1
|
Chi J, Fan B, Li Y, Jiao Q, Li GY. Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases. Neural Regen Res 2025; 20:3370-3387. [PMID: 39851134 PMCID: PMC11974652 DOI: 10.4103/nrr.nrr-d-24-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/26/2025] Open
Abstract
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yulin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Weiss BE, Kraner SD, Artiushin IA, Norris CM. Elevated calcineurin activity in primary astrocytes leads to the dephosphorylation of connexin 43 in conjunction with increased membrane permeability. Neuroreport 2024; 35:673-678. [PMID: 38813906 PMCID: PMC11279532 DOI: 10.1097/wnr.0000000000002051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Blaine E. Weiss
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Susan D. Kraner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
4
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
5
|
Wang Z, Lei Z, Wang Q, Jiang Q, Zhang Z, Liu X, Xing B, Li S, Guo X, Liu Y, Li X, Qi Y, Shu K, Zhang H, Huang Y, Lei T. Connexin 36 Mediated Intercellular Endoplasmic Reticulum Stress Transmission Induces SSTA Resistance in Growth Hormone Pituitary Adenoma. Int J Biol Sci 2024; 20:801-817. [PMID: 38169563 PMCID: PMC10758099 DOI: 10.7150/ijbs.86736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quanji Wang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Zhang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojin Liu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biao Xing
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sihan Li
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Guo
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingbo Li
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Shu
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Lei
- Department of Neurosurgery, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
6
|
Chen S, Zhang T, Tappertzhofen S, Yang Y, Valov I. Electrochemical-Memristor-Based Artificial Neurons and Synapses-Fundamentals, Applications, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301924. [PMID: 37199224 DOI: 10.1002/adma.202301924] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Artificial neurons and synapses are considered essential for the progress of the future brain-inspired computing, based on beyond von Neumann architectures. Here, a discussion on the common electrochemical fundamentals of biological and artificial cells is provided, focusing on their similarities with the redox-based memristive devices. The driving forces behind the functionalities and the ways to control them by an electrochemical-materials approach are presented. Factors such as the chemical symmetry of the electrodes, doping of the solid electrolyte, concentration gradients, and excess surface energy are discussed as essential to understand, predict, and design artificial neurons and synapses. A variety of two- and three-terminal memristive devices and memristive architectures are presented and their application for solving various problems is shown. The work provides an overview of the current understandings on the complex processes of neural signal generation and transmission in both biological and artificial cells and presents the state-of-the-art applications, including signal transmission between biological and artificial cells. This example is showcasing the possibility for creating bioelectronic interfaces and integrating artificial circuits in biological systems. Prospectives and challenges of the modern technology toward low-power, high-information-density circuits are highlighted.
Collapse
Affiliation(s)
- Shaochuan Chen
- Institute of Materials in Electrical Engineering 2 (IWE2), RWTH Aachen University, Sommerfeldstraße 24, 52074, Aachen, Germany
| | - Teng Zhang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Stefan Tappertzhofen
- Chair for Micro- and Nanoelectronics, Department of Electrical Engineering and Information Technology, TU Dortmund University, Martin-Schmeisser-Weg 4-6, D-44227, Dortmund, Germany
| | - Yuchao Yang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing, 100871, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
- Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, 102206, China
| | - Ilia Valov
- Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute of Electrochemistry and Energy Systems "Acad. E. Budewski", Bulgarian Academy of Sciences, Acad. G. Bonchev 10, 1113, Sofia, Bulgaria
| |
Collapse
|
7
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
8
|
Cheung G, Chever O, Rollenhagen A, Quenech'du N, Ezan P, Lübke JHR, Rouach N. Astroglial Connexin 43 Regulates Synaptic Vesicle Release at Hippocampal Synapses. Cells 2023; 12:cells12081133. [PMID: 37190042 DOI: 10.3390/cells12081133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Connexin 43, an astroglial gap junction protein, is enriched in perisynaptic astroglial processes and plays major roles in synaptic transmission. We have previously found that astroglial Cx43 controls synaptic glutamate levels and allows for activity-dependent glutamine release to sustain physiological synaptic transmissions and cognitiogns. However, whether Cx43 is important for the release of synaptic vesicles, which is a critical component of synaptic efficacy, remains unanswered. Here, using transgenic mice with a glial conditional knockout of Cx43 (Cx43-/-), we investigate whether and how astrocytes regulate the release of synaptic vesicles from hippocampal synapses. We report that CA1 pyramidal neurons and their synapses develop normally in the absence of astroglial Cx43. However, a significant impairment in synaptic vesicle distribution and release dynamics were observed. In particular, the FM1-43 assays performed using two-photon live imaging and combined with multi-electrode array stimulation in acute hippocampal slices, revealed a slower rate of synaptic vesicle release in Cx43-/- mice. Furthermore, paired-pulse recordings showed that synaptic vesicle release probability was also reduced and is dependent on glutamine supply via Cx43 hemichannel (HC). Taken together, we have uncovered a role for Cx43 in regulating presynaptic functions by controlling the rate and probability of synaptic vesicle release. Our findings further highlight the significance of astroglial Cx43 in synaptic transmission and efficacy.
