describe food web structure is an important element in studying pollutant bioaccumulation. In recent years, compound-specific nitrogen isotopic analysis of amino acids (AAs-N-CSIA) has been progressively applied as a potentially reliable tool for quantifying TP, facilitating a better understanding of pollutant food web transfer. Therefore, this review provides an overview of the analytical procedures, applications, and limitations of AAs-N-CSIA in pollutant (halogenated organic pollutants (HOPs) and heavy metals) bioaccumulation studies. We first summarize studies on the analytical techniques of AAs-N-CSIA, including derivatization, instrumental analysis, and data processing methods. The N-pivaloyl-i-propyl-amino acid ester method is a more suitable AAs derivatization method for quantifying TP. The AAs-N-CSIA application in pollutant bioaccumulation studies (e.g., Hg, MeHg, and HOPs) is discussed, and its application in conjunction with various techniques (e.g., spatial analysis, food source analysis, and compound tracking techniques, etc.) to research the influence of pollutant levels on organisms is summarized. Finally, the limitations of AAs-N-CSIA in pollutant bioaccumulation studies are discussed, including the use of single empirical values of βglu/phe and TDFglu/phe that result in large errors in TP quantification. The weighted βglu/phe and the multi-TDFglu/phe models are still challenging to solve for accurate TP quantification of omnivores; however, factors affecting the variation of βglu/phe and TDFglu/phe are unclear, especially the effect of pollutant bioaccumulation in organisms on internal AA metabolic processes.
Collapse
Affiliation(s)
- Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Long
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
3
|
Hu Y, Liu H, Xing X, Lian J, Liu F. Occurrence and exposure risk assessment of organochlorine pesticides in two waterbird species from Honghu Lake Wetland, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1919-1931. [PMID: 35748971 DOI: 10.1007/s10653-022-01316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring and evaluating bird exposure to hazardous pollutants in wetlands are receiving considerable attention. In this study, the occurrence of 18 organochlorine pesticides (OCPs) in the muscle of bean geese (Anser fabalis) and common teals (Anas crecca) collected from Honghu Lake Wetland (HLW), Central China was studied. Additionally, an exposure risk assessment model was applied to obtain risk levels of OCPs to these birds through three oral routes (food intake, water drinking and soil ingestion). The results suggested that the most abundant OCPs detected in the muscle of waterbirds were DDTs (7.68-602 ng/g lipid weight), followed by HCHs (1.39-89.8 ng/g lipid weight). A significant difference (p < 0.05) existed between two species, but most of OCPs exhibited no statistically relationship with age or gender (p > 0.05). The compositional patterns of OCPs combined with ratios of certain metabolites to their parent compounds indicated that all OCPs in the HLW were largely from historical usage except heptachlor. The exposure risk assessment revealed that common teals with lighter weight had greater exposure risks than bean geese. Of the OCPs analyzed, DDTs could probably cause harm to target birds studied here. Exposure via food intake was identified to be significant while soil ingestion and water drinking contributed least, but they should still be concerned.
Collapse
Affiliation(s)
- Ying Hu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Wuhan, 430100, People's Republic of China.
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, People's Republic of China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Jingjing Lian
- College of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Feixiang Liu
- College of Urban and Environmental Sciences, Northwest University, Xi'an, 710027, People's Republic of China
| |
Collapse
|
4
|
Huang Q, Hou R, Lin L, Li H, Liu S, Cheng Y, Xu X. Bioaccumulation and Trophic Transfer of Organophosphate Flame Retardants and Their Metabolites in the Estuarine Food Web of the Pearl River, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3549-3561. [PMID: 36826812 DOI: 10.1021/acs.est.2c05619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The accumulation and trophodynamics of organophosphate flame retardants (OPFRs) and their metabolites were investigated in the estuarine food web of the Pearl River, China. The mean ∑OPFR concentration among the investigated species increased in the following order: fish [431 ± 346 ng/g lipid weight (lw)] < snail (1310 ± 621 ng/g lw) < shrimp (1581 ± 1134 ng/g lw) < crab (1744 ± 1397 ng/g lw). The di-alkyl phosphates (DAPs) of di-(n-butyl) phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), and diphenyl phosphate (DPHP) were the most abundant metabolites, with concentrations same as or even higher than their corresponding parent compounds. The log bioaccumulation factors for most OPFRs were lower than 3.70, and significant biomagnification was only found for trisphenyl phosphate [TPHP, with the trophic magnification factors (TMFs) > 1]. The TMFs of OPFRs, except for TPHP and tributyl phosphate had a positive correlation with lipophilicity (log KOW, p ≤ 0.05) and a negative correlation with the biotransformation rate (log KM, p ≤ 0.05). The mean TMF > 1 was observed for all of the OPFR metabolites based on the bootstrap regression method. The "pseudo-biomagnification" of OPFR metabolites might be attributed to the biotransformation of OPFRs in organisms at high trophic levels.
