1
|
Feng K, Su J, Sun L, Guo Y, Peng X. Molecular characterization and expression analysis of thyroid hormone receptors in protogynous rice field eel, Monopterus albus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:845-855. [PMID: 38855856 DOI: 10.1002/jez.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRβ, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRβ in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRβ in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRβ. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRβ in reproduction by the regulation of GnRHa in rice field eel.
Collapse
Affiliation(s)
- Ke Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Jialin Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Lei Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Ying Guo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Xiwen Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Rasal KD, Mohapatra S, Kumar PV, K SR, Asgolkar P, Acharya A, Dey D, Shinde S, Vasam M, Kumar R, Sundaray JK. DNA Methylation Profiling of Ovarian Tissue of Climbing Perch (Anabas testudienus) in Response to Monocrotophos Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1123-1135. [PMID: 37870741 DOI: 10.1007/s10126-023-10264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Epigenetic modifications like DNA methylation can alter an organism's phenotype without changing its DNA sequence. Exposure to environmental toxicants has the potential to change the resilience of aquatic species. However, little information is available on the dynamics of DNA methylation in fish gonadal tissues in response to organophosphates. In the present work, reduced-representation bisulfite sequencing was performed to identify DNA methylation patterns in the ovarian tissues of Anabas testudienus exposed to organophosphates, specifically monocrotophos (MCP). Through sequencing, an average of 41,087 methylated cytosine sites were identified and distributed in different parts of genes, i.e., in transcription start sites (TSS), promoters, exons, etc. A total of 1058 and 1329 differentially methylated regions (DMRs) were detected as hyper-methylated and hypo-methylated in ovarian tissues, respectively. Utilizing whole-genome data of the climbing perch, the DMRs, and their associated overlapping genes revealed a total of 22 genes within exons, 45 genes at transcription start sites (TSS), and 218 genes in intergenic regions. Through gene ontology analysis, a total of 16 GO terms particularly involved in ovarian follicular development, response to oxidative stress, oocyte maturation, and multicellular organismal response to stress associated with reproductive biology were identified. After functional enrichment analysis, relevant DMGs such as steroid hormone biosynthesis (Cyp19a, 11-beta-HSD, 17-beta-HSD), hormone receptors (ar, esrrga), steroid metabolism (StAR), progesterone-mediated oocyte maturation (igf1ar, pgr), associated with ovarian development in climbing perch showed significant differential methylation patterns. The differentially methylated genes (DMGs) were subjected to analysis using real-time PCR, which demonstrated altered gene expression levels. This study revealed a molecular-level alteration in genes associated with ovarian development in response to chemical exposure. This work provides evidence for understanding the relationship between DNA methylation and gene regulation in response to chemicals that affect the reproductive fitness of aquatic animals.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Sujata Mohapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Pokanti Vinay Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Shasti Risha K
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Prachi Asgolkar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Diganta Dey
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Siba Shinde
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Manohar Vasam
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Rajesh Kumar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | | |
Collapse
|
3
|
Gentile I, Vezzoli V, Martone S, Totaro MG, Bonomi M, Persani L, Marelli F. Short-Term Exposure to Benzo(a)Pyrene Causes Disruption of GnRH Network in Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24086913. [PMID: 37108076 PMCID: PMC10138490 DOI: 10.3390/ijms24086913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon, is considered a common endocrine disrupting chemical (EDC) with mutagenic and carcinogenic effects. In this work, we evaluated the effects of BaP on the hypothalamo-pituitary-gonadal axis (HPG) of zebrafish embryos. The embryos were treated with 5 and 50 nM BaP from 2.5 to 72 hours post-fertilization (hpf) and obtained data were compared with those from controls. We followed the entire development of gonadotropin releasing hormone (GnRH3) neurons that start to proliferate from the olfactory region at 36 hpf, migrate at 48 hpf and then reach the pre-optic area and the hypothalamus at 72 hpf. Interestingly, we observed a compromised neuronal architecture of the GnRH3 network after the administration of 5 and 50 nM BaP. Given the toxicity of this compound, we evaluated the expression of genes involved in antioxidant activity, oxidative DNA damage and apoptosis and we found an upregulation of these pathways. Consequently, we performed a TUNEL assay and we confirmed an increment of cell death in brain of embryos treated with BaP. In conclusion our data reveal that short-term exposure of zebrafish embryos to BaP affects GnRH3 development likely through a neurotoxic mechanism.
Collapse
Affiliation(s)
- Ilaria Gentile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Valeria Vezzoli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Sara Martone
- IFOM-FIRC, Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
4
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
5
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
6
|
Ceriani R, Calfún C, Whitlock KE. phoenixin(smim20), a gene coding for a novel reproductive ligand, is expressed in the brain of adult zebrafish. Gene Expr Patterns 2020; 39:119164. [PMID: 33385537 DOI: 10.1016/j.gep.2020.119164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/08/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. In addition to its role as hypothalamic releasing hormone, GnRH has multiple functions including modulator of neural activity within the nervous system and of resulting behaviors. These multiple functions are reflected by the existence of multiple isoforms. Despite its importance as a critical hypothalamic releasing hormone, the gnrh1 gene has been lost in zebrafish, and its reproductive function is not compensated for by other GnRH isoforms (GnRH2 and GnRH3), suggesting that, surprisingly, zebrafish do not use any of the GnRH peptides to control reproduction and fertility. Previously we proposed that Phoenixin/SMIM20, a novel peptide identified in mammals and the ligand for the orphan GPR173, is a potential candidate to control the initiation of sexual development and fertility in the zebrafish. Here we confirm the sequence of the zebrafish phoenixin/smim20 gene and by RT-PCR show that it is expressed early in development through adulthood. Subsequently we show that phoenixin/smim20 is expressed in the adult brain including the regions of the hypothalamus important in the control of fertility and reproduction.
