1
|
Seguin C, Marant A, Palacios-Paris S, Bonnard I, Loizeau JL, David E, Rioult D, Cosio C. Unveiling the hidden threat: Molecular, cellular and behavioral effects of dietborne inorganic mercury and methylmercury in Dreissena polymorpha. CHEMOSPHERE 2025; 376:144306. [PMID: 40088694 DOI: 10.1016/j.chemosphere.2025.144306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Methylmercury (MeHg) bioaccumulation in food webs has been recognized as a significant health risk for over 50 years, yet most studies focus on high concentrations of waterborne inorganic mercury (IHg). This study investigates the effects of dietborne mercury (Hg) exposure at environmentally realistic IHg and MeHg levels on a freshwater food chain. Freshwater mussels, Dreissena polymorpha, were fed with microalgae previously contaminated with 2 and 20 fg IHg or MeHg per cell for 4 d. Filtration behavior, Hg bioaccumulation, histopathology, antioxidant enzyme activity, and gene expression related to defense and energy metabolism were measured across gills, digestive glands, and other soft tissues (rests) for 1, 2, and 4 d. While all microalgae were filtered at the end of feeding, only MeHg exposure led to a reduced filtration at the beginning of feeding. Bioaccumulation factors were higher for MeHg than IHg, particularly in gills. Dietborne MeHg also caused more fibrosis and structural changes in gills than IHg, in line with bioaccumulation. Necrosis, tubular atrophy, and hemocyte infiltration were observed in the digestive gland. Both IHg and MeHg triggered oxidative stress, as evidenced by significant changes in antioxidant enzyme activities and increased lipid peroxidation levels. MeHg exposure significantly upregulated the sod gene in rests and modulated cs and aox genes involved in energy metabolism in gills and digestive gland, depending on exposure duration. The findings aligned with established Hg toxicity targets but demonstrated notable differences in response depending on Hg forms and tissue type, emphasizing the importance of Hg speciation and tissue type in assessing toxicity.
Collapse
Affiliation(s)
- Clarisse Seguin
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Alice Marant
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Séverine Palacios-Paris
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, Geneva 4, 1211, Switzerland.
| | - Elise David
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Damien Rioult
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France; Université de Reims Champagne-Ardenne, URCATech, MOBICYTE, Reims, France.
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| |
Collapse
|
2
|
Ali MM, Anik AH, Islam MS, Islam ARMT, Saha SK, Siddique MAB. Impact of anthropogenic activities and the associated heavy metal pollution in Sundarbans waterways: threats to commercial fish and human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1228. [PMID: 39570482 DOI: 10.1007/s10661-024-13418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The exposure of fish to heavy metals is a significant concern for human health and natural ecosystems. Despite being a critical issue, the extent of contamination in tropical fish from developing countries like Bangladesh remains somewhat unexplored. In this study, ten economically vital fish species (Osteogeneiosus militaris, Arius gagora, Harpadon nehereus, Mugil ephalus, Pseudapocryptes elongates, Apocryptes bato, Labeo bata, Tenualosa toil, Notopterus notopterus, and Pampus chinensis) from the Pasur River, Bangladesh, were analyzed by atomic absorption spectrometer for the concentrations of four concerned heavy metals, viz., As, Cr, Cd, and Pb, and the associated human health risks. The mean concentrations (mg/kg) followed the order of As (3.30 ± 1.43) > Pb (2.32 ± 0.73) > Cr (0.63 ± 0.29) > Cd (0.37 ± 0.24). Additionally, the bioaccumulation factor of the metals in the investigated fish species followed a decreasing trend of As (824.75) > Cr (781.25) > Cd (744) > Pb (385.83). While most species fell below the minimum bioaccumulation line, a few exceptions were noted for some species specific to metals. Health risk assessments indicated no significant carcinogenic and non-carcinogenic risks for both children and adults, although children exhibited greater vulnerability to both types of health effects. Multivariate analysis and local perceptions supported the conclusion that heavy metals primarily originated from anthropogenic sources related to development activities adjacent to the riverine areas.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-E-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals, Mirpur Cantonment, Dhaka, 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | | | - Shantanu Kumar Saha
- School of Humanities and Social Sciences, United International University, Dhaka, 1212, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
3
|
Mensah AK. Soil amendment-assisted phytoremediation with ryegrass offers a promising approach to mitigate environmental health concerns. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2216-2233. [PMID: 39080872 DOI: 10.1080/15226514.2024.2380039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.
Collapse
Affiliation(s)
- Albert Kobina Mensah
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| |
Collapse
|
4
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
5
|
Thiombane M, De Vivo B, Niane B, Watts MJ, Marriott AL, Di Bonito M. A new hazard assessment workflow to assess soil contamination from large and artisanal scale gold mining. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5067-5091. [PMID: 37071266 PMCID: PMC10310586 DOI: 10.1007/s10653-023-01552-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Gold mining activities are undertaken both at large and artisanal scale, often resulting in serious 'collateral' environmental issues, including environmental pollution and hazard to human and ecosystem health. Furthermore, some of these activities are poorly regulated, which can produce long-lasting damage to the environment and local livelihoods. The aim of this study was to identify a new workflow model to discriminate anthropogenic versus geogenic enrichment in soils of gold mining regions. The Kedougou region (Senegal, West Africa) was used as a case study. Ninety-four soil samples (76 topsoils and 18 bottom soils) were collected over an area of 6,742 km2 and analysed for 53 chemical elements. Robust spatial mapping, compositional and geostatistical models were employed to evaluate sources and elemental footprint associated with geology and mining activities. Multivariate approaches highlighted anomalies in arsenic (As) and mercury (Hg) distribution in several areas. However, further interpretation with enrichment factor (EFs) and index of geoaccumulation (IGeo) emphasised high contamination levels in areas approximately coinciding with the ones where artisanal and small scale mining (ASGM) activities occur, and robust compositional contamination index (RCCI) isolated potentially harmful elements (PHE) contamination levels in very specific areas of the Kedougou mining region. The study underlined the importance of complementary approaches to identify anomalies and, more significantly, contamination by hazardous material. In particular, the analyses helped to identify discrete areas that would require to be surveyed in more detail to allow a comprehensive and thorough risk assessment, to investigate potential impacts to both human and ecosystem health.