Collapse
Affiliation(s)
- Giselle Cheung
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France
| | - Astrid Rollenhagen
- Institute for Neuroscience and Medicine INM-10, Research Center Jülich, 52428 Jülich, Germany
- Jülich-Aachen Research Alliance Translational Brain Medicine, 52056 Aachen, Germany
| | - Nicole Quenech'du
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France
| | - Joachim H R Lübke
- Institute for Neuroscience and Medicine INM-10, Research Center Jülich, 52428 Jülich, Germany
- Jülich-Aachen Research Alliance Translational Brain Medicine, 52056 Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Rheinisch-Westfaelische Technische Hochschule Aachen University, 52056 Aachen, Germany
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France
| |
Collapse
|
9
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
10
|
Ogawa Y, Akamatsu R, Fuchizaki A, Yasui K, Saino O, Tanaka M, Kikuchi-Taura A, Kimura T, Taguchi A. Gap Junction-Mediated Transport of Metabolites Between Stem Cells and Vascular Endothelial Cells. Cell Transplant 2022; 31:9636897221136151. [PMID: 36401520 PMCID: PMC9679345 DOI: 10.1177/09636897221136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously demonstrated that small molecular transfer, such as glucose, between hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs) and vascular endothelial cells via gap junctions constitutes an important mechanism of stem cell therapy. Cell metabolites are high-potential small-molecule candidates that can be transferred to small molecules between stem cells and vascular endothelial cells. Here, we investigated the differences in metabolite levels between stem cells (HSCs and MSCs), vascular endothelial cells, and the levels of circulating non-hematopoietic white blood cells (WBCs). The results showed remarkable differences in metabolite concentrations between cells. Significantly higher concentrations of adenosine triphosphate (ATP), guanosine triphosphate (GTP), total adenylate or guanylate levels, glycolytic intermediates, and amino acids were found in HSCs compared with vascular endothelial cells. In contrast, there was no significant difference in the metabolism of MSCs and vascular endothelial cells. From the results of this study, it became clear that HSCs and MSCs differ in their metabolites. That is, metabolites that transfer between stem cells and vascular endothelial cells differ between HSCs and MSCs. HSCs may donate various metabolites, several glycolytic and tricarboxylic acid cycle metabolites, and amino acids to damaged vascular endothelial cells as energy sources and activate the energy metabolism of vascular endothelial cells. In contrast, MSCs and vascular endothelial cells regulate each other under normal conditions. As the existing MSCs cannot ameliorate the dysregulation during insult, exogenous MSCs administered by cell therapy may help restore normal metabolic function in the vascular endothelial cells by taking up excess energy sources from the lumens of blood vessels. Results of this study suggested that the appropriate timing of cell therapy is different between HSCs and MSCs.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rie Akamatsu
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Orie Saino
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akie Kikuchi-Taura
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | | | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan,Akihiko Taguchi, Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
11
|
Single-Cell RNA-Sequencing: Astrocyte and Microglial Heterogeneity in Health and Disease. Cells 2022; 11:cells11132021. [PMID: 35805105 PMCID: PMC9265979 DOI: 10.3390/cells11132021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Astrocytes and microglia are non-neuronal cells that maintain homeostasis within the central nervous system via their capacity to regulate neuronal transmission and prune synapses. Both astrocytes and microglia can undergo morphological and transcriptomic changes in response to infection with human immunodeficiency virus (HIV). While both astrocytes and microglia can be infected with HIV, HIV viral proteins in the local environment can interact with and activate these cells. Given that both astrocytes and microglia play critical roles in maintaining neuronal function, it will be critical to have an understanding of their heterogeneity and to identify genes and mechanisms that modulate their responses to HIV. Heterogeneity may include a depletion or increase in one or more astrocyte or microglial subtypes in different regions of the brain or spine as well as the gain or loss of a specific function. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool that can be used to characterise these changes within a given population. The use of this method facilitates the identification of subtypes and changes in cellular transcriptomes that develop in response to activation and various disease processes. In this review, we will examine recent studies that have used scRNA-seq to explore astrocyte and microglial heterogeneity in neurodegenerative diseases including Alzheimer’s disease and amyotrophic lateral sclerosis as well as in response to HIV infection. A careful review of these studies will expand our current understanding of cellular heterogeneity at homeostasis and in response to specific disease states.