Collapse
Affiliation(s)
- Qianyi Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
| | - Yuanyue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
| |
Collapse
|
5
|
Organochlorine pesticides and polychlorinated biphenyls in carnivorous waterbird species from Lake Ziway, Ethiopia. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
This study presents the assessment of bioaccumulation and reproductive health risk associated with organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) exposure in carnivorous waterbird species. We investigated OCPs and PCBs exposure in muscle tissues of 4 species of carnivorous waterbird species from Lake Ziway, Ethiopia. The influences of trophic position and size on accumulation of organochlorine pollutants are investigated. The result shows that Dichloro-diphenyl-trichloroethanes (DDTs), Endosulfan and PCBs are detected. DDTs constitute the dominant contaminant among OCPs investigated. Trophic position and wing chord length are positively associated with levels of ∑DDTs. Mean levels of ∑DDTs and ∑PCBs vary from 143.9 to 1051.1 ng g−1 wet weight (ww) and not detected (ND)—3.5 ng g−1 ww, respectively. Mean levels of 4,4′-dichloro-diphenyl-dichloro-ethylene (p,p′-DDE), and 4,4′-dichloro-diphenyl-dichloro-ethane (p,p′-DDD) are significantly varied among the bird species. p,p′-DDE contribute 92.3–98.6% of total DDTs. About 26.7% of birds show p,p′-DDE levels above the minimum threshold to cause reproductive failures in birds. Generally, the findings of this study shows that DDT exposure in high trophic levels bird species from Lake Ziway could result in reproductive health risk. The present study may serve as a baseline for future comprehensive exposure and risk assessment studies.
Article Highlights
p,p’-DDE is the dominant contaminant in muscle tissue of the investigated bird species
DDT accumulation varies among the bird species investigated
A quarter of the investigated birds are at risk of reproductive failure as a result of high p,p’-DDE levels
Collapse
|
6
|
Rabdeau J, Desbonnes M, Bretagnolle V, Moreau J, Monceau K. Does anthropization affect physiology, behaviour and life‐history traits of Montagu's harrier chicks? Anim Conserv 2022. [DOI: 10.1111/acv.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rabdeau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| | - M. Desbonnes
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| | - V. Bretagnolle
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
- LTSER “Zone Atelier Plaine & Val de Sèvre”, CNRS Villiers‐en Bois France
| | - J. Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
- UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive Université de Bourgogne‐Franche‐Comté Dijon France
| | - K. Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| |
Collapse
|
7
|
Huang Z, Qadeer A, Zheng S, Ge F, Zhang K, Yin D, Zheng B, Zhao X. Fatty acid profile as an efficient bioindicator of PCB bioaccumulation in a freshwater lake food web: A stable isotope guided investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127121. [PMID: 34534807 DOI: 10.1016/j.jhazmat.2021.127121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
In past studies, the health and ecological risks of PCBs are well established. The impact of low-dose PCBs on aquatic ecosystems for an extended period is a matter of concern in the current era. The application of fatty acids (FAs) as bioindicators of pollution in the freshwater food web is almost unavailable. This study investigated concentrations of 209 PCB congeners, stable isotope levels, and FAs composition in ten freshwater species of Dongtinghu Lake, China. Total PCB congeners (∑PCBs) concentrations were ranged from 4.17 to 38.35 ng/g lipid weight. A total of 84 PCB congeners were detected out of 209 target PCB congeners, particularly PCB101, 118, 138, 153, and 155 found in all samples. The concentrations of 24 PCB congeners increased with trophic levels, but PCB 155 concentrations were consistent throughout trophic levels. The toxic equivalents (TEQ) of dl-PCBs (mostly PCB 126 and 169) also increased with trophic levels Out of total 35 FAs, 21 FAs were significantly positively correlated with 43 PCB congeners. Among FAs, C16:0 was the most abundant and positively correlated with most PCB compounds. Positive correlations between FAs and PCBs indicated that FAs can be used as efficient bioindicators of PCBs pollution in the aquatic food web.
