1
|
Chakraborty C, Bhattacharya M, Das A, Abdelhameed AS. Phylogenetic analyses of the spread of Clade I MPOX in African and non-African nations. Virus Genes 2025; 61:265-276. [PMID: 39937430 DOI: 10.1007/s11262-025-02138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Recently, mpox has spread in some parts of Africa, such as Congo (DRC), Burundi, Rwanda, Uganda, and Kenya, worsening the situation in DRC and Burundi compared to the other parts of Africa due to the spread of the Clade Ib, with several confirmed and lethal cases. The study aims to analyze the broader molecular phylogenetics using greater complete genome sequences and molecular phylogenetics of Clade I (Clade Ia and Clade Ib), nucleotide diversity of the genome of Clade I, NGA/TCN context of G- > A/C- > T mutations, and epidemiology of the recent spread of mpox in the African countries. Overall molecular phylogenetics of mpox inform the divergence was noted between 0.00220 and 0.00265 and found Clade IIb has further subdivided into 37 sublineages. From our phylogenetic analysis and the tracking of recent mpox variants, we report the spread of Clade I (Clade Ib) of mpox, a virulent mpox, in the African continent, Thailand, Sweden, and USA. Furthermore, two Clades, Clade Ia and Clade Ib, have originated from Clade I. Recently, Clade Ib has expanded its region within African continent. We reported the mutation pattern in the genome. Epidemiological analysis indicates the most affected country is the Democratic Republic of the Congo (DRC). This work shows that mpox is steadily adapting as geographic area increases and can help the health authorities develop policies such as vaccinations, and travel restrictions to contain the spread of mpox.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Dutta S, Ghosh R, Dasgupta I, Sikdar P, Santra P, Maity D, Pritam M, Lee SG. Monkeypox: A comprehensive review on mutation, transmission, pathophysiology, and therapeutics. Int Immunopharmacol 2025; 146:113813. [PMID: 39674002 DOI: 10.1016/j.intimp.2024.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Monkeypox virus (MPXV) is the causative agent of the monkeypox (Mpox) disease, belongs to the Orthopoxvirus genus of the Poxviridae family. Due to the recent re-emergence of Mpox in 2024, this is the second time when the World Health Organization (WHO) declared Mpox as a Public Health Emergency of International Concern (PHEIC). This review intends to offer an in-depth analysis of Mpox, including its key characteristics, epidemiological, mutation, pathophysiology, transmission, and therapeutics. The infection of MPXV is a lethal threat to children, pregnant women, and immunocompromised individuals. However, we can prevent the infection by proper precautions including hygiene practices and minimizing exposure to infected individuals or animals. Multivalent mRNA vaccines, antibody-based immunotherapy, and combination drug therapies have all shown significant effectiveness in treating Mpox infection. In addition to addressing antivirals and drug resistance, the review also explores potential targets for vaccine and drug development, as well as the use of animal models for studying MPXV. Because of multiple mutational events, Mpox began exhibiting drug resistance. Overall, this review will contribute significantly to advancing the development of new vaccines and drug options for combating emerging Mpox.
Collapse
Affiliation(s)
- Somenath Dutta
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea; Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Rohan Ghosh
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India; Department of Biotechnology, Konkuk University, Seoul, South Korea
| | - Ishita Dasgupta
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Purbita Sikdar
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Priyasa Santra
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Debjit Maity
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India; Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD 20892, United States.
| | - Sun Gu Lee
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea.
| |
Collapse
|
3
|
Akpan EMI, Diaz-Cánova D, Okeke MI. Bioinformatic identification of monkeypox virus phylogenetic gene trees that are representative of its whole-genome phylogenetic tree. Virus Genes 2024; 60:635-641. [PMID: 39370457 DOI: 10.1007/s11262-024-02110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Phylogenetic analysis based on whole-genome sequences is the gold standard for monkeypox virus (MPXV) phylogeny. However, genomic epidemiology capability and capacity are lacking or limited in resource poor countries of sub-Saharan Africa. Therefore, these make real-time genome surveillance of MPXV virtually impossible. We hypothesized that phylogenetic analysis based on single, conserved genes will produce phylogenetic tree topology consistent with MPXV whole-genome phylogeny, thus serving as a reliable proxy to phylogenomic analysis. In this study, we analyzed 62 conserved MPXV genes and showed that Bayesian phylogenetic analysis based on five genes (OPG 066/E4L, OPG068/E6R, OPG079/I3L, OPG145/A18R, and OPG150/A23R) generated phylogenetic trees with 72.2-96.3% topology similarity index to the reference phylogenomic tree topology. Our results showed that phylogenetic analysis of the identified five genes singly or in combination can serve as surrogate for whole-genome phylogenetic analysis, and thus obviates the need for whole-genome sequencing and phylogenomic analysis in regions where genomic epidemiology competence and capacity are lacking or unavailable. This study is relevant to evolution and genome surveillance of MPXV in resource limited countries.