Collapse
Affiliation(s)
- R Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| | - C Calfún
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| | - K E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| |
Collapse
|
7
|
Fallah HP, Habibi HR. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen Comp Endocrinol 2020; 299:113619. [PMID: 32956700 DOI: 10.1016/j.ygcen.2020.113619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The control of oocyte growth and its final maturation is multifactorial and involves a number of hypothalamic, hypophyseal, and peripheral hormones. In this study, we investigated the direct actions of the gonadotropin-releasing hormone (GnRH) and the gonadotropin-inhibitory hormone (GnIH), which are expressed in the ovarian follicles, on final oocyte maturation in zebrafish, in vitro. Our study demonstrates the expression of GnRH and GnIH in the ovarian follicles of zebrafish (Danio rerio) at different stages of development and provides information on the direct action of these hormones on final oocyte maturation. Treatment with both GnRH and GnIH peptides stimulated the germinal vesicle breakdown (GVBD) of the late-vitellogenic oocyte. Both the GnRH and GnIH treatments showed no significant change in the caspase-3 activity of pre-vitellogenic and mid-vitellogenic oocytes, while they displayed different responses in the late-vitellogenic follicles. The GnRH treatment increased caspase-3 activity, whereas the GnIH reduced caspase-3 activity in the late-vitellogenic follicles. We also investigated the effects of GnRH and GnIH on the hCG-induced resumption of meiosis and caspase activity in vitro. GnRH and GnIH were found to have a similar effect on the hCG-induced resumption of meiosis, while they showed the opposite effect on caspase-3 activity. Furthermore, we investigated the effects of concomitant treatment of GnRH and GnIH peptides with hCG. The results demonstrated that the presence of both GnRH3 and GnIH are necessary for the normal induction of final oocyte maturation by gonadotropins. The findings support the hypothesis that GnIH and GnRH peptides produced in the ovary are part of a complex multifactorial regulatory system that controls zebrafish final oocyte maturation in paracrine/autocrine manner working in concert with gonadotropin hormones.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
8
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
9
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
10
|
Fallah HP, Rodrigues MS, Corchuelo S, Nóbrega RH, Habibi HR. Role of GnRH Isoforms in Paracrine/Autocrine Control of Zebrafish (Danio rerio) Spermatogenesis. Endocrinology 2020; 161:5701481. [PMID: 31930304 DOI: 10.1210/endocr/bqaa004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Abstract
It is well established that hypothalamic GnRH (gonadotropin-releasing hormone) is one of the key peptides involved in the neuroendocrine control of testicular development and spermatogenesis. However, the role of GnRH as a paracrine regulator of testicular function has not been fully investigated. The present study demonstrates the presence of GnRH and its receptors in the zebrafish (Danio rerio) testis, and provides information on direct action of native GnRH isoforms (GnRH2 and GnRH3) on different stages of spermatogenesis in this model. Both GnRH2 and GnRH3 stimulated basal spermatogenesis by increasing numbers of type Aund spermatogonia, spermatozoa, and testosterone release, and in this study GnRH2 exerted higher relative activity than GnRH3. Next, we evaluated the effects of GnRH isoforms on human chorionic gonadotropin (hCG)- and follicle-stimulating hormone (Fsh)-induced spermatogenesis. The 2 GnRH isoforms were found to have different effects on Fsh- and hCG-induced response depending on the stage of spermatogenesis and concentration of the peptides. The results provide strong support for the hypothesis that locally produced GnRH2 and GnRH3 are important components of the complex multifactorial system that regulates testicular germinal cell development and function in adult zebrafish.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Maira S Rodrigues
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Sheryll Corchuelo
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Rafael H Nóbrega
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
12
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
13
|
London S, Volkoff H. Cloning and effects of fasting on the brain expression levels of appetite-regulators and reproductive hormones in glass catfish (Kryptopterus vitreolus). Comp Biochem Physiol A Mol Integr Physiol 2018; 228:94-102. [PMID: 30453036 DOI: 10.1016/j.cbpa.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
The regulation of feeding is a complex process that involves coordination between various signals. Feeding hormones can be described as orexigenic (stimulate food intake, e.g. orexin and neuropeptide Y - NPY) or anorexigenic (inhibit food intake, e.g. cocaine and amphetamine regulated transcript - CART). Reproduction and energy homeostasis are closely linked, as factors that affect appetite have also been shown to influence reproductive hormones and behaviors. Gonadotropin-releasing hormone (GnRH) is one of the most influential factors controlling reproduction. Although our understanding of the endocrine regulation of feeding and reproduction in fish is progressing, many gaps still remain, particularly in catfish. Glass catfish (Kryptopterus vitreolus) are freshwater fish known for their natural transparency. In this study, we isolated cDNA encoding reproductive hormones (GnRH1, GnRH2) and appetite regulators (orexin, NPY, and CART) from glass catfish and examined their distribution in various tissues. All peptides had wide distributions across various brain and peripheral tissues, except CART, which was only present in brain. In order to assess whether limited energy supply affects these peptides, we examined the effects of fasting on their brain mRNA expression levels. Fasting increased the expression of both the orexigenic (i.e. orexin and NPY) and anorexigenic (i.e. CART) hormones, and decreased expression levels of GnRH1, but did not affect GnRH2. Overall, our results suggest that fasting affects the expression of peptides involved in both feeding and reproduction, and provides new insights on the endocrine mechanisms that regulate feeding and reproduction in catfish.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada.
| |
Collapse
|
14
|
Feng K, Luo H, Hou M, Li Y, Chen J, Zhu Z, Hu W. Alternative splicing of GnRH2 and GnRH2-associated peptide plays roles in gonadal differentiation of the rice field eel, Monopterus albus. Gen Comp Endocrinol 2018; 267:9-17. [PMID: 29782841 DOI: 10.1016/j.ygcen.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/21/2023]
Abstract
The rice field eel, Monopterus albus, is a protogynous hermaphrodite fish, in which the gonads are initially female ovaries which then transform into male testes. The exact mechanisms governing sex reversal in the rice field eel are unknown. In this study, a novel alternative splicing variant of GnRH2 (GnRH2-SV), retaining the second intron, was discovered in the gonad of the rice field eel. Compared to GnRH2, GnRH2-SV may give rise to a novel truncated GnRH2-associated peptide (New GAP2). The normal transcript of GnRH2 was primarily expressed in the brain, and could also be detected in the liver, spleen, ovary, and testis. However, GnRH2-SV was only expressed in the ovary and testis. During sex reversal, GnRH2 expression levels increased significantly at late stages; however, expression levels of GnRH2-SV were lower in ovary than in ovotestis and testis. We also examined the effect of three peptides (GnRHa, GAP2, and New GAP2) on gonadal sex differentiation during the third stage of ovarian development of the rice field eel. Compared to the control group, the expression of amh increased significantly following incubation with each of the three peptides. However, only New GAP2 stimulated the expression of sox9a1 mRNA in vitro. After intraperitoneal injection of GAP2, the expression of amh, foxl2, and cyp19a1a increased significantly after 12 h; the concentration of serum 11-KT was also significantly increased at the 12 h time point. Treatment with New GAP2 significantly increased the expression of amh, dmrt1a, and sox9a1, and also increased the concentration of serum 11-KT. After treated with GnRHa, the expression of amh, dmrt1a, sox9a1, cyp19a1a, and foxl2 increased significantly, as did the level of serum E2. These results indicated that both GAP2 and New GAP2 play a crucial role in inducing expression changes of sex-differentiation related genes, and may be involved in the gonadal development and sex reversal in the rice field eel.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Khor YM, Soga T, Parhar IS. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain. Gen Comp Endocrinol 2016; 227:84-93. [PMID: 26686318 DOI: 10.1016/j.ygcen.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.
