1
|
Šuikaitė I, Šiurkutė G, Ptacnik R, Koreivienė J. Halotolerance of Phytoplankton and Invasion Success of Nostocalean Cyanobacteria Under Freshwater Salinization. Microorganisms 2025; 13:1378. [PMID: 40572266 PMCID: PMC12195237 DOI: 10.3390/microorganisms13061378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 06/08/2025] [Accepted: 06/10/2025] [Indexed: 06/29/2025] Open
Abstract
Disturbed ecosystems are particularly susceptible to biological invasions. Increasing freshwater salinization, caused by anthropogenic factors, can alter the phytoplankton community and favour newly arrived halotolerant species. This study investigates the halotolerance of four Nostocalean cyanobacterial species-the native to Europe, Aphanizomenon gracile, and alien Chrysosporum bergii, Cuspidothrix issatschenkoi, and Sphaerospermopsis aphanizomenoides-using monoculture experiments under varying NaCl concentrations. Additionally, we performed two microcosm experiments to explore shifts in biodiversity in freshwater phytoplankton communities sourced from artificial reservoirs and assess their susceptibility to cyanobacterial invasion under salinity stress. Results showed that all Nostocalean cyanobacteria were halotolerant under mild salinities (up to 1 g/L NaCl), with Chrysosporum bergii and Sphaerospermopsis aphanizomenoides demonstrating the most salt tolerance. In the microcosm experiment, changes in community composition were driven by the halotolerance of dominant groups. Water body 1, dominated by Bacillariophytina, reduced its biomass of phytoplankton at high salinity (5 g/L NaCl), while water body 2, dominated by Chlorophytina, remained stable regardless of disturbance. Both cyanobacteria successfully invaded both halotolerant and halosensitive communities, increasing their dominance as salinity rose. Our findings suggest that anthropogenic stressors such as freshwater salinization can alter the phytoplankton community and increase a competitive advantage to certain taxa, including widespread alien cyanobacteria, potentially promoting invasions and bloom formation.
Collapse
Affiliation(s)
- Izabelė Šuikaitė
- Laboratory of Algology and Microorganisms Ecology, State Scientific Research Institute Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania;
| | - Gabrielė Šiurkutė
- Laboratory of Algology and Microorganisms Ecology, State Scientific Research Institute Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania;
| | - Robert Ptacnik
- Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Lærerskoleveien 40, 3679 Notodden, Norway;
- WasserCluster Lunz, Dr. Kupelwieser-Prom. 5, 3293 Lunz am See, Austria
| | - Judita Koreivienė
- Laboratory of Algology and Microorganisms Ecology, State Scientific Research Institute Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania;
| |
Collapse
|
2
|
Savadova-Ratkus K, Grendaitė D, Karosienė J, Stonevičius E, Kasperovičienė J, Koreivienė J. Modelling harmful algal blooms in a mono- and a polydominant eutrophic lake under temperature and nutrient changes. WATER RESEARCH 2025; 275:123138. [PMID: 39855017 DOI: 10.1016/j.watres.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/09/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Cyanobacterial blooms, driven by nutrient loading and temperature, pose significant ecological and economic challenges. This study employs a combined data-driven and trait-based modelling approach to predict changes in cyanobacterial communities in a mono- and a polydominant shallow temperate lakes under varying temperature and nutrient scenarios. Results of the AQUATOX simulation model for two aquatic systems suggest that a 2 °C temperature increase, consistent with Intergovernmental Panel on Climate Change's predictions, may influence cyanobacteria species composition and dominance, with trends indicating a possible shift favouring Nostocales over Oscillatoriales and Chroococcales. Temperature increases by 4 °C clearly promoted the dominance of Nostocales. Nutrient dynamics appear to influence community structure. In a nutrient-rich monodominant lake, temperature was the primary driver, while in a nutrient-limited polydominant lake, phosphorus availability influenced cyanobacteria species dominance. Combined warming and phosphorus alterations significantly affected cyanobacteria bloom intensity and duration, particularly enhancing Nostocales growth. The study highlights the complexity of cyanobacterial responses to climate change, emphasizing the need for more analysis and comprehensive models to predict harmful algal blooms (HABs) in freshwater ecosystems. While the findings suggest that temperature and nutrient availability may be critical drivers of cyanobacterial dominance, additional research across a broader range of systems is necessary.
Collapse
Affiliation(s)
- Ksenija Savadova-Ratkus
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Dalia Grendaitė
- Laboratory of Climate and Water Research, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania; Hydrology and Climatology Department, Institute of Geosciences, Vilnius University, M. K. Čiurlionio 21, LT-03101, Vilnius, Lithuania
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Edvinas Stonevičius
- Hydrology and Climatology Department, Institute of Geosciences, Vilnius University, M. K. Čiurlionio 21, LT-03101, Vilnius, Lithuania
| | - Jūratė Kasperovičienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Judita Koreivienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania.
| |
Collapse
|
3
|
Scarlett KR, Langan LM, Lovin LM, Henke AN, Kim S, Stroski KM, Chambliss CK, Chatterjee S, Scott JT, Brooks BW. Identifying differential survival, photolocomotor behavior, and gene expression responses to cylindrospermopsin in Danio rerio and Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178665. [PMID: 39923483 DOI: 10.1016/j.scitotenv.2025.178665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
The global detection and impact of cylindrospermopsin (CYN), a cyanotoxin produced by several freshwater cyanobacteria, has increased in recent decades. CYN, a reported hepatotoxin, has become the subject of increasing concern due to linkages to human and wildlife poisonings, adversely affecting human health, agricultural animals, and the environment. However, it remains relatively understudied compared to other cyanotoxins despite its increasing prevalence and limited toxicological information. To begin to address this gap in knowledge, common biomedical and environmental fish models, the zebrafish and fathead minnow, respectively, were employed to examine influences of environmentally relevant CYN levels on sublethal gene transcription and behavioral responses. Though zebrafish locomotor profiles were not consistently affected by CYN, fathead minnow behaviors were altered during light conditions at the fastest swimming speed (>20 mm/s) for the three highest treatment levels (119, 677, and 1444 μg/L). Similarly, gene expression of zebrafish was only significantly upregulated for shha, a gene associated with neurotoxicity, while fathead minnow genes related to neurogenesis (shha and elav13), neurotransmitter secretion and synaptogenesis (syn2a), oxidative stress (nrf2a, gclc, sod1, gpx1a), DNA damage (fabp10a), and hepatotoxicity (cyp3a126) were significantly upregulated. This study identifies species specific sensitivities and highlights the need for future comparative studies to understand adverse outcomes resulting from CYN exposure.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Abigail N Henke
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Kevin M Stroski
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
4
|
Jablonska M, Eleršek T, Kogovšek P, Skok S, Oarga-Mulec A, Mulec J. Molecular Screening for Cyanobacteria and Their Cyanotoxin Potential in Diverse Habitats. Toxins (Basel) 2024; 16:333. [PMID: 39195743 PMCID: PMC11360522 DOI: 10.3390/toxins16080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored. We collected 61 samples of: (i) biofilms from springs, (ii) aerial microbial mats from buildings and subaerial mats from caves, and (iii) water from borehole wells, caves, alkaline, saline, sulphidic, thermal, and iron springs, rivers, seas, and melted cave ice from five countries (Croatia, Georgia, Italy, Serbia, and Slovenia). We used (q)PCR to detect cyanobacteria (phycocyanin intergenic spacer-PC-IGS and cyanobacteria-specific 16S rRNA gene) and cyanotoxin genes (microcystins-mcyE, saxitoxins-sxtA, cylindrospermopsins-cyrJ), as well as amplicon sequencing and morphological observations for taxonomic identification. Cyanobacteria were detected in samples from caves, a saline spring, and an alkaline spring. While mcyE or sxtA genes were not observed in any sample, cyrJ results showed the presence of a potential cylindrospermopsin producer in a biofilm from a sulphidic spring in Slovenia. This study contributes to our understanding of cyanobacteria occurrence in diverse habitats, including rare and extreme ones, and provides relevant methodological considerations for future research in such environments.
