1
|
Kelly JB, Carlson DE, Reuter M, Sommershof A, Adamec L, Becks L. Genomic Signatures of Adaptation to Stress Reveal Shared Evolutionary Trends Between Tetrahymena utriculariae and Its Algal Endosymbiont, Micractinium tetrahymenae. Mol Biol Evol 2025; 42:msaf030. [PMID: 39895309 PMCID: PMC11834939 DOI: 10.1093/molbev/msaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
The evolution of intracellular endosymbiosis marks a major transition in the biology of the host and endosymbiont. Yet, how adaptation manifests in the genomes of the participants remains relatively understudied. We investigated this question by sequencing the genomes of Tetrahymena utriculariae, a commensal of the aquatic carnivorous bladderwort Utricularia reflexa, and its intracellular algae, Micractinium tetrahymenae. We discovered an expansion in copy number and negative selection in a TLD domain-bearing gene family in the genome of T. utriculariae, identifying it as a candidate for being an adaptive response to oxidative stress resulting from the physiology of its endosymbionts. We found that the M. tetrahymenae genome is larger than those of other Micractinium and Chlorella and contains a greater number of rapidly expanding orthogroups. These were enriched for Gene Ontology terms relevant to the regulation of intracellular signal transduction and cellular responses to stress and stimulus. Single-exon tandem repeats were overrepresented in paralogs belonging to these rapidly expanding orthogroups, which implicates long terminal repeat retrotransposons (LTRs) as potential agents of adaptation. We additionally performed a comparative transcriptomic analysis of M. tetrahymenae in a free-living state and in endosymbiosis with T. utriculariae and discovered that the genes that are differentially expressed were enriched for pathways that evidence shifts in energy generation and storage and in cellular protection strategies. Together, our results elucidate the axes along which the participants must adapt in this young endosymbiosis and highlight evolutionary responses to stress as a shared trend.
Collapse
Affiliation(s)
- Joseph B Kelly
- Aquatic Ecology and Evolution, Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - David E Carlson
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manuela Reuter
- Aquatic Ecology and Evolution, Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | | | - Lubomír Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Třeboň CZ-379 01, Czech Republic
| | - Lutz Becks
- Aquatic Ecology and Evolution, Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
2
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
3
|
Dayal AA, Parfenteva OI, Huiying W, Shakhov AS, Alieva IB, Minin AA. Vimentin and Desmin Intermediate Filaments Maintain Mitochondrial Membrane Potential. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2028-2036. [PMID: 39647830 DOI: 10.1134/s0006297924110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 12/10/2024]
Abstract
Intermediate filaments (IFs) represented by a diverse range of proteins, are one of the three main cytoskeleton components in different types of animal cells. IFs provide mechanical strength to cells and help position the nucleus and organelles in the cell. Desmin is an IF protein typical of muscle cells, while vimentin, which has a similar structure, is expressed in many mesenchymal cells. Both proteins are synthesized during myogenesis and regeneration of damaged muscle tissue and form a mixed IF network. Both desmin and vimentin regulate mitochondrial activity, including mitochondrial localization and maintenance of mitochondrial membrane potential, in the corresponding cells, but the role of mixed IFs in the control of mitochondrial functions remains unclear. To investigate how a simultaneous presence of these proteins affects mitochondrial membrane potential, we used BHK21 cells expressing both vimentin and desmin IFs. Expression of vimentin or desmin individually or both proteins simultaneously was suppressed using gene knockout and/or RNA interference. It was found that disruption of biosynthesis of either vimentin or desmin did not affect the mitochondrial membrane potential, which remained unchanged compared to cells expressing both proteins. Simultaneous abolishment of both proteins resulted in a 20% reduction in the mitochondrial membrane potential, indicating that both vimentin and desmin play an equally important role in its maintenance.
Collapse
Affiliation(s)
- Alexander A Dayal
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga I Parfenteva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Wang Huiying
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anton S Shakhov
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Irina B Alieva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander A Minin
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
6
|
Pandey SP, P K, Dutta T, Chakraborty B, Koner AL, Singh PK. Mitochondria-Directing Fluorogenic Probe: An Efficient Amyloid Marker for Imaging Lipid Metabolite-Induced Protein Aggregation in Live Cells and Caenorhabditis elegans. Anal Chem 2023; 95:6341-6350. [PMID: 37014217 DOI: 10.1021/acs.analchem.2c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aβ-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400056, India
| | - Kavyashree P
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Barsha Chakraborty
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Prabhat K Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
7
|
Zhang HM, Yuan S, Meng H, Hou XT, Li J, Xue JC, Li Y, Wang Q, Nan JX, Jin XJ, Zhang QG. Stem Cell-Based Therapies for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:8494. [PMID: 35955628 PMCID: PMC9368934 DOI: 10.3390/ijms23158494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing disease that severely affects patients' quality of life. The exact cause of IBD is uncertain, but current studies suggest that abnormal activation of the immune system, genetic susceptibility, and altered intestinal flora due to mucosal barrier defects may play an essential role in the pathogenesis of IBD. Unfortunately, IBD is currently difficult to be wholly cured. Thus, more treatment options are needed for different patients. Stem cell therapy, mainly including hematopoietic stem cell therapy and mesenchymal stem cell therapy, has shown the potential to improve the clinical disease activity of patients when conventional treatments are not effective. Stem cell therapy, an emerging therapy for IBD, can alleviate mucosal inflammation through mechanisms such as immunomodulation and colonization repair. Clinical studies have confirmed the effectiveness of stem cell transplantation in refractory IBD and the ability to maintain long-term remission in some patients. However, stem cell therapy is still in the research stage, and its safety and long-term efficacy remain to be further evaluated. This article reviews the upcoming stem cell transplantation methods for clinical application and the results of ongoing clinical trials to provide ideas for the clinical use of stem cell transplantation as a potential treatment for IBD.
Collapse
Affiliation(s)
- Hua-Min Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Shuo Yuan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Yanbian University, Yanji 133002, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Yanbian University, Yanji 133002, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| | - Ji-Xing Nan
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, China; (H.-M.Z.); (S.Y.); (J.-X.N.)
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (H.M.); (X.-T.H.); (J.L.); (J.-C.X.); (Y.L.); (Q.W.)
| |
Collapse
|
8
|
Zhao J, Wang X, Huo Z, Chen Y, Liu J, Zhao Z, Meng F, Su Q, Bao W, Zhang L, Wen S, Wang X, Liu H, Zhou S. The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132049. [PMID: 35805131 PMCID: PMC9265651 DOI: 10.3390/cells11132049] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and highly fatal neurodegenerative disease. Although the pathogenesis of ALS remains unclear, increasing evidence suggests that a key contributing factor is mitochondrial dysfunction. Mitochondria are organelles in eukaryotic cells responsible for bioenergy production, cellular metabolism, signal transduction, calcium homeostasis, and immune responses and the stability of their function plays a crucial role in neurons. A single disorder or defect in mitochondrial function can lead to pathological changes in cells, such as an impaired calcium buffer period, excessive generation of free radicals, increased mitochondrial membrane permeability, and oxidative stress (OS). Recent research has also shown that these mitochondrial dysfunctions are also associated with pathological changes in ALS and are believed to be commonly involved in the pathogenesis of the disease. This article reviews the latest research on mitochondrial dysfunction and its impact on the progression of ALS, with specific attention to the potential of novel therapeutic strategies targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Qi Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Weiwei Bao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; (J.Z.); (X.W.); (Z.H.); (Y.C.); (Z.Z.); (F.M.); (Q.S.); (W.B.)