Collapse
Affiliation(s)
- Matar Thiombane
- Haemers Technologies Group, Chaussée de Vilvorde, 104, 1120, Brussels, Belgium
| | - Benedetto De Vivo
- Pegaso University, Piazza Trieste E Trento 48, 80132, Naples, Italy
- Virginia Tech, Blacksburg, VA, 24061, USA
| | - Birane Niane
- Départment Génie Géologique, Mines Et Eau, U.F.R. Sciences de L'Ingénieur, Université IBA DER THIAM de Thiès, BP 967, Thiès, Senegal
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, NG12 5GG, UK
| | - Andrew L Marriott
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, NG12 5GG, UK
| | - Marcello Di Bonito
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, UK.
- Department of Agricultural and Food Sciences, AlmaMater Studiorum-University of Bologna, Via Fanin, 40, 40127, Bologna, Italy.
| |
Collapse
|
6
|
Tomiyasu T, Yasumatsu S, Kodamatani H, Kanzaki R, Takenaka C, Murao S, Miyagawa S, Nonaka K, Ikeguchi A, Navarrete IA. The dynamics of mercury around an artisanal and small-scale gold mining area, Camarines Norte, Philippines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20052-20064. [PMID: 36251184 DOI: 10.1007/s11356-022-23497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
To elucidate the dynamics of mercury emitted and released by artisanal and small-scale gold mining (ASGM) activity and to estimate its impact on the ecosystems of the bay, the distribution of mercury in the atmosphere, soil, water, and sediment around Mambulao Bay, Camarines Norte, Philippines, was investigated. The ASGM operations use mercury to extract gold from ore and are located on the east shore side of the bay. Samplings were conducted in August 2017 and September 2018. The samples were used for determination of total mercury (T-Hg) and organic mercury (org-Hg) concentrations, total organic carbon (TOC) content, and chemical composition. The atmospheric mercury concentration on the east shore side, 6.1-25.8 ng m-3, was significantly higher than the value of 1.4-9.9 ng m-3 observed on the west shore side. The average concentrations of T-Hg in the forest soils of the west shore side and those of the east shore side were 0.081 ± 0.028 mg kg-1 and 0.496 ± 0.439 mg kg-1, respectively. In the vertical distribution of T-Hg in the soil of the east shore side, a higher concentration was observed near the surface. For the vertical variations in T-Hg in the marine sediment, higher values were observed near the estuary, and the vertical variations in core samples showed an increase in mercury concentration toward the surface. The highest concentration of T-Hg in sediment, 9.5 mg kg-1, which was 2 orders of magnitude higher than the background levels of this area, was found near the river mouth. The T-Hg, org-Hg, and TOC levels showed a positive correlation, suggesting that the rivers are the main sources of T-Hg and org-Hg in the bay. Although the fish sample containing a mercury content higher than the regulatory level for fish and shellfish of 0.4 mg kg-1 in Japan was only one of 42 samples, the percentage of org-Hg in fish samples was 91 ± 18%. Mercury released into the surroundings by the ASGM activities can be converted into methylmercury and affect the bay's ecosystem.
Collapse
Affiliation(s)
- Takashi Tomiyasu
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
| | - Sora Yasumatsu
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Hitoshi Kodamatani
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Ryo Kanzaki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Chisato Takenaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Shuichi Miyagawa
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Akiko Ikeguchi
- College of Education, Yokohama National University, Yokohama, Japan
| | - Ian A Navarrete
- Department of Environmental Science, Southern Leyte State University-Hinunangan Campus, Ambacon, Hinunangan, Southern, Leyte, Philippines
| |
Collapse
|
7
|
Mason RP, Coulibaly M, Hansen G, Inman H, Myer PK, Yao KM. An examination of mercury levels in the coastal environment and fish of Cote d'Ivoire. CHEMOSPHERE 2022; 300:134609. [PMID: 35430197 DOI: 10.1016/j.chemosphere.2022.134609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Artisanal and small-scale gold mining (ASGM), energy production and other industrial inputs are a major source of anthropogenic mercury (Hg) to the aquatic environment globally, and these inputs have led to environmental contamination and human exposure. While studies have documented the effects of Hg inputs to rivers and marine waters of the West African region, estuarine waters of Cote d'Ivoire have been understudied, besides the waters surrounding Abidjan. To fill this gap, and to examine the potential for human exposure to methylmercury (MeHg), we measured the concentrations of total Hg, MeHg, and ancillary parameters in water (dissolved and particulate phases), sediment and fish to determine the extent of environmental impact and the potential for MeHg exposure for people consuming these fish. Levels of Hg and MeHg in sediment were elevated in the vicinity of the urban environment (up to 0.3 ng/g dry weight (dw) MeHg and 623 ng/g dw total Hg) and lowest in the more remote estuarine environments. Measurements of Hg in tuna and other larger pelagic coastal species indicated that levels were elevated but comparable to other North Atlantic regions. However, levels of Hg in fish, even smaller estuarine species, were such that the rural and urban populations are potentially being exposed to unsafe levels of MeHg, primarily as a result of the relatively high fish consumption in Cote d'Ivoire compared to other countries. Overall, both local point sources and the transport of Hg used in interior ASGM activities are the sources for Hg contamination to these coastal waters.