Collapse
Affiliation(s)
- Maša Jablonska
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Sara Skok
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
| | - Andreea Oarga-Mulec
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia;
| | - Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
- UNESCO Chair on Karst Education, University of Nova Gorica, 5271 Vipava, Slovenia
| |
Collapse
|
5
|
Manjitha KGL, Sewwandi BGN. Cyanotoxins availability and detection methods in wastewater treatment plants: A review. J Microbiol Methods 2024; 217-218:106886. [PMID: 38159650 DOI: 10.1016/j.mimet.2023.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Research interest in ecological significance, toxicity, and potential applications of cyanobacterial metabolites has grown as a result of the current extensive cyanobacterial blooms in water bodies. Under favourable conditions, specific cyanobacterial species release cyanotoxins, hepatotoxins, dermatoxins, neurotoxins, and cytotoxins, creating a heightened threat to aquatic ecosystems and human health. Wastewater treatment plants (WWTPs) offer one of the best culture media for cyanobacterial development and synthesis of cyanotoxins by providing optimum environmental conditions, including temperature, light intensity, lengthy water residence time, and nutrient-rich habitat. To discover the intricate relationships between cyanobacterial populations and other living organisms, it is important to comprehend the cyanobacterial communities in the ecology of WWTPs. Monitoring strategies of these cyanotoxins typically involved combined assessments of biological, biochemical, and physicochemical methodologies. Microscopic observations and physicochemical factors analysis cannot be carried out for toxicity potential analysis of blooms. Due to their high sensitivity, molecular-based approaches allow for the early detection of toxic cyanobacteria, while biological analysis is carried out by using water bloom material and cell extracts to screen cyanotoxins build up in organisms. As each approach has benefits and drawbacks, the development of an integrated multi-method laboratory system is essential to obtain trustworthy results and accurate detection of cyanotoxin levels in WWTPs allowing us to take necessary proactive and preventative approaches for effective wastewater treatment.
Collapse
Affiliation(s)
- K G L Manjitha
- Faculty of Graduate Studies, University of Kelaniya, Kelaniya 11600, Sri Lanka
| | - B G N Sewwandi
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka.
| |
Collapse
|
6
|
Piontek M, Czyżewska W, Mazur-Marzec H. Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins (Basel) 2023; 15:703. [PMID: 38133207 PMCID: PMC10747749 DOI: 10.3390/toxins15120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A seasonal plethora of cyanobacteria in the plankton community can have severe implications, not only for water ecosystems but also for the availability of treated water. The catchment of the Obrzyca River (a source of drinking water) is seasonally exposed to harmful cyanobacterial bloom. Previous studies (2008-2012; 2019) revealed that the most polluted water of the Obrzyca River was Uście, close to the outlet of Rudno Lake (at the sampling point). Therefore, the effect on this lake was specifically examined in this study. Sampling was performed from May to September at that site and from July to September 2020 at Rudno Lake. The conducted analysis revealed a massive growth of Aphanizomenon gracile, especially in Rudno Lake. The results showed not only the distinct impact of cyanobacterial bloom on phytoplankton biodiversity but also the presence of microcystins and other cyanopeptides in both sampling points. The maximal total concentration of microcystins (dmMC-RR, MC-RR, dmMC-LR, MC-LR, MC-LY, MC-YR) equaled 57.3 μg/L and the presence of cyanopeptides (aeruginosin, anabaenopeptin) was originally determined in Rudno Lake, August 2021. The presence of these toxins was highlighted in our results for the first time. The same samples from the lake were the most toxic in biotoxicological investigations using the planarian Dugesia tigrina. The performed bioassays proved that D. tigrina is a sensitive bioindicator for cyanotoxins. The physical and chemical indicators of water quality, i.e., color, temperature, total suspended solids, and total nitrogen and phosphorus, showed a significant correlation among each other and towards cyanobacterial abundance and microcystin concentrations.
Collapse
Affiliation(s)
- Marlena Piontek
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - Wanda Czyżewska
- Water and Sewage Laboratory, Water and Wastewater Treatment Plant in Zielona Góra, 65-120 Zielona Gora, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Ecology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
7
|
Aranda YN, Bhatt P, Ates N, Engel BA, Simsek H. Cyanophage-cyanobacterial interactions for sustainable aquatic environment. ENVIRONMENTAL RESEARCH 2023; 229:115728. [PMID: 36966999 DOI: 10.1016/j.envres.2023.115728] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/21/2023]
Abstract
Cyanobacteria are a type of bloom-forming phytoplankton that cause environmental problems in aquatic ecosystems worldwide. Cyanobacterial harmful algal blooms (cyanoHAB) often produce cyanotoxins that affect public health by contaminating surface waters and drinking water reservoirs. Conventional drinking water treatment plants are ineffective in treating cyanotoxins, even though some treatment methods are available. Therefore, innovative and advanced treatment methods are required to control cyanoHABs and their cyanotoxins. The goal of this review paper is to provide insight into the use of cyanophages as an effective form of biological control method for the removal of cyanoHABs in aquatic systems. Moreover, the review contains information on cyanobacterial blooms, cyanophage-cyanobacteria interactions, including infection mechanisms, as well as examples of different types of cyanobacteria and cyanophages. Moreover, the real-life application of cyanophages in marine and freshwater environments and the mode of action of cyanophages were compiled.
Collapse
Affiliation(s)
- Yolanys Nadir Aranda
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Nuray Ates
- Department of Environmental Engineering Department, Erciyes University, Kayseri, Turkiye
| | - Bernard A Engel
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
8
|
Weiss MB, Médice RV, Jacinavicius FR, Pinto E, Crnkovic CM. Metabolomics Applied to Cyanobacterial Toxins and Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:21-49. [PMID: 37843804 DOI: 10.1007/978-3-031-41741-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.
Collapse
Affiliation(s)
- Márcio Barczyszyn Weiss
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Rhuana Valdetário Médice
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Fernanda Rios Jacinavicius
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, Division of Tropical Ecosystem Functioning, University of São Paulo, Piracicaba, Brazil
| | - Camila Manoel Crnkovic
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Gunawardana MHMASV, Sanjaya K, Atapaththu KSS, Yapa Mudiyanselage ALWY, Masakorala K, Widana Gamage SMK. Quantitative prediction of toxin-producing Aphanizomenon cyanobacteria in freshwaters using Sentinel-2 satellite imagery. JOURNAL OF WATER AND HEALTH 2022; 20:1364-1379. [PMID: 36170191 DOI: 10.2166/wh.2022.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set of algorithms using in situ chlorophyll-a data with surface reflectance of Sentinel-2 bands on the same day using linear regression analysis. The in situ chlorophyll-a concentration was better regressed to the reflectance ratio of (1 + R665)/(1-R705) derived from B4 and B5 bands of Sentinel-2 with high reliability (R2 = 0.81, p < 0.001). The second regression model was developed to predict Aphanizomenon cell density using chlorophyll-a as the proxy and the relationship was strong and significant (R2 = 0.75, p<0.001). Coupling the former regression models, an empirical model was derived to predict Aphanizomenon cell density in the same reservoir with high reliability (R2 = 0.71, p<0.001). Furthermore, the predicted and observed spatial distribution of Aphanizomenon was fairly agreed. Our results highlight that the present empirical model has a high capability for an accurate prediction of Aphanizomenon cell density and their spatial distribution in freshwaters, which helps in the management of toxic algal blooms and associated health impacts.