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; (J.L.); (L.Z.)
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China;
- Correspondence: (H.L.); or (S.Z.)
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (H.L.); or (S.Z.)
| |
Collapse
|
9
|
Haftek M, Abdayem R, Guyonnet-Debersac P. Skin Minerals: Key Roles of Inorganic Elements in Skin Physiological Functions. Int J Mol Sci 2022; 23:ijms23116267. [PMID: 35682946 PMCID: PMC9181837 DOI: 10.3390/ijms23116267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
As odd as it may seem at first glance, minerals, it is what we are all about…or nearly. Although life on Earth is carbon-based, several other elements present in the planet’s crust are involved in and often indispensable for functioning of living organisms. Many ions are essential, and others show supportive and accessory qualities. They are operative in the skin, supporting specific processes related to the particular situation of this organ at the interface with the environment. Skin bioenergetics, redox balance, epidermal barrier function, and dermal remodeling are amongst crucial activities guided by or taking advantage of mineral elements. Skin regenerative processes and skin ageing can be positively impacted by adequate accessibility, distribution, and balance of inorganic ions.
Collapse
Affiliation(s)
- Marek Haftek
- CNRS Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), UMR5305 CNRS–University of Lyon1, 69367 Lyon, France
- Correspondence:
| | - Rawad Abdayem
- L’Oréal Research and Innovation, 94550 Chevilly-Larue, France;
| | | |
Collapse
|
10
|
Ma X, Yang J, Yang G, Li L, Hao X, Wang G, An J, Wang F. A Tryptophan Metabolite of the Microbiota Improves Neovascularization in Diabetic Limb Ischemia. Front Cardiovasc Med 2022; 9:910323. [PMID: 35722100 PMCID: PMC9200987 DOI: 10.3389/fcvm.2022.910323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is accompanied by a series of macrovascular and microvascular injuries. Critical limb ischemia is the most severe manifestation of peripheral artery disease (PAD) caused by DM and is almost incurable. Therapeutic modulation of angiogenesis holds promise for the prevention of limb ischemia in diabetic patients with PAD. However, no small-molecule drugs are capable of promoting diabetic angiogenesis. An endogenous tryptophan metabolite, indole-3-aldehyde (3-IAld), has been found to have proangiogenic activity in endothelial cells. Nevertheless, the role of 3-IAld in diabetic angiogenesis remains unknown. Here, we found that 3-IAld ameliorated high glucose-induced mitochondrial dysfunction, decreasing oxidative stress and apoptosis and thus improving neovascularization.
Collapse
|
11
|
Zhao Y, Feng HM, Yan WJ, Qin Y. Identification of the Signature Genes and Network of Reactive Oxygen Species Related Genes and DNA Repair Genes in Lung Adenocarcinoma. Front Med (Lausanne) 2022; 9:833829. [PMID: 35308531 PMCID: PMC8929513 DOI: 10.3389/fmed.2022.833829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive Oxygen Species (ROS) are present in excess amounts in patients with tumors, and these ROS can kill and destroy tumor cells. Therefore, tumor cells upregulate ROS-related genes to protect them and reduce their destructing effects. Cancer cells already damaged by ROS can be repaired by expressing DNA repair genes consequently promoting their proliferation. The present study aimed to identify the signature genes of and regulating network of ROS-related genes and DNA repair genes in lung adenocarcinoma (LUAD) using transcriptomic data of public databases. The LUAD transcriptome data in the TCGA database and gene expressions from Gene Expression Omnibus (GEO) were analyzed and samples were clustered into 5 ROS-related categories and 6 DNA repair categories. Survival analysis revealed a significant difference in patient survival between the two classification methods. In addition, the samples corresponding to the two categories overlap, thus, the gene expression profile of the same sample with different categories and survival prognosis was further explored, and the connection between ROS-related and DNA repair genes was investigated. The interactive sample recombination classification was used, revealing that the patient's prognosis was worse when the ROS-related and DNA repair genes were expressed at the same time. The further research on the potential regulatory network of the two categories of genes and the correlation analysis revealed that ROS-related genes and DNA repair genes have a mutual regulatory relationship. The ROS-related genes namely NQO1, TXNRD1, and PRDX4 could establish links with other DNA repair genes through the DNA repair gene NEIL3, thereby balancing the level of ROS. Therefore, targeting ROS-related genes and DNA repair genes might be a promising strategy in the treatment of LUAD. Finally, a survival prognostic model of ROS-related genes and DNA repair genes was established (TERT, PRKDC, PTTG1, SMUG1, TXNRD1, CAT, H2AFX, and PFKP). The risk score obtained from our survival prognostic model could be used as an independent prognostic factor in LUAD patients.
Collapse
Affiliation(s)
- Ye Zhao
- First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Ming Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Jian Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Yu Qin
- First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Ottolenghi S, Milano G, Cas MD, Findley TO, Paroni R, Corno AF. Can Erythropoietin Reduce Hypoxemic Neurological Damages in Neonates With Congenital Heart Defects? Front Pharmacol 2021; 12:770590. [PMID: 34912224 PMCID: PMC8666450 DOI: 10.3389/fphar.2021.770590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Congenital heart defects (CHD), the most common cause of birth defects with increasing birth prevalence, affect nearly 1% of live births worldwide. Cyanotic CHD are characterized by hypoxemia, with subsequent reduced oxygen delivery to the brain, especially critical during brain development, beginning in the fetus and continuing through the neonatal period. Therefore, neonates with CHD carry a high risk for neurological comorbidities, even more frequently when there are associated underlying genetic disorders. We review the currently available knowledge on potential prevention strategies to reduce brain damage induced by hypoxemia during fetal development and immediately after birth, and the role of erythropoietin (EPO) as a potential adjunctive treatment. Maternal hyper-oxygenation had been studied as a potential therapeutic to improve fetal oxygenation. Despite demonstrating some effectiveness, maternal hyper-oxygenation has proven to be impractical for extensive clinical application, thus prompting the investigation of specific pathways for pharmacological intervention. Among those, the role of antioxidant pathways and Hypoxia Inducible Factors (HIF) have been studied for their involvement in the protective response to hypoxic injury. One of the proteins induced by HIF, EPO, has properties of being anti-apoptotic, antioxidant, and protective for neurons, astrocytes, and oligodendrocytes. In human trials, EPO administration in neonates with hypoxic ischemic encephalopathy (HIE) significantly reduced the neurological hypoxemic damages in several reported studies. Currently, it is unknown if the mechanisms of pathophysiology of cyanotic CHD are like HIE. Neonates with cyanotic CHD are exposed to both chronic hypoxemia and episodes of acute ischemia-reperfusion injury when undergo cardiopulmonary bypass surgery requiring aortic cross-clamp and general anesthesia. Our review supports future trials to evaluate the potential efficiency of EPO in reducing the hypoxemic neurologic damages in neonates with CHD. Furthermore, it suggests the need to identify early biomarkers of hypoxia-induced neurological damage, which must be sensitive to the neuroprotective effects of EPO.