Collapse
Affiliation(s)
- R P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - M Coulibaly
- Ecole Normale Superieure (ENS), Abidjan, Cote d'Ivoire
| | - G Hansen
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - H Inman
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - P K Myer
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - K M Yao
- Oceanographic Institute, Abidjan, Cote d'Ivoire
| |
Collapse
|
8
|
Tigchelaar M, Leape J, Micheli F, Allison EH, Basurto X, Bennett A, Bush SR, Cao L, Cheung WW, Crona B, DeClerck F, Fanzo J, Gelcich S, Gephart JA, Golden CD, Halpern BS, Hicks CC, Jonell M, Kishore A, Koehn JZ, Little DC, Naylor RL, Phillips MJ, Selig ER, Short RE, Sumaila UR, Thilsted SH, Troell M, Wabnitz CC. The vital roles of blue foods in the global food system. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Methylmercury exposure during prenatal and postnatal neurodevelopment promotes oxidative stress associated with motor and cognitive damages in rats: an environmental-experimental toxicology study. Toxicol Rep 2022; 9:563-574. [PMID: 35392159 PMCID: PMC8980556 DOI: 10.1016/j.toxrep.2022.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 μg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats. The MeHg exposure during CNS development increased mercury levels in hippocampal and cerebellar parenchyma. The MeHg intoxication during pregnancy and lactation impairs the redox status of hippocampus and cerebellum of the offspring. MeHg exposure causes behavioral effects in motor ability and cognition of offspring rats.
Collapse
|
10
|
Kinimo KC, Yao KM, Marcotte S, Kouassi NLB, Trokourey A. Trace metal(loid)s contamination in paddy rice (Oryza sativa L.) from wetlands near two gold mines in Côte d'Ivoire and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22779-22788. [PMID: 33423204 DOI: 10.1007/s11356-021-12360-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
This study examined the concentrations of arsenic (As), cadmium (Cd), and mercury (Hg) in rice grains grown in wetlands associated with gold mining in central-southern of Côte d'Ivoire to evaluate potential health risks exposure via rice consumption. In total, 30 rice grains were sampled around Agbaou and Bonikro gold mines. Arsenic and cadmium concentrations were determined using an inductively coupled plasma-optical emission spectrometer (ICP-OES), while atomic absorption spectrometry (AAS) was used for mercury. Results showed that As and Hg average concentrations in rice were above the permissible limits, while Cd average concentrations were below the permissible limit established by FAO/WHO in both sites. Except for Hg at Agbaou, no significant (p < 0.05) difference was found between trace metal concentrations in the two sites. The average daily intake (ADI) of As via rice consumption exceeded the USEPA reference dose (RfD) of 0.0003 μg g-1 day-1, indicating that rice ingestion is a pathway of As exposure for adults and children in the area. The average values of non-carcinogen (HQ) for As and carcinogen (CR) for As and Cd risks index suggest that potential health risks exist for both adults and children due to rice consumption at Agbaou and Bonikro. The maximum safe weekly consumption (MSWC) of rice relative to As, Cd, and Hg was estimated for the study area. Overall, this study provides strong evidence that As could threaten local population health in Côte d'Ivoire regions where gold mine extraction is occurring through rice ingestion.
Collapse
Affiliation(s)
- Kakou Charles Kinimo
- UFR Sciences Biologiques, Département de Mathématiques Physique Chimie, Université Peleforo Gon Coulibaly, BP 1328, Korhogo, Côte d'Ivoire.
| | - Koffi Marcellin Yao
- Centre de Recherches Océanologiques (CRO), 29, rue des pêcheurs, BP V18, Abidjan, Côte d'Ivoire
| | - Stéphane Marcotte
- Normandie University, COBRA, UMR CNRS 6014 et FR 3038, INSA de Rouen, 1 rue Tesnière, Cedex 76821, Mont Saint-Aignan, France
| | - N'Guessan Louis Berenger Kouassi
- UFR Sciences Biologiques, Département de Mathématiques Physique Chimie, Université Peleforo Gon Coulibaly, BP 1328, Korhogo, Côte d'Ivoire
| | - Albert Trokourey
- Physic Chemistry Laboratory, Félix Houphouët Boigny University, BP 522, Abidjan, Côte d'Ivoire
| |
Collapse
|
11
|
Soltani N, Marengo M, Keshavarzi B, Moore F, Hooda PS, Mahmoudi MR, Gobert S. Occurrence of trace elements (TEs) in seafood from the North Persian Gulf: Implications for human health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Cossa H, Scheidegger R, Leuenberger A, Ammann P, Munguambe K, Utzinger J, Macete E, Winkler MS. Health Studies in the Context of Artisanal and Small-Scale Mining: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1555. [PMID: 33562086 PMCID: PMC7914471 DOI: 10.3390/ijerph18041555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Artisanal and small-scale mining (ASM) is an important livelihood activity in many low- and middle-income countries. It is widely acknowledged that there are a myriad of health risk and opportunities associated with ASM. However, little is known with regard to which aspects of health have been studied in ASM settings. We conducted a scoping review of peer-reviewed publications, using readily available electronic databases (i.e., PubMed, Scopus, and Web of Science) from inception to 14 July 2020. Relevant information was synthesized with an emphasis on human and environmental exposures and health effects in a context of ASM. Our search yielded 2764 records. After systematic screening, 176 health studies from 38 countries were retained for final analysis. Most of the studies (n = 155) focused on health in ASM extracting gold. While many of the studies included the collection of environmental and human samples (n = 154), only few (n = 30) investigated infectious diseases. Little attention was given to vulnerable groups, such as women of reproductive age and children. Our scoping review provides a detailed characterisation of health studies in ASM contexts. Future research in ASM settings should address health more comprehensively, including the potential spread of infectious diseases, and effects on mental health and well-being.