Collapse
Affiliation(s)
- Zhifeng Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Abdul Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Saisai Zheng
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Fangfang Ge
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kexin Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xingru Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Zhu M, Yuan Y, Yin H, Guo Z, Wei X, Qi X, Liu H, Dang Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150270. [PMID: 34536863 DOI: 10.1016/j.scitotenv.2021.150270] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xin Qi
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
9
|
Venugopal D, Subramanian M, Rajamani J, Palaniyappan J, Samidurai J, Arumugam A. Levels and distribution pattern of organochlorine pesticide residues in eggs of 22 terrestrial birds from Tamil Nadu, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39253-39264. [PMID: 32642894 DOI: 10.1007/s11356-020-09978-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Long-term monitoring is essential to assess the patterns and distribution of the residues of organochlorine pesticides (OCPs) in biota. Bird eggs have several advantages than other environmental matrixes, which have been used extensively to portray the accumulation and distribution of OCPs. The present study investigated the organochlorine pesticide (OCP) residues in eggs of 22 species of terrestrial birds collected from Tamil Nadu, India. Eggs found abandoned were collected during nest monitoring between 2001 and 2008 and analyzed for the presence of organochlorine pesticide residues. The results showed that the mean concentrations of total hexachlorohexane (∑HCHs), total dichlorodiphenyltrichloroethane (∑DDTs), heptachlor epoxide, and dieldrin ranged from non-detectable (nd) to 2800 ng/g, nd to1000 ng/g, nd to 700 ng/g, and nd to 240 ng/g on a wet mass (wm) basis, respectively. The variation in magnitude of contamination among the species and feeding guilds were not significantly different (p > 0.05). Among the OCPs analyzed, the residues of β-HCH and p,p'-DDE were found to be the abundant in concentration. Similarly, among various bird species studied, the highest concentrations of ∑OCPs (> 5000 ng/g wm) were recorded in the eggs of gray junglefowl, scaly-breasted munia, and red-whiskered bulbul. This may be due to their widespread occurrence of their habitat at proximity to the agricultural fields, where organochlorines were in use until recently. Among the various contaminants analyzed, concentrations of p,p'-DDE and heptachlor epoxide exceeded the threshold levels of toxicity for wild birds in > 5% of the egg samples. Hence, this study indicates the need for continued monitoring and further systematic ecotoxicological investigation of these compounds not only in eggs but also in other environmental media.
Collapse
Affiliation(s)
- Dhananjayan Venugopal
- ICMR-Regional Occupational Health Centre (Southern), Indian Council of Medical Research, Bangalore, 562110, India.
- Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, 641108, India.
| | | | - Jayakumar Rajamani
- GITAM University, Bangalore Campus, Nagadenahalli, Bangalore, 561203, India
| | - Jayanthi Palaniyappan
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Jayakumar Samidurai
- Department of Zoology & Wildlife Biology, A.V.C. College (Autonomous), Mayiladuthurai, 609305, India
| | - Alaguraj Arumugam
- Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, 641108, India
| |
Collapse
|
10
|
Mo L, Zheng X, Zhu C, Sun Y, Yu L, Luo X, Mai B. Persistent organic pollutants (POPs) in oriental magpie-robins from e-waste, urban, and rural sites: Site-specific biomagnification of POPs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109758. [PMID: 31600649 DOI: 10.1016/j.ecoenv.2019.109758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Plenty of banned and emerging persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and decabromodiphenyl ethane (DBDPE), were measured in oriental magpie-robins from an e-waste recycling site, an urban site (Guangzhou City), and a rural site in South China. Median concentrations of DDTs, PCBs, PBDEs, DP, and DBDPE ranged from 1,000-1,313, 800-59,368, 244-5,740, 24.1-127, and 14.7-36.0 ng/g lipid weight, respectively. Birds from the e-waste site had significantly higher concentrations of PCBs and PBDEs than those from urban and rural sites (p < 0.05), implying contamination of PCBs and PBDEs brought by e-waste recycling activities. DDTs were the predominant POPs in birds from urban and rural sites. The values of δ15N were significantly and positively correlated with concentrations of p,p'-DDE and low-halogenated chemicals in samples from the e-waste site (p < 0.05), indicating the trophic magnification of these chemicals in birds. However, concentrations of most POPs were not significantly correlated with the δ15N values in birds from urban and rural sites. PCBs and PBDEs in birds from urban and rural sites were not likely from local sources, and the biomagnification of POPs in different sites needed to be further investigated with caution.
Collapse
Affiliation(s)
- Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou, 510100, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaobo Zheng
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Chunyou Zhu
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Lehuan Yu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization and State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
11
|
Wang C, Dong B, Zhu M, Huang H, Cui YH, Gao X, Liu LP. Habitat selection of wintering cranes (Gruidae) in typical lake wetland in the lower reaches of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8266-8279. [PMID: 30706266 DOI: 10.1007/s11356-019-04306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Shengjin Lake is a typical lake wetland in the lower reaches of the Yangtze River. It is one of the most important wetlands in the world. It is also an important habitat for wintering cranes in China. Environmental factors play an important role in habitat selection of cranes of wetland ecosystem. In this paper, we analyzed land-use types and the four kinds of winter cranes in the Shengjin Lake from the years 1986 to 2015. Also, we adopted grey relational analysis and power function model to analyze the relevance between crane population and land-use types, and the main habitat types of cranes were obtained. We used principal component analysis method to analyze the main influence factor for habitat selection of crane. The results indicated that the main habitat type of four species of overwintering crane was reed-flat; the main factors affecting the habitat selection of cranes were water level, planktonic biomass, and distance to settlement. Among them, the weight of water level factor was the highest, which showed that water level was the most important factor affecting the habitat selection of cranes, followed by planktonic biomass, and the third was the weight of distance to settlement. The average values of them were 0.37 m, 9.47 mg L-1, and 1.25 km, respectively.