Collapse
Affiliation(s)
- Yee Min Khor
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Malaysia
| |
Collapse
|
16
|
Huang W, Zhang J, Liao Z, Lv Z, Wu H, Zhu A, Wu C. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea). Gene 2015; 576:458-65. [PMID: 26519998 DOI: 10.1016/j.gene.2015.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023]
Abstract
Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Huifei Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| |
Collapse
|
17
|
Roch GJ, Busby ER, Sherwood NM. GnRH receptors and peptides: skating backward. Gen Comp Endocrinol 2014; 209:118-34. [PMID: 25107740 DOI: 10.1016/j.ygcen.2014.07.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and its receptor are essential for reproduction in vertebrates. Although there are three major types of GnRH peptides and two major types of receptors in vertebrates, the pattern of distribution is unusual. Evidence is presented from genome mining that type I GnRHRs are not restricted to mammals, but can be found in the lobe-finned and cartilaginous fishes. This implies that this tail-less GnRH receptor emerged early in vertebrate evolution, followed by several independent losses in different lineages. Also, we have identified representatives from the three major GnRH peptide types (mammalian GnRH1, vertebrate GnRH2 and dogfish GnRH3) in a single cartilaginous fish, the little skate. Skate and coelacanth are the only examples of animals with both type I and II GnRH receptors and all three peptide types, suggesting this was the ancestral condition in vertebrates. Our analysis of receptor synteny in combination with phylogeny suggests that there were three GnRH receptor types present before the two rounds of whole genome duplication in early vertebrates. To further understand the origin of the GnRH peptide-receptor system, the relationship of vertebrate and invertebrate homologs was examined. Our evidence supports the hypothesis of a GnRH superfamily with a common ancestor for the vertebrate GnRHs, invertebrate (inv)GnRHs, corazonins and adipokinetic hormones. The invertebrate deuterostomes (echinoderms, hemichordates and amphioxus) have derived GnRH-like peptides, although one amphioxus GnRH with a syntenic relationship to human GnRHs has been shown to be functional. Phylogenetic analysis suggests that gene duplications in the ancestral bilaterian produced two receptor types, one of which became adipokinetic hormone receptor/GnRHR and the other corazonin receptor/invGnRHR. It appears that the ancestral deuterostome had both a GnRHR and invGnRHR, and this is still the case in amphioxus. During the transition to vertebrates both the invertebrate-type peptide and receptor were lost, leaving only the vertebrate-type system that presently exists.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Ellen R Busby
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| | - Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
18
|
Zhao Y, Lin MCA, Mock A, Yang M, Wayne NL. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio). PLoS One 2014; 9:e104330. [PMID: 25093675 PMCID: PMC4122407 DOI: 10.1371/journal.pone.0104330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/12/2014] [Indexed: 11/19/2022] Open
Abstract
Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Meng-Chin A. Lin
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Allan Mock
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wang T, Yuan D, Zhou C, Lin F, Chen H, Wu H, Wei R, Xin Z, Liu J, Gao Y, Chen D, Yang S, Pu Y, Li Z. Characterization of Schizothorax prenanti cgnrhII gene: fasting affects cgnrhII expression. JOURNAL OF FISH BIOLOGY 2014; 85:407-420. [PMID: 24942636 DOI: 10.1111/jfb.12430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
In this study, the role of chicken gonadotropin-releasing hormone II (cgnrhII) in feeding regulation was investigated in Schizothorax prenanti. First, the full-length S. prenanti cgnrhII cDNA consisted of 693 bp with an open reading frame of 261 bp encoding a protein of 86 amino acids. Next, cgnrhII was widely expressed in the central and peripheral tissues. Last, there were significant changes in cgnrhII mRNA expression in the fasted group compared to the fed group in the S. prenanti hypothalamus during 24 h fasting (P < 0.05). Furthermore, the cgnrhII gene expression presented a significant decrease in the fasted group compared with the fed group (P < 0.05) on days 3, 5 and 7, after re-feeding, there was no significant changes in cgnrhII mRNA expression level between refed and fed group on day 9 (P > 0.05). Thus, the results suggest that cGnRH II expression is influenced by fasting and the gene may be involved in feeding regulation in S. prenanti.
Collapse
Affiliation(s)
- T Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuo MW, Lou SW, Chung BC. Hedgehog-PKA signaling and gnrh3 regulate the development of zebrafish gnrh3 neurons. PLoS One 2014; 9:e95545. [PMID: 24879419 PMCID: PMC4039432 DOI: 10.1371/journal.pone.0095545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP) and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA), by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA*) and dominant negative regulatory subunit (PKI) into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Show-Wan Lou
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Bon-chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Roch GJ, Tello JA, Sherwood NM. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus. Mol Biol Evol 2013; 31:765-78. [PMID: 24361996 PMCID: PMC3969558 DOI: 10.1093/molbev/mst269] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
22
|
Tuziak SM, Volkoff H. Melanin-concentrating hormone (MCH) and gonadotropin-releasing hormones (GnRH) in Atlantic cod, Gadus morhua: tissue distributions, early ontogeny and effects of fasting. Peptides 2013; 50:109-18. [PMID: 24140403 DOI: 10.1016/j.peptides.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 01/25/2023]
Abstract
Melanin-concentrating hormone (MCH) is classically known for its role in regulating teleost fish skin color change for environmental adaptation. Recent evidence suggests that MCH also has appetite-stimulating properties. The gonadotropin-releasing hormone (GnRH) peptide family has dual roles in endocrine control of reproduction and energy status in fish. Atlantic cod (Gadus morhua) are a commercially important aquaculture species inhabiting the shores of Atlantic Canada. In this study, we examine MCH and GnRH transcript expression profiles during early development as well as in central and peripheral tissues and quantify juvenile Atlantic cod MCH and GnRH hypothalamic mRNA expressions following food deprivation. MCH and GnRH3 cDNAs are maternally deposited into cod eggs, while MCH has variable expression throughout early development. GnRH2 and GnRH3 mRNAs "turn-on" during mid-segmentation once the brain is fully developed. For both MCH and GnRH, highest expression appears during the exogenous feeding stages, perhaps supporting their functions as appetite regulators during early development. MCH and GnRH transcripts are found in brain regions related to appetite regulation (telencephalon/preoptic area, optic tectum/thalamus, hypothalamus), as well as the pituitary gland and the stomach, suggesting a peripheral function in food intake regulation. Atlantic cod MCH mRNA is upregulated during fasting, while GnRH2 and GnRH3 transcripts do not appear to be influenced by food deprivation. In conclusion, MCH might be involved in stimulating food intake in juvenile Atlantic cod, while GnRHs may play a more significant role in appetite regulation during early development.