Collapse
Affiliation(s)
- Hermínio Cossa
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (A.L.); (P.A.); (J.U.); (M.S.W.)
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
- Manhiça Health Research Centre, C.P. 1929 Maputo, Mozambique; (K.M.); (E.M.)
| | - Rahel Scheidegger
- Swiss Federal Institute of Technology, P.O. Box, CH-8092 Zurich, Switzerland;
| | - Andrea Leuenberger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (A.L.); (P.A.); (J.U.); (M.S.W.)
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Priska Ammann
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (A.L.); (P.A.); (J.U.); (M.S.W.)
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Khátia Munguambe
- Manhiça Health Research Centre, C.P. 1929 Maputo, Mozambique; (K.M.); (E.M.)
- Faculty of Medicine, University Eduardo Mondlane, C.P. 257 Maputo, Mozambique
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (A.L.); (P.A.); (J.U.); (M.S.W.)
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Eusébio Macete
- Manhiça Health Research Centre, C.P. 1929 Maputo, Mozambique; (K.M.); (E.M.)
- National Directorate of Public Health, Ministry of Health, C.P. 264 Maputo, Mozambique
| | - Mirko S. Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; (A.L.); (P.A.); (J.U.); (M.S.W.)
- University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| |
Collapse
|
13
|
Inorganic Mercury and Methyl-Mercury Uptake and Effects in the Aquatic Plant Elodea nuttallii: A Review of Multi-Omic Data in the Field and in Controlled Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(1) Background: Mercury is a threat for the aquatic environment. Nonetheless, the entrance of Hg into food webs is not fully understood. Macrophytes are both central for Hg entry in food webs and are seen as good candidates for biomonitoring and bioremediation; (2) Methods: We review the knowledge gained on the uptake and effects of inorganic Hg (IHg) and methyl-Hg (MMHg) in the macrophyte Elodea nuttallii found in temperate freshwaters; (3) Results: E. nuttallii bioaccumulates IHg and MMHg, but IHg shows a higher affinity to cell walls. At the individual level, IHg reduced chlorophyll, while MMHg increased anthocyanin. Transcriptomics and metabolomics in shoots revealed that MMHg regulated a higher number of genes than IHg. Proteomics and metabolomics in cytosol revealed that IHg had more effect than MMHg; (4) Conclusions: MMHg and IHg show different cellular toxicity pathways. MMHg’s main impact appears on the non-soluble compartment, while IHg’s main impact happens on the soluble compartment. This is congruent with the higher affinity of IHg with dissolved OM (DOM) or cell walls. E. nuttallii is promising for biomonitoring, as its uptake and molecular responses reflect exposure to IHg and MMHg. More generally, multi-omics approaches identify cellular toxicity pathways and the early impact of sublethal pollution.
Collapse
|
14
|
Suami RB, Al Salah DMM, Kabala CD, Otamonga JP, Mulaji CK, Mpiana PT, Poté JW. Assessment of metal concentrations in oysters and shrimp from Atlantic Coast of the Democratic Republic of the Congo. Heliyon 2019; 5:e03049. [PMID: 32083201 PMCID: PMC7019083 DOI: 10.1016/j.heliyon.2019.e03049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/08/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
Oysters and shrimp are abundant and commonly consumed seafood by the indigenous population of the Kongo central region of the Democratic Republic of the Congo (DRC). Literature reviews suggest that no data were available for the metal concentrations in these species. Consequently, the purpose of this study is to determine the metal concentrations in tissues of oysters (Egeria congica) and shrimp (Macrobrachium spp., Parapenaeus spp., Penaeus spp.) collected in November 2017 from the Atlantic Ocean Coast of DRC in the territory of Muanda. Metal levels in the seafood species studied here were put into context using international regulation for human consumption set by the Food and Agriculture Organization (FAO), Canadian Food Inspection Agency (CFIA), European Union (EU), and World Health Organization (WHO). Our results demonstrated that the concentration of heavy metals varied considerably between sampling sites and analyzed species (P < 0.05), with the values (in mg kg1) ranged between 0.05-0.41, 0.03-2.25,
Collapse
Affiliation(s)
- Robert B. Suami
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), Faculty of Pharmaceutical Sciences, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Dhafer Mohammed M. Al Salah
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl Vogt, 66 Boulevard Carl-Vogt, Geneva 4, CH-1211, Switzerland
- King Abdulaziz City for Science and Technology, Joint Centers of Excellence Program, Prince Turki the 1st Street, Riyadh, 11442, Saudi Arabia
| | - César D. Kabala
- University of Kinshasa (UNIKIN), Faculty of Pharmaceutical Sciences, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - J.-P. Otamonga
- Université Pédagogique Nationale (UPN). Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, B.P. 8815, Kinshasa, République Démocratique du Congo
| | - Crispin K. Mulaji
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - Pius T. Mpiana
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - John W. Poté
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, School of Earth and Environmental Sciences, Faculty of Science, University of Geneva, Uni Carl Vogt, 66 Boulevard Carl-Vogt, Geneva 4, CH-1211, Switzerland
- Université Pédagogique Nationale (UPN). Croisement Route de Matadi et Avenue de la Libération. Quartier Binza/UPN, B.P. 8815, Kinshasa, République Démocratique du Congo
| |
Collapse
|
15
|
Kumar S, Karmoker J, Pal BK, Luo C, Zhao M. Trace metals contamination in different compartments of the Sundarbans mangrove: A review. MARINE POLLUTION BULLETIN 2019; 148:47-60. [PMID: 31422302 DOI: 10.1016/j.marpolbul.2019.07.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
This review study aimed to decipher distribution of trace metals (Al, As, Cd, Cr, Cu, Hg, Pb, Ni, Mn, V, and Zn) in different compartments and human health risk in the Sundarbans mangrove ecosystems. The literature suggested relatively higher contamination of soils and sediments than fish, crustaceans, and water. Cd, Fe, Ni, and Pb are most likely to accumulate in roots of mangrove trees, while Al, As, Co, Cr, Cu, Mn, and Zn tend to accumulate in the leaves. According to human health risk studies, fish consumption is the main route of trace metals exposure to human. Majority of the studies conducted in the Indian Sundarbans; whereas, in Bangladesh part, there is an evident lack of such kind of studies. Finally, this review highlights the foremost data and research gaps, which will help to refine the risk of trace metals and scarcity of researches in the Sundarbans mangrove ecosystem.