Collapse
Affiliation(s)
| | - Kelum Sanjaya
- Department of Limnology and Water Technology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Keerthi S S Atapaththu
- Department of Limnology and Water Technology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | | | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka E-mail:
| | | |
Collapse
|
10
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
11
|
Blahova L, Sehnal L, Lepsova-Skacelova O, Szmucova V, Babica P, Hilscherova K, Teikari J, Sivonen K, Blaha L. Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic - Taxonomical, analytical, and molecular approaches. HARMFUL ALGAE 2021; 108:102101. [PMID: 34588122 DOI: 10.1016/j.hal.2021.102101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.
Collapse
Affiliation(s)
- Lucie Blahova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Olga Lepsova-Skacelova
- University of South Bohemia, Faculty of Science, Department of Botany, 370 05 Ceske Budejovice, Czech Republic
| | - Vendula Szmucova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jonna Teikari
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- University of Helsinki, Department of Microbiology, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Pronin E. Are the existing guidelines sufficient for the assessment of bathing water quality? The example of Polish lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39742-39756. [PMID: 33759104 PMCID: PMC8310518 DOI: 10.1007/s11356-021-13474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The safety of beachgoers and swimmers is determined by the presence or absence of microbial contaminants and cyanobacterial toxins in the water. This study compared the assessment of bathing waters according to the Bathing Water Directive, which is based on the concentration of fecal contaminants, with some modifications, and a new method based on the concentration of chlorophyll-a, which corresponds to the World Health Organization (WHO) guidelines used for determining cyanobacterial density in the water posing threat to people health. The results obtained from the method based on chlorophyll-a concentration clearly showed that the number of bathing waters in Poland with sufficient and insufficient quality were higher in 2018 and 2019, compared to the method based on microbial contamination. The closing of bathing waters based only on the visual confirmation of cyanobacterial blooms might not be enough to prevent the threat to swimmers' health. The multivariate analyses applied in this study seem to confirm that chlorophyll-a concentration with associated cyanobacterial density might serve as an additional parameter for assessing the quality of bathing waters, and in the case of small water reservoirs, might indirectly inform about the conditions and changes in water ecosystems.
Collapse
Affiliation(s)
- Eugeniusz Pronin
- Department of Plant Ecology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
13
|
Marinović Z, Tokodi N, Backović DD, Šćekić I, Kitanović N, Simić SB, Đorđević NB, Ferincz Á, Staszny Á, Dulić T, Meriluoto J, Urbányi B, Lujić J, Svirčev Z. Does the Kis-Balaton Water Protection System (KBWPS) Effectively Safeguard Lake Balaton from Toxic Cyanobacterial Blooms? Microorganisms 2021; 9:960. [PMID: 33946953 PMCID: PMC8145032 DOI: 10.3390/microorganisms9050960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
Lake Balaton is the largest shallow lake in Central Europe. Its water quality is affected by its biggest inflow, the Zala River. During late 20th century, a wetland area named the Kis-Balaton Water Protection System (KBWPS) was constructed in the hopes that it would act as a filter zone and thus ameliorate the water quality of Lake Balaton. The aim of the present study was to test whether the KBWPS effectively safeguards Lake Balaton against toxic cyanobacterial blooms. During April, May, July and September 2018, severe cyanobacterial blooming was observed in the KBWPS with numbers reaching up to 13 million cells/mL at the peak of the bloom (July 2018). MC- and STX-coding genes were detected in the cyanobacterial biomass. Five out of nine tested microcystin congeners were detected at the peak of the bloom with the concentrations of MC-LR reaching 1.29 µg/L; however, accumulation of MCs was not detected in fish tissues. Histopathological analyses displayed severe hepatopancreas, kidney and gill alterations in fish obtained throughout the investigated period. In Lake Balaton, on the other hand, cyanobacterial numbers were much lower; more than 400-fold fewer cells/mL were detected during June 2018 and cyanotoxins were not detected in the water. Hepatic, kidney and gill tissue displayed few alterations and resembled the structure of control fish. We can conclude that the KBWPS acts as a significant buffering zone, thus protecting the water quality of Lake Balaton. However, as MC- and STX-coding genes in the cyanobacterial biomass were detected at both sites, regular monitoring of this valuable ecosystem for the presence of cyanobacteria and cyanotoxins is of paramount importance.
Collapse
Affiliation(s)
- Zoran Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.T.); (D.D.B.); (J.M.); (Z.S.)
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.Š.); (N.K.); (B.U.)
| | - Nada Tokodi
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.T.); (D.D.B.); (J.M.); (Z.S.)
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30387 Krakow, Poland
| | - Damjana Drobac Backović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.T.); (D.D.B.); (J.M.); (Z.S.)
| | - Ilija Šćekić
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.Š.); (N.K.); (B.U.)
| | - Nevena Kitanović
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.Š.); (N.K.); (B.U.)
| | - Snežana B. Simić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (S.B.S.); (N.B.Đ.)
| | - Nevena B. Đorđević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (S.B.S.); (N.B.Đ.)
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Á.F.); (Á.S.)
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Á.F.); (Á.S.)
| | - Tamara Dulić
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland;
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.T.); (D.D.B.); (J.M.); (Z.S.)
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland;
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.Š.); (N.K.); (B.U.)
| | - Jelena Lujić
- Center for Reproductive Genomics, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA;
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.T.); (D.D.B.); (J.M.); (Z.S.)
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland;
| |
Collapse
|
14
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
15
|
Cordeiro R, Azevedo J, Luz R, Vasconcelos V, Gonçalves V, Fonseca A. Cyanotoxin Screening in BACA Culture Collection: Identification of New Cylindrospermopsin Producing Cyanobacteria. Toxins (Basel) 2021; 13:toxins13040258. [PMID: 33916821 PMCID: PMC8065757 DOI: 10.3390/toxins13040258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/05/2022] Open
Abstract
Microcystins (MCs), Saxitoxins (STXs), and Cylindrospermopsins (CYNs) are some of the more well-known cyanotoxins. Taking into consideration the impacts of cyanotoxins, many studies have focused on the identification of unknown cyanotoxin(s)-producing strains. This study aimed to screen strains from the Azorean Bank of Algae and Cyanobacteria (BACA) for MCs, STX, and CYN production. A total of 157 strains were searched for mcy, sxt, and cyr producing genes by PCR, toxin identification by ESI-LC-MS/MS, and cyanotoxin-producing strains morphological identification and confirmation by 16S rRNA phylogenetic analysis. Cyanotoxin-producing genes were amplified in 13 strains and four were confirmed as toxin producers by ESI-LC-MS/MS. As expected Aphanizomenon gracile BACA0041 was confirmed as an STX producer, with amplification of genes sxtA, sxtG, sxtH, and sxtI, and Microcystis aeruginosa BACA0148 as an MC-LR producer, with amplification of genes mcyC, mcyD, mcyE, and mcyG. Two nostocalean strains, BACA0025 and BACA0031, were positive for both cyrB and cyrC genes and ESI-LC-MS/MS confirmed CYN production. Although these strains morphologically resemble Sphaerospermopsis, the 16S rRNA phylogenetic analysis reveals that they probably belong to a new genus.
Collapse
Affiliation(s)
- Rita Cordeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- Correspondence:
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.A.); (V.V.)
| | - Rúben Luz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.A.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Vítor Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Amélia Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.L.); (V.G.); (A.F.)