Collapse
Affiliation(s)
- Sarah M Tuziak
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B-3X9, Canada.
| | | |
Collapse
|
23
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
24
|
Decatur WA, Hall JA, Smith JJ, Li W, Sower SA. Insight from the lamprey genome: glimpsing early vertebrate development via neuroendocrine-associated genes and shared synteny of gonadotropin-releasing hormone (GnRH). Gen Comp Endocrinol 2013; 192:237-45. [PMID: 23770021 PMCID: PMC8715641 DOI: 10.1016/j.ygcen.2013.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 01/05/2023]
Abstract
Study of the ancient lineage of jawless vertebrates is key to understanding the origins of vertebrate biology. The establishment of the neuroendocrine system with the hypothalamic-pituitary axis at its crux is of particular interest. Key neuroendocrine hormones in this system include the pivotal gonadotropin-releasing hormones (GnRHs) responsible for controlling reproduction via the pituitary. Previous data incorporating several lines of evidence showed all known vertebrate GnRHs were grouped into four paralogous lineages: GnRH1, 2, 3 and 4; with proposed evolutionary paths. Using the currently available lamprey genome assembly, we searched genes of the neuroendocrine system and summarize here the details representing the state of the current lamprey genome assembly. Additionally, we have analyzed in greater detail the evolutionary history of the GnRHs based on the information of the genomic neighborhood of the paralogs in lamprey as compared to other gnathostomes. Significantly, the current evidence suggests that two genome duplication events (both 1R and 2R) that generated the different fish and tetrapod paralogs took place before the divergence of the ancestral agnathans and gnathostome lineages. Syntenic analysis supports this evidence in that the previously-classified type IV GnRHs in lamprey (lGnRH-I and -III) share a common ancestry with GnRH2 and 3, and thus are no longer considered type IV GnRHs. Given the single amino acid difference between lGnRH-II and GnRH2 we propose that a GnRH2-like gene existed before the lamprey/gnathostome split giving rise to lGnRH-II and GnRH2. Furthermore, paralogous type 3 genes (lGnRH-I/III and GnRH3) evolved divergent structure/function in lamprey and gnathostome lineages.
Collapse
Affiliation(s)
- Wayne A. Decatur
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jeffrey A. Hall
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Stacia A. Sower
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
25
|
Hasunuma I, Terakado K. Two novel gonadotropin-releasing hormones (GnRHs) from the urochordate ascidian, Halocynthia roretzi: implications for the origin of vertebrate GnRH isoforms. Zoolog Sci 2013; 30:311-8. [PMID: 23537242 DOI: 10.2108/zsj.30.311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three forms of gonadotropin-releasing hormone (GnRH) are found in vertebrates; these differ in amino acid sequence, localization, distribution, and embryological origin. We used northern blot analysis, and in situ hybridization to detect GnRH transcripts in various tissues in the large ascidian Halocynthia roretzi. We cloned a cDNA encoding two novel GnRHs, termed tGnRH-10 and tGnRH-11, from H. roretzi, with deduced amino acid sequences of QHWSYGFSPG and QHWSYGFLPG, respectively. Both GnRHs are highly similar to those of teleosts and tetrapods. For example, the tGnRH-10 sequence is 90% identical to seabream GnRH1, and tGnRH-11 is 90% identical to salmon GnRH3. The primary structure of the deduced preprotein is similar to that of chordate GnRHs and consists of a signal peptide, two decapeptides, up- and downstream processing sequences (containing lysine and arginine), and a GnRH-associated peptide. The transcripts of the H. roretzi GnRH gene were expressed in all tissues examined. Comparison of the signal peptide of the lamprey GnRH-II precursor with those of three forms from representative vertebrates revealed homology to GnRH2 precursors. These novel ascidian GnRHs offer a new perspective on the origin of vertebrate GnRH subtypes. We hypothesize that gnathostome GnRH2 was derived only from lamprey GnRH-II and that ancestral gnathostome GnRH, which produces neurons that originate in peripheral organs, gave rise to vertebrate GnRH1 and GnRH3 through whole-genome duplication.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Toho University, Funabashi 274-8510, Japan
| | | |
Collapse
|
26
|
Tuziak SM, Volkoff H. Gonadotrophin-releasing hormone in winter flounder (Pseudopleuronectes americanus): molecular characterization, distribution and effects of fasting. Gen Comp Endocrinol 2013; 184:9-21. [PMID: 23298570 DOI: 10.1016/j.ygcen.2012.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is primarily related to reproductive processes in vertebrates. However other physiological roles, including functions in food intake regulation and energy status, have been demonstrated for GnRH in animals. The ten amino acid active peptide is relatively conserved throughout chordates, more specifically in fish species. Teleosts generally have at least two variants of GnRH present in their genomes. GnRH2 (commonly termed chicken-GnRH) is common to all fish, whereas other prevalent forms include GnRH1 and/or GnRH3 (also known as salmon-GnRH). The mRNAs of all three forms were identified in winter flounder (Pseudopleuronectes americanus). Winter flounder GnRH1 appears to be ubiquitously and strongly expressed throughout the brain. GnRH2 mRNA is highly expressed in the optic tectum/thalamus. Finally, GnRH3 mRNA is expressed throughout the brain, but not in the pituitary, with apparent highest expression in the telencephalon/preoptic area. Flounder GnRH1 mRNA is found in most peripheral tissues examined, including the foregut, midgut and gonads. GnRH2 mRNA appears to be expressed throughout the periphery, with apparent highest transcript expression in male gonads. Finally, winter flounder GnRH3 transcript is found at low levels in the skin, heart, and gonads. The effect of fasting on the expression of each of the three isoforms was assessed. Fasting reduces GnRH2 and GnRH3 mRNA expression in the optic tectum/thalamus and hypothalamus, and telencephalon/preoptic area, respectively, compared with fed fish. GnRH1 mRNA expression does not appear to be altered by feeding status. GnRH mRNAs do not seem to regulate food intake peripherally through the gut based on our preliminary findings. Our preliminary results suggest that the GnRH system could play a central role in food intake regulation of winter flounder.