Collapse
Affiliation(s)
- El-Miracle Idorenyin Akpan
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250, Yola, Adamawa State, Nigeria
| | - Diana Diaz-Cánova
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250, Yola, Adamawa State, Nigeria.
| |
Collapse
|
4
|
Lian ZH, Yang CH, Qiu Y, Ge XY. Evolutionary Analysis and Antiviral Drug Prediction of Mpox Virus. Microorganisms 2024; 12:2239. [PMID: 39597628 PMCID: PMC11596041 DOI: 10.3390/microorganisms12112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
The resurgence of mpox virus (MPXV) poses a significant challenge to global public health. Currently, there is a limited understanding of the evolutionary details of MPXV during its epidemics, and no specific drugs have been developed for it. Herein, analysis of mutations and positive selection sites (PSSs) within the MPXV genomes revealed 799 mutations and 40 PSSs. Visualization analysis indicated that these mutations and PSSs may affect protein structure. Additionally, a protein-protein interaction (PPI) network between human and MPXV was established, identifying 346 MPXV-interacting human proteins (MIHPs). An interaction network involving MIHPs and other viruses confirmed that these proteins can interact with various viruses that infect humans. Functional analysis of MIHPs suggested their enrichment in host immunity pathways. Lastly, two drugs targeting MIHPs and four compounds targeting MPXV proteins were screened as candidate antivirals against MPXV. These findings not only deepen our understanding of MPXV evolution but also aid in the development of anti-MPXV drugs.
Collapse
Affiliation(s)
| | | | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Z.-H.L.); (C.-H.Y.); (Y.Q.)
| |
Collapse
|
5
|
Sarkar BK, Bhattacharya M, Agoramoorthy G, Dhama K, Chakraborty C. Entropy-Driven, Integrative Bioinformatics Approaches Reveal the Recent Transmission of the Monkeypox Virus from Nigeria to Multiple Non-African Countries. Mol Biotechnol 2024; 66:2816-2829. [PMID: 37798393 DOI: 10.1007/s12033-023-00889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Monkeypox virus (mpox) has currently affected multiple countries around the globe. This study aims to analyze how the virus spread globally. The study uses entropy-driven bioinformatics in five directions to analyze the 60 full-length complete genomes of mpox. We analyzed the topological entropy distribution of the genomes, principal component analysis (PCA), the dissimilarity matrix, entropy-driven phylogenetics, and genome clustering. The topological entropy distribution showed genome positional entropy. We found five clusters of the mpox genomes through the two PCA, while the three PCA elucidated the clustering events in 3D space. The clustering of genomes was further confirmed through the dissimilarity matrix and phylogenetic analysis which showed the bigger size of Cluster 1 and size similarity between Clusters 2 and 4 as well as Clusters 3 and 5. It corroborated with the phylogenetics of the genomes, where Cluster 1 showed clear segregation from the other four clusters. Finally, the study concluded that the spreading of the mpox is likely to have originated from African countries to the rest of the non-African countries. Overall, the spreading and distribution of the mpox will shed light on its evolution and pathogenicity of the mpox and help to adopt preventive measures to stop the spreading of the virus.
Collapse
Affiliation(s)
- Bimal Kumar Sarkar
- Department of Physics, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
6
|
Kataria R, Duhan N, Kaundal R. Navigating the human-monkeypox virus interactome: HuPoxNET atlas reveals functional insights. Front Microbiol 2024; 15:1399555. [PMID: 39155985 PMCID: PMC11327128 DOI: 10.3389/fmicb.2024.1399555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
Monkeypox virus, a close relative of variola virus, has significantly increased the incidence of monkeypox disease in humans, with several clinical symptoms. The sporadic spread of the disease outbreaks has resulted in the need for a comprehensive understanding of the molecular mechanisms underlying disease infection and potential therapeutic targets. Protein-protein interactions play a crucial role in various cellular processes and regulate different immune signals during virus infection. Computational algorithms have gained high significance in the prediction of potential protein interaction pairs. Here, we developed a comprehensive database called HuPoxNET (https://kaabil.net/hupoxnet/) using the state-of-the-art MERN stack technology. The database leverages two sequence-based computational models to predict strain-specific protein-protein interactions between human and monkeypox virus proteins. Furthermore, various protein annotations of the human and viral proteins such as gene ontology, KEGG pathways, subcellular localization, protein domains, and novel drug targets identified from our study are also available on the database. HuPoxNET is a user-friendly platform for the scientific community to gain more insights into the monkeypox disease infection and aid in the development of therapeutic drugs against the disease.