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
16
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
17
|
Savadova-Ratkus K, Mazur-Marzec H, Karosienė J, Kasperovičienė J, Paškauskas R, Vitonytė I, Koreivienė J. Interplay of Nutrients, Temperature, and Competition of Native and Alien Cyanobacteria Species Growth and Cyanotoxin Production in Temperate Lakes. Toxins (Basel) 2021; 13:23. [PMID: 33401417 PMCID: PMC7824293 DOI: 10.3390/toxins13010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Global warming and eutrophication contribute to formation of HABs and distribution of alien cyanobacteria northward. The current study assessed how alien to Europe Sphaerospermopsis aphanizomenoides and Chrysosporum bergii will co-occur with dominant native Planktothrix agardhii and Aphanizomenon gracile species under changing conditions in temperate freshwaters. The experiments were carried out to examine the effect of nutrients and temperature on the growth rate of cyanobacteria, production of cyanotoxins, and interspecies competition. The highest growth rate was determined for A. gracile (0.43 day-1) and S. aphanizomenoides (0.40 day-1) strains at all the tested nutrient concentrations (IP and IN were significant factors). S. aphanizomenoides adapted to the wide range of nutrient concentrations and temperature due to high species ecological plasticity; however, A. gracile was able to suppress its dominance under changing conditions. Regularity between tested variables and STX concentration in A. gracile was not found, but IP concentration negatively correlated with the amount of dmMC-RR and other non-ribosomal peptides (NRPs) in P. agardhii strains. The relative concentration of NRPs in nontoxic P. agardhii strain was up to 3-fold higher than in MC-producing strain. Our study indicated that nutrients, temperature, and species had significant effects on interspecies competition. A. gracile had a negative effect on biomass of both alien species and P. agardhii.
Collapse
Affiliation(s)
- Ksenija Savadova-Ratkus
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Jūratė Karosienė
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| | - Jūratė Kasperovičienė
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| | - Ričardas Paškauskas
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| | - Irma Vitonytė
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| | - Judita Koreivienė
- Department of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.K.); (J.K.); (R.P.); (I.V.)
| |
Collapse
|
18
|
Kim YJ, Park HK, Kim IS. Invasion and toxin production by exotic nostocalean cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong River, Korea. HARMFUL ALGAE 2020; 100:101954. [PMID: 33298363 DOI: 10.1016/j.hal.2020.101954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The extent and frequency of harmful cyanobacterial blooms are increasing, owing to the climate change caused by global warming, and some harmful filamentous cyanobacteria that were first reported in the tropics are spreading to temperate regions, such as North America, Europe, and Northeast Asia. Although these exotic invasive cyanobacteria have a high toxigenic potential, they are not targeted in management plans in many countries. This study analyzed the occurrence of and potential toxin and off-flavor secondary metabolite production by invasive nostocalean cyanobacteria in the Nakdong River in Korea, which is a temperate region. The occurrence of four species belonging to three genera of cyanobacteria was confirmed in the Nakdong River. The quantities of cyanobacteria in the Nakdong River were mostly low, fewer than 1,000 cells mL-1. Twenty-four strains belonging to four species in three genera of cyanobacteria were isolated from the Nakdong River. Analysis revealed no off-flavor secondary metabolite production by any of the isolates, and those belonging to Cylindrospermopsis raciborskii, Sphaerospermopsis aphanizomenoides, and S. reniformis were identified as nontoxic strains. However, anatoxin-a production was observed in two of the eleven isolates of Cuspidothrix issatschenkoi. Given the sites and the timing of its occurrence, C. issatschenkoi had the highest potential for toxin production among the invasive nostocalean cyanobacteria appearing in the Nakdong River.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| | - Hae-Kyung Park
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea.
| | - In-Soo Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| |
Collapse
|
19
|
Scarlett KR, Kim S, Lovin LM, Chatterjee S, Scott JT, Brooks BW. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139807. [PMID: 32585507 PMCID: PMC8204307 DOI: 10.1016/j.scitotenv.2020.139807] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 05/03/2023]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin produced by harmful algal blooms, has been reported worldwide; however, there remains limited understanding of its potential risks to surface water quality. In the present study, we critically reviewed available literature regarding the global occurrence, bioaccumulation, and toxicity of CYN in aquatic systems with a particular focus on freshwater. We subsequently developed environmental exposure distributions (EEDs) for CYN in surface waters and performed probabilistic environmental hazard assessments (PEHAs) using guideline values (GVs). PEHAs were performed by geographic region, type of aquatic system, and matrix. CYN occurrence was prevalent in North America, Europe, and Asia/Pacific, with lakes being the most common system. Many global whole water EEDs exceeded guideline values (GV) previously developed for drinking water (e.g., 0.5 μg L-1) and recreational water (e.g., 1 μg L-1). GV exceedances were higher in the Asia/Pacific region, and in rivers and reservoirs. Rivers in the Asia/Pacific region exceeded the lowest drinking water GV 73.2% of the time. However, lack of standardized protocols used for analyses was alarming, which warrants improvement in future studies. In addition, bioaccumulation of CYN has been reported in mollusks, crustaceans, and fish, but such exposure information remains limited. Though several publications have reported aquatic toxicity of CYN, there is limited chronic aquatic toxicity data, especially for higher trophic level organisms. Most aquatic toxicity studies have not employed standardized experimental designs, failed to analytically verify treatment levels, and did not report purity of CYN used for experiments; therefore, existing data are insufficient to derive water quality guidelines. Considering such elevated exceedances of CYN in global surface waters and limited aquatic bioaccumulation and toxicity data, further aquatic monitoring, environmental fate and mechanistic toxicology studies are warranted to robustly assess and manage water quality risks to public health and the environment.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
20
|
Sidelev S, Koksharova O, Babanazarova O, Fastner J, Chernova E, Gusev E. Phylogeographic, toxicological and ecological evidence for the global distribution of Raphidiopsis raciborskii and its northernmost presence in Lake Nero, Central Western Russia. HARMFUL ALGAE 2020; 98:101889. [PMID: 33129449 DOI: 10.1016/j.hal.2020.101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern. The first appearance of R. raciborskii in Russia was noted in Lake Nero in the summer of 2010. This is the northernmost (57°N) recorded case of the simultaneous presence of R. raciborskii and detection of CYN. In this study, the data from long-term monitoring of the R. raciborskii population, temperature and light conditions in Lake Nero were explored. CYN and cyr/aoa genes present in environmental samples were examined using HPLC/MS-MS and PCR analysis. A R. raciborskii strain (R104) was isolated and its morphology, toxigenicity and phylogeography were studied. It is supposed that the trigger factor for the strong development of R. raciborskii in Lake Nero in summer 2010 may have been the relatively high water temperature, reaching 29-30 °C. Strain R. raciborskii R104 has straight trichomes and can produce akinetes, making it morphologically similar to European strains. Phylogeographic analysis based on nifH gene and 16S-23S rRNA ITS1 sequences showed that the Russian strain R104 grouped together with R. raciborskii strains isolated from Portugal, France, Germany and Hungary. The Russian strain R104 does not contain cyrA and cyrB genes, meaning that it - like all European strains - cannot produce CYN. Thus, while recent invasion of R. raciborskii into Lake Nero has occurred, morphological, genetic, and toxicological data supported the spreading of this cyanobacterium from other European lakes. Detection of CYN and cyr/aoa genes in environmental samples indicated the cyanobacterium Aphanizomenon gracile as a likely producer of CYN in Lake Nero. The article also discusses data on the global biogeography of R. raciborskii. Genetic similarity between R. raciborskii strains isolated from very remote continents might be related to the ancient origin of the cyanobacterium inhabiting the united continents of Laurasia and Gondwana, rather than comparably recent transoceanic exchange between R. raciborskii populations.