Collapse
Affiliation(s)
- Sarah M Tuziak
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B-3X9
| | | |
Collapse
|
27
|
Zhao Y, Lin MCA, Farajzadeh M, Wayne NL. Early development of the gonadotropin-releasing hormone neuronal network in transgenic zebrafish. Front Endocrinol (Lausanne) 2013; 4:107. [PMID: 24009601 PMCID: PMC3757539 DOI: 10.3389/fendo.2013.00107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/07/2013] [Indexed: 12/26/2022] Open
Abstract
Understanding development of gonadotropin-releasing hormone (GnRH) neuronal circuits is fundamental to our understanding of reproduction, but not yet well understood. Most studies have been focused on GnRH neurons located in the hypothalamus and preoptic area (POA), which directly regulate the pituitary-gonadal axis. In zebrafish (Danio rerio), two forms of GnRH have been identified: GnRH2 and GnRH3. GnRH3 neurons in this species plays two roles: hypophysiotropic and neuromodulatory, depending on their location. GnRH3 neurons in the ventral telencephalon, POA, and hypothalamus control pituitary-gonadal function; in other areas (e.g., terminal nerve), they are neuromodulatory and without direct action on reproduction. To investigate the biology of GnRH neurons, a stable line of transgenic zebrafish was generated in which the GnRH3 promoter drives expression of a bright variant of green fluorescent protein (Emerald GFP, or EMD). This provides unprecedented sensitivity in detecting and imaging GnRH3 neurons during early embryogenesis in the transparent embryo. Using timelapse confocal imaging to monitor the time course of GnRH3:EMD expression in the live embryo, we describe the emergence and development of GnRH3 neurons in the olfactory region, hypothalamus, POA, and trigeminal ganglion. By 50 h post fertilization, these diverse groups of GnRH3 neurons project broadly in the central and peripheral nervous systems and make anatomical connections with each other. Immunohistochemistry of synaptic vesicle protein 2 (a marker of synaptic transmission) in this transgenic model suggests synaptic formation is occurring during early development of the GnRH3 neural network. Electrophysiology reveals early emergence of responsiveness to the stimulatory effects of kisspeptin in terminal nerve GnRH3 neurons. Overall, our findings reveal that the GnRH3 neuronal system is comprised of multiple populations of neurons as a complicated network.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Meng-Chin A. Lin
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Farajzadeh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- *Correspondence: Nancy L. Wayne, Department of Physiology, Center for Health Sciences, David Geffen School of Medicine, University of California Los Angeles, Room 53-231, 10833 Le Conte Avenue, Los Angeles, CA 90095-1751, USA e-mail:
| |
Collapse
|
28
|
Avella MA, Place A, Du SJ, Williams E, Silvi S, Zohar Y, Carnevali O. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS One 2012; 7:e45572. [PMID: 23029107 PMCID: PMC3447769 DOI: 10.1371/journal.pone.0045572] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/22/2012] [Indexed: 01/12/2023] Open
Abstract
Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application.
Collapse
Affiliation(s)
- Matteo A. Avella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Allen Place
- Institute of Marine and Environmental Technology, University of Maryland, Center of Environmental Sciences, Baltimore, Maryland, United States of America
- * E-mail: (OC); (AP); (YZ)
| | - Shao-Jun Du
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ernest Williams
- Institute of Marine and Environmental Technology, University of Maryland, Center of Environmental Sciences, Baltimore, Maryland, United States of America
| | - Stefania Silvi
- School of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Yonathan Zohar
- Institute of Marine and Environmental Technology & Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail: (OC); (AP); (YZ)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- * E-mail: (OC); (AP); (YZ)
| |
Collapse
|
29
|
Khalaf A, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology 2012; 33:280-9. [DOI: 10.1016/j.neuro.2012.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/19/2012] [Accepted: 02/02/2012] [Indexed: 01/19/2023]
|
30
|
Bhattacharya P, Yan YL, Postlethwait J, Rubin DA. Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 2011; 211:187-200. [PMID: 21880859 PMCID: PMC3192934 DOI: 10.1530/joe-10-0439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, parathyroid hormone (PTH), secreted by parathyroid glands, increases calcium levels in the blood from reservoirs in bone. While mammals have two PTH receptor genes, PTH1R and PTH2R, zebrafish has three receptors, pth1r, pth2r, and pth3r. PTH can activate all three zebrafish Pthrs while PTH2 (alias tuberoinfundibular peptide 39, TIP39) preferentially activates zebrafish and mammalian PTH2Rs. We know little about the roles of the PTH2/PTH2R system in the development of any animal. To determine the roles of PTH2 and PTH2R during vertebrate development, we evaluated their expression patterns in developing zebrafish, observed their phylogenetic and conserved synteny relationships with humans, and described the genomic organization of pth2, pth2r, and pth2r splice variants. Expression studies showed that pth2 is expressed in cells adjacent to the ventral part of the posterior tuberculum in the diencephalon, whereas pth2r is robustly expressed throughout the central nervous system. Otic vesicles express both pth2 and pth2r, but heart expresses only pth2. Analysis of mutants showed that hedgehog (Hh) signaling regulates the expression of pth2 transcripts more than that of nearby gnrh2-expressing cells. Genomic analysis showed that a lizard, chicken, and zebra finch lack a PTH2 gene, which is associated with an inversion breakpoint. Likewise, chickens lack PTH2R, while humans lack PTH3R, a case of reciprocally missing ohnologs (paralogs derived from a genome duplication). The considerable evolutionary conservation in genomic structure, synteny relationships, and expression of zebrafish pth2 and pth2r provides a foundation for exploring the endocrine roles of this system in developing vertebrate embryos.
Collapse
Affiliation(s)
| | - Yi Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - David A. Rubin
- Department of Biological Sciences, Illinois State University, Normal, IL 61701
- Author for correspondence and reprint requests: Fax: (309) 438-3722 Ph: (309) 438-7965
| |
Collapse
|
31
|
Hildahl J, Sandvik GK, Edvardsen RB, Fagernes C, Norberg B, Haug TM, Weltzien FA. Identification and gene expression analysis of three GnRH genes in female Atlantic cod during puberty provides insight into GnRH variant gene loss in fish. Gen Comp Endocrinol 2011; 172:458-67. [PMID: 21521645 DOI: 10.1016/j.ygcen.2011.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is a key regulator of sexual development and reproduction in vertebrates. Fish have either two or three pre-pro-GnRH genes, encoding structurally distinct peptides. We identified three pre-pro-GnRH genes in Atlantic cod (Gadus morhua, gmGnRH) using RT-PCR, RACE-PCR and BAC DNA library clone sequencing based on synteny searching. Gene identity was confirmed by sequence alignment and subsequent phylogenetic analysis. The expression of these genes was measured by quantitative PCR in the brain and pituitary of female cod throughout their reproductive cycle and in peripheral tissues. All three gmGnRH genes have highly conserved deduced decapeptide sequences, but sequence and phylogenetic data for gmGnRH1 suggest that this is a pseudogene. gmGnRH1 shares low identity with all fish GnRH variants and grouped with the GnRH3 clade. Although gmGnRH1 is a putative pseudogene, it is transcribed in multiple tissues but at low levels in the brain, indicating the loss of conserved hypophysiotrophic function. Phylogenetic analysis reveals that gmGnRH2 and gmGnRH3 variants are located in variant-specific clades. Both gmGnRH2 and gmGnRH3 transcripts are most abundant in the brain, with lower expression in pituitaries and ovaries. Brain gmGnRH3 gene expression increases in spawning fish and is expressed in the pituitary during puberty. Brain gmGnRH2 transcripts are highly expressed relative to gmGnRH3 before and during spawning. Sequence and expression data suggest that gmGnRH1 is a pseudogene and that gmGnRH3 is likely the hypophysiotrophic form of GnRH in Atlantic cod.