Collapse
Affiliation(s)
- Raghav Kataria
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
| | - Naveen Duhan
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, United States
- Bioinformatics Facility, Center for Integrated BioSystems, Logan, UT, United States
- Department of Computer Science, College of Science, Utah State University, Logan, UT, United States
| |
Collapse
|
7
|
Chakraborty C, Bhattacharya M, Dhama K, Agoramoorthy G. Evidence on the existence of sublineages of the current human monkeypox virus: time for in depth study. Int J Surg 2024; 110:4402-4404. [PMID: 36906750 PMCID: PMC11254213 DOI: 10.1097/js9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/18/2022] [Indexed: 03/13/2023]
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
8
|
Hohan R, Vlaicu O, Bănică L, Tudor AI, Negru A, Paraschiv S, Oţelea D. Clinical, epidemiological and molecular aspects of patients with mpox in Romania. Germs 2024; 14:126-135. [PMID: 39493739 PMCID: PMC11527485 DOI: 10.18683/germs.2024.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 11/05/2024]
Abstract
Introduction To better understand the factors which influence the spread of monkeypox (mpox) infection, the patients that tested positive for mpox virus by real-time PCR in one of the main infectious diseases centers in Bucharest were analyzed in this study, amounting to one third of the confirmed cases in Romania. Methods Clinical data and laboratory tests were used to build the patient profiles. In the case of positive mpox results, next-generation sequencing of the viral genome was also performed to better comprehend the epidemiology of the infections and the evolutionary path of this virus. Results Among 47 patients with clinical suspicion of infection, 18 cases tested positive for mpox by real-time PCR (RT-PCR). Patients were mainly men who have sex with men (MSM), often coinfected with HIV-1 (half of the cases) and presenting with other sexually transmitted infections (STIs). Phylogenetic analysis was performed on 20 samples (15 patients) and indicated that mpox cases in Romania were the result of multiple importing events followed by local spread. A few sequences from European countries (Germany, Italy, France) and USA were found to be closely related to the Romanian sequences. Intra-host evolution was observed and documented in one patient with HIV-1 infection with uncontrolled viremia, showing slightly different mutation profiles in two body compartments. Conclusions This study showed that the mpox cases from Romania presented similar clinical, epidemiological and mutational features with those reported by other European countries.
Collapse
Affiliation(s)
- Robert Hohan
- MSc, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Ovidiu Vlaicu
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Leontina Bănică
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Andreea Ioana Tudor
- MD, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Anca Negru
- MD, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Simona Paraschiv
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania, and Virology Department, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Dan Oţelea
- MD, PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”, No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| |
Collapse
|
9
|
Deiana M, Lavezzari D, Mori A, Accordini S, Pomari E, Piubelli C, Malagò S, Cordioli M, Ronzoni N, Angheben A, Tacconelli E, Capobianchi MR, Gobbi FG, Castilletti C. Exploring Viral Genome Profile in Mpox Patients during the 2022 Outbreak, in a North-Eastern Centre of Italy. Viruses 2024; 16:726. [PMID: 38793608 PMCID: PMC11125733 DOI: 10.3390/v16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In 2022, an unprecedented outbreak of mpox raged in several nations. Sequences from the 2022 outbreak reveal a higher nucleotide substitution if compared with the estimated rate for orthopoxviruses. Recently, intra-lesion SNVs (single nucleotide variants) have been described, and these have been suggested as possible sources of genetic variation. Until now, it has not been clear if the presence of several SNVs could represents the result of local mutagenesis or a possible co-infection. We investigated the significance of SNVs through whole-genome sequencing analysis of four unrelated mpox cases. In addition to the known mutations harboured by the circulating strains of virus (MPXV), 7 novel mutations were identified, including SNVs located in genes that are involved in immune evasion mechanisms and/or viral fitness, six of these appeared to be APOBEC3-driven. Interestingly, three patients exhibited the coexistence of mutated and wild-type alleles for five non-synonymous variants. In addition, two patients, apparently unrelated, showed an analogous pattern for two novel mutations, albeit with divergent frequencies. The coexistence of mixed viral populations, harbouring non-synonymous mutations in patients, supports the hypothesis of possible co-infection. Additional investigations of larger clinical cohorts are essential to validating intra-patient viral genome heterogeneity and determining the possibility of co-presence events of slightly divergent MPXV strains.
Collapse
Affiliation(s)
- Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Denise Lavezzari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Silvia Accordini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Simone Malagò
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maddalena Cordioli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy;
| | - Niccolò Ronzoni
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Andrea Angheben
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy;
| | - Maria Rosaria Capobianchi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Federico Giovanni Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Concetta Castilletti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| |
Collapse
|
10
|
Chakraborty C, Bhattacharya M, Islam MA, Zayed H, Ohimain EI, Lee SS, Bhattacharya P, Dhama K. Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review. J Microbiol 2024; 62:337-354. [PMID: 38777985 DOI: 10.1007/s12275-024-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Elijah Ige Ohimain
- Microbiology Department, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
11
|
Ejaz M, Jabeen M, Sharif M, Syed MA, Shah PT, Faryal R. Human monkeypox: An updated appraisal on epidemiology, evolution, pathogenesis, clinical manifestations, and treatment strategies. J Basic Microbiol 2024; 64:e2300455. [PMID: 37867205 DOI: 10.1002/jobm.202300455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Monkeypox (Mpox) is a zoonotic viral disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus. The recent occurrence of Mpox infections has become a significant global issue in recent months. Despite being an old disease with a low mortality rate, the ongoing multicountry outbreak is atypical due to its occurrence in nonendemic countries. The current review encompasses a comprehensive analysis of the literature pertaining to MPXV, with the aim of consolidating the existing data on the virus's epidemiological, biological, and clinical characteristics, as well as vaccination and treatment regimens against the virus.