Collapse
Affiliation(s)
- Cheng Wang
- School of Science, Anhui Agricultural University, Hefei, 230036, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Dong
- School of Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Ming Zhu
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Huang
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yu-Huang Cui
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang Gao
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Li-Ping Liu
- Faculty of Science and Environmental Studies, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
12
|
Hu Y, Qi S, Yuan L, Liu H, Xing X. Assessment of organochlorine pesticide contamination in waterbirds from an agricultural region, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:175-187. [PMID: 27783194 DOI: 10.1007/s10653-016-9891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Twenty-one organochlorine pesticides (OCPs) were measured in the muscle of six predominant waterbird species from Jianghan Plain, Hubei Province, Central China. Among OCPs, DDTs were the most prevalent compounds, with average concentration ranging from 31.1 to 1445 ng/g lipid weight. Little egrets (Egretta garzetta) and Chinese pond herons (Ardeola bacchus) showed significantly higher concentrations of OCPs (p < 0.05) due to their dietary habits and migratory patterns. There were no statistically significant differences (p > 0.05) for most OCPs between sex and age groups. The accumulation profiles of HCHs and DDTs suggested that these OCPs in Jianghan Plain were largely derived from historical usage. Risk assessment indicated that heptachlor could be likely to pose adverse health effects on people consuming ducks in Jianghan Plain.
Collapse
Affiliation(s)
- Ying Hu
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, People's Republic of China
- Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, People's Republic of China.
| | - Linxi Yuan
- Advanced Lab for Selenium and Human Health, University of Science and Technology of China, Suzhou, 215123, People's Republic of China
| | - Hongxia Liu
- Hubei Polytechnic University, Huangshi, 435003, People's Republic of China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
13
|
Pei Y, Halbrook RS, Li H, You J. Homing pigeons as a biomonitor for atmospheric PAHs and PCBs in Guangzhou, a megacity in South China. MARINE POLLUTION BULLETIN 2017; 124:1048-1054. [PMID: 27823830 DOI: 10.1016/j.marpolbul.2016.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 05/20/2023]
Abstract
UNLABELLED The occurrence of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) in urban atmosphere in Guangzhou, China were assessed using homing pigeons as a biomonitor. Contaminant concentrations in lung were significantly higher than those in liver and fat, indicating chemical uptake was mainly through respiratory route. Tricyclic PAHs and low chlorinated PCBs dominated composition of PAHs and PCBs in homing pigeons, similar as their composition in local atmosphere. Different age-dependent bioaccumulation patterns were noted for PAHs and PCBs. For 1-year old homing pigeons, higher levels of PAHs and PCBs in lung and liver tissues were probably ascribed to more intense flying than 5- and 10-year groups. Fat concentrations of PCBs were greater in aged pigeons than 1-year old pigeons, but PAH concentrations in fat slightly decreased in aged pigeons because of relatively fast biotransformation. Overall, homing pigeons could serve as a suitable biomonitor for urban atmospheric contaminants in coastal cities. CAPSULE Homing pigeons could serve as a good biomonitor for PAHs and PCBs in urban atmosphere, yet different biotransformation potential of the chemicals caused different bioaccumulation patterns in pigeon fat.
Collapse
Affiliation(s)
- Yuanyuan Pei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard S Halbrook
- Cooperative Wildlife Research Laboratory, Southern Illinois University (Emeritus), Carbondale, IL 62091, USA
| | - Huizhen Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing You
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Modeling the air-soil exchange, secondary emissions and residues in soil of polychlorinated biphenyls in China. Sci Rep 2017; 7:221. [PMID: 28303007 PMCID: PMC5428302 DOI: 10.1038/s41598-017-00351-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
The present study investigated the environmental distribution and fate of low molecular weight (LMW) polychlorinated biphenyls (PCBs) in China using the ChnGIPERM (Chinese Gridded Industrial Pollutants Emission and Residue Model), in which the air-soil exchange, spatial-temporal variations and the heterogeneity of secondary emission and residue in the non-source areas were studied. The model simulated the temporal and spatial variations of the PCB28 concentration in soils and air which agreed well with historical monitoring data across China. The long-range atmospheric transport (LRAT) and temperature was identified as the major factor affecting the distribution patterns of the secondary emissions and residues. Soil residue was considered as important environmental fate of PCB28. However, the intensity of an emissions source and the distance with non-source area strongly affected the spatial and temporal variations of PCB28 residues in soil. Several factors strongly impacted the distribution characteristics and air-soil exchange of PCB28, including emission patterns, atmospheric transport, soil organic carbon (SOC), soil vertical transfer, ambient temperature, and precipitation.