Collapse
Affiliation(s)
- Sazal Kumar
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joyanto Karmoker
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Biplob Kumer Pal
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Chuanxiu Luo
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Meixia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
16
|
Niane B, Guédron S, Feder F, Legros S, Ngom PM, Moritz R. Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:185-193. [PMID: 30878927 DOI: 10.1016/j.scitotenv.2019.03.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 05/22/2023]
Abstract
In Senegal, the environmental impact of artisanal small-scale gold mining (ASGM) using mercury (Hg) is poorly documented despite its intensification over the past two decades. We report here a complete dataset including the distribution and speciation of Hg in soil, sediment, and water in pristine and ASGM impacted sites of the Gambia River ecosystem (Kedougou region - eastern Senegal). Selective extraction showed that soils surrounding ASGM activities were contaminated with elemental Hg [Hg(0)] at concentrations up to 3.9 mg kg-1. In the Gambia River, high total Hg (THg: 1.16 ± 0.80 mg kg-1) and methylmercury (MeHg: 3.2 ± 2.3 ng g-1) were also measured in sediment samples collected at ASGM sites. Along the stream, THg concentrations in sediment decrease with distance from the ASGM sites, while those of methylmercury increase downstream. The study of THg and MeHg partitioning between filtered surface water and suspended particles demonstrate that particulate transport is responsible for the downstream dissemination of the Hg contamination from ASGM sites. Sedimentation of fine particles enriched in Hg downstream ASGM sites likely favors MeHg production and accumulation in sediment. Although elemental Hg is weakly labile, surface soil erosion may also provide important and long-term Hg inputs to downstream aquatic ecosystems, where it can be oxidized and methylated. Finally, the dissemination of THg and MeHg downstream from the ASGM sites in the Gambia River may constitute a long-term source of contamination and can have a large scale impact on the aquatic ecosystem through biomagnification.
Collapse
Affiliation(s)
- Birane Niane
- Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, CH-1205 Geneva, Switzerland.
| | - Stéphane Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Frédéric Feder
- CIRAD, UPR Recyclage et risque, Laboratoire Mixte International IE SOL, 18524 Dakar, Senegal
| | - Samuel Legros
- CIRAD, UPR Recyclage et risque, Laboratoire Mixte International IE SOL, 18524 Dakar, Senegal
| | - Papa Malick Ngom
- Département de Géologie, Université Cheikh Anta DIOP, Dakar, Senegal
| | - Robert Moritz
- Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, CH-1205 Geneva, Switzerland
| |
Collapse
|
17
|
Mason RP, Baumann Z, Hansen G, Yao KM, Coulibaly M, Coulibaly S. An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:1158-1167. [PMID: 30893747 DOI: 10.1016/j.scitotenv.2019.01.393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) activities are an important source of mercury (Hg) to the atmosphere globally, and in most countries in West Africa, where gold production has increased dramatically in the last decade from both commercial and ASGM activities. This study focused on examining the concentrations of Hg and methylmercury (MeHg) in water, sediments and fish in four regions associated with gold mining activities in Cote d'Ivoire to assess the potential exposure of the local communities to MeHg from fish consumption. Concentrations of dissolved total Hg and MeHg in water and sediment were elevated at some locations sample and were indicative of local contamination. Several locations had sediment total Hg above 100 ng g-1 and sediment %MeHg ranged from 0.03 to 4.4%. Fish concentrations exceeded 0.3 μg/ g wet wt., especially for carnivores and fish caught in the western region of the country. Bioaccumulation factors, relative to dissolved MeHg, were higher for carnivores than omnivores and varied with region, suggesting other factors besides MeHg concentration alone were impacting uptake and trophic transfer. Given that people in Cote d'Ivoire consume fish at a higher level than other countries, the levels in fish were sufficient to exceed the US EPA's guidance criteria even at average consumption levels, and particularly for people consuming fish at a higher rate. Overall, this study provides compelling evidence that ASGM activities in Cote d'Ivoire are leading to elevated exposure and likely impacting the health of the local populations in regions where such activity is occurring.