Collapse
Affiliation(s)
- Sara Ottolenghi
- Department of Health Science, University of Milan, Milan, Italy.,Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michele Dei Cas
- Department of Health Science, University of Milan, Milan, Italy
| | - Tina O Findley
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rita Paroni
- Department of Health Science, University of Milan, Milan, Italy
| | - Antonio F Corno
- Department of Pediatrics, Children's Heart Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 2021; 7:44. [PMID: 34750383 PMCID: PMC8575887 DOI: 10.1038/s41526-021-00171-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Astronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.
Collapse
|
14
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
15
|
Daussin FN, Cuillerier A, Touron J, Bensaid S, Melo B, Al Rewashdy A, Vasam G, Menzies KJ, Harper ME, Heyman E, Burelle Y. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients 2021; 13:nu13103466. [PMID: 34684467 PMCID: PMC8538722 DOI: 10.3390/nu13103466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is widely reported in various diseases and contributes to their pathogenesis. We assessed the effect of cocoa flavanols supplementation on mitochondrial function and whole metabolism, and we explored whether the mitochondrial deacetylase sirtuin-3 (Sirt3) is involved or not. We explored the effects of 15 days of CF supplementation in wild type and Sirt3-/- mice. Whole-body metabolism was assessed by indirect calorimetry, and an oral glucose tolerance test was performed to assess glucose metabolism. Mitochondrial respiratory function was assessed in permeabilised fibres and the pyridine nucleotides content (NAD+ and NADH) were quantified. In the wild type, CF supplementation significantly modified whole-body metabolism by promoting carbohydrate use and improved glucose tolerance. CF supplementation induced a significant increase of mitochondrial mass, while significant qualitative adaptation occurred to maintain H2O2 production and cellular oxidative stress. CF supplementation induced a significant increase in NAD+ and NADH content. All the effects mentioned above were blunted in Sirt3-/- mice. Collectively, CF supplementation boosted the NAD metabolism that stimulates sirtuins metabolism and improved mitochondrial function, which likely contributed to the observed whole-body metabolism adaptation, with a greater ability to use carbohydrates, at least partially through Sirt3.
Collapse
Affiliation(s)
- Frédéric Nicolas Daussin
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
- Correspondence: ; Tel.: +33-(0)3-20-00-73-69
| | - Alexane Cuillerier
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Julianne Touron
- INRAE, UMR1019, Unité de Nutrition Humaine (UNH), Équipe ASMS, Université Clermont Auvergne, 63001 Clermont-Ferrand, France;
| | - Samir Bensaid
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Bruno Melo
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ali Al Rewashdy
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Elsa Heyman
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Yan Burelle
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| |
Collapse
|
16
|
Eftekhari A, Fortenberry CF, Williams BJ, Walker MJ, Dang A, Pfaff A, Ercal N, Morrison GC. Continuous measurement of reactive oxygen species inside and outside of a residential house during summer. INDOOR AIR 2021; 31:1199-1216. [PMID: 33484190 PMCID: PMC8396106 DOI: 10.1111/ina.12789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS) are an important contributor to adverse health effects associated with ambient air pollution. Despite infiltration of ROS from outdoors, and possible indoor sources (eg, combustion), there are limited data available on indoor ROS. In this study, part of the second phase of Air Composition and Reactivity from Outdoor aNd Indoor Mixing campaign (ACRONIM-2), we constructed and deployed an online, continuous, system to measure extracellular gas- and particle-phase ROS during summer in an unoccupied residence in St. Louis, MO, USA. Over a period of one week, we observed that the non-denuded outdoor ROS (representing particle-phase ROS and some gas-phase ROS) concentration ranged from 1 to 4 nmol/m3 (as H2 O2 ). Outdoor concentrations were highest in the afternoon, coincident with peak photochemistry periods. The indoor concentrations of particle-phase ROS were nearly equal to outdoor concentrations, regardless of window-opening status or air exchange rates. The indoor/outdoor ratio of non-denuded ROS (I/OROS ) was significantly less than 1 with windows open and even lower with windows closed. Combined, these observations suggest that gas-phase ROS are efficiently removed by interior building surfaces and that there may be an indoor source of particle-phase ROS.
Collapse
Affiliation(s)
- Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
| | - Claire F. Fortenberry
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J. Walker
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey Dang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
17
|
Survival of Laryngeal Cancer Patients Depending on Zinc Serum Level and Oxidative Stress Genotypes. Biomolecules 2021; 11:biom11060865. [PMID: 34200699 PMCID: PMC8228711 DOI: 10.3390/biom11060865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Stress contributes to various aspects of malignancy and could influence survival in laryngeal cancer patients. Among antioxidant mechanisms, zinc and the antioxidant enzymes superoxide dismutase 2, catalase and glutathione peroxidase 1 play a major role. The aim of this study was a prospective evaluation of the survival of patients with laryngeal cancer in relation to serum levels of zinc in combination with functional genotype differences of three key antioxidant enzymes. The study group consisted of 300 patients treated surgically for laryngeal cancer. Serum zinc levels and common polymorphisms in SOD2, CAT and GPX1 were analyzed. The risk of death in patients with the lowest zinc levels was increased in comparison with patients with the highest levels. Polymorphisms of antioxidant genes by themselves were not correlated with survival, however, serum zinc level impact on survival was stronger for SOD2 TC/TT and CAT CC variants. GPX1 polymorphisms did not correlate with zinc levels regarding survival. In conclusion, serum zinc concentration appears to be an important prognostic factor for survival of patients diagnosed with laryngeal cancer. When higher zinc levels were correlated with polymorphisms in SOD2 and CAT a further increase in survival was observed.