Collapse
|
12
|
Kirichenko EY, Skatchkov SN, Ermakov AM. Structure and Functions of Gap Junctions and Their Constituent Connexins in the Mammalian CNS. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2021; 15:107-119. [PMID: 34512926 PMCID: PMC8432592 DOI: 10.1134/s1990747821020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous data obtained in the last 20 years indicate that all parts of the mature central nervous system, from the retina and olfactory bulb to the spinal cord and brain, contain cells connected by gap junctions (GJs). The morphological basis of the GJs is a group of joined membrane hemichannels called connexons, the subunit of each connexon is the protein connexin. In the central nervous system, connexins show specificity and certain types of them are expressed either in neurons or in glial cells. Connexins and GJs of neurons, combining certain types of inhibitory hippocampal and neocortical neuronal ensembles, provide synchronization of local impulse and rhythmic activity, thalamocortical conduction, control of excitatory connections, which reflects their important role in the processes of perception, concentration of attention and consolidation of memory, both on the cellular and at the system level. Connexins of glial cells are ubiquitously expressed in the brain, and the GJs formed by them provide molecular signaling and metabolic cooperation and play a certain role in the processes of neuronal migration during brain development, myelination, tissue homeostasis, and apoptosis. At the same time, mutations in the genes of glial connexins, as well as a deficiency of these proteins, are associated with such diseases as congenital neuropathies, hearing loss, skin diseases, and brain tumors. This review summarizes the existing data of numerous molecular, electrophysiological, pharmacological, and morphological studies aimed at progress in the study of the physiological and pathophysiological significance of glial and neuronal connexins and GJs for the central nervous system.
Collapse
Affiliation(s)
- E Yu Kirichenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090 Russia
| | - S N Skatchkov
- Department of Biochemistry, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA.,Department of Physiology, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA
| | - A M Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, 344003 Russia
| |
Collapse
|
13
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
14
|
Zandi F, Khalaj V, Goshadrou F, Meyfour A, Gholami A, Enayati S, Mehranfar M, Rahmati S, Kheiri EV, Badie HG, Vaziri B. Rabies virus matrix protein targets host actin cytoskeleton: a protein-protein interaction analysis. Pathog Dis 2020; 79:6027507. [PMID: 33289839 DOI: 10.1093/femspd/ftaa075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Multifunctional matrix protein (M) of rabies virus (RABV) plays essential roles in the pathogenesis of rabies infection. Identification of M protein interacting partners in target hosts could help to elucidate the biological pathways and molecular mechanisms involved in the pathogenesis of this virus. In this study, two-dimensional Far-western blotting (2D-Far-WB) technique was applied to find possible matrix protein partners in the rat brainstem. Recombinant RABV M was expressed in Pichia pastoris and was partially purified. Subsequently, 2D-Far-WB-determined six rat brainstem proteins interacted with recombinant M proteins that were identified by mass spectrometry. Functional annotation by gene ontology analysis determined these proteins were involved in the regulation of synaptic transmission processes, metabolic process and cell morphogenesis-cytoskeleton organization. The interaction of viral M protein with selected host proteins in mouse Neuro-2a cells infected with RABV was verified by super-resolution confocal microscopy. Molecular docking simulations also demonstrated the formation of RABV M complexes. However, further confirmation with co-immunoprecipitation was only successful for M-actin cytoplasmic 1 interaction. Our study revealed actin cytoplasmic 1 as a binding partner of M protein, which might have important role(s) in rabies pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, 16635-148, Iran