Collapse
Affiliation(s)
- Mohammad Ejaz
- Department of Microbiology, Government Postgraduate College Mandian, Abbottabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Momina Jabeen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mehmoona Sharif
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali Syed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Pir T Shah
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Sarra H, Salim B, Hocine A. Modeling the Antiviral Activity of Ginkgo biloba Polyphenols against Variola: In Silico Exploration of Inhibitory Candidates for VarTMPK and HssTMPK Enzymes. Curr Drug Discov Technol 2024; 21:e101023221938. [PMID: 37861017 DOI: 10.2174/0115701638261541230922095853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The aim of this study is to use modeling methods to estimate the antiviral activity of natural molecules extracted from Ginkgo biloba for the treatment of variola which is a zoonotic disease posing a growing threat to human survival. The recent spread of variola in nonendemic countries and the possibility of its use as a bioterrorism weapon have made it a global threat once again. Therefore, the search for new antiviral therapies with reduced side effects is necessary. METHODS In this study, we examined the interactions between polyphenolic compounds from Ginkgo biloba, a plant known for its antiviral activity, and two enzymes involved in variola treatment, VarTMPK and HssTMPK, using molecular docking. RESULTS The obtained docking scores showed that among the 152 selected polyphenolic compounds; many ligands had high inhibitory potential according to the energy affinity. By considering Lipinski's rules, we found that Liquiritin and Olivil molecules are the best candidates to be developed into drugs that inhibit VarTMPK because of their high obtained scores compared to reference ligands, and zero violations of Lipinski's rules. We also found that ginkgolic acids have good affinities with HssTMPK and acceptable physicochemical properties to be developed into drugs administered orally. CONCLUSION Based on the obtained scores and Lipinski's rules, Liquiritin, Olivil, and ginkgolic acids molecules showed interesting results for both studied enzymes, indicating the existence of promising and moderate activity of these polyphenols for the treatment of variola and for possible multi-targeting. Liquiritin has been shown to exhibit anti-inflammatory effects on various inflammation- related diseases such as skin injury, hepatic inflammatory injury, and rheumatoid arthritis. Olivil has been shown to have antioxidant activity. Olivil derivatives have also been studied for their potential use as anticancer agents. Ginkgolic acids have been shown to have antimicrobial and antifungal properties. However, ginkgolic acids are also known to cause allergic reactions in some people. Therefore, future studies should consider these results and explore the potential of these compounds as antiviral agents. Further experimental studies in-vitro and in-vivo are required to validate and scale up these findings.
Collapse
Affiliation(s)
- Hamdani Sarra
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| | - Bouchentouf Salim
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Department of Process Engineering, Faculty of Technology, Doctor Tahar Moulay University of Saida, Algeria, Saïda 20000, BP 138 cité EN-NASR, Algeria
| | - Allali Hocine
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| |
Collapse
|
13
|
Roh H, Kannimuthu D. Comparative resistome analysis of Aeromonas species in aquaculture reveals antibiotic resistance patterns and phylogeographic distribution. ENVIRONMENTAL RESEARCH 2023; 239:117273. [PMID: 37805184 DOI: 10.1016/j.envres.2023.117273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The overuse of antibiotics in aquaculture drives the emergence of multi-drug-resistant bacteria, and antibiotic-resistant genes (ARGs) can be disseminated to other bacteria through vertical- and horizontal gene transfer (VGT and HGT) under selective pressure. Profiling the antibiotic resistome and understanding the global distribution of ARGs constitutes the first step in developing a control strategy. Hence, this study utilized extensive genomic data from hundreds of Aeromonas strains in aquaculture to profile resistome patterns and explores their association with isolation year, country, and species characteristics. Overall, ∼400 Aeromonas genomes were used to predict the ARGs from A. salmonicida, A. hydrophila, A. veronii, A. media, and A. sobria. ARGs such as sul1, tet(A), and tet(D), which display a similar proportion of positive strains among species, were subjected to phylodynamic and phylogeographic analyses. More than a hundred ARGs were identified, some of which exhibited either species-specific or non-species-specific patterns. A. salmonicida and A. media were found to have a higher proportion of species-specific ARGs than other strains, which might lead to more distinct patterns of ARG acquisition. Overall, ∼25% of strains have either sul1, tet(A), or tet(D) gene(s), but no significant difference was observed in the proportion of positive strains by species. Phylogeographic analysis revealed that the abundant numbers of sul1, tet(A), and/or tet(D) introduced in a few East Asian and North American countries could spread to both adjacent and faraway countries. In recent years, the proportions of these ARGs have dramatically increased, particularly in strains sourced from aquatic environments, suggesting control is required of the overuse of antibiotics in aquaculture. The findings of this research offer significant insights into the global dissemination of ARGs.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870, Nordnes, 5870, Bergen, Norway.