Collapse
Affiliation(s)
- Sergey Sidelev
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | - Olga Koksharova
- Belozersky Institute of Physicо-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Babanazarova
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | | | - Ekaterina Chernova
- Saint-Petersburg Scientific Research Centre for Ecological Safety, Russian Academy of Sciences, St-Petersburg, Russia
| | - Evgeniy Gusev
- К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Wejnerowski Ł, Falfushynska H, Horyn O, Osypenko I, Kokociński M, Meriluoto J, Jurczak T, Poniedziałek B, Pniewski F, Rzymski P. In Vitro Toxicological Screening of Stable and Senescing Cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins (Basel) 2020; 12:E400. [PMID: 32560354 PMCID: PMC7354461 DOI: 10.3390/toxins12060400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Toxicity of cyanobacteria is the subject of ongoing research, and a number of toxic metabolites have been described, their biosynthesis pathways have been elucidated, and the mechanism of their action has been established. However, several knowledge gaps still exist, e.g., some strains produce hitherto unknown toxic compounds, while the exact dynamics of exerted toxicity during cyanobacterial growth still requires further exploration. Therefore, the present study investigated the toxicity of extracts of nine freshwater strains of Aphanizomenon gracile, an Aphanizomenon sp. strain isolated from the Baltic Sea, a freshwater strain of Planktothrix agardhii, and two strains of Raphidiopsis raciborskii obtained from 25- and 70-day-old cultures. An in vitro experimental model based on Cyprinus carpio hepatocytes (oxidative stress markers, DNA fragmentation, and serine/threonine protein activity) and brain homogenate (cholinesterase activity) was employed. The studied extracts demonstrated toxicity to fish cells, and in general, all examined extracts altered at least one or more of considered parameters, indicating that they possess, to some degree, toxic potency. Although the time from which the extracts were obtained had a significant importance for the response of fish cells, we observed strong variability between the different strains and species. In some strains, extracts that originated from 25-day-old cultures triggered more harmful effects on fish cells compared to those obtained from 70-day-old cultures, whereas in other strains, we observed the opposite effect or a lack of a significant change. Our study revealed that there was no clear or common pattern regarding the degree of cyanobacterial bloom toxicity at a given stage of development. This means that young cyanobacterial blooms that are just forming can pose an equally toxic threat to aquatic vertebrates and ecosystem functioning as those that are stable or old with a tendency to collapse. This might be largely due to a high variability of strains in the bloom.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Tomasz Jurczak
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| | - Filip Pniewski
- Institute of Oceanography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| |
Collapse
|
22
|
Stefanova K, Radkova M, Uzunov B, Gärtner G, Stoyneva-Gärtner M. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Innsbruck University, Innsbruck, Austria
| | | |
Collapse
|
23
|
Rzymski P, Evans DM, Murphy PJ, Kokociński M. A study of polymethoxy-1-alkenes in Raphidiopsis (Cylindrospermopsis) raciborskii and Aphanizomenon gracile isolated in Poland. Toxicon 2019; 171:51-53. [PMID: 31586555 DOI: 10.1016/j.toxicon.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Previous studies indicated that teratogenic polymethoxy-1-alkenes (PMAs) are produced by phylogenetically diverse cyanobacteria taxa, however corresponding studies on the occurrence of PMAs in European cyanobacteria are lacking. Herein, the presence of PMAs in strains of Raphidiopsis raciborskii and Aphanizomenon gracile isolated from surface waters in Poland was studied using nuclear magnetic resonance and mass spectrometry. No PMAs were detected in any of the strains investigated, indicating that production of these compounds may be geographically diversified. Further studies are necessary to elucidate mechanisms of cyanobacterial PMAs synthesis.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Daniel M Evans
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | - Patrick J Murphy
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | | |
Collapse
|
24
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
25
|
Dondajewska R, Kozak A, Rosińska J, Gołdyn R. Water quality and phytoplankton structure changes under the influence of effective microorganisms (EM) and barley straw - Lake restoration case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1355-1366. [PMID: 30743930 DOI: 10.1016/j.scitotenv.2019.01.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Many lakes worldwide, especially shallow, experience great changes due to eutrophication, manifested in severe, usually toxic water blooms, disqualifying them from recreation. In order to improve water quality, restoration programs are implemented, including numerous methods. Intense nutrient cycling resulting from detrimental role of sediments impede obtaining of clear water state. One of the restoration methods proposed in recent years was Effective Microorganisms (EM), i.e. the set of microorganisms aiming at the inhibition of harmful bacteria through competitive exclusion. This approach was introduced in shallow Konin Lake (Western Poland), suffering from severe cyanobacterial water blooms. Prior to the treatment, protective action was conducted i.e. the elimination of external nutrient loads with backwater from the river. Changes in water chemistry, phytoplankton structure and macrophytes distribution were noted during the 5-year studies (2011-2015), covering the treatment (2013-2015) as well as two previous years. Oscillatoriacean cyanobacteria were most abundant in (2011-2012), while Nostocales in summer 2014-2015, as a result of decreased phosphorus but increased nitrogen concentrations. Slight increase in Cladoceran zooplankton was observed, but none in submerged macrophytes due to low water transparency. EM application initiated positive changes in the ecosystem by means of excessive organic matter decomposition and increased diversity of phytoplankton, nevertheless cyanobacteria blooms were still present due to high nutrient content.
Collapse
Affiliation(s)
- Renata Dondajewska
- Adam Mickiewicz University, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| | - Anna Kozak
- Adam Mickiewicz University, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| | - Joanna Rosińska
- Poznań University of Medical Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806 Poznań, Poland.
| | - Ryszard Gołdyn
- Adam Mickiewicz University, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
26
|
Budzyńska A, Rosińska J, Pełechata A, Toporowska M, Napiórkowska-Krzebietke A, Kozak A, Messyasz B, Pęczuła W, Kokociński M, Szeląg-Wasielewska E, Grabowska M, Mądrecka B, Niedźwiecki M, Alcaraz Parraga P, Pełechaty M, Karpowicz M, Pawlik-Skowrońska B. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1338-1347. [PMID: 30308820 DOI: 10.1016/j.scitotenv.2018.09.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms are an increasing threat worldwide. Invasions of certain cyanobacterial species, mainly towards higher latitudes, add to this concern as they enrich the pool of potential bloom-formers in the invaded region. Among the numerous causes of this escalating process, climate warming is commonly considered the most crucial factor, but empirical studies of this issue are lacking. The aim of our study was to identify physical, chemical and biological factors related to the occurrence of an invasive cyanobacterium at the northern border of its putative current range, and thus enabling its expansion. This study focuses on the relatively little studied species Sphaerospermopsis aphanizomenoides (Nostocales, Cyanobacteria; synonyms: Aphanizomenon aphanizomenoides, Anabaena aphanizomenoides), which is predicted to become one of the main nuisance species of the future. Forty-nine freshwater lakes located between latitudes 51° and 55°N were examined for the presence of S. aphanizomenoides, and environmental factors that could drive its occurrence were studied simultaneously. To identify factors correlated with the presence of the species, principal component analysis (PCA) and Mann-Whitney U test were performed. Water temperature did not differentiate lakes with or without S. aphanizomenoides, however the study was conducted in a particularly hot summer. Total phosphorus concentration was identified as the primary driving factor of the occurrence of S. aphanizomenoides. The species grew in poor light conditions and high phytoplankton biomass, mainly in shallow lakes. As shown by detrended correspondence analysis (DCA), the species accompanied shade tolerant, eutrophic species of native and invasive cyanobacteria as well as eukaryotic algae. Our results indicate that eutrophication may be the primary factor enabling the increasing occurrence of S. aphanizomenoides in temperate environments, and suggest that this process may stimulate expansion of cyanobacterial species towards high latitudes.