Collapse
|
15
|
Yohannes YB, Ikenaka Y, Nakayama SMM, Mizukawa H, Ishizuka M. DDTs and other organochlorine pesticides in tissues of four bird species from the Rift Valley region, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1389-1395. [PMID: 27539819 DOI: 10.1016/j.scitotenv.2016.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/07/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Despite the presence of a wide variety and number of birds, there is exceedingly little data on organochlorine pesticide (OCP) residues in birds inhabiting in Africa. In the present study, concentrations of dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes, drins, cyclodienes, and hexachlorobenzene were measured in liver, kidney, heart and brain of 4 bird species from the Rift Valley region, Ethiopia. Indoor residual spraying of DDT for malaria vector control, and indiscriminate and illegal use of pesticides underline the relevance of this study. Levels of ΣOCPs ranged from 1.87 to 4586ng/g wet weight, and the scavenger bird species Leptoptilos crumeniferus had the highest level in liver. In all tissues, contamination profiles of OCPs within the species were similar, with DDTs≫other OCPs. Among the DDTs, p,p'-DDE was the most abundant compound and had significantly a higher burden in all tissues. The risk characterization demonstrated potential risks to the studied birds associated with DDE exposure. Maximum hepatic levels of p,p'-DDE exceeded the levels reported to trigger adverse effects. The detection of p,p'-DDT in all bird tissues suggests the release of fresh DDT to the environment. This is the first study to assay OCPs in different tissues of birds from the Ethiopian Rift Valley region, and henceforth the data will serve as a reference data for future studies.
Collapse
Affiliation(s)
- Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Department of Chemistry, College of Natural and Computational Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
16
|
Abbasi NA, Eulaers I, Jaspers VLB, Chaudhry MJI, Frantz A, Ambus PL, Covaci A, Malik RN. Use of feathers to assess polychlorinated biphenyl and organochlorine pesticide exposure in top predatory bird species of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1408-1417. [PMID: 27425437 DOI: 10.1016/j.scitotenv.2016.06.224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Little is known about the levels of organochlorines (OCs) in predatory bird species from Asia or the factors governing their concentrations. This study is the first report on concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in predatory birds of Pakistan. The concentrations of PCBs and OCPs were investigated using tail feathers of ten different species of predatory birds. In addition, concentration differences among body, tail, primary and secondary feathers were investigated for six individuals of black kite (Milvus migrans). Ranges of concentrations were highest for dichlorodiphenyldichloroethylene (p,p'-DDE: 0.11-2163ngg(-1) dry wt.) followed by dichlorodiphenyltrichloroethane (p,p'-DDT: 0.36-345ngg(-1) dry wt.), hexachlorobenzene (HCB: 0.02-34ngg(-1) dry wt.), ∑PCBs (0.03-16ngg(-1) dry wt.) and trans-nonachlor (TN; 0.01-0.13ngg(-1) dry wt.). CB 118, 153, 138, and 180 along with p,p'-DDE were found as the most prevalent compounds. ∑PCBs and ∑DDTs were significantly different among species (both p<0.01) and omnivorous, scavengers, carnivorous and piscivorous trophic guilds (all p<0.03). Only ∑PCBs were significantly differentamong different families of birds (p<0.01). Values of stable isotopes (δ(13)C and δ(15)N) differed significantly (all p<0.01) among species, families, trophic guilds as well as terrestrial and aquatic habitat but not between nocturnal and diurnal predators (p=0.22 for δ(13)C; p=0.50 for δ(15)N). Concentrations of ∑PCBs, ∑DDTs and trans-nonachlor, but not HCB (p=0.86), were significantly different among different feather types (all p<0.01). Trophic and taxonomic affiliation as well as dietary carbon sources (δ(13)C) for species were identified as the variables best explaining the observed variation in exposure to the studied compounds. The significance of contributing factors responsible for OC contamination differences in predatory birds should be further elucidated in future studies.