| | - Dhamotharan Kannimuthu
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870, Nordnes, 5870, Bergen, Norway
| |
Collapse
|
14
|
Patiño LH, Guerra S, Muñoz M, Luna N, Farrugia K, van de Guchte A, Khalil Z, Gonzalez-Reiche AS, Hernandez MM, Banu R, Shrestha P, Liggayu B, Firpo Betancourt A, Reich D, Cordon-Cardo C, Albrecht R, Pearl R, Simon V, Rooker A, Sordillo EM, van Bakel H, García-Sastre A, Bogunovic D, Palacios G, Paniz Mondolfi A, Ramírez JD. Phylogenetic landscape of Monkeypox Virus (MPV) during the early outbreak in New York City, 2022. Emerg Microbes Infect 2023; 12:e2192830. [PMID: 36927408 PMCID: PMC10114986 DOI: 10.1080/22221751.2023.2192830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Monkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC.
Collapse
Affiliation(s)
- Luz H. Patiño
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Muñoz
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| | - Nicolas Luna
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zain Khalil
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Matthew M. Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernadette Liggayu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Firpo Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Reich
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Pearl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aria Rooker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Department of Microbiology, Centre for Inborn Errors of Immunity, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Palacios
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alberto Paniz Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Facultad de Ciencias Naturales, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Aggarwal S, Agarwal P, Nigam K, Vijay N, Yadav P, Gupta N. Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease. Pathogens 2023; 12:1352. [PMID: 38003816 PMCID: PMC10674790 DOI: 10.3390/pathogens12111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The global re-emergence of monkeypox (Mpox) in non-endemic regions in 2022 has highlighted the critical importance of timely virus detection and robust public health surveillance in assessing outbreaks and their impact. Despite significant Mpox research being conducted worldwide, there is an urgent need to identify knowledge gaps and prioritize key research areas in order to create a roadmap that maximizes the utilization of available resources. The present research article provides a comprehensive mapping of health research priorities aimed at advancing our understanding of Mpox and developing effective interventions for managing its outbreaks, and, as evidenced by the fact that achieving this objective requires close interdisciplinary collaboration. The key research priorities observed were identifying variants responsible for outbreaks; discovering novel biomarkers for diagnostics; establishing suitable animal models; investigating reservoirs and transmission routes; promoting the One Health approach; identifying targets for vaccination; gaining insight into the attitudes, experiences, and practices of key communities, including stigma; and ensuring equity during public health emergencies. The findings of this study hold significant implications for decision making by multilateral partners, including research funders, public health practitioners, policy makers, clinicians, and civil society, which will facilitate the development of a comprehensive plan not only for Mpox but also for other similar life-threatening viral infections.
Collapse
Affiliation(s)
- Sumit Aggarwal
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Pragati Agarwal
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Kuldeep Nigam
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Neetu Vijay
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Pragya Yadav
- ICMR-National Institute of Virology, Pune 411001, India
| | - Nivedita Gupta
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| |
Collapse
|
16
|
Shang W, Cao G, Wu Y, Kang L, Wang Y, Gao P, Liu J, Liu M. Spatiotemporal cluster of mpox in men who have sex with men: A modeling study in 83 countries. J Med Virol 2023; 95:e29166. [PMID: 37822046 DOI: 10.1002/jmv.29166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Mpox outbroke globally during 2022-2023, with more than 90% of cases occurring in men who have sex with men (MSM). However, the spatiotemporal distribution of mpox is not well established yet. This study aimed to explore the spatiotemporal clustering of mpox cases in MSM worldwide. We obtained the numbers of mpox cases from Our World in Data, the number of MSM from the Joint United Nations Programme on HIV/AIDS (UNAIDS), UNAIDS DATA 2021 and UNAIDS Global AIDS Update 2022 and literature. We evaluated the spatiotemporal cluster of mpox in MSM using retrospective space-time analyses method. The total number of mpox cases was 85 795 during May 1, 2022 to March 31, 2023. The most likely cluster was Spain (likelihood ratio = 4764.97; p < 0.001), with a cluster period from July 26 to August 14, 2022. There were 11 secondary clusters, which included 46 countries located in western Europe, eastern and northern South America, northern Europe, Canada, Central Africa, southern and central Europe, Latin America, Turkey, Dominican Republic, New Zealand, and Australia. The findings may inform current and future control strategies of mpox and might provide references for the identification of the spatiotemporal distribution of new and emerging infectious diseases in specific populations.