Collapse
Affiliation(s)
- Robert P Mason
- Dept. Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Zofia Baumann
- Dept. Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Gunnar Hansen
- Dept. Marine Sciences, University of Connecticut, Groton, CT, USA
| | | | | | | |
Collapse
|
18
|
Kwaansa-Ansah EE, Armah EK, Opoku F. Assessment of Total Mercury in Hair, Urine and Fingernails of Small-Scale Gold Miners in the Amansie West District, Ghana. J Health Pollut 2019; 9:190306. [PMID: 30931166 PMCID: PMC6421948 DOI: 10.5696/2156-9614-9.21.190306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mercury (Hg) is a heavy metal that can cause several adverse health effects based on its form (organic, inorganic or elemental), duration and pathway of exposure. Measurement of mercury present in human biological media is often used to assess human exposure to mercury at mining sites. OBJECTIVES The aim of the present study was to measure the concentrations of total mercury in urine, hair, and fingernails of miners and inhabitants of Amansie West District, Ghana. METHODS Concentrations of total mercury were measured in sixty-eight miners and twelve non-miners in the study area using cold vapor atomic absorption spectrophotometry with an automatic mercury analyzer (HG 5000). RESULTS Total mercury in nails and hair of smelter miners was 3.32 ± 0.36 and 6.59 ± 0.01 μg/g, respectively. Total mercury concentrations in hair samples obtained from smelter miners were above the 1 μg/g guideline set by the United States Environmental Protection Agency (USEPA). Moreover, the total mercury concentration in urine samples was 6.97 ± 0.06 μg/L, far below the >25 μg/L level considered to be a high level of mercury contamination. The total mercury accrued by the individuals was not dependent on age, but was positively associated with duration of stay. CONCLUSIONS Based on the total mercury (THg) levels analyzed in the biological media, artisanal gold mining activities in Amansie West District are on the increase with a potential risk of developing chronic effects. However, the majority of the population, particularly those engaged in artisanal small-scale gold mining, are unmindful of the hazards posed by the use of mercury in mining operations. The results showed that THg in urine, hair, and fingernails more efficiently distinguished mercury exposure in people close to mining and Hg pollution sources than in people living far from the mining sites. Further education on cleaner artisanal gold mining processes could help to minimize the impact of mercury use and exposure on human health and the environment. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL This study was approved by the Ghana Environmental Protection Agency and the Ministry of Local Government and Rural Development in Manso Nkwanta. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
| | - Edward Kwaku Armah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Opoku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
19
|
Goix S, Maurice L, Laffont L, Rinaldo R, Lagane C, Chmeleff J, Menges J, Heimbürger LE, Maury-Brachet R, Sonke JE. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. CHEMOSPHERE 2019; 219:684-694. [PMID: 30557725 DOI: 10.1016/j.chemosphere.2018.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
In some locations, artisanal and small-scale gold-mining (ASGM) represents a significant source of anthropogenic Hg to freshwater environments. The Hg released from ASGM can contaminate aquatic fauna and pose health risks to downstream populations. Total Hg (THg) concentrations, speciation, and isotopic compositions were analyzed in water, suspended particulate matter, soil, and bottom sediment samples from pristine areas and in places of active and legacy gold mining along the Oyapock River (French Guiana) and its tributaries. Mass-independent fractionation (MIF) of even Hg isotopes in top soils (Δ200Hg = -0.06 ± 0.02‰, n = 10) implied the uptake of gaseous Hg(0) by plants, rather than wet deposition, as the primary Hg source. Odd isotope MIF was lower in deep soils (Δ199Hg = -0.75 ± 0.03‰, n = 7) than in top soils (Δ199Hg = -0.55 ± 0.15‰, n = 3). This variation could be attributed to differences between the isotopic signatures of modern and pre-industrial atmospheric Hg. Combining a Hg-isotope binary mixing model with a multiple linear regression based on physico-chemical parameters measured in the sediment samples, we determined that active mined creek sediments are contaminated by ASGM activities, with up to 78% of THg being anthropogenic. Of this anthropogenic Hg, more than half (66-74%) originates from liquid Hg(0) that is released during ASGM. The remaining anthropogenic Hg comes from the ASGM-driven erosion of Hg-rich soils into the river. The isotope signatures of anthropogenic Hg in bottom sediments were no longer traceable in formerly mined rivers and creeks.
Collapse
Affiliation(s)
- Sylvaine Goix
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France; Institut Écocitoyen pour la Connaissance des Pollutions, Centre de Vie La Fossette RD 268, 13270 Fos-sur-Mer, France
| | - Laurence Maurice
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France.
| | - Laure Laffont
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France
| | - Raphaelle Rinaldo
- Parc Amazonien de Guyane, 1 rue Lederson, Remire-Montjoly, Guyane française, France
| | - Christelle Lagane
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France
| | - Jerome Chmeleff
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France
| | - Johanna Menges
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France; GFZ German Research Centre for Geosciences, Section 5.1: Geomorphology, Potsdam, Germany
| | - Lars-Eric Heimbürger
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France; Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Régine Maury-Brachet
- University of Bordeaux, UMR EPOC 5805, Place du Dr Peyneau, 33120 Arcachon, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, CNRS, IRD, Université de Toulouse, 31400 Toulouse, France
| |
Collapse
|
20
|
Le Croizier G, Schaal G, Point D, Le Loc'h F, Machu E, Fall M, Munaron JM, Boyé A, Walter P, Laë R, Tito De Morais L. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2129-2140. [PMID: 30290354 DOI: 10.1016/j.scitotenv.2018.09.330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrient inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France; Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Gauthier Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - David Point
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - François Le Loc'h
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Eric Machu
- Laboratoire d'Océanographie Physique et Spatiale (LOPS), UMR 6523 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29280 Plouzané, France; Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal
| | - Massal Fall
- Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Université Cheikh Anta DIOP de Dakar, Ecole Supérieure Polytechnique, BP 5085, Dakar Fann, Sénégal; Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT/ISRA), BP 2241, Dakar, Sénégal
| | - Jean-Marie Munaron
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Aurélien Boyé
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Pierre Walter