Collapse
|
18
|
Søndergård SD, Cintin I, Kuhlman AB, Morville TH, Bergmann ML, Kjær LK, Poulsen HE, Giustarini D, Rossi R, Dela F, Helge JW, Larsen S. The effects of 3 weeks of oral glutathione supplementation on whole body insulin sensitivity in obese males with and without type 2 diabetes: a randomized trial. Appl Physiol Nutr Metab 2021; 46:1133-1142. [PMID: 33740389 DOI: 10.1139/apnm-2020-1099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of oral glutathione (GSH) supplementation was studied in obese subjects with and without type 2 diabetes (T2DM) on measures of glucose homeostasis and markers of oxidative stress. Twenty subjects (10 patients with T2DM and 10 obese subjects) were recruited for the study, and randomized in a double-blinded placebo-controlled manner to consume either 1000 mg GSH per day or placebo for 3 weeks. Before and after the 3 weeks insulin sensitivity was measured with the hyperinsulinemic-euglycemic clamp and a muscle biopsy was obtained to measure GSH and skeletal muscle mitochondrial hydrogen peroxide (H2O2) emission rate. Whole body insulin sensitivity increased significantly in the GSH group. Skeletal muscle GSH was numerically increased (∼19%) in the GSH group; no change was seen in GSH to glutathione disulfide ratio. Skeletal muscle mitochondrial H2O2 emission rate did not change in response to the intervention and neither did the urinary excretion of the RNA oxidation product 8-oxo-7,8-dihydroguanosine or the DNA oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), although 8-oxodG decreased as a main effect of time. Oral GSH supplementation improves insulin sensitivity in obese subjects with and without T2DM, although it does not alter markers of oxidative stress. The study has been registered in clinicaltrials.gov (NCT02948673). Novelty: Reduced glutathione supplementation increases insulin sensitivity in obese subjects with and without T2DM. H2O2 emission rate from skeletal muscle mitochondria was not affected by GSH supplementation.
Collapse
Affiliation(s)
- Stine D Søndergård
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Cintin
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja B Kuhlman
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H Morville
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marie Louise Bergmann
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura K Kjær
- Laboratory of Clinical Pharmacology, Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol 2020; 11:571810. [PMID: 33324236 PMCID: PMC7723971 DOI: 10.3389/fphys.2020.571810] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 10 years, the crisis of sepsis has remained a great challenge. According to data from 2016, the sepsis-related mortality rate remains high. In addition, sepsis consumes extensive medical resources in intensive care units, and anti-inflammatory agents fail to improve sepsis-associated hyperinflammation and symptoms of immunosuppression. The specific immune mechanism of sepsis remains to be elucidated. Reactive oxygen species (ROS) are triggered by energy metabolism and respiratory dysfunction in sepsis, which not only cause oxidative damage to tissues and organelles, but also directly and indirectly promote NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. NLRP3 inflammasomes enlarge the inflammatory response and trigger apoptosis of immune cells to exacerbate sepsis progression. Inhibiting the negative effects of ROS and NLRP3 inflammasomes therefore provides the possibility of reversing the excessive inflammation during sepsis. In this review, we describe the interaction of ROS and NLRP3 inflammasomes during sepsis, provide prevention strategies, and identify fields that need further study.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Fan Chen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants (Basel) 2020; 9:E933. [PMID: 33003362 PMCID: PMC7599503 DOI: 10.3390/antiox9100933] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
Collapse
Affiliation(s)
- James N Cobley
- Redox Biology Group, Institute for Health Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| |
Collapse
|
21
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
22
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
23
|
Erlich JR, To EE, Liong S, Brooks R, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases. Antioxid Redox Signal 2020; 32:993-1013. [PMID: 32008371 PMCID: PMC7426980 DOI: 10.1089/ars.2020.8028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Up until recently, metabolism has scarcely been referenced in terms of immunology. However, emerging evidence has shown that immune cells undergo an adaptation of metabolic processes, known as the metabolic switch. This switch is key to the activation, and sustained inflammatory phenotype in immune cells, which includes the production of cytokines and reactive oxygen species (ROS) that underpin infectious diseases, respiratory and cardiovascular disease, neurodegenerative disease, as well as cancer. Recent Advances: There is a burgeoning body of evidence that immunometabolism and redox biology drive infectious diseases. For example, influenza A virus (IAV) utilizes endogenous ROS production via NADPH oxidase (NOX)2-containing NOXs and mitochondria to circumvent antiviral responses. These evolutionary conserved processes are promoted by glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle that drive inflammation. Such metabolic products involve succinate, which stimulates inflammation through ROS-dependent stabilization of hypoxia-inducible factor-1α, promoting interleukin-1β production by the inflammasome. In addition, itaconate has recently gained significant attention for its role as an anti-inflammatory and antioxidant metabolite of the TCA cycle. Critical Issues: The molecular mechanisms by which immunometabolism and ROS promote viral and bacterial pathology are largely unknown. This review will provide an overview of the current paradigms with an emphasis on the roles of immunometabolism and ROS in the context of IAV infection and secondary complications due to bacterial infection such as Streptococcus pneumoniae. Future Directions: Molecular targets based on metabolic cell processes and ROS generation may provide novel and effective therapeutic strategies for IAV and associated bacterial superinfections.
Collapse
Affiliation(s)
- Jonathan R. Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Eunice E. To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - John J. O'Leary
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Doug A. Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
- Address correspondence to: Prof. Stavros Selemidis, Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
24
|
Beck MR, Gregorini P. How Dietary Diversity Enhances Hedonic and Eudaimonic Well-Being in Grazing Ruminants. Front Vet Sci 2020; 7:191. [PMID: 32373637 PMCID: PMC7179672 DOI: 10.3389/fvets.2020.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ruminants evolved in diverse landscapes of which they utilized, by choice, a diverse arrangement of plants (grasses, forbs, and trees) for food. These plants provide them with both primary (carbohydrates, protein, etc.) and secondary (phenolics, terpenes, etc.) compounds (PPC and PSC, respectively). As no one plant could possibly constitute a “balanced-diet,” ruminants mix diets so that they can exploit arrangements of PPC to meet their individual requirements. Diet mixing also allows for ruminants to ingest PSC at levels, acquiring their benefits such as antioxidants and reduced gastrointestinal parasites, without overstepping thresholds of toxicity. Meeting dietary requirements is assumed to provide satisfaction through achieving positive internal status and comfort, thereby a sense of hedonic (happiness through pleasure) well-being. Furthermore, choice including dietary choice is a factor influencing well-being of ruminants in a manner akin to that in humans. Choice may facilitate eudaimonic (happiness through pursuit of purpose) well-being in livestock. Nutritional status plays an integral role in oxidative stress, which is linked with illness. Several diseases in livestock have been directly linked to oxidative stress. Mastitis, metritis, hypocalcaemia, and retained placenta occur in animals transitioning from dry to lactating and have been linked to oxidative stress and such a stress has likewise been linked to diseases that occur in growing livestock as well, such as bovine respiratory disease. The link between physiological stress and oxidative stress is not well-defined in livestock but is evident in humans. As dietary diversity allows animals to select more adequately balanced diets (improved nutrition), take advantage of PSC (natural antioxidants), and allows for choice (improved animal well-being) there is a strong possibility for ruminants to improve their oxidative status and thus health, well-being, and therefor production. The purposes of this review are to first, provide an introduction to oxidative and physiological stress, and nutritional status as effected by dietary diversity, with special attention to providing support and on answering the “how.” Second, to provide evidence of how these stresses are connected and influence each other, and finally discuss how dietary diversity provides a beneficial link to all three and enhances both eudaimonic and hedonic well-being.