Collapse
Affiliation(s)
- Weijing Shang
- School of Public Health, Peking University, Beijing, China
| | - Guiying Cao
- School of Public Health, Peking University, Beijing, China
| | - Yu Wu
- School of Public Health, Peking University, Beijing, China
| | - Liangyu Kang
- School of Public Health, Peking University, Beijing, China
| | - Yaping Wang
- School of Public Health, Peking University, Beijing, China
| | - Peng Gao
- School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- School of Public Health, Peking University, Beijing, China
| | - Min Liu
- School of Public Health, Peking University, Beijing, China
| |
Collapse
|
17
|
Chakraborty C, Bhattacharya M, Saikumar G, Alshammari A, Alharbi M, Lee SS, Dhama K. A European perspective of phylogenomics, sublineages, geographical distribution, epidemiology, and mutational landscape of mpox virus: Emergence pattern may help to fight the next public health emergency in Europe. J Infect Public Health 2023; 16:1004-1014. [PMID: 37172461 PMCID: PMC10147450 DOI: 10.1016/j.jiph.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The 2022 outbreak of the mpox virus (previously monkeypox virus, MPXV) in non-epidemic regions has created a global issue. The emergence of MPXV was first reported in Europe, which was described as the MPXV epicenter, however, no reports are available to illustrate its outbreak patterns in Europe. METHODS The study used numerous in silico and statistical methods to analyze hMPXV1 in European countries. Here, we used different bioinformatics servers and software to evaluate the spread of hMPXV1 in European countries. For analysis, we use various advanced servers like Nextstrain, Taxonium, MpoxSpectrum, etc. Similarly, for the statistical model, we used PAST software. RESULTS The phylogenetic tree was depicted to illustrate the origin and evolution of hMPXV1 using vas number of genome sequences (n = 675). We found several sublineages in Europe, indicating microevolution. The scatter plot reveals the clustering patterns of the newly developed lineages in Europe. We developed statistical models for the monthly total relative frequency counts of these sublineages. The epidemiology of MPX in Europe was examined in an attempt to capture the epidemiological pattern, total cases, and deaths. Our Study noted the highest number of cases was in Spain (7500 cases) and the second-highest in France (4114 cases). The third highest number of cases was in the UK (3730 cases), which was very similar to Germany (3677 cases). Finally, we noted the mutational landscape throughout European genomes. Significant mutations were observed at the nucleotide and protein levels. We identified several unique homoplastic mutations in Europe. CONCLUSION This study reveals several essential aspects of the European outbreak. It might help to eradicate the virus in Europe, assist in strategy formation to fight against the virus, and support working against the next public health emergency in Europe.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
18
|
Rabaan AA, Alasiri NA, Aljeldah M, Alshukairiis AN, AlMusa Z, Alfouzan WA, Abuzaid AA, Alamri AA, Al-Afghani HM, Al-Baghli N, Alqahtani N, Al-Baghli N, Almoutawa MY, Mahmoud Alawi M, Alabdullah M, Bati NAA, Alsaleh AA, Tombuloglu H, Arteaga-Livias K, Al-Ahdal T, Garout M, Imran M. An Updated Review on Monkeypox Viral Disease: Emphasis on Genomic Diversity. Biomedicines 2023; 11:1832. [PMID: 37509470 PMCID: PMC10376458 DOI: 10.3390/biomedicines11071832] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus has remained the most virulent poxvirus since the elimination of smallpox approximately 41 years ago, with distribution mostly in Central and West Africa. Monkeypox (Mpox) in humans is a zoonotically transferred disease that results in a smallpox-like disease. It was first diagnosed in 1970 in the Democratic Republic of the Congo (DRC), and the disease has spread over West and Central Africa. The purpose of this review was to give an up-to-date, thorough, and timely overview on the genomic diversity and evolution of a re-emerging infectious disease. The genetic profile of Mpox may also be helpful in targeting new therapeutic options based on genes, mutations, and phylogeny. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. Increased monitoring and identification of Mpox cases are critical tools for obtaining a better knowledge of the ever-changing epidemiology of this disease.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Nada A Alasiri
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abeer N Alshukairiis
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Zainab AlMusa
- Infectious Disease Section, Internal Medicine Department, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Aref A Alamri
- Molecular Microbiology and Cytogenetics Department, Riyadh Regional Laboratory, Riyadh 11425, Saudi Arabia
| | - Hani M Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Nadira Al-Baghli
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nawal Alqahtani
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Nadia Al-Baghli