| | - Alireza Gholami
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Somayeh Enayati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahsa Mehranfar
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | | | - Hamid Gholamipour Badie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
15
|
Perioperative Dexmedetomidine attenuates brain ischemia reperfusion injury possibly via up-regulation of astrocyte Connexin 43. BMC Anesthesiol 2020; 20:299. [PMID: 33287729 PMCID: PMC7722427 DOI: 10.1186/s12871-020-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Astrocyte Connexin 43 (Cx43) is essential for the trophic and protective support of neurons during brain ischemia reperfusion (I/R) injury. It is believed that dexmedetomidine participates in Cx43-mediated effects. However, its mechanisms remained unclear. This study aims to address the relationship and regulation among them. METHODS Adult male Sprague-Dawley rats were allocated to the 90-min right middle cerebral arterial occlusion with or without dexmedetomidine pretreatment (5 μg/kg). Neurological functions were evaluated and brain lesions, as well as inflammatory factors (IL-1β, IL-6, TNF-α), were assessed. Ischemic penumbral cortex was harvested to determine the expression of astrocyte Cx43. Primary astrocytes were cultured to evaluate the effect of dexmedetomidine on Cx43 after oxygen-glucose deprivation. RESULTS Dexmedetomidine pretreatment attenuated neurological injury, brain lesions and expression of inflammatory factors (IL-1β, IL-6, TNF-α) after brain ischemia (P < 0.05). Astrocyte Cx43 was down-regulated by brain I/R injury, both in vivo and in vitro, which were reversed by dexmedetomidine (P < 0.05). This effect was mediated by the phosphorylation of Akt and GSK-3β. Further studies with LY294002 (PI3K inhibitor) or SB216763 (GSK-3β inhibitor) confirmed the effect of dexmedetomidine on astrocyte Cx43. CONCLUSIONS Perioperative dexmedetomidine administration attenuates neurological injury after brain I/R injury, possibly through up-regulation of astrocyte Cx43. Activation of PI3K-Akt-GSK-3β pathway might contribute to this protective effect.
Collapse
|
16
|
Li Q, Ma TL, Qiu YQ, Cui WQ, Chen T, Zhang WW, Wang J, Mao-Ying QL, Mi WL, Wang YQ, Chu YX. Connexin 36 Mediates Orofacial Pain Hypersensitivity Through GluK2 and TRPA1. Neurosci Bull 2020; 36:1484-1499. [PMID: 33067780 PMCID: PMC7719140 DOI: 10.1007/s12264-020-00594-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Trigeminal neuralgia is a debilitating condition, and the pain easily spreads to other parts of the face. Here, we established a mouse model of partial transection of the infraorbital nerve (pT-ION) and found that the Connexin 36 (Cx36) inhibitor mefloquine caused greater alleviation of pT-ION-induced cold allodynia compared to the reduction of mechanical allodynia. Mefloquine reversed the pT-ION-induced upregulation of Cx36, glutamate receptor ionotropic kainate 2 (GluK2), transient receptor potential ankyrin 1 (TRPA1), and phosphorylated extracellular signal regulated kinase (p-ERK) in the trigeminal ganglion. Cold allodynia but not mechanical allodynia induced by pT-ION or by virus-mediated overexpression of Cx36 in the trigeminal ganglion was reversed by the GluK2 antagonist NS102, and knocking down Cx36 expression in Nav1.8-expressing nociceptors by injecting virus into the orofacial skin area of Nav1.8-Cre mice attenuated cold allodynia but not mechanical allodynia. In conclusion, we show that Cx36 contributes greatly to the development of orofacial pain hypersensitivity through GluK2, TRPA1, and p-ERK signaling.