Collapse
Affiliation(s)
- Matthew R Beck
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Gregorini
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
25
|
Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M. The effects of oxidative stress on the development of atherosclerosis. Biol Chem 2020; 400:711-732. [PMID: 30864421 DOI: 10.1515/hsz-2018-0397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a cardiovascular disease (CVD) known widely world wide. Several hypothesizes are suggested to be involved in the narrowing of arteries during process of atherogenesis. The oxidative modification hypothesis is related to oxidative and anti-oxidative imbalance and is the most investigated. The aim of this study was to review the role of oxidative stress in atherosclerosis. Furthermore, it describes the roles of oxidative/anti-oxidative enzymes and compounds in the macromolecular and lipoprotein modifications and in triggering inflammatory events. The reactive oxygen (ROS) and reactive nitrogen species (RNS) are the most important endogenous sources produced by non-enzymatic and enzymatic [myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADH) oxidase and lipoxygenase (LO)] reactions that may be balanced with anti-oxidative compounds [glutathione (GSH), polyphenols and vitamins] and enzymes [glutathione peroxidase (Gpx), peroxiredoxins (Prdx), superoxide dismutase (SOD) and paraoxonase (PON)]. However, the oxidative and anti-oxidative imbalance causes the involvement of cellular proliferation and migration signaling pathways and macrophage polarization leads to the formation of atherogenic plaques. On the other hand, the immune occurrences and the changes in extra cellular matrix remodeling can develop atherosclerosis process.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Adeleh Poursaleh
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikhnia Farhad
- Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Microbial Biotechnology Research Center, Biochemistry Department, Firoozabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Li X, Matsumoto T, Takuwa M, Saeed Ebrahim Shaiku Ali M, Hirabashi T, Kondo H, Fujino H. Protective Effects of Astaxanthin Supplementation against Ultraviolet-Induced Photoaging in Hairless Mice. Biomedicines 2020; 8:biomedicines8020018. [PMID: 31973028 PMCID: PMC7168265 DOI: 10.3390/biomedicines8020018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) light induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Astaxanthin (AST), a ketocarotenoid isolated from Haematococcus pluvialis, has been extensively studied owing to its possible effects on skin health as well as UV protection. In addition, AST attenuates the increased generation of reactive oxygen species (ROS) and capillary regression of the skeletal muscle. In this study, we investigated whether AST could protect against UV-induced photoaging and reduce capillary regression in the skin of HR-1 hairless mice. UV light induces wrinkle formation, epidermal thickening, and capillary regression in the dermis of HR-1 hairless mice. The administration of AST reduced the UV-induced wrinkle formation and skin thickening, and increased collagen fibers in the skin. AST supplementation also inhibited the generation of ROS, decreased wrinkle formation, reduced epidermal thickening, and increased the density of capillaries in the skin. We also found an inverse correlation between wrinkle formation and the density of capillaries. An association between photoaging and capillary regression in the skin was also observed. These results suggest that AST can protect against photoaging caused by UV irradiation and the inhibitory effects of AST on photoaging may be associated with the reduction of capillary regression in the skin.
Collapse
|
27
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
28
|
Kakaroubas N, Brennan S, Keon M, Saksena NK. Pathomechanisms of Blood-Brain Barrier Disruption in ALS. NEUROSCIENCE JOURNAL 2019; 2019:2537698. [PMID: 31380411 PMCID: PMC6652091 DOI: 10.1155/2019/2537698] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) are responsible for controlling the microenvironment within neural tissues in humans. These barriers are fundamental to all neurological processes as they provide the extreme nutritional demands of neural tissue, remove wastes, and maintain immune privileged status. Being a semipermeable membrane, both the BBB and BSCB allow the diffusion of certain molecules, whilst restricting others. In amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, these barriers become hyperpermeable, allowing a wider variety of molecules to pass through leading to more severe and more rapidly progressing disease. The intention of this review is to discuss evidence that BBB hyperpermeability is potentially a disease driving feature in ALS and other neurodegenerative diseases. The various biochemical, physiological, and genomic factors that can influence BBB permeability in ALS and other neurodegenerative diseases are also discussed, in addition to novel therapeutic strategies centred upon the BBB.
Collapse
Affiliation(s)
- Nicholas Kakaroubas
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (University of NSW), Chancellery Walk, Kensington NSW 2033, Sydney, Australia
| | - Samuel Brennan
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Matthew Keon
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Nitin K. Saksena
- Neurodegenerative Disease Section, Iggy Get Out, 19A Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| |
Collapse
|
29
|
Breda CNDS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol 2019; 26:101255. [PMID: 31247505 PMCID: PMC6598836 DOI: 10.1016/j.redox.2019.101255] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza Breda
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo José Basso
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Pedro Manoel Mendes Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
30
|
Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells 2019; 8:cells8020091. [PMID: 30695997 PMCID: PMC6406383 DOI: 10.3390/cells8020091] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionary conserved intracellular mechanism which helps eukaryotic cells in maintaining their metabolic state to afford high-efficiency energy requirements. In the physiology of a normal liver and the pathogenesis of liver diseases, autophagy plays a crucial role. Autophagy has been found to be both upregulated and downregulated in different cancers providing the evidence that autophagy plays a dual role in suppressing and promoting cell survival. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the major leading cause of cancer mortality worldwide. In light of its high complexity and poor prognosis, it is essential to improve our understanding of autophagy’s role in HCC. In this review, we summarize the dual mechanism of autophagy in the development of HCC and elucidate the currently used therapeutic strategies for anti-HCC therapy.
Collapse
Affiliation(s)
- Hamza O Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburg, PA 15213-2582, USA.
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, N924 Doan Hall, 410 West 10th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
31
|
TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp Mol Med 2018; 50:1-19. [PMID: 30523245 PMCID: PMC6283885 DOI: 10.1038/s12276-018-0189-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor (TGF)-β signaling is increasingly recognized as a key driver in cancer. In progressive cancer tissues, TGF-β promotes tumor formation, and its increased expression often correlates with cancer malignancy. In this study, we utilized adenoviruses expressing short hairpin RNAs against TGF-β1 and TGF-β2 to investigate the role of TGF-β downregulation in cancer cell death. We found that the downregulation of TGF-β increased the phosphorylation of several SAPKs, such as p38 and JNK. Moreover, reactive oxygen species (ROS) production was also increased by TGF-β downregulation, which triggered Akt inactivation and NOX4 increase-derived ROS in a cancer cell-type-specific manner. We also revealed the possibility of substantial gene fluctuation in response to TGF-β downregulation related to SAPKs. The expression levels of Trx and GSTM1, which encode inhibitory proteins that bind to ASK1, were reduced, likely a result of the altered translocation of Smad complex proteins rather than from ROS production. Instead, both ROS and ROS-mediated ER stress were responsible for the decrease in interactions between ASK1 and Trx or GSTM1. Through these pathways, ASK1 was activated and induced cytotoxic tumor cell death via p38/JNK activation and (or) induction of ER stress. Reducing the levels of the multifunctional protein transforming growth factor (TGF)-β in cancer cells prevents tumor growth in mice. Previous studies have shown that high levels of TGF-β in cancerous tissue are associated with accelerated disease progression. Hye Jin Choi and Jae J Song at Yonsei University in Seoul, South Korea, and colleagues infected cancer cells with genetically modified viruses that reduced the expression of the gene encoding TGF-β. The resulting decrease in TGF-β protein led to cell death by stimulating the production of reactive oxygen species and signaling through the apoptosis signal-regulating kinase 1 (ASK1) pathway. When tumor-bearing mice were infected with these modified viruses, their overall survival was improved. Further understanding the mechanisms through which TGF-β regulates cancer cell survival will contribute to the development of new approaches in cancer treatment.