- Directorate of Health Affairs, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Mashahed Y Almoutawa
- Primary Healthcare, Qatif Health Network, Eastern Health Cluster, Safwa 32833, Saudi Arabia
| | - Maha Mahmoud Alawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
- Infection Control and Environmental Health Unit, King Abdulaziz University Hospital, Jeddah 22254, Saudi Arabia
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Neda A Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Tareq Al-Ahdal
- Research Associate, Institute of Global Health, Heidelberg University, Neuenheimerfeld130/3, 69120 Heidelberg, Germany
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
19
|
Muñoz-Barrera A, Ciuffreda L, Alcoba-Florez J, Rubio-Rodríguez LA, Rodríguez-Pérez H, Gil-Campesino H, García-Martínez de Artola D, Salas-Hernández J, Rodríguez-Núñez J, Íñigo-Campos A, García-Olivares V, Díez-Gil O, González-Montelongo R, Valenzuela-Fernández A, Lorenzo-Salazar JM, Flores C. Bioinformatic approaches to draft the viral genome sequence of Canary Islands cases related to the multicountry mpox virus 2022-outbreak. Comput Struct Biotechnol J 2023; 21:2197-2203. [PMID: 36968018 PMCID: PMC10015108 DOI: 10.1016/j.csbj.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
On July 23, 2022, monkeypox disease (mpox) was declared a Public Emergency of International Concern (PHEIC) by the World Health Organization (WHO) due to a multicountry outbreak. In Europe, several cases of mpox virus (MPXV) infection related to this outbreak were detected in the Canary Islands (Spain). Here we describe the combination of viral DNA sequencing and bioinformatic approaches, including methods for de novo genome assembly and short- and long-read technologies, used to reconstruct the first MPXV genome isolated in the Canary Islands on the 31st of May 2022 from a male adult patient with mild symptoms. The same sequencing and bioinformatic approaches were then validated with three other positive cases of MPXV infection from the same mpox outbreak. We obtained the best results using a reference-based approach with short reads, evidencing 46-79 nucleotide variants against viral sequences from the 2018-2019 mpox outbreak and placing the viral sequences in the new B.1 sublineage of clade IIb of the MPXV classification. This study of MPXV demonstrates the potential of metagenomics sequencing for rapid and precise pathogen identification.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Josmar Salas-Hernández
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Julia Rodríguez-Núñez
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Antonio Íñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | | | - Agustín Valenzuela-Fernández
- Laboratorio “Inmunología Celular y Viral”, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Correspondence to: Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario s/n, 38010 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
20
|
Gao J, Zhou C, Liang H, Jiao R, Wheelock ÅM, Jiao K, Ma J, Zhang C, Guo Y, Luo S, Liang W, Xu L. Monkeypox outbreaks in the context of the COVID-19 pandemic: Network and clustering analyses of global risks and modified SEIR prediction of epidemic trends. Front Public Health 2023; 11:1052946. [PMID: 36761122 PMCID: PMC9902715 DOI: 10.3389/fpubh.2023.1052946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Background Ninety-eight percent of documented cases of the zoonotic disease human monkeypox (MPX) were reported after 2001, with especially dramatic global spread in 2022. This longitudinal study aimed to assess spatiotemporal risk factors of MPX infection and predict global epidemiological trends. Method Twenty-one potential risk factors were evaluated by correlation-based network analysis and multivariate regression. Country-level risk was assessed using a modified Susceptible-Exposed-Infectious-Removed (SEIR) model and a risk-factor-driven k-means clustering analysis. Results Between historical cases and the 2022 outbreak, MPX infection risk factors changed from relatively simple [human immunodeficiency virus (HIV) infection and population density] to multiple [human mobility, population of men who have sex with men, coronavirus disease 2019 (COVID-19) infection, and socioeconomic factors], with human mobility in the context of COVID-19 being especially key. The 141 included countries classified into three risk clusters: 24 high-risk countries mainly in West Europe and Northern America, 70 medium-risk countries mainly in Latin America and Asia, and 47 low-risk countries mainly in Africa and South Asia. The modified SEIR model predicted declining transmission rates, with basic reproduction numbers ranging 1.61-7.84 in the early stage and 0.70-4.13 in the current stage. The estimated cumulative cases in Northern and Latin America may overtake the number in Europe in autumn 2022. Conclusions In the current outbreak, risk factors for MPX infection have changed and expanded. Forecasts of epidemiological trends from our modified SEIR models suggest that Northern America and Latin America are at greater risk of MPX infection in the future.