Collapse
Affiliation(s)
- A Budzyńska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| | - J Rosińska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland; Poznan University of Medical Sciences, Faculty of Health Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806 Poznań, Poland
| | - A Pełechata
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Toporowska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - A Napiórkowska-Krzebietke
- Inland Fisheries Institute, Department of Ichthyology, Hydrobiology and Aquatic Ecology, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - A Kozak
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - B Messyasz
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - W Pęczuła
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - M Kokociński
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - E Szeląg-Wasielewska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - M Grabowska
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Mądrecka
- Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Berdychowo 4, 60-965 Poznań, Poland
| | - M Niedźwiecki
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - P Alcaraz Parraga
- University of Jaén, Department of Animal Biology, Plant Biology and Ecology, Campus Las Lagunillas, 23071 Jaén, Spain
| | - M Pełechaty
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Karpowicz
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Pawlik-Skowrońska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
27
|
Falfushynska H, Horyn O, Brzozowska A, Fedoruk O, Buyak B, Poznansky D, Poniedziałek B, Kokociński M, Rzymski P. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:105-113. [PMID: 30472479 DOI: 10.1016/j.aquatox.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
As yet European strains of Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) have not been found to produce known cyanotoxins although their extracts have caused adverse effects in mammals, as shown using in vitro and in vivo experimental models. The present study investigated whether R. raciborskii isolated from Western Poland and Ukraine can affect fish cells using in vitro exposures of hepatocytes and red blood cells (RBC), and brain homogenates obtained from common carp (Cyprinus carpio) to 1.0% and 0.1% extracts of 7 strains. The studied extracts evoked different responses of catalase activity in hepatocytes with both increase and decrease observed under low and high concentrations. The cellular thiol pool was also altered with most extracts inducing a decrease in the activity of glutathione-S-transferase, and Ukrainian strains leading to an increase in glutathione level and a decrease in metallothionein content. All the studied extracts induced comparable reactive oxygen species formation, lipid peroxidation, protein carbonylation and DNA fragmentation in hepatocytes, and all but one increased the activity of caspase-3. Only one extract caused lysosomal membrane destabilization as measured by neutral red retention in RBC. In contrast to extracts of Ukrainian isolates, exposure of brain homogenates to extracts of Polish strains induced an increase in acetylcholinesterase activity suggesting the neurotoxic action of their exudates. The results indicate that both Polish and Ukrainian strains of R. raciborskii may pose a toxicological risk to freshwater fish, and further, that Polish strains may produce compound(s) evoking neurotoxic effects.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Agnieszka Brzozowska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Olga Fedoruk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Bogdan Buyak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Dmytro Poznansky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
28
|
Mohamed ZA, Bakr A. Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36287-36297. [PMID: 30368701 DOI: 10.1007/s11356-018-3581-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Unlike microcystin, cylindrospermospin (CYN) concentrations in fishpond water and their accumulation in fish tissues have been largely unexplored. This study determined CYN levels in water and tilapia fish organs from three tropical fishponds in southern Egypt. Water and fish samples were collected monthly from fishponds for 12 months (Oct 2012 to Sep 2013). The results revealed that six CYN-producing species of cyanobacteria dominated phytoplankton populations and formed blooms in these fishponds during warm months. Among these species, Anabaena affinis, Planktothrix agardhii, Cylindrospermopsis catemaco, and C. philippinensis were assigned as CYN producers for the first time in the present study. The highest cell densities of CYN-producing species in fishponds were recorded in August and September 2013, correlating with high temperature, pH and nutrient concentrations. Dissolved CYN was found in fishpond waters at levels (0.3-2.76 μg L-1) very close to those of particulate CYN (0.4-2.37 μg L-1). CYN was also estimated in tilapia fish organs at levels up to 417 ng g-1 in the intestines, 1500 ng g-1 in the livers, and 280 ng g-1in edible muscles. Compared to the recommended guideline (0.03 μg kg-1 day-1), the estimated daily intake (EDI) of CYN in our samples of edible muscles exceeded this limit by a factor of 1.3-14 during summer and autumn. This might represent a risk to human health upon consumption of such contaminated fish muscles. Therefore, fishponds worldwide should be monitored for the presence toxic cyanobacteria to protect humans from their potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Asmaa Bakr
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
29
|
Savadova K, Mazur-Marzec H, Karosienė J, Kasperovičienė J, Vitonytė I, Toruńska-Sitarz A, Koreivienė J. Effect of Increased Temperature on Native and Alien Nuisance Cyanobacteria from Temperate Lakes: An Experimental Approach. Toxins (Basel) 2018; 10:E445. [PMID: 30380769 PMCID: PMC6265895 DOI: 10.3390/toxins10110445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 11/17/2022] Open
Abstract
In response to global warming, an increase in cyanobacterial blooms is expected. In this work, the response of two native species of Planktothrix agardhii and Aphanizomenon gracile, as well as the response of two species alien to Europe-Chrysosporum bergii and Sphaerospermopsis aphanizomenoides-to gradual temperature increase was tested. The northernmost point of alien species distribution in the European continent was recorded. The tested strains of native species were favoured at 20⁻28 °C. Alien species acted differently along temperature gradient and their growth rate was higher than native species. Temperature range of optimal growth rate for S. aphanizomenoides was similar to native species, while C. bergii was favoured at 26⁻30 °C but sensitive at 18⁻20 °C. Under all tested temperatures, non-toxic strains of the native cyanobacteria species prevailed over the toxic ones. In P. agardhii, the decrease in concentration of microcystins and other oligopeptides with the increasing temperature was related to higher growth rate. However, changes in saxitoxin concentration in A. gracile under different temperatures were not detected. Accommodating climate change perspectives, the current work showed a high necessity of further studies of temperature effect on distribution and toxicity of both native and alien cyanobacterial species.
Collapse
Affiliation(s)
- Ksenija Savadova
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Jūratė Karosienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | | | - Irma Vitonytė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Judita Koreivienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
30
|
Development of Time-Resolved Fluoroimmunoassay for Detection of Cylindrospermopsin Using Its Novel Monoclonal Antibodies. Toxins (Basel) 2018; 10:toxins10070255. [PMID: 29933618 PMCID: PMC6070832 DOI: 10.3390/toxins10070255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin that is of particular concern for its potential toxicity to human and animal health and ecological consequences due to contamination of drinking water. The increasing emergence of CYN around the world has led to urgent development of rapid and high-throughput methods for its detection in water. In this study, a highly sensitive monoclonal antibody N8 was produced and characterized for CYN detection through the development of a direct competitive time-resolved fluorescence immunoassay (TRFIA). The newly developed TRFIA exhibited a typical sigmoidal response for CYN at concentrations of 0.01–100 ng mL−1, with a wide quantitative range between 0.1 and 50 ng mL−1. The detection limit of the method was calculated to be 0.02 ng mL−1, which is well below the guideline value of 1 μg L−1 and is sensitive enough to provide an early warning of the occurrence of CYN-producing cyanobacterial blooms. The newly developed TRFIA also displayed good precision and accuracy, as evidenced by low coefficients of variation (4.1–6.5%). Recoveries ranging from 92.6% to 108.8% were observed upon the analysis of CYN-spiked water samples. Moreover, comparison of the TRIFA with an ELISA kit through testing 76 water samples and 15 Cylindrospermopsis cultures yielded a correlation r2 value of 0.963, implying that the novel immunoassay was reliable for the detection of CYN in water and algal samples.