Collapse
|
32
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Meng S, Chanda P, Thandavarayan RA, Cooke JP. Transflammation: How Innate Immune Activation and Free Radicals Drive Nuclear Reprogramming. Antioxid Redox Signal 2018; 29:205-218. [PMID: 29634341 PMCID: PMC6003401 DOI: 10.1089/ars.2017.7364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Yamanaka and colleagues galvanized the field of stem cell biology and regenerative medicine by their generation of induced pluripotent stem cells. Evidence is emerging that activation of innate immune signaling is critical for efficient reprogramming to pluripotency and for the nuclear reprogramming occurring in transdifferentiation. Recent Advances: We have shown that innate immune signaling triggers a global change in the expression of epigenetic modifiers to enhance DNA accessibility. In this state of epigenetic plasticity, overexpression of lineage determination factors, and/or environmental cues and paracrine factors, can induce pluripotency, or can direct transdifferentiation to another somatic cell lineage. Accumulating evidence reveals that innate immune activation triggers the generation of reactive oxygen species and reactive nitrogen species, and that these free radicals are required for nuclear reprogramming to pluripotency or for transdifferentiation. CRITICAL ISSUES We have discovered a limb of innate immune signaling that regulates DNA accessibility, in part, by the action of free radicals to induce post-translational modification of epigenetic modifiers. FUTURE DIRECTIONS It is of scientific interest and clinical relevance to understand the mechanisms by which free radicals influence epigenetic plasticity, and how these mechanisms may be therapeutically modulated. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Shu Meng
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute , Houston, Texas
| | - Palas Chanda
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute , Houston, Texas
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute , Houston, Texas
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute , Houston, Texas
| |
Collapse
|
34
|
Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 2018; 17:259-273. [PMID: 29747066 PMCID: PMC6006678 DOI: 10.1016/j.redox.2018.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/∆ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/∆ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/∆ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/∆ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/∆ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/∆ and aged WT mice. Chronic treatment of Ercc1-/∆ mice with the mitochondrial-targeted radical scavenger XJB-5-131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline.
Collapse
Affiliation(s)
- Andria R Robinson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tania A Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jin Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xuesen Li
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jeremy S Tilstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Chelsea H Feldman
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Siobhán Q Gregg
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Erin M Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Céline Frantz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Harris Bell-Temin
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah Pope-Varsalona
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Luigi A Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Paediatric Orthopaedics, G. Gaslini Children's Hospital, Genoa, Italy
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Heike Fuhrmann-Stroissnigg
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sara J McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jamie B Harris
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Salony Maniar
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christy E Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nam V Vo
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lora H Rigatti
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Patricia L Opresko
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christin E Burd
- Department of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus OH 43210 USA
| | - Claudette M St Croix
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gary Siuzdak
- The Scripps Research Institute California, La Jolla, CA 92037, USA
| | - Nathan A Yates
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Biomedical Mass Spectrometry Center, Schools of the Health Sciences University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul D Robbins
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eric E Kelley
- Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - Laura J Niedernhofer
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Ohnishi T, Ohnishi ST, Salerno JC. Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol Chem 2018; 399:1249-1264. [DOI: 10.1515/hsz-2018-0164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023]
Abstract
Abstract
NADH-quinone oxidoreductase (complex I) is the largest and most complicated enzyme complex of the mitochondrial respiratory chain. It is the entry site into the respiratory chain for most of the reducing equivalents generated during metabolism, coupling electron transfer from NADH to quinone to proton translocation, which in turn drives ATP synthesis. Dysfunction of complex I is associated with neurodegenerative diseases such as Parkinson’s and Alzheimer’s, and it is proposed to be involved in aging. Complex I has one non-covalently bound FMN, eight to 10 iron-sulfur clusters, and protein-associated quinone molecules as electron transport components. Electron paramagnetic resonance (EPR) has previously been the most informative technique, especially in membrane in situ analysis. The structure of complex 1 has now been resolved from a number of species, but the mechanisms by which electron transfer is coupled to transmembrane proton pumping remains unresolved. Ubiquinone-10, the terminal electron acceptor of complex I, is detectable by EPR in its one electron reduced, semiquinone (SQ) state. In the aerobic steady state of respiration the semi-ubiquinone anion has been observed and studied in detail. Two distinct protein-associated fast and slow relaxing, SQ signals have been resolved which were designated SQNf and SQNs. This review covers a five decade personal journey through the field leading to a focus on the unresolved questions of the role of the SQ radicals and their possible part in proton pumping.
Collapse
Affiliation(s)
- Tomoko Ohnishi
- Department of Biochemistry and Biophysics , Perelman School of Medicine at University of Pennsylvania , Philadelphia, PA 19104 , USA
| | | | - John C. Salerno
- Cell and Molecular Biology Department , Kennesaw State University , Kennesaw, GA 30144 , USA
| |
Collapse
|
36
|
Kim JH, Kim J, Roh J, Park CS, Seoh JY, Hwang ES. Reactive oxygen species-induced parthanatos of immunocytes by human cytomegalovirus-associated substance. Microbiol Immunol 2018; 62:229-242. [PMID: 29350405 PMCID: PMC5947265 DOI: 10.1111/1348-0421.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/04/2022]
Abstract
Previous studies have examined various immune evasion strategies of human cytomegalovirus (HCMV) to gain understanding of its pathogenesis. Although the mechanism that underlies immunocyte destruction near HCMV‐infected lesions has yet to be established, it is here shown that substances produced by HCMV‐infected cells induce death in several types of immunocytes, but not in fibroblasts or astrocytomas. These substances contain HCMV proteins and were termed HCMV‐associated insoluble substance (HCMVAIS). The mechanism by which HCMVAIS induces cell death was characterized to improve understanding the death of immunocytes near HCMV‐infected lesions. HCMVAIS were found to trigger production of intracellular nicotinamide adenine dinucleotide phosphate oxidase‐derived reactive oxygen species (ROS), resulting in cell death, this effect being reversed following treatment with ROS inhibitors. Cell death was not induced in splenocytes from NOX‐2 knockout mice. It was hypothesized that DNA damage induced by oxidative stress initiates poly ADP‐ribose polymerase‐1 (PARP‐1)‐mediated cell death, or parthanatos. HCMVAIS‐induced cell death is accompanied by PARP‐1 activation in a caspase‐independent manner, nuclear translocation of apoptosis‐inducing factor (AIF), and DNA fragmentation, which are typical features of parthanatos. Treatment with an AIF inhibitor decreased the rate of HCMVAIS‐induced cell death, this being confirmed by hematoxylin and eosin staining; cell death in most HCMV‐positive foci in serial section samples of a large intestine with HCMV infection was TUNEL‐positive, cleaved caspase 3‐negative and CD45‐positive. Taken together, these data suggest that HCMV inhibits local immune responses via direct killing of immunocytes near HCMV‐infected cells through ROS‐induced parthanatos by HCMVAIS.