Collapse
Affiliation(s)
- Jon Hildahl
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tostivint H. Evolution of the gonadotropin-releasing hormone (GnRH) gene family in relation to vertebrate tetraploidizations. Gen Comp Endocrinol 2011; 170:575-81. [PMID: 21118690 DOI: 10.1016/j.ygcen.2010.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/08/2010] [Accepted: 11/18/2010] [Indexed: 11/23/2022]
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Vertebrates possess multiple GnRH isoforms that are classified into three main groups, namely GnRH1, GnRH2 and GnRH3. In the present study, we show that the chromosomal organization of the three GnRH loci is very well conserved among gnathostome species. We analyzed genes belonging to several other multigenic families that are present in the vicinity of GnRH genes. Five of them were seen to occur in four chromosomal regions that clearly form a paralogon. Moreover, we show that the homologous regions in the amphioxus genome are present on a single locus. Taken together, these observations indicate that GnRH1, GnRH2 and GnRH3 genes represent three paralogous genes that resulted from the two rounds of tetraploidization that took place early in vertebrate evolution. They confirm that the GnRH3 gene which is currently known only in teleost has most likely been lost in the tetrapod lineage. Finally, they suggest the existence of a fourth GnRH gene, named GnRH4. Whether the GnRH4 gene still exists in extant vertebrates is currently unknown. A search for this putative gene would be particularly useful in basal groups such as agnathans and cartilaginous fish.
Collapse
Affiliation(s)
- Hervé Tostivint
- UMR 7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| |
Collapse
|
33
|
Ohkubo M, Aranishi F, Shimizu A. Molecular cloning and brain distribution of three types of gonadotropin-releasing hormone from mummichog Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2010; 76:379-394. [PMID: 20738714 DOI: 10.1111/j.1095-8649.2009.02509.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complementary DNAs encoding gonadotropin-releasing hormone (GnRH) precursors were cloned from the mummichog Fundulus heteroclitus brain, showing that this species has three GnRH forms, i.e. medaka Oryzias latipes GnRH (mdGnRH), chicken GnRH-II (cGnRH-II) and Atlantic salmon Salmo salar GnRH (sGnRH). The F. heteroclitus prepro GnRHs have common structural architectures of vertebrate GnRHs, consisting of the signal peptide, 10 amino acids of mature peptide, GKR sequence and GnRH-associated peptide (GAP). Phylogenetic analysis of fish prepro GnRHs showed that F. heteroclitus mdGnRH is a homologue of sbGnRHs and mdGnRHs of other acanthopterygian. Quantitative real-time PCR revealed that mdGnRH was abundantly expressed in the olfactory bulb and in olfactory lobe areas and is expressed in the pituitary. The cGnRH-II was mainly expressed in the midbrain and interbrain areas, and the sGnRH was expressed not only in the olfactory bulb but also in other regions of the brain. These results suggest that the mdGnRH is involved in the stimulation of gonadotrophs in the pituitary, whereas cGnRH-II and sGnRH are involved in neurotransmission and neuromodulation.
Collapse
Affiliation(s)
- M Ohkubo
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan
| | | | | |
Collapse
|
34
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
35
|
Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y, Gothilf Y. Cxcl12a-Cxcr4b signaling is important for proper development of the forebrain GnRH system in zebrafish. Gen Comp Endocrinol 2010; 165:262-8. [PMID: 19595689 DOI: 10.1016/j.ygcen.2009.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 06/22/2009] [Accepted: 07/03/2009] [Indexed: 01/09/2023]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons control pituitary gonadotropin secretion and gametogenesis. In the course of development, these neurons migrate from the olfactory placode to the hypothalamus. The precise molecular mechanism of this neuronal migration is unclear. Here, we investigated whether the chemokine receptor, Cxcr4b, and its cognate ligand, Cxcl12a, are required for proper migration of GnRH3 neurons in zebrafish. Deviated GnRH3 axonal projections and neuronal migration were detected in larvae that carry a homozygote cxcr4b mutation. Similarly, knockdown of Cxcr4b or Cxcl12a led to the appearance of abnormal GnRH3 axonal projections and cell migration, including absence of the characteristic lateral crossing of GnRH3 axons at the anterior commissure and optic chiasm. Double-labeling analysis has shown that cxcr4b and cxcl12a are expressed along the GnRH3 migration pathway (i.e. olfactory placode, terminal nerve and the optic chiasm). The results of this study suggest that the Cxcl12a-Cxcr4b ligand-receptor pair are involved in the migration of GnRH3 neurons in zebrafish, and are therefore crucial for the development of this system.
Collapse
Affiliation(s)
- Ori Palevitch
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Clelland E, Peng C. Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 2009; 312:42-52. [PMID: 19406202 DOI: 10.1016/j.mce.2009.04.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
Ovarian differentiation and the processes of follicle development, oocyte maturation and ovulation are complex events, requiring the coordinated action of regulatory molecules. In zebrafish, ovarian development is initiated at 10 days after hatching and fish become sexually mature at 3 months. Adult zebrafish have asynchronous ovaries, which contain follicles of all stages of development. Eggs are spawned daily under proper environmental conditions in a population of zebrafish, with individual females spawning irregularly every 4-7 days in mixed sex conditions. Maximal embryo viability is achieved when sexually isolated females are bred in 10-day intervals [Niimi, A.J., LaHam, Q.N., 1974. Influence of breeding time interval on egg number, mortality, and hatching of the zebra fish Brachydanio verio. Can. J. Zool. 52, 515-517]. Similar to other vertebrates, hormones from the hypothalamus-pituitary-gonadal axis play important roles in regulating follicle development. Follicle stimulating hormone (FSH) stimulates estradiol production, which in turn, promotes viteollogenesis. Luteinizing hormone (LH) stimulates the production of 17,20beta-dihydroxy-4-pregnen-3-one (17,20betaP) or maturation inducing hormone (MIH) which acts through membrane progestin receptors to activate maturation promoting factor, leading to oocyte maturation. Recent studies in zebrafish have also provided novel insights into the functions of ovary-derived growth factors in follicle development and oocyte maturation. The present review summarizes the current knowledge on how endocrine and paracrine factors regulate ovarian development in zebrafish. Special emphasis is placed on how follicle development and oocyte maturation in adult females is regulated by gonadotropins, ovarian steroids and growth factors produced by the ovary.