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, IRD, UPS, CNES, Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Raymond Laë
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| | - Luis Tito De Morais
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, BP 70, 29280 Plouzané, France
| |
Collapse
|
21
|
Suami RB, Sivalingam P, Kabala CD, Otamonga JP, Mulaji CK, Mpiana PT, Poté J. Concentration of heavy metals in edible fishes from Atlantic Coast of Muanda, Democratic Republic of the Congo. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ndiaye PI, Lindshield SM, Badji L, Pacheco L, Wessling EG, Boyer KM, Pruetz JD. Survey of Chimpanzees (Pan troglodytes verus) Outside Protected Areas in Southeastern Senegal. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2018. [DOI: 10.3957/056.048.013007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Papa Ibnou Ndiaye
- Laboratoire de Biologie évolutive, Ecologie et Gestion des Ecosystèmes, Département de Biologie animale, Université Cheikh Anta Diop de Dakar, Senegal
| | - Stacy M. Lindshield
- Department of World Languages and Cultures, Iowa State University, Ames, Iowa, U.S.A
| | - Landing Badji
- Laboratoire de Biologie évolutive, Ecologie et Gestion des Ecosystèmes, Département de Biologie animale, Université Cheikh Anta Diop de Dakar, Senegal
| | | | - Erin G. Wessling
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Kelly M. Boyer
- Department of Anthropology, Iowa State University, Ames, IA 50011, U.S.A
| | - Jill D. Pruetz
- Department of World Languages and Cultures, Iowa State University, Ames, Iowa, U.S.A
- Department of Anthropology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
23
|
Riaz A, Khan S, Muhammad S, Liu C, Shah MT, Tariq M. Mercury contamination in selected foodstuffs and potential health risk assessment along the artisanal gold mining, Gilgit-Baltistan, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:625-635. [PMID: 28695305 DOI: 10.1007/s10653-017-0007-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the mercury (Hg) contaminations in soil and foodstuffs along the artisanal gold mining areas, Gilgit-Baltistan Province, Pakistan. For this purpose, soils were analyzed for Hg concentrations and evaluated for the enrichment/contamination using enrichment factor or contamination factors (CF). The CF values ranged from 18.9 to 153 showed multifold higher levels of Hg contamination as compared to background or reference site. Foodstuffs including vegetables, seeds or grains and fish muscles showed Hg accumulation. Results revealed that Hg concentrations in foodstuffs were higher than the critical human health value set by European Union. The Hg in foodstuffs was consumed and, therefore, evaluated for the risk assessment indices using the daily intake (DI) and health risk index (HRI) for the exposed human population both children and adults. Results of this study revealed that cumulative HRI values through foodstuffs consumption were <1 (within safe limit), but if the current practices continued, then the Hg contamination could pose potential threat to exposed population in near future.
Collapse
Affiliation(s)
- Arjumand Riaz
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sardar Khan
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Said Muhammad
- Department of Earth Sciences, COMSATS University, Abbottabad, 22060, Pakistan.
| | - Caihong Liu
- College of Chemical Engineering, Taishan Medical University, Tai'an, 271016, China
| | - Mohammad Tahir Shah
- National Center of Excellence of Geology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Mohsin Tariq
- Department of Earth Sciences, COMSATS University, Abbottabad, 22060, Pakistan
| |
Collapse
|
24
|
Mercury Exposure and Health Problems in Urban Artisanal Gold Mining (UAGM) in Makassar, South Sulawesi, Indonesia. GEOSCIENCES 2017. [DOI: 10.3390/geosciences7030044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Walsh JJ, Lenes JM, Weisberg RH, Zheng L, Hu C, Fanning KA, Snyder R, Smith J. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs. MARINE POLLUTION BULLETIN 2017; 116:9-40. [PMID: 28111002 DOI: 10.1016/j.marpolbul.2016.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine.
Collapse
Affiliation(s)
- J J Walsh
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States.
| | - J M Lenes
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R H Weisberg
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - L Zheng
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - C Hu
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - K A Fanning
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R Snyder
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA 23480, United States
| | - J Smith
- Department of Radiology, School of Medicine, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
26
|
Ha E, Basu N, Bose-O'Reilly S, Dórea JG, McSorley E, Sakamoto M, Chan HM. Current progress on understanding the impact of mercury on human health. ENVIRONMENTAL RESEARCH 2017; 152:419-433. [PMID: 27444821 DOI: 10.1016/j.envres.2016.06.042] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 05/18/2023]
Abstract
Mercury pollution and its impacts on human health is of global concern. The authors of this paper were members of the Plenary Panel on Human Health in the 12th International Conference on Mercury as a Global Pollutant held in Korea in June 2015. The Panel was asked by the conference organizers to address two questions: what is the current understanding of the impacts of mercury exposure on human health and what information is needed to evaluate the effectiveness of the Minamata Convention in lowering exposure and preventing adverse effects. The authors conducted a critical review of the literature published since January 2012 and discussed the current state-of-knowledge in the following areas: environmental exposure and/or risk assessment; kinetics and biomonitoring; effects on children development; effects on adult general populations; effects on artisanal and small-scale gold miners (ASGM); effects on dental workers; risk of ethylmercury in thimerosal-containing vaccines; interactions with nutrients; genetic determinants and; risk communication and management. Knowledge gaps in each area were identified and recommendations for future research were made. The Panel concluded that more knowledge synthesis efforts are needed to translate the research results into management tools for health professionals and policy makers.
Collapse
Affiliation(s)
- Eunhee Ha
- Ewha Womans University, College of Medicine, Department of Preventive Medicine, South Korea
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Canada
| | - Stephan Bose-O'Reilly
- University Hospital Munich, Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, WHO Collaborating Centre for Occupational Health, Germany; University for Health Sciences, Medical Informatics and Technology (UMIT), Department of Public Health, Health Services Research and Health Technology Assessment, Austria
| | - José G Dórea
- Department of Nutrition, University of Brasília, Brasília, Brazil
| | - Emeir McSorley
- Northern Ireland Centre for Food and Health, Ulster University, United Kingdom
| | - Mineshi Sakamoto
- Department of Epidemiology, National Institute for Minamata Disease, Japan
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Canada.