Collapse
Affiliation(s)
- Qian Li
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Tian-Le Ma
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - You-Qi Qiu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Qiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- Department of Pain Management, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250000, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Wen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Jing Wang
- Department of Nephropathy, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen, 518001, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
17
|
Mitroshina EV, Krivonosov MI, Burmistrov DE, Savyuk MO, Mishchenko TA, Ivanchenko MV, Vedunova MV. Signatures of the Consolidated Response of Astrocytes to Ischemic Factors In Vitro. Int J Mol Sci 2020; 21:E7952. [PMID: 33114758 PMCID: PMC7672566 DOI: 10.3390/ijms21217952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Whether and under what conditions astrocytes can mount a collective network response has recently become one of the central questions in neurobiology. Here, we address this problem, investigating astrocytic reactions to different biochemical stimuli and ischemic-like conditions in vitro. Identifying an emergent astrocytic network is based on a novel mathematical approach that extracts calcium activity from time-lapse fluorescence imaging and estimates the connectivity of astrocytes. The developed algorithm represents the astrocytic network as an oriented graph in which the nodes correspond to separate astrocytes, and the edges indicate high dynamical correlations between astrocytic events. We demonstrate that ischemic-like conditions decrease network connectivity in primary cultures in vitro, although calcium events persist. Importantly, we found that stimulation under normal conditions with 10 µM ATP increases the number of long-range connections and the degree of corresponding correlations in calcium activity, apart from the frequency of calcium events. This result indicates that astrocytes can form a large functional network in response to certain stimuli. In the post-ischemic interval, the response to ATP stimulation is not manifested, which suggests a deep lesion in functional astrocytic networks. The blockade of Connexin 43 during ischemic modeling preserves the connectivity of astrocytes in the post-hypoxic period.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (D.E.B.); (M.O.S.); (T.A.M.)
| | - Mikhail I. Krivonosov
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.I.K.); (M.V.I.)
| | - Dmitriy E. Burmistrov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (D.E.B.); (M.O.S.); (T.A.M.)
| | - Maria O. Savyuk
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (D.E.B.); (M.O.S.); (T.A.M.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (D.E.B.); (M.O.S.); (T.A.M.)
| | - Mikhail V. Ivanchenko
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.I.K.); (M.V.I.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (D.E.B.); (M.O.S.); (T.A.M.)
| |
Collapse
|
18
|
Urquiza J, Cevallos C, Elizalde MM, Delpino MV, Quarleri J. Priming Astrocytes With HIV-Induced Reactive Oxygen Species Enhances Their Trypanosoma cruzi Infection. Front Microbiol 2020; 11:563320. [PMID: 33193149 PMCID: PMC7604310 DOI: 10.3389/fmicb.2020.563320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Trypanosoma cruzi is an intracellular protozoa and etiological agent that causes Chagas disease. Its presence among the immunocompromised HIV-infected individuals is relevant worldwide because of its impact on the central nervous system (CNS) causing severe meningoencephalitis. The HIV infection of astrocytes - the most abundant cells in the brain, where the parasite can also be hosted - being able to modify reactive oxygen species (ROS) could influence the parasite growth. In such interaction, extracellular vesicles (EVs) shed from trypomastigotes may alter the surrounding environment including its pro-oxidant status. Methods: We evaluated the interplay between both pathogens in human astrocytes and its consequences on the host cell pro-oxidant condition self-propitiated by the parasite - using its EVs - or by HIV infection. For this goal, we challenged cultured human primary astrocytes with both pathogens and the efficiency of infection and multiplication were measured by microscopy and flow cytometry and parasite DNA quantification. Mitochondrial and cellular ROS levels were measured by flow cytometry in the presence or not of scavengers with a concomitant evaluation of the cellular apoptosis level. Results: We observed that increased mitochondrial and cellular ROS production boosted significantly T. cruzi infection and multiplication in astrocytes. Such oxidative condition was promoted by free trypomastigotes-derived EVs as well as by HIV infection. Conclusions: The pathogenesis of the HIV-T. cruzi coinfection in astrocytes leads to an oxidative misbalance as a key mechanism, which exacerbates ROS generation and promotes positive feedback to parasite growth in the CNS.