Collapse
Affiliation(s)
- Eric Clelland
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
38
|
Abraham E, Palevitch O, Gothilf Y, Zohar Y. The zebrafish as a model system for forebrain GnRH neuronal development. Gen Comp Endocrinol 2009; 164:151-60. [PMID: 19523393 DOI: 10.1016/j.ygcen.2009.01.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 01/18/2023]
Abstract
Development and function of the forebrain gonadotropin-releasing hormone (GnRH) neuronal system has long been the focus of study in various vertebrate species. This system is crucial for reproduction and an important model for studying tangential neuronal migration. In addition, the finding that multiple forms of GnRH exist in the CNS as well as in non-CNS tissues, coupled with the fact that GnRH fibers project to many CNS regions, implies that GnRH has a variety of functions in addition to its classic reproductive role. The study of the GnRH system and its functions is, however, limited by available model systems and methodologies. The transgenic (Tg) GnRH3:EGFP zebrafish line, in which GnRH3 neurons express EGFP, allows in vivo study of the GnRH3 system in the context of the entire animal. Coupling the use of this line with the attributes and molecular tools available in zebrafish has expanded our ability to study the forebrain GnRH system. Herein, we discuss the use of the Tg(GnRH3:EGFP) zebrafish line as a model for studying forebrain GnRH neurons, both in developing larvae and in sexually mature animals. We also discuss the potential use of this line to study regulation of GnRH3 system development.
Collapse
Affiliation(s)
- Eytan Abraham
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
39
|
A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PLoS One 2009; 4:e4980. [PMID: 19319195 PMCID: PMC2656619 DOI: 10.1371/journal.pone.0004980] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 02/20/2009] [Indexed: 11/25/2022] Open
Abstract
Although the human genome project has been completed for some time, the issue of the number of transcribed genes with identifiable biological functions remains unresolved. We used zebrafish as a model organism to study the functions of Ka/Ks-predicted novel human exons, which were identified from a comparative evolutionary genomics analysis. In this study, a novel gene, designated as puf-A, was cloned and functionally characterized, and its homologs in zebrafish, mouse, and human were identified as one of the three homolog clusters which were consisted of 14 related proteins with Puf repeats. Computer modeling of human Puf-A structure and a pull-down assay for interactions with RNA targets predicted that it was a RNA-binding protein. Specifically, Puf-A contained a special six Puf-repeat domain, which constituted a unique superhelix half doughnut-shaped Puf domain with a topology similar to, but different from the conventional eight-repeat Pumilio domain. Puf-A transcripts were uniformly distributed in early embryos, but became restricted primarily to eyes and ovaries at a later stage of development. In mice, puf-A expression was detected primarily in retinal ganglion and pigmented cells. Knockdown of puf-A in zebrafish embryos resulted in microphthalmia, a small head, and abnormal primordial germ-cell (PGC) migration. The latter was confirmed by microinjecting into embryos puf-A siRNA containing nanos 3′ UTR that expressed in PGC only. The importance of Puf-A in the maturation of germline stem cells was also implicated by its unique expression in the most primitive follicles (stage I) in adult ovaries, followed by a sharp decline of expression in later stages of folliculogenesis. Taken together, our study shows that puf-A plays an important role not only in eye development, but also in PGC migration and the specification of germ cell lineage. These studies represent an exemplary implementation of a unique platform to uncover unknown function(s) of human genes and their roles in development regulation.
Collapse
|
40
|
Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y, Gothilf Y. Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish. Dev Dyn 2009; 238:66-75. [DOI: 10.1002/dvdy.21823] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Okubo K, Nagahama Y. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol (Oxf) 2008; 193:3-15. [PMID: 18284378 DOI: 10.1111/j.1748-1716.2008.01832.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neuropeptide gonadotropin-releasing hormone (GnRH) has a central role in the neural control of vertebrate reproduction. This review describes an overview of what is currently known about GnRH in vertebrates in the context of its structural and functional evolution. A large body of evidence has demonstrated the existence of three paralogous genes for GnRH (GnRH1, GnRH2 and GnRH3) in the vertebrate lineage. They are most probably the products of whole-genome duplications that occurred early in vertebrate evolution. Although GnRH3 has been identified only in teleosts, comparative genomic analyses indicated that GnRH3 has not arisen from a teleost-specific genome duplication, but has been derived from an earlier genome duplication in an ancestral vertebrate, followed by its loss in the tetrapod lineage. A loss of other paralogous genes has also occurred independently in different vertebrate lineages, leading to species-specific differences in the organization of the GnRH system. In addition to the GnRH3 gene, the GnRH2 gene has been deleted or silenced in certain mammalian species, while some teleosts seem to have lost the GnRH1 or GnRH3 gene. The duplicated GnRH genes have undergone subfunctionalization during the evolution of vertebrates; GnRH1 has become the major stimulator of gonadotropins and probably other pituitary hormones as well, whereas GnRH2 and GnRH3 would have functioned as neuromodulators, affecting reproductive behaviour. Conversely, in cases where a paralogous gene for GnRH has been lost, one of the remaining paralogues appears to have adopted its role.
Collapse
Affiliation(s)
- K Okubo
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | | |
Collapse
|
42
|
Tello JA, Wu S, Rivier JE, Sherwood NM. Four functional GnRH receptors in zebrafish: analysis of structure, signaling, synteny and phylogeny. Integr Comp Biol 2008; 48:570-87. [DOI: 10.1093/icb/icn070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Abraham E, Palevitch O, Ijiri S, Du SJ, Gothilf Y, Zohar Y. Early development of forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of GnRH as an autocrine migration factor. J Neuroendocrinol 2008; 20:394-405. [PMID: 18208553 DOI: 10.1111/j.1365-2826.2008.01654.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Normal migration of the gonadotrophin-releasing hormone (GnRH) neurones during early development, from the olfactory region to the hypothalamus, is crucial for reproductive development in all vertebrates. The establishment of the GnRH system includes tangential migration of GnRH perikarya as well as extension of GnRH fibres to various areas of the central nervous system (CNS). The exact spatio-temporal nature of this process, as well as the factors governing it, are not fully understood. We studied the development of the GnRH system and the effects of GnRH knockdown using a newly developed GnRH3:EGFP transgenic zebrafish line. We found that enhanced green fluorescent protein is specifically and robustly expressed in GnRH3 neurones and fibres. GnRH3 fibres in zebrafish began to extend as early as 26 h post-fertilisation and by 4-5 days post-fertilisation had developed into an extensive network reaching the optic tract, telencephalon, hypothalamus, midbrain tegmentum and hindbrain. GnRH3 fibres also innervated the retina and projected into the trunk via the spinal cord. GnRH3 perikarya were observed migrating along their own fibres from the olfactory region to the preoptic area (POA) via the terminal nerve ganglion and the ventral telencephalon. GnRH3 cells were also observed in the trigeminal ganglion. The establishment of the GnRH3 fibre network was disrupted by morpholino-modified antisense oligonucleotides directed against GnRH3 causing abnormal fibre development and pathfinding, as well as anomalous GnRH3 perikarya localisation. These findings support the hypothesis that GnRH3 neurones migrate from the olfactory region to the POA and caudal hypothalamus. Novel data regarding the early development of the GnRH3 fibre network in the CNS and beyond are described. Moreover we show, in vivo, that GnRH3 is an important factor regulating GnRH3 fibre pathfinding and neurone localisation in an autocrine fashion.