Collapse
Affiliation(s)
- Naeem Akhtar Abbasi
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Muhammad Jamshed Iqbal Chaudhry
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; WWF-Pakistan, Ferozpur Road, PO Box 5180, Lahore 54600, Pakistan
| | - Adrien Frantz
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Per Lennart Ambus
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Denmark
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
17
|
Zhou Y, Asplund L, Yin G, Athanassiadis I, Wideqvist U, Bignert A, Qiu Y, Zhu Z, Zhao J, Bergman Å. Extensive organohalogen contamination in wildlife from a site in the Yangtze River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:320-8. [PMID: 26956179 DOI: 10.1016/j.scitotenv.2016.02.176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
The environmental and human health concerns for organohalogen contaminants (OHCs) extend beyond the 23 persistent organic pollutants (POPs) regulated by the Stockholm Convention. The current, intense industrial production and use of chemicals in China and their bioaccumulation makes Chinese wildlife highly suitable for the assessment of legacy, novel and emerging environmental pollutants. In the present study, six species of amphibians, fish and birds were sampled from paddy fields in the Yangtze River Delta (YRD) were screened for OHCs. Some extensive contamination was found, both regarding number and concentrations of the analytes, among the species assessed. High concentrations of chlorinated paraffins were found in the snake, Short-tailed mamushi (range of 200-340 μg g(-)(1)lw), Peregrine falcon (8-59 μg g(-1)lw) and Asiatic toad (97 μg g(-)(1)lw). Novel contaminants and patterns were observed; octaCBs to decaCB made up 20% of the total polychlorinated biphenyls (PCBs) content in the samples and new OHCs, substituted with 5-8 chlorines, were found but are not yet structurally confirmed. In addition, Dechlorane 602 (DDC-DBF) and numerous other OHCs (DDTs, hexachlorocyclohexanes (HCHs), polybrominated diphenyl ethers (PBDEs), hexbromocyclododecane (HBCDD), chlordane, heptachlor, endosulfan and Mirex) were found in all species analyzed. These data show extensive chemical contamination of wildlife in the YRD with a suite of OHCs with both known and unknown toxicities, calling for further in-depth studies.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulla Wideqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Bignert
- Contaminant Research Group, Swedish Museum of Natural History, Box 50007, 104 15 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Åke Bergman
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, SE-152 57 Södertälje, Sweden
| |
Collapse
|
18
|
Abbasi NA, Malik RN, Frantz A, Jaspers VLB. A review on current knowledge and future prospects of organohalogen contaminants (OHCs) in Asian birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:411-426. [PMID: 26520266 DOI: 10.1016/j.scitotenv.2015.10.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
The release of harmful chemicals in the Asian environment has recently increased dramatically due to rising industrial and agricultural activities. About 60% of the global human population is currently living on the Asian continent and may thus be exposed to a large range of different chemicals. Different classes of organohalogen chemicals have indeed been reported in various environmental compartments from Asia including humans and wildlife, but this issue has received less attention in birds. In this article, we reviewed the available literature on levels of legacy persistent organic pollutants (POPs) and various flame retardants (FRs) in Asian avifauna to analyze the existing pool of knowledge as well as to identify the gaps that should be addressed in future research. Furthermore, we discussed the variation in levels of organohalogens based on differences in regions, trophic level, dietary sources and migratory behaviors of species including distribution patterns in different tissues of birds. Although the mass of published literature is very low and even absent in many important regions of Asia, we deduced from the reported studies that levels of almost all classes of organohalogens (OHCs) including FRs were highest in East Asian countries such as Japan, China and South Korea, except for HCHs that were found at maximum levels in birds of South India. Concentrations (ng/g LW) of different OHCs in Asian birds ranged between <LOD (limit of detection) to 14,000,000 for polychlorinated biphenyls (PCBs), <LOD to 790,000 for dichlorodiphenyltrichloroethane (DDTs), <LOD to 12,000 for hexachlorobenzene (HCB), <LOD to 29,000 for hexachlorocyclohexanes (HCHs), <LOD to 47,000 for chlordanes (CHLs) and <LOD to 4600 for total cyclodienes. Further, ranges (ng/g LW) of 1.1 to 150,000 for Co-PCBs; <LOD to 27 for polychlorinated dibenzo-p-dioxins (PCDDs); <LOD to 45 for polychlorinated dibenzofurans (PCDFs) and 0.02 to 73 for PCDD/DFs have been reported in Asian aves. Among emerging FRs, levels of total polybrominated diphenyl ethers (PBDEs), total dechlorane plus (DPs) [syn and anti DPs] and hexabromocyclododecane (HBCDs) oscillated between <LOD to 134,000, <LOD to 3820 [<0.1-920 and <0.1-2900], and <LOD to 11,800 ng/g LW, respectively. Corresponding ranges of novel brominated flame retardants (nBFRs) such as decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were <LOD to 820 and <LOD to 89 ng/g LW. Other nBFRs such as tetrabromobisphenol-A (TBBPA) hexabromobenzene (HBB) and pentabromoethylbenzene (PBEB) in Asian avifauna have been reported in very few studies. Dependence of organohalogens on dietary sources and subsequent biomagnification in the food chain has been corroborated through δ(15)N and δ(13)C stable isotope proxies. In general, tissues with higher fat content accumulated more organohalogens and vice versa. Aspects such as maternal transfer of OHCs and temporal trends have rarely been discussed in reported literature from Asia. The mobility of birds, vicinity to sources and trans-boundary movement of pollutants were identified as key exposure routes and subsequent OHCs contamination in Asian birds. There is extreme scarcity of literature on organohalogen contamination in birds from Northern, South-eastern and west Asian countries where an industrial boom has been witnessed in the past few decades. Current scenarios suggest that levels of OHCs, particularly the FRs, are rising in birds of Asia and it would be wise to develop baseline information and to regulate the OHCs emission accordingly.