Collapse
Affiliation(s)
- Jung Heon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jin Roh
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Ju-Young Seoh
- Department of Microbiology, Ehwa Womans University Graduate School of Medicine, Seoul 07985, Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
37
|
Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep 2017; 7:15376. [PMID: 29133864 PMCID: PMC5684136 DOI: 10.1038/s41598-017-15612-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
The response of human primary osteoblasts exposed to simulated microgravity has been investigated and analysis of metabolomic and proteomic profiles demonstrated a prominent dysregulation of mitochondrion homeostasis. Gravitational unloading treatment induced a decrease in mitochondrial proteins, mainly affecting efficiency of the respiratory chain. Metabolomic analysis revealed that microgravity influenced several metabolic pathways; stimulating glycolysis and the pentose phosphate pathways, while the Krebs cycle was interrupted at succinate-fumarate transformation. Interestingly, proteomic analysis revealed that Complex II of the mitochondrial respiratory chain, which catalyses the biotransformation of this step, was under-represented by 50%. Accordingly, down-regulation of quinones 9 and 10 was measured. Complex III resulted in up-regulation by 60%, while Complex IV was down-regulated by 14%, accompanied by a reduction in proton transport synthesis of ATP. Finally, microgravity treatment induced an oxidative stress response, indicated by significant decreases in oxidised glutathione and antioxidant enzymes. Decrease in malate dehydrogenase induced a reverse in the malate-aspartate shuttle, contributing to dysregulation of ATP synthesis. Beta-oxidation of fatty acids was inhibited, promoting triglyceride production along with a reduction in the glycerol shuttle. Taken together, our findings suggest that microgravity may suppress bone cell functions, impairing mitochondrial energy potential and the energy state of the cell.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
38
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol 2017; 12:540-548. [PMID: 28371751 PMCID: PMC5377294 DOI: 10.1016/j.redox.2017.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.
Collapse
Affiliation(s)
- James N Cobley
- Department for Sport and Exercise Sciences, Abertay University, 40 Bell Street, Dundee, Scotland DD1 1HG, UK.
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, England L3 3AF, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK; Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Gareth W Davison
- Sport and Exercise Science Research Institute, Ulster University, Belfast, BT37 OQB, UK
| |
Collapse
|
40
|
Abstract
Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; however, continued telomere erosion is unsustainable and must be mitigated to ensure cancer cell survival and unlimited replication potential. Prostate cancers predominantly maintain telomeres by activating telomerase, but alternative mechanisms of telomere extension can occur in metastatic disease. Telomerase activity and telomere length assessment might be useful in prostate cancer diagnosis and prognosis. Telomere shortening in normal stromal cells has been associated with prostate cancer, whereas variable telomere lengths in prostate cancer cells and telomere shortening in cancer-associated stromal cells correlated with lethal disease. Single-agent telomerase-targeted treatments for solid cancers were ineffective in clinical trials but have not been investigated in prostate cancer and might be useful in combination with established regimens. Telomere-directed strategies have not been explored as extensively. Telomere deprotection strategies have the advantage of being effective in both telomerase-dependent and telomerase-independent cancers. Disruption of androgen receptor function in prostate cancer cells results in telomere dysfunction, indicating telomeres and telomerase as potential therapeutic targets in prostate cancer.
Collapse
|
41
|
Mbaveng AT, Kuete V, Efferth T. Potential of Central, Eastern and Western Africa Medicinal Plants for Cancer Therapy: Spotlight on Resistant Cells and Molecular Targets. Front Pharmacol 2017; 8:343. [PMID: 28626426 PMCID: PMC5454075 DOI: 10.3389/fphar.2017.00343] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Cancer remains a major health hurdle worldwide and has moved from the third leading cause of death in the year 1990 to second place after cardiovascular disease since 2013. Chemotherapy is one of the most widely used treatment modes; however, its efficiency is limited due to the resistance of cancer cells to cytotoxic agents. The present overview deals with the potential of the flora of Central, Eastern and Western African (CEWA) regions as resource for anticancer drug discovery. It also reviews the molecular targets of phytochemicals of these plants such as ABC transporters, namely P-glycoprotein (P-gp), multi drug-resistance-related proteins (MRPs), breast cancer resistance protein (BCRP, ABCG2) as well as the epidermal growth factor receptor (EGFR/ErbB-1/HER1), human tumor suppressor protein p53, caspases, mitochondria, angiogenesis, and components of MAP kinase signaling pathways. Plants with the ability to preferentially kills resistant cancer cells were also reported. Data compiled in the present document were retrieved from scientific websites such as PubMed, Scopus, Sciencedirect, Web-of-Science, and Scholar Google. In summary, plant extracts from CEWA and isolated compounds thereof exert cytotoxic effects by several modes of action including caspases activation, alteration of mitochondrial membrane potential (MMP), induction of reactive oxygen species (ROS) in cancer cells and inhibition of angiogenesis. Ten strongest cytotoxic plants from CEWA recorded following in vitro screening assays are: Beilschmiedia acuta Kosterm, Echinops giganteus var. lelyi (C. D. Adams) A. Rich., Erythrina sigmoidea Hua (Fabaceae), Imperata cylindrical Beauv. var. koenigii Durand et Schinz, Nauclea pobeguinii (Pobég. ex Pellegr.) Merr. ex E.M.A., Piper capense L.f., Polyscias fulva (Hiern) Harms., Uapaca togoensis Pax., Vepris soyauxii Engl. and Xylopia aethiopica (Dunal) A. Rich. Prominent antiproliferative compounds include: isoquinoline alkaloid isotetrandrine (51), two benzophenones: guttiferone E (26) and isoxanthochymol (30), the isoflavonoid 6α-hydroxyphaseollidin (9), the naphthyl butenone guieranone A (25), two naphthoquinones: 2-acetylfuro-1,4-naphthoquinone (4) and plumbagin (37) and xanthone V1 (46). However, only few research activities in the African continent focus on cytotoxic drug discovery from botanicals. The present review is expected to stimulate further scientific efforts to better valorize the African flora.