Collapse
Affiliation(s)
- Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M. Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease. Front Neurosci 2020; 14:582934. [PMID: 33117125 PMCID: PMC7575794 DOI: 10.3389/fnins.2020.582934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Glial gap junction proteins, called connexins (Cxs), form gap junctions in the central nervous system (CNS) to allow the bidirectional cytosolic exchange of molecules between adjacent cells. Their involvement in inheritable diseases and the use of experimental animal models that closely mimic such diseases revealed the critical role of glial GJs in myelination and homeostasis. Cxs are also implicated in acquired demyelinating disorders, such as Multiple Sclerosis (MS) and Alzheimer's disease (AD). Animal and human studies have revealed a role of the astrocytic Cx43 in the progression of AD but the role of Cx47, which is the main partner of Cx43 in the astrocyte-oligodendrocyte GJs is still unknown. The aim of this study was to investigate the astrocytic connexins, Cx43 and Cx30 in relation to oligodendrocytic Cx47 in the cortex and thalamus of the 5XFAD mouse model of AD. The model was characterized by increased Aβ deposition, gliosis, neuronal loss, and memory impairment. Compared to wild-type mice, Cx43 and Cx30 showed increased immunoreactivity in older 5XFAD mice, reflecting astrogliosis, while Cx47 immunoreactivity was reduced. Moreover, Cx47 GJ plaques showed reduced colocalization with Cx43 plaques. Oligodendrocyte precursor cells (OPCs) and mature oligodendrocyte populations were also depleted, and myelin deficits were observed. Our findings indicate reduced astrocyte-oligodendrocyte gap junction connectivity and possibly a shift in Cx43 expression toward astrocyte-astrocyte gap junctions and/or hemichannels, that could impair oligodendrocyte homeostasis and myelination. However, other factors, such as Aβ toxicity, could directly affect oligodendrocyte survival in AD. Our study provides evidence that Cxs might have implications in the progression of AD, although the role of oligodendrocyte Cxs in AD requires further investigation.
Collapse
Affiliation(s)
- Stella Angeli
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus
| | - Irene Sargiannidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Dementia and Cognitive Disorders Center, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Kleopas A. Kleopa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
20
|
Dilger N, Neehus AL, Grieger K, Hoffmann A, Menssen M, Ngezahayo A. Gap Junction Dependent Cell Communication Is Modulated During Transdifferentiation of Mesenchymal Stem/Stromal Cells Towards Neuron-Like Cells. Front Cell Dev Biol 2020; 8:869. [PMID: 32984345 PMCID: PMC7487424 DOI: 10.3389/fcell.2020.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
In vitro transdifferentiation of patient-derived mesenchymal stem/stromal cells (MSCs) into neurons is of special interest for treatment of neurodegenerative diseases. Although there are encouraging studies, little is known about physiological modulations during this transdifferentiation process. Here, we focus on the analysis of gap junction dependent cell-cell communication and the expression pattern of gap junction-building connexins during small molecule-induced neuronal transdifferentiation of human bone marrow-derived MSCs. During this process, the MSC markers CD73, CD90, CD105, and CD166 were downregulated while the neuronal marker Tuj1 was upregulated. Moreover, the differentiation protocol used in the present study changed the cellular morphology and physiology. The MSCs evolved from a fibroblastoid morphology towards a neuronal shape with round cell bodies and neurite-like processes. Moreover, depolarization evoked action potentials in the transdifferentiated cells. MSCs expressed mRNAs encoding Cx43 and Cx45 as well as trace levels of Cx26, Cx37- and Cx40 and allowed transfer of microinjected Lucifer yellow. The differentiation protocol increased levels of Cx26 (mRNA and protein) and decreased Cx43 (mRNA and protein) while reducing the dye transfer. Cx36 mRNA was nearly undetectable in all cells regardless of treatment. Treatment of the cells with the gap junction coupling inhibitor carbenoxolone (CBX) only modestly altered connexin mRNA levels and had little effect on neuronal differentiation. Our study indicates that the small molecule-based differentiation protocol generates immature neuron-like cells from MSCs. This might be potentially interesting for elucidating physiological modifications and mechanisms in MSCs during the initial steps of differentiation towards a neuronal lineage.