Collapse
|
31
|
Rzymski P, Horyn O, Budzyńska A, Jurczak T, Kokociński M, Niedzielski P, Klimaszyk P, Falfushynska H. A report of Cylindrospermopsis raciborskii and other cyanobacteria in the water reservoirs of power plants in Ukraine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15245-15252. [PMID: 29680888 PMCID: PMC5973952 DOI: 10.1007/s11356-018-2010-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/11/2018] [Indexed: 06/01/2023]
Abstract
The occurrence of cyanobacteria in freshwaters attracts much attention due to its associated health threats and ecological implications. Yet data on the composition of cyanobacteria taxa and toxigenicity in some regions is still scarce. Here, we explored the occurrence of cyanobacteria and cyanotoxins in three locations in Ukraine (reservoir for Kasperivtsi Hydrothermal Power Plant and outflowing River Seret, and cooling pond of Khmelnytsky Atomic Power Plant) in summer 2017. Cyanobacteria were a dominant fraction at all stations. A number of potent-toxin producers were identified including Cylindrospermopsis raciborskii, Aphanizomenon gracile, Dolichospermum flos-aquae, and Planktothrix agardhii. Screening for the presence of dissolved and particulate content of microcystins (-LR, -YR, and -RR), cylindrospermopsin, and anatoxin-a yielded negative results. The studied waters displayed no toxicity in human platelets in vitro. Further toxicological and ecological studies are necessary to evaluate the potential presence of cyanotoxin producers in Ukraine.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Oksana Horyn
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Ternopil, Ukraine
| | | | - Tomasz Jurczak
- Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | | | | | - Piotr Klimaszyk
- Department of Water Protection, Adam Mickiewicz University, Poznań, Poland
| | - Halina Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Ternopil, Ukraine
| |
Collapse
|
32
|
Changes in Phytoplankton and Water Quality during Sustainable Restoration of an Urban Lake Used for Recreation and Water Supply. WATER 2017. [DOI: 10.3390/w9090713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
35
|
Ballot A, Cerasino L, Hostyeva V, Cirés S. Variability in the sxt Gene Clusters of PSP Toxin Producing Aphanizomenon gracile Strains from Norway, Spain, Germany and North America. PLoS One 2016; 11:e0167552. [PMID: 27907126 PMCID: PMC5132012 DOI: 10.1371/journal.pone.0167552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
Paralytic shellfish poisoning (PSP) toxin production has been detected worldwide in the cyanobacterial genera Anabaena, Lyngbya, Scytonema, Cuspidothrix and Aphanizomenon. In Europe Aphanizomenon gracile and Cuspidothrix issatschenkoi are the only known producers of PSP toxins and are found in Southwest and Central European freshwater bodies. In this study the PSP toxin producing Aphanizomenon sp. strain NIVA-CYA 851 was isolated from the Norwegian Lake Hillestadvannet. In a polyphasic approach NIVA-CYA 851 was morphologically and phylogenetically classified, and investigated for toxin production. The strain NIVA-CYA 851 was identified as A. gracile using 16S rRNA gene phylogeny and was confirmed to produce neosaxitoxin, saxitoxin and gonyautoxin 5 by LC-MS. The whole sxt gene clusters (circa 27.3 kb) of four A. gracile strains: NIVA-CYA 851 (Norway); NIVA-CYA 655 & NIVA-CYA 676 (Germany); and UAM 529 (Spain), all from latitudes between 40° and 59° North were sequenced and compared with the sxt gene cluster of reference strain A. gracile NH-5 from the USA. All five sxt gene clusters are highly conserved with similarities exceeding 99.4%, but they differ slightly in the number and presence of single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels). Altogether 178 variable sites (44 SNPs and 4 In/Dels, comprising 134 nucleotides) were found in the sxt gene clusters of the Norwegian, German and Spanish strains compared to the reference strain. Thirty-nine SNPs were located in 16 of the 27 coding regions. The sxt gene clusters of NIVA-CYA 851, NIVA-CYA 655, NIVA-CYA 676 and UAM 529, were characterized by 15, 16, 19 and 23 SNPs respectively. Only the Norwegian strain NIVA-CYA 851 possessed an insertion of 126 base pairs (bp) in the noncoding area between the sxtA and sxtE genes and a deletion of 6 nucleotides in the sxtN gene. The sxtI gene showed the highest variability and is recommended as the best genetic marker for further phylogenetic studies of the sxt gene cluster of A. gracile. This study confirms for the first time the role of A. gracile as a PSP toxin producer in Norwegian waters, representing the northernmost occurrence of PSP toxin producing A. gracile in Europe known so far.
Collapse
Affiliation(s)
- Andreas Ballot
- Norwegian Institute for Water Research, Oslo, Norway
- * E-mail:
| | - Leonardo Cerasino
- IASMA Research and Innovation Centre, Istituto Agrario di S. Michele all'Adige - Fondazione E. Mach, S. Michele all’Adige (Trento), Italy
| | | | - Samuel Cirés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Svirčev Z, Obradović V, Codd GA, Marjanović P, Spoof L, Drobac D, Tokodi N, Petković A, Nenin T, Simeunović J, Važić T, Meriluoto J. Massive fish mortality and Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1353-1363. [PMID: 27352231 DOI: 10.1007/s10646-016-1687-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a case study of a massive fish mortality during a Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake, Serbia in mid-December 2012. According to a preliminary investigation of the samples taken on November 6 before the fish mortalities and to extended analyses of samples taken on November 15, no values of significant physicochemical parameters emerged to explain the cause(s) of the fish mortality. No industrial pollutants were apparent at this location, and results excluded the likelihood of bacterial infections. Even after freezing, the dissolved oxygen concentration in the water was sufficient for fish survival. High concentrations of chlorophyll a and phaeophytin occurred in the lake, and phytoplankton bloom samples were lethal in Artemia salina bioassays. A bloom of the cyanobacterium C. raciborskii was recorded during November. Although the A. salina bioassays indicated the presence of toxic compounds in the cyanobacterial cells, the cyanotoxins, microcystins, cylindrospermopsin and saxitoxin were not detected.
Collapse
Affiliation(s)
- Zorica Svirčev
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520, Turku, Finland
| | - Vesna Obradović
- Jaroslav Černi Institute for the Development of Water Resources, Jaroslava Černog 80, Pinosava, Belgrade, 12226, Serbia
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Prvoslav Marjanović
- Jaroslav Černi Institute for the Development of Water Resources, Jaroslava Černog 80, Pinosava, Belgrade, 12226, Serbia
| | - Lisa Spoof
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520, Turku, Finland
| | - Damjana Drobac
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| | - Nada Tokodi
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Anđelka Petković
- Jaroslav Černi Institute for the Development of Water Resources, Jaroslava Černog 80, Pinosava, Belgrade, 12226, Serbia
| | - Tanja Nenin
- Jaroslav Černi Institute for the Development of Water Resources, Jaroslava Černog 80, Pinosava, Belgrade, 12226, Serbia
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Tamara Važić
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520, Turku, Finland
| |
Collapse
|
37
|
Toporowska M, Pawlik-Skowrońska B, Kalinowska R. Mass Development of Diazotrophic Cyanobacteria ( Nostocales) and Production of Neurotoxic Anatoxin-a in a Planktothrix ( Oscillatoriales) Dominated Temperate Lake. WATER, AIR, AND SOIL POLLUTION 2016; 227:321. [PMID: 27546924 PMCID: PMC4980406 DOI: 10.1007/s11270-016-3004-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/28/2016] [Indexed: 05/26/2023]
Abstract
In spite of extensive studies on multispecies toxigenic cyanobacterial blooms, they are still difficult to eliminate, and factors regulating their succession and toxin production remain still to discover. A 4-year study revealed periodical mass development of diazotrophic Nostocales such as Dolichospermum spp. (previously Anabaena), Aphanizomenon gracile and expansive Cuspidothrix (previously Aphanizomenon) issatschenkoi in a lake affected by perennial blooms of Planktothrix agardhii (Oscillatoriales). Compared to Oscillatoriales, Nostocales reached the highest total biomass (up to 16 mg L-1) and contributed nearly 33-85 % to the total biomass of filamentous cyanobacteria at higher water temperatures (average values 17.5-22.6 °C) and higher ratio (11.8-14.1) of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN/DIP). Species structure of Nostocales changed considerably from year to year as indicated by the Jaccard similarity index (0.33-0.78). Concentrations of intracellular anatoxin-a (ANTX) ranged from 0.03 to 2.19 μg L-1 of the lake water, whilst extracellular toxin reached up to 0.55 μg L-1. The highest positive correlations were found between the intracellular ANTX and the biomass of Dolichospermum spp. (R2 = 0.73) and C. issatschenkoi (R2 = 0.43-0.65). Our study suggests that ANTX production by Dolichospermum depended mainly on water temperature, whereas that by C. issatschenkoi was related to water conductivity and DIN/DIP ratio. P-PO4 concentrations also seemed to be important. The relatively short-term mass development of neurotoxic Nostocales is an additional threat to shallow, highly eutrophic water bodies continuously affected by Oscillatoriales blooms and may be controlled mainly by the DIN/DIP ratio. ANTX should be considered as a pollutant of freshwaters.