Collapse
Affiliation(s)
- Armelle T. Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
- Department of Biochemistry, Faculty of Science, University of DschangDschang, Cameroon
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
- Department of Biochemistry, Faculty of Science, University of DschangDschang, Cameroon
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
| |
Collapse
|
42
|
Nam SH, Kim YM, Walsh MK, Wee YJ, Yang KY, Ko JA, Han S, Thanh Hanh Nguyen T, Kim JY, Kim D. Synthesis and Functional Characterization of Caffeic Acid Glucoside Using Leuconostoc mesenteroides Dextransucrase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2743-2750. [PMID: 28271704 DOI: 10.1021/acs.jafc.7b00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Caffeic acid was modified via transglucosylation using sucrose and dextransucrase from Leuconostoc mesenteroides B-512FMCM. Following enzymatic modification, a caffeic acid glucoside was isolated by butanol separation, silica gel chromatography, and preparative HPLC. The synthesized caffeic acid glucoside had a molecular mass-to-charge ratio of 365 m/z, and its structure was identified as caffeic acid-3-O-α-d-glucopyranoside. The production of this caffeic acid-3-O-α-d-glucopyranoside at a concentration of 153 mM was optimized using 325 mM caffeic acid, 355 mM sucrose, and 650 mU mL-1 dextransucrase in the synthesis reaction. In comparison with the caffeic acid, the caffeic acid-3-O-α-d-glucopyranoside displayed 3-fold higher water solubility, 1.66-fold higher antilipid peroxidation effect, 15% stronger inhibition of colon cancer cell growth, and 11.5-fold higher browning resistance. These results indicate that this caffeic acid-3-O-α-d-glucopyranoside may be a suitable functional component of food and pharmaceutical products.
Collapse
Affiliation(s)
| | | | - Marie K Walsh
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University , 8700 Old Main Hill, 750N 1200E, Logan, Utah 84322-8700, United States
| | - Young-Jung Wee
- Department of Food Science and Technology, Yeungnam University , Gyeongbuk 38541, South Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
The NOX2-derived reactive oxygen species damaged endothelial nitric oxide system via suppressed BKCa/SKCa in preeclampsia. Hypertens Res 2017; 40:457-464. [PMID: 28077855 DOI: 10.1038/hr.2016.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
The endothelial nitric oxide (NO) system may be damaged in preeclampsia; however, the involved mechanisms are unclear. In this study, we used primary human umbilical vein endothelial cells (HUVECs) to evaluate the endothelial NO system in preeclampsia and to determine the underlying mechanisms that are involved. We isolated and cultured HUVECs from normal and preeclamptic pregnancies and evaluated endothelial NO synthase enzyme (eNOS) expression and NO production. Whole-cell K+ currents and oxidative stress were also determined in normal and preeclamptic HUVECs. Compared with normal HUVECs, eNOS expression, NO production and whole-cell K+ currents in preeclamptic HUVECs were markedly decreased, whereas oxidative stress was significantly increased. The decreased K+ currents were associated with damaged Ca2+-activated K+ (KCa) channels, especially the large (BKCa) and small (SKCa) conductance KCa channels, and were involved in the downregulated eNOS expression in preeclamptic HUVECs. Moreover, the increased oxidative stress detected in preeclamptic HUVECs was mediated by NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2)-dependent reactive oxygen species overproduction that could downregulate whole-cell K+ currents, eNOS expression and NO production. Taken together, our study indicated that the increased oxidative stress in preeclamptic HUVECs could downregulate the NO system by suppressing BKCa and SKCa channels. Because the damaged NO system was closely related to endothelial dysfunction, this study provides important information to further understand the pathological process of endothelial cell dysfunction in preeclampsia.
Collapse
|
44
|
Evans LW, Omaye ST. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress. Antioxidants (Basel) 2017; 6:E5. [PMID: 28085082 PMCID: PMC5384169 DOI: 10.3390/antiox6010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.
Collapse
Affiliation(s)
- Levi W Evans
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| | - Stanley T Omaye
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
45
|
Beharry KD, Cai CL, Valencia GB, Valencia AM, Lazzaro DR, Bany-Mohammed F, Aranda JV. Neonatal Intermittent Hypoxia, Reactive Oxygen Species, and Oxygen-Induced Retinopathy. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 3:12-25. [PMID: 29951586 DOI: 10.20455/ros.2017.805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most of the major morbidities in the preterm newborn are caused by or are associated with oxygen-induced injuries and are aptly called "oxygen radical diseases in neonatology or ORDIN". These include bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, intraventricular hemorrhage, necrotizing enterocolitis and others. Relative hyperoxia immediately after birth, immature antioxidant systems, biomolecular events favoring oxidative stress such as iron availability and the role of hydrogen peroxide as a key molecular mediator of these events are reviewed. Potential therapeutic strategies such as caffeine, antioxidants, non-steroidal anti-inflammatory drugs, and others targeted to these critical sites may help prevent oxidative radical diseases in the newborn resulting in improved neonatal outcomes.
Collapse
Affiliation(s)
- Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Arwin M Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Summerlin Hospital Medical Center, Valley Healthcare System, Las Vegas, NV 89135, USA
| | - Douglas R Lazzaro
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| | - Fayez Bany-Mohammed
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, Irvine, CA 92868, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.,State University of New York Eye Institute, New York, NY 10075, USA
| |
Collapse
|
46
|
|
47
|
Salo AB, Husen P, Solov’yov IA. Charge Transfer at the Qo-Site of the Cytochrome bc1 Complex Leads to Superoxide Production. J Phys Chem B 2016; 121:1771-1782. [DOI: 10.1021/acs.jpcb.6b10403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adrian Bøgh Salo
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Peter Husen
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ilia A. Solov’yov
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
48
|
The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae. J Bacteriol 2016; 198:2307-17. [PMID: 27325677 DOI: 10.1128/jb.00342-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na(+)-NQR as the sole electrogenic NADH dehydrogenase.
Collapse
|
49
|
Ramallo Guevara C, Philipp O, Hamann A, Werner A, Osiewacz HD, Rexroth S, Rögner M, Poetsch A. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging. Mol Cell Proteomics 2016; 15:1692-709. [PMID: 26884511 DOI: 10.1074/mcp.m115.055616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.
Collapse
Affiliation(s)
- Carina Ramallo Guevara
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Oliver Philipp
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany; ¶Molecular Bioinformatics, Faculty of Computer Science and Mathematics and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60325, Germany
| | - Andrea Hamann
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Alexandra Werner
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Heinz D Osiewacz
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Ansgar Poetsch
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany;
| |
Collapse
|
50
|
Dib B, Lin H, Maidana DE, Tian B, Miller JB, Bouzika P, Miller JW, Vavvas DG. Mitochondrial DNA has a pro-inflammatory role in AMD. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2897-906. [PMID: 26305120 PMCID: PMC5330253 DOI: 10.1016/j.bbamcr.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly of industrialized nations, and there is increasing evidence to support a role for chronic inflammation in its pathogenesis. Mitochondrial DNA (mtDNA) has been recently reported to be pro-inflammatory in various diseases such as Alzheimer's and heart failure. Here, we report that intracellular mtDNA induces ARPE-19 cells to secrete inflammatory cytokines IL-6 and IL-8, which have been consistently associated with AMD onset and progression. The induction was dependent on the size of mtDNA, but not on specific sequence. Oxidative stress plays a major role in the development of AMD, and our findings indicate that mtDNA induces IL-6 and IL-8 more potently when oxidized. Cytokine induction was mediated by STING (Stimulator of Interferon Genes) and NF-κB as evidenced by abrogation of the cytokine response with the use of specific inhibitors (siRNA and BAY 11-7082, respectively). Finally, mtDNA primed the NLRP3 inflammasome. This study contributes to our understanding of the potential pro-inflammatory role of mtDNA in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Daniel E Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|