Collapse
Affiliation(s)
- Naeem Akhtar Abbasi
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Adrien Frantz
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005, Paris, France
| | | |
Collapse
|
19
|
Yohannes YB, Ikenaka Y, Nakayama SMM, Ishizuka M. Organochlorine pesticides in bird species and their prey (fish) from the Ethiopian Rift Valley region, Ethiopia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 192:121-128. [PMID: 24907858 DOI: 10.1016/j.envpol.2014.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Organochlorine pesticides (OCPs) and stable isotopes were measured in muscle from 4 bird and 5 fish species from the Ethiopian Rift Valley region where DDT is used for malaria control and vast agricultural activities are carried out. We investigated the bioaccumulation of OCPs such as DDTs, HCHs, chlordanes, and heptachlors between the species, and examined the potential risk posed by these compounds for bird species. Significant differences in contaminant profiles and levels were observed within the species. Levels of total OCPs ranged from 3.7 to 148.7 μg/g lipid in bird and 0.04 to 10.9 μg/g lipid in fish species. DDTs were the predominant contaminant, and a positive relationship between δ(15)N and ΣDDT concentrations was found. The main DDT metabolite, p,p'-DDE was the most abundant and significantly greater concentrations in bird species (up to 138.5 μg/g lipid), which could have deleterious effects on survival and/or reproduction of birds.
Collapse
Affiliation(s)
- Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; University of Gondar, Faculty of Natural and Computational Science, Department of Chemistry, P.O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
20
|
Sun YX, Hao Q, Zheng XB, Luo XJ, Zhang ZW, Zhang Q, Xu XR, Zou FS, Mai BX. PCBs and DDTs in light-vented bulbuls from Guangdong Province, South China: levels, geographical pattern and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:815-821. [PMID: 24907616 DOI: 10.1016/j.scitotenv.2014.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Thirty-two light-vented bulbuls (Pycnonotus sinensis) were collected from six sampling sites in Guangdong Province, South China to investigate the geographical variation on the occurrence of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs). Concentrations of PCBs and DDTs in the pectoral muscle of light-vented bulbul ranged from 140 to 73,000 ng/g lipid weight (lw) and 12 to 4600 ng/g lw, respectively. PCB concentrations were significantly higher in birds from e-waste site compared to other sampling sites (mean, 18,000 vs 290 ng/g lw, p<0.0001), implying that PCBs mainly came from e-waste recycling activities. No significant differences for DDT levels were observed among the sampling sites (p=0.092). Differences in PCB homologue profiles among the sampling sites were found and can be probably ascribed to different local contamination sources. p,p'-DDE (>80%) was the most abundant component of DDTs in birds. Compositional pattern of DDTs suggested that historical residue was the main source of DDT. The toxic equivalent (TEQ) concentrations had significant positive correlations with PCB concentrations, indicating that elevated PCB levels may have adverse effects on light-vented bulbuls.
Collapse
Affiliation(s)
- Yu-Xin Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qing Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Zheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zai-Wang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Fa-Sheng Zou
- Guangdong Entomological Institute, Guangzhou 510260, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Hu Y, Yuan L, Qi S, Liu H, Xing X. Contamination of organochlorine pesticides in water and sediments from a waterbird-inhabited lake, East Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9376-9384. [PMID: 24740407 DOI: 10.1007/s11356-014-2831-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Seventeen organochlorine pesticides (OCPs) were investigated in the water and sediments from a waterbird-inhabited lake (Yangchaihu Lake) to evaluate their current pollution levels and potential risks. The concentrations of total OCPs in water and sediments were 10.12-59.75 ng/l and 4.25-27.35 ng/g dry weight, respectively. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were the most abundant OCPs, while HCB and cyclodiene pesticides were detected with low levels. Levels of ∑OCPs (sum of 17 OCPs) at sites highly influenced by waterbirds were significantly higher than the sites with no significant waterbird populations (one-way ANOVA, P<0.05), suggesting that bird activities were one reason for concentration distribution of these pollutants. Compositional and source analyses of OCPs in water and sediments indicated that there might be fresh introduction of lindane and heptachlor. The partitions of most OCPs were not in equilibrium between water and sediments. The results of an ecological risk assessment showed that residue levels of DDTs in the studied area might pose adverse effects on ecosystems.
Collapse
Affiliation(s)
- Ying Hu
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Zhou S, Tong L, Tang Q, Gu X, Xue B, Liu W. Residues, sources and tissue distributions of organochlorine pesticides in dog sharks (Mustelus griseus) from Zhoushan Fishing Ground, China. MARINE POLLUTION BULLETIN 2013; 73:374-380. [PMID: 23768978 DOI: 10.1016/j.marpolbul.2013.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Ten dog sharks (Mustelus griseus) collected from Zhoushan Fishing Ground, China, were analysed for organochlorine pesticides in various tissues, including muscle, liver, skin, gill and fin, with the aim to study the residues, sources and tissue distributions of these chemicals in high trophic level marine fishes. The concentrations of DDTs, HCHs, and chlordanes varied from 7.27-26.62, 2.67-3.35, and 0.54-0.61 ng/g wet weight, respectively, with the estimated daily intake far below the acceptable daily intake and Chinese edible hygienic criteria. Data from the tissue distribution suggested a tendency of DDTs and chlordanes to accumulate in the liver, but for HCHs, direct gill penetration may be an important means of entrance. In addition, the compositional profiles indicated that the residues of HCHs and chlordanes mainly originated from the historical usage of these chemicals. However, the predominant maternal compounds and the o,p'-DDT/p,p'-DDT ratios reflected a recent use of dicofol.