Collapse
Affiliation(s)
- Magdalena Toporowska
- Department of Hydrobiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Renata Kalinowska
- Centre for Ecological Research, P.A.S., Experimental Station, Niecała 18, 20-080 Lublin, Poland
| |
Collapse
|
38
|
Cirés S, Ballot A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). HARMFUL ALGAE 2016; 54:21-43. [PMID: 28073477 DOI: 10.1016/j.hal.2015.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/22/2015] [Indexed: 05/16/2023]
Abstract
The traditional genus Aphanizomenon comprises a group of filamentous nitrogen-fixing cyanobacteria of which several memebers are able to develop blooms and to produce toxic metabolites (cyanotoxins), including hepatotoxins (microcystins), neurotoxins (anatoxins and saxitoxins) and cytotoxins (cylindrospermopsin). This genus, representing geographically widespread and extensively studied cyanobacteria, is in fact heterogeneous and composed of at least five phylogenetically distant groups (Aphanizomenon, Anabaena/Aphanizomenon like cluster A, Cuspidothrix, Sphaerospermopsis and Chrysosporum) whose taxonomy is still under revision. This review provides a thorough insight into the phylogeny, ecology, biogeography and toxicogenomics (cyr, sxt, and ana genes) of the five best documented "Aphanizomenon" species with special relevance for water risk assessment: Aphanizomenon flos-aquae, Aphanizomenon gracile, Cuspidothrix issatschenkoi, Sphaerospermopsis aphanizomenoides and Chrysosporum ovalisporum. Aph. flos-aquae, Aph. gracile and C. issatschenkoi have been reported from temperate areas only whereas S. aphanizomenoides shows the widest distribution from the tropics to temperate areas. Ch. ovalisporum is found in tropical, subtropical and Mediterranean areas. While all five species show moderate growth rates (0.1-0.4day-1) within a wide range of temperatures (15-30°C), Aph. gracile and A. flos-aquae can grow from around (or below) 10°C, whereas Ch. ovalisporum and S. aphanizomenoides are much better competitors at high temperatures over 30°C or even close to 35°C. A. gracile has been confirmed as the producer of saxitoxins and cylindrospermopsin, C. issatschenkoi of anatoxins and saxitoxins and Ch. ovalisporum of cylindrospermopsin. The suspected cylindrospermopsin or anatoxin-a production of A. flos-aquae or microcystin production of S. aphanizomenoides is still uncertain. This review includes a critical discussion on the the reliability of toxicity reports and on the invasive potential of "Aphanizomenon" species in a climate change scenario, together with derived knowledge gaps and research needs. As a whole, this work is intended to represent a key reference for scientists and water managers involved in the major challenges of identifying, preventing and mitigating toxic Aphanizomenon blooms.
Collapse
Affiliation(s)
- Samuel Cirés
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; College of Marine and Environmental Sciences, James Cook University, Townsville 4811, QLD, Australia.
| | - Andreas Ballot
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
39
|
Dziga D, Kokocinski M, Maksylewicz A, Czaja-Prokop U, Barylski J. Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusałka Lake. Toxins (Basel) 2016; 8:toxins8030055. [PMID: 26927173 PMCID: PMC4810200 DOI: 10.3390/toxins8030055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 11/16/2022] Open
Abstract
The occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in freshwater reservoirs is a common phenomenon. However, the biodegradation of this toxin in environmental samples has been observed only occasionally. In this work the biodegradation ability of cylindrospermopsin was investigated based on isolates from lakes with previous cyanotoxin history. Bacterial strains were identified based on the 16S rDNA and rpoD gene comparison. CYN biodegradation was monitored using the HPLC method. The R6 strain identified as Aeromonas sp. was documented as being capable of CYN removal. This biodegradation was dependent on the pH and temperature. Additionally, the stimulation of the growth of the R6 strain in the presence of CYN was indicated. Our discovery supports the hypothesis that (in analogy to the well-known phenomenon of microcystin biodegradation) in lakes dominated by potential CYN-producing cyanobacteria, the processes of microbial utilization of this toxin may occur.
Collapse
Affiliation(s)
- Dariusz Dziga
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Mikolaj Kokocinski
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Anna Maksylewicz
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Urszula Czaja-Prokop
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Krakow, Poland.
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
40
|
Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy? Mar Drugs 2015; 13:6703-22. [PMID: 26528991 PMCID: PMC4663549 DOI: 10.3390/md13116703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022] Open
Abstract
Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.
Collapse
|
41
|
Kozak A, Gołdyn R, Dondajewska R. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure. PLoS One 2015; 10:e0124738. [PMID: 25906352 PMCID: PMC4408034 DOI: 10.1371/journal.pone.0124738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/04/2015] [Indexed: 11/26/2022] Open
Abstract
In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.
Collapse
Affiliation(s)
- Anna Kozak
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryszard Gołdyn
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Renata Dondajewska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
42
|
Poniedziałek B, Rzymski P, Kokociński M, Karczewski J. Toxic potencies of metabolite(s) of non-cylindrospermopsin producing Cylindrospermopsis raciborskii isolated from temperate zone in human white cells. CHEMOSPHERE 2015; 120:608-14. [PMID: 25462304 DOI: 10.1016/j.chemosphere.2014.09.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 05/22/2023]
Abstract
Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) has worldwide distribution and is well known for producing the toxic alkaloid, cylindrospermopsin (CYN). Strains unable to synthesize this compound but potentially toxic were recently identified in Europe. Here, for the first time the effect of cell-free extracts of a non-CYN-producing strain of C. raciborskii was studied in human cells (neutrophils and lymphocytes) isolated from healthy donors. The observed effects were compared to those induced by CYN (1.0-0.01 μg mL(-1)). Short-term (1h) extract treatments resulted in altered viability of cells demonstrated by increased necrosis and apoptosis in neutrophils and elevated apoptosis in lymphocytes. CYN did not induce similar effects, regardless of the toxin concentration. Exposure of T-lymphocytes to 100% C. raciborskii extract in isolated and whole-blood 72 h cultures resulted in decrease of proliferation by 20.6% and 32.5%, respectively. In comparison, exposure to 1.0 μg mL(-1) of CYN caused lymphocytes proliferation to be inhibited by 91.0% in isolated cultures and 56.5% in whole-blood assay. Significant antiproliferative properties were also found for 0.1 μg mL(-1) of CYN in whole-blood culture. From the results we conclude that strains occurring in temperate zones may pose a threat to human health through the production of hitherto unknown metabolites that reveal a toxic pattern different to that of CYN. At the same time our study demonstrates that CYN is a powerful but slowly-acting toxin in human immune cells.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Collegium Polonicum, Adam Mickiewicz University, Słubice, Poland
| | - Jacek Karczewski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
43
|
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. WATER RESEARCH 2014; 66:320-337. [PMID: 25222334 DOI: 10.1016/j.watres.2014.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
44
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
45
|
Evans DM, Horton PN, Hursthouse MB, Murphy PJ. Preparation of an ABC tricyclic model of the cylindrospermopsin alkaloids via a biomimetically inspired pathway. RSC Adv 2014. [DOI: 10.1039/c4ra03031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The protected guanidine18was convertedviaa 4-step sequence (Boc-deprotection, tethered Biginelli condensation, deallylation/decarboxylation and reduction) to give the tricyclic guanidines26and27, models of the tricyclic core of cylindrospermopsin1.
Collapse
|
46
|
Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing nostocales cyanobacteria from mediterranean europe (Spain). Appl Environ Microbiol 2013; 80:1359-70. [PMID: 24334673 DOI: 10.1128/aem.03002-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg(-1) [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.
Collapse
|