Collapse
Affiliation(s)
- E Abraham
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
44
|
Guilgur LG, Ortí G, Strobl-Mazzulla PH, Fernandino JI, Miranda LA, Somoza GM. Characterization of the cDNAs encoding three GnRH forms in the pejerrey fish Odontesthes bonariensis (Atheriniformes) and the evolution of GnRH precursors. J Mol Evol 2007; 64:614-27. [PMID: 17557168 DOI: 10.1007/s00239-006-0125-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 02/12/2007] [Indexed: 01/11/2023]
Abstract
Most vertebrates express two gonadotropin releasing hormone (GnRH) variants in brain tissue but there is an increasing number of fish species for which a third GnRH form has been detected. We characterized the precursors (cDNAs) of all three forms expressed in the brain of the pejerrey (silverside) fish, Odontesthes bonariensis (Atheriniformes): type I (GnRH-I; 440 bp), type II (GnRH-II; 529 bp), and type III (GnRH-III; 515 bp). The expression of these GnRHs precursors was also observed in peripheral tissues related to reproduction (gonads), visual and chemical senses (eye and olfactory epithelium), and osmoregulation (gill), suggesting that in teleost fish and possibly other vertebrates GnRH mediates directly or indirectly many other functions besides reproduction. We also present a comprehensive phylogenetic analysis including representatives of all chordate GnRH precursors characterized to date that supports the idea of two main paralogous GnRH lineages with different function. A "forebrain lineage" separates evolutionarily from the "midbrain lineage" as a result of an ancient duplication (ca. 600 million years ago). A third, fish-only clade of GnRH genes seems to have originated before the divergence of fish and tetrapods but retained only in fish. Phylogenetic analyses of GnRH precursors (DNA and protein sequences) under different optimality criteria converge on this result. Although alternative scenarios could not be statistically rejected in this study due to the relatively short size of the analyzed molecules, this hypothesis also receives support from chromosomal studies of synteny around the GnRH genes in vertebrates.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús CONICET-UNSAM, C.C. 164 B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Palevitch O, Kight K, Abraham E, Wray S, Zohar Y, Gothilf Y. Ontogeny of the GnRH systems in zebrafish brain: in situ hybridization and promoter-reporter expression analyses in intact animals. Cell Tissue Res 2006; 327:313-22. [PMID: 17036230 DOI: 10.1007/s00441-006-0279-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The ontogeny of two gonadotropin-releasing-hormone (GnRH) systems, salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II), was investigated in zebrafish (Danio rerio). In situ hybridization (ISH) first detected sGnRH mRNA-expressing cells at 1 day post-fertilization (pf) anterior to the developing olfactory organs. Subsequently, cells were seen along the ventral olfactory organs and the olfactory bulbs, reaching the terminal nerve (TN) ganglion at 5-6 days pf. Some cells were detected passing posteriorly through the ventral telencephalon (10-25 days pf), and by 25-30 days pf, sGnRH cells were found in the hypothalamic/preoptic area. Continuous documentation in live zebrafish was achieved by a promoter-reporter expression system. The expression of enhanced green fluorescent protein (EGFP) driven by the sGnRH promoter allowed the earlier detection of cells and projections and the migration of sGnRH neurons. This expression system revealed that long leading processes, presumably axons, preceded the migration of the sGnRH neuron somata. cGnRH-II mRNA expressing cells were initially detected (1 day pf) by ISH analysis at lateral aspects of the midbrain and later on (starting at 5 days pf) at the midline of the midbrain tegmentum. Detection of red fluorescent protein (DsRed) driven by the cGnRH-II promoter confirmed the midbrain expression domain and identified specific hindbrain and forebrain cGnRH-II-cells that were not identified by ISH. The forebrain DsRed-expressing cells seemed to emerge from the same site as the sGnRH-EGFP-expressing cells, as revealed by co-injection of both constructs. These studies indicate that zebrafish TN and hypothalamic sGnRH cell populations share a common embryonic origin and migratory path, and that midbrain cGnRH-II cells originate within the midbrain.
Collapse
Affiliation(s)
- Ori Palevitch
- Department of Zoology, George S Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Wu S, Page L, Sherwood NM. A role for GnRH in early brain regionalization and eye development in zebrafish. Mol Cell Endocrinol 2006; 257-258:47-64. [PMID: 16934393 DOI: 10.1016/j.mce.2006.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 06/12/2006] [Accepted: 06/23/2006] [Indexed: 11/22/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a highly conserved peptide that is expressed early in brain development in vertebrates. In zebrafish, we detected GnRH mRNA within 2h post fertilization by RT-PCR. To determine if GnRH is involved in development, we used gene knockdown techniques to block translation of gnrh2 or gnrh3 mRNA after which the expression patterns for gene markers were examined at 24h post fertilization with in situ hybridization. First, loss of either GnRH2 or GnRH3 affected regionalization of the brain as shown by a change in expression of fgf8 or pax2.1 genes in the midbrain-hindbrain boundary or diencephalon-midbrain boundary. Second, lack of GnRH2 and/or GnRH3 altered gene markers expressed in the formation of the eye cup (pax2.1, pax6.1, mab21l2 and meis1.1) or eye stalk (fgf8 and pax2.1). Third, knockdown of GnRH2 affected the size and shape of the midbrain and expression of gene markers therein. Results from assays with the TUNEL method and caspase-3 and -9 activity showed the brain and eye changes were unlikely to result from secondary apoptotic cell death before 24h post fertilization. These experiments suggest that GnRH loss-of-function affects early brain and eye formation during development.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
47
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|