Collapse
Affiliation(s)
- Shanshan Zhou
- International Joint Research Center for Persistent Toxic Substances, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | | | |
Collapse
|
23
|
Mo L, Wu JP, Luo XJ, Li KL, Peng Y, Feng AH, Zhang Q, Zou FS, Mai BX. Using the kingfisher (Alcedo atthis) as a bioindicator of PCBs and PBDEs in the dinghushan biosphere reserve, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1655-1662. [PMID: 23554012 DOI: 10.1002/etc.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/15/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
The Dinghushan Biosphere Reserve is a nature reserve and a site for the study of tropical and subtropical forest ecosystems. Rapid industrialization and intensive electronic waste-recycling activities around the biosphere reserve have resulted in elevated levels of industrial organic contaminants in the local environment that may cause adverse effects on wildlife that inhabits this area. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and 2 alternative brominated flame retardants (BFRs)-decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE)-were investigated in the biosphere reserve and a reference site by using the kingfisher (Alcedo atthis) as a bioindicator. Residue concentrations in kingfishers from the Dinghushan Biosphere Reserve ranged from 490 ng/g to 3000 ng/g, 51 ng/g to 420 ng/g, 0.44 ng/g to 90 ng/g, and 0.04 ng/g to 0.87 ng/g lipid weight for ∑PCBs, ∑PBDEs, DBDPE, and BTBPE, respectively. With the exception of the BTBPE, these levels were 2 to 5 times higher than those detected in kingfishers from the reference site. The contaminant patterns from the biosphere reserve were also different, with larger PCB contributions in comparison with the reference site. The estimated predator-prey biomagnification factors (BMFs) showed that most of the PCB and PBDE congeners and BTBPE were biomagnified in kingfishers from the biosphere reserve. The calculated toxic equivalent quantity (TEQ) concentrations of major coplanar PCB congeners in kingfishers from the biosphere reserve ranged from 18 pg/g to 66 pg/g wet weight, with some of these TEQ concentrations reaching or exceeding the levels known to impair bird reproduction and survival.
Collapse
Affiliation(s)
- Ling Mo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Sanctis A, Mariottini M, Fanello EL, Blanco G, Focardi SE, Guerranti C, Perra G. Evaluating contamination in the Red-billed Chough Pyrrhocorax pyrrhocorax through non-invasive sampling. Microchem J 2013. [DOI: 10.1016/j.microc.2012.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Syakti AD, Asia L, Kanzari F, Umasangadji H, Malleret L, Ternois Y, Mille G, Doumenq P. Distribution of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in marine sediments directly exposed to wastewater from Cortiou, Marseille. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1524-1535. [PMID: 22051976 DOI: 10.1007/s11356-011-0640-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The future 'Calanque National Park' coastlines of the Bouches-du-Rhône and Var departments in France, constitute one of the ten biodiversity hot spots identified in the Mediterranean basin that receives industrial and urban wastewaters discharged from Marseille and its suburbs. MATERIALS AND METHODS Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) were measured in sediments collected from 12 sampling sites (C1-C12) of sewage discharge to the sea from the wastewater treatment plant of Cortiou-Marseille. This study aims to determine the extent of these compounds in the sediments and to establish the possible sources of these contaminants. RESULTS AND DISCUSSION Total pesticides in the sediments ranged from 1.2 to 190.6 ng g(-1) dry weight of sediment. The highest value was found at station C1, with a decreasing trend in total OC concentrations seaward. Among these compounds, the concentrations of the sum of dichlorodiphenyltrichloroethane (ΣDDT) were the highest, ranging from 0.7 to 114.3 ng g(-1). PCB concentrations, expressed as equivalent to Arochlor 1260, varied from 9.1 to 226.9 ng g(-1). Individually, the dominant coplanar PCB congeners CB-153, CB-138 and CB-101. Generally, PCB concentrations at stations C2, C3, C5 and C7 were higher than those at stations C10, C11 and C12. Through some pollution indices, we showed the long-term contamination input of these OCs (DDT, endosulfan, HCH and heptachlor cases) rather than a recent release resulting from degradation and long-term weathering (dieldrin, aldrin and methoxychlor cases). Occurrence of PCBs might be due to their resistance to degradation processes or/and chronic inputs. CONCLUSIONS By comparison with available sediment quality guideline (SQG) values, the environmental significance and toxicological implications of PCBs and OCs (i) reveal the probable adverse effects for the sediments from C1, C5, C6, C9 and (ii) confirm the adverse effect for marine biota and more particularly for benthic communities at C2-C4, C7 and C8.
Collapse
Affiliation(s)
- Agung Dhamar Syakti
- Fisheries and Marine Sciences Program, Jenderal Soedirman University, Kampus Perikanan Unsoed Karangwangkal, Purwokerto, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|