| |
Collapse
|
27
|
Laffite A, Kilunga PI, Kayembe JM, Devarajan N, Mulaji CK, Giuliani G, Slaveykova VI, Poté J. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers. Front Microbiol 2016; 7:1128. [PMID: 27499749 PMCID: PMC4956658 DOI: 10.3389/fmicb.2016.01128] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (bla TEM, bla CTX-M, bla SHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg(-1)) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except bla TEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except bla TEM) and toxic metals (Cd, Cr, Cu, and Zn) 0.44 to 0.72, (p < 0.001, n = 65). These findings demonstrate that several sources including hospital and urban wastewaters contribute to the spread of toxic metals and biological emerging contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Amandine Laffite
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - Pitchouna I Kilunga
- Department of Chemistry, Faculty of Science, University of Kinshasa Kinshasa, Democratic Republic of the Congo
| | - John M Kayembe
- Département de Géographie-Science de l'Environnement, Faculté des Sciences, Université Pédagogique Nationale Kinshasa, Democratic Republic of the Congo
| | - Naresh Devarajan
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - Crispin K Mulaji
- Department of Chemistry, Faculty of Science, University of Kinshasa Kinshasa, Democratic Republic of the Congo
| | - Gregory Giuliani
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of GenevaGeneva, Switzerland; enviroSPACE Lab., Institute for Environmental Sciences, University of GenevaGeneva, Switzerland; United Nations Environment Programme, Division of Early Warning and Assessment, Global Resource Information Database - Geneva, International Environment HouseGeneva, Switzerland
| | - Vera I Slaveykova
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - John Poté
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of GenevaGeneva, Switzerland; Department of Chemistry, Faculty of Science, University of KinshasaKinshasa, Democratic Republic of the Congo; Département de Géographie-Science de l'Environnement, Faculté des Sciences, Université Pédagogique NationaleKinshasa, Democratic Republic of the Congo
| |
Collapse
|
28
|
Diop M, Amara R. Mercury concentrations in the coastal marine food web along the Senegalese coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11975-11984. [PMID: 26961529 DOI: 10.1007/s11356-016-6386-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
This paper presents the results of seasonal (wet and dry seasons) and spatial (five sites) variation of mercury concentration in seven marine organisms representative for shallow Senegalese coastal waters and including species of commercial importance. Total mercury levels were recorded in the green algae (Ulva lactuca); the brown mussel (Perna perna); the Caramote prawn (Penaeus kerathurus); and in the liver and muscles of the following fish: Solea senegalensis, Mugil cephalus, Saratherondon melanotheron, and Sardinella aurita. The total selenium (Se) contents were determined only in the edible part of Perna perna, Penaeus kerathurus and in the muscles of Sardinella aurita and Solea senegalensis. Hg concentration in fish species was higher in liver compared to the muscle. Between species differences in Hg, concentrations were recorded with the highest concentration found in fish and the lowest in algae. The spatiotemporal study showed that there was no clear seasonal pattern in Hg concentrations in biota, but spatial differences existed with highest concentrations in sites located near important anthropogenic pressure. For shrimp, mussel, and the muscles of sardine and sole, Hg concentrations were below the health safety limits for human consumption as defined by the European Union. The Se/Hg molar ratio was always higher than one whatever the species or location suggesting a protection of Se against Hg potential adverse effect.
Collapse
Affiliation(s)
- Mamadou Diop
- Laboratoire d'Océanologie et de Géosciences, University of Littoral (ULCO), Wimereux, 62930, France
- Laboratoire de Toxicologie et d'Hydrologie (LTH), UCAD, Dakar, 5005, Sénégal
| | - Rachid Amara
- Laboratoire d'Océanologie et de Géosciences, University of Littoral (ULCO), Wimereux, 62930, France.
| |
Collapse
|
29
|
Karita K, Sakamoto M, Yoshida M, Tatsuta N, Nakai K, Iwai-Shimada M, Iwata T, Maeda E, Yaginuma-Sakurai K, Satoh H, Murata K. [Recent Epidemiological Studies on Methylmercury, Mercury and Selenium]. Nihon Eiseigaku Zasshi 2016; 71:236-251. [PMID: 27725427 DOI: 10.1265/jjh.71.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
More than sixty years has passed since the outbreak of Minamata disease, and high-level methylmercury contaminations now seem nonexistent in Japan. However, mercury has been continuously discharged from natural sources and industrial activities, and the health effects on children susceptible to methylmercury exposure at low levels, in addition to mercury contamination from mercury or gold mining areas in developing countries, become a worldwide concern. In this article, we provide a recent overview of epidemiological studies regarding methylmercury and mercury. The following findings were obtained. (1) Many papers on exposure assessment of methylmercury/mercury have been published since the Minamata Convention on Mercury was adopted in 2013. (2) The most crucial problem is child developmental neurotoxicity resulting from prenatal exposure to methylmercury, but its precise assessment seems to be difficult because most of such effects are neither severe nor specific. (3) Several problems raised in birth cohort studies (e.g., whether IQ deficits due to prenatal methylmercury exposure remain when the children become adults, or whether the postnatal exposure at low levels also causes such adverse effects in children) remain unsolved. (4) Concurrent exposure models of methylmercury, lead, polychlorinated biphenyls, aresenic, and organochlorine pesticides, as well as possible antagonists such as polyunsaturated fatty acids and selenium, should be considered in the study design because the exposure levels of methylmercury are extremely low in developed countries. (5) Further animal experiments and molecular biological studies, in addition to human studies, are required to clarify the mechanism of methylmercury toxicity.
Collapse
Affiliation(s)
- Kanae Karita
- Department of Hygiene and Public Health, Kyorin University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Impacts of Artisanal and Small-Scale Gold Mining (ASGM) on Environment and Human Health of Gorontalo Utara Regency, Gorontalo Province, Indonesia. GEOSCIENCES 2015. [DOI: 10.3390/geosciences5020160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|