Collapse
Affiliation(s)
- Jing Gao
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
- Respiratory Medicine Unit, Department of Medicine and Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Cui Zhou
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Hanwei Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Rao Jiao
- Department of Mathematical Science, Tsinghua University, Beijing, China
| | - Åsa M. Wheelock
- Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kedi Jiao
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Chutian Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yongman Guo
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Sitong Luo
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Zhan XY, Zha GF, He Y. Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 2023; 12:1083234. [PMID: 36710983 PMCID: PMC9880225 DOI: 10.3389/fcimb.2022.1083234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Gao-Feng Zha
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Yulong He
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| |
Collapse
|
22
|
Liao H, Qu J, Lu H. Molecular and immunological diagnosis of Monkeypox virus in the clinical laboratory. Drug Discov Ther 2022; 16:300-304. [PMID: 36529507 DOI: 10.5582/ddt.2022.01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The 2022 monkeypox outbreak outside Africa is ongoing. Cases have been reported in Hong Kong and Chongqing, China. In order to better prevent and control the potential spread of monkeypox virus in China, the development of sensitive and reliable detection commercial kits is imminent. This correspondence reviews the existing laboratory assays and related technologies for nucleic acid (PCR) and serological assays for the diagnosis of monkeypox virus to provide reference for the management and decision-making departments. Due to the serological cross-reactivity of orthopoxviruses, PCR is the laboratory test of choice to confirm monkeypox virus infection. We recommend a dual-target PCR approach in which one assay targets a conserved sequence of the Orthopoxvirus genus and the other targets a monkeypox virus specific sequence.
Collapse
Affiliation(s)
- Hao Liao
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
D’Angelo P, Loureiro CL, Jaspe RC, Sulbaran YF, Rodríguez L, Alarcón V, García JM, Zambrano JL, Liprandi F, Rangel HR, Pujol FH. First Case of Monkeypox in Venezuela: Partial Complete Genome Sequence Allowed Its Grouping into the West African Clade II. Trop Med Infect Dis 2022; 8:2. [PMID: 36668909 PMCID: PMC9864145 DOI: 10.3390/tropicalmed8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
The ongoing epidemic of monkeypox virus (MPXV) infection has already reached more than 50,000 persons worldwide until the end of August 2022. We report the first case detected in Venezuela. The patient reported traveling from Spain and contact with friends tested positive for MPXV after his return. Partial complete genome phylogenetic analysis allowed to group the isolate within the clade II of MPXV, the major one circulating worldwide. No other case of MPXV has been detected until the end of August 2022 in the country, although the presence of undiagnosed cases due to the fear of stigmatization cannot be ruled out.
Collapse
Affiliation(s)
- Pierina D’Angelo
- Dirección de Diagnóstico y Vigilancia de Enfermedades Transmisibles, Instituto Nacional de Higiene “Rafael Rangel”, Caracas 1041, Venezuela
| | - Carmen L. Loureiro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Rossana C. Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Yoneira F. Sulbaran
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Lieska Rodríguez
- Dirección de Diagnóstico y Vigilancia de Enfermedades Transmisibles, Instituto Nacional de Higiene “Rafael Rangel”, Caracas 1041, Venezuela
| | - Víctor Alarcón
- Dirección de Diagnóstico y Vigilancia de Enfermedades Transmisibles, Instituto Nacional de Higiene “Rafael Rangel”, Caracas 1041, Venezuela
| | - José Manuel García
- Dirección General de Epidemiología, Ministerio del Poder Popular para la Salud, Caracas 1010, Venezuela
| | - José Luis Zambrano
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Héctor R. Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| | - Flor H. Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela
| |
Collapse
|
24
|
Monkeypox virus vaccine evolution and global preparedness for vaccination. Int Immunopharmacol 2022; 113:109346. [PMID: 36274490 PMCID: PMC9582788 DOI: 10.1016/j.intimp.2022.109346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The recent emergence of monkeypox (MPX) has created a global threat. The number of infected and suspected cases of MPX is increasing in different parts of the world, especially in non-African countries. However, vaccines are available to fight against this disease. It has been observed that smallpox vaccines can be used to protect against MPX. The present article highlights the significant points and various issues for vaccines and vaccinations that should be considered related to MPX. This paper illustrates current vaccines for smallpox that can be utilized to protect against MPX infection. The article also describes the different significant research on MPXV, especially smallpox vaccines, and its outcome in MPX infection. We have also tried to depict the smallpox vaccination eradication model through the statistical interface using smallpox eradication data from Central and West Africa between 1967 and 1972. We suggest that these models might be helpful for the eradication of MPX in the middle to low-economic countries. Simultaneously, we have also discussed vaccination preparedness in different countries like the USA, UK, Canada, Denmark, Germany, etc. Our report might be helpful to scientists and policymakers in understanding the vaccines and vaccination against MPX and formulating effective strategies to fight against the disease.
Collapse
|
25
|
The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68:1-12. [PMID: 36244878 PMCID: PMC9547435 DOI: 10.1016/j.cytogfr.2022.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023]
Abstract
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.
Collapse
|
26
|
Mohapatra RK, Mishra S, Kandi V, Sarangi AK, Kudrat-E-Zahan M, Ali MS, Sahoo RN, Alam N, Pattnaik G, Dhama K. Emerging monkeypox cases amid the ongoing COVID-19 pandemic in the Indian subcontinent: A probable healthcare challenge for South East Asia. Front Public Health 2022; 10:1066425. [PMID: 36504935 PMCID: PMC9732369 DOI: 10.3389/fpubh.2022.1066425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | | | - Md. Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rudra Narayan Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Nawazish Alam
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|