Collapse
Affiliation(s)
- Nadine Dilger
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Anna-Lena Neehus
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany.,Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Hanover, Germany
| | - Klaudia Grieger
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Andrea Hoffmann
- Graded Implants and Regenerative Strategies, Department of Orthopedic Surgery, Hannover Medical School, Hanover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hanover, Germany
| | - Max Menssen
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
21
|
Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ, Paul SM, Levine JD, Miaskowski C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 2020; 15:1744806919878088. [PMID: 31486345 PMCID: PMC6755139 DOI: 10.1177/1744806919878088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used
drugs to treat breast cancer, is peripheral neuropathy (paclitaxel-induced
peripheral neuropathy). Paclitaxel-induced peripheral neuropathy, which
persists into survivorship, has a negative impact on patient’s mood,
functional status, and quality of life. Currently, no interventions are
available to treat paclitaxel-induced peripheral neuropathy. A critical
barrier to the development of efficacious interventions is the lack of
understanding of the mechanisms that underlie paclitaxel-induced peripheral
neuropathy. While data from preclinical studies suggest that disrupting
cytoskeleton- and axon morphology-related processes are a potential
mechanism for paclitaxel-induced peripheral neuropathy, clinical evidence is
limited. The purpose of this study in breast cancer survivors was to
evaluate whether differential gene expression and co-expression patterns in
these pathways are associated with paclitaxel-induced peripheral
neuropathy. Methods Signaling pathways and gene co-expression modules associated with
cytoskeleton and axon morphology were identified between survivors who
received paclitaxel and did (n = 25) or did not (n = 25) develop
paclitaxel-induced peripheral neuropathy. Results Pathway impact analysis identified four significantly perturbed cytoskeleton-
and axon morphology-related signaling pathways. Weighted gene co-expression
network analysis identified three co-expression modules. One module was
associated with paclitaxel-induced peripheral neuropathy group membership.
Functional analysis found that this module was associated with four
signaling pathways and two ontology annotations related to cytoskeleton and
axon morphology. Conclusions This study, which is the first to apply systems biology approaches using
circulating whole blood RNA-seq data in a sample of breast cancer survivors
with and without chronic paclitaxel-induced peripheral neuropathy, provides
molecular evidence that cytoskeleton- and axon morphology-related mechanisms
identified in preclinical models of various types of neuropathic pain
including chemotherapy-induced peripheral neuropathy are found in breast
cancer survivors and suggests pathways and a module of genes for validation
and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Mazor
- School of Nursing, University of California, San Francisco, CA, USA
| | - Marilynn J Hammer
- Icahn School of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Oligodendroglial connexin 47 regulates neuroinflammation upon autoimmune demyelination in a novel mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2020; 117:2160-2169. [PMID: 31932428 DOI: 10.1073/pnas.1901294117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In multiple sclerosis plaques, oligodendroglial connexin (Cx) 47 constituting main gap junction channels with astroglial Cx43 is persistently lost. As mice with Cx47 single knockout exhibit no demyelination, the roles of Cx47 remain undefined. We aimed to clarify the effects of oligodendroglia-specific Cx47 inducible conditional knockout (icKO) on experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein peptide (MOG35-55) in PLP/CreERT;Cx47fl/fl mice at 14 d after tamoxifen injection. Cx47 icKO mice demonstrated exacerbation of acute and chronic relapsing EAE with more pronounced demyelination than Cx47 flox (fl)/fl littermates. CD3+ T cells more abundantly infiltrated the spinal cord in Cx47 icKO than in Cx47 fl/fl mice throughout the acute to chronic phases. CXCR3-CCR6+CD4+ and IL17+IFNγ-CD4+ helper T (Th) 17 cells isolated from spinal cord and brain tissues were significantly increased in Cx47 icKO mice compared with Cx47 fl/fl mice, while MOG35-55-specific proliferation and proinflammatory cytokine production of splenocytes were unaltered. Microarray analysis of isolated microglia revealed stronger microglial activation toward proinflammatory and injury-response phenotypes with increased expressions of chemokines that can attract Th17 cells, including Ccl2, Ccl3, Ccl4, Ccl7, and Ccl8, in Cx47 icKO mice compared with Cx47 fl/fl mice. In Cx47 icKO mice, NOS2+ and MHC class II+ microglia were more enriched immunohistochemically, and A1-specific astroglial gene expressions and astroglia immunostained for C3, a representative A1 astrocyte marker, were significantly increased at the acute phase, compared with Cx47 fl/fl mice. These findings suggest that oligodendroglia-specific Cx47 ablation induces severe inflammation upon autoimmune demyelination, underscoring a critical role for Cx47 in regulating neuroinflammation.
Collapse
|
24
|
Kuo C, Green CR, Rupenthal ID, Mugisho OO. Connexin43 hemichannel block protects against retinal pigment epithelial cell barrier breakdown. Acta Diabetol 2020; 57:13-22. [PMID: 31030263 DOI: 10.1007/s00592-019-01352-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
AIMS The retinal pigment epithelium (RPE) is an important component of the outer blood-retinal barrier (BRB) that separates the choroid from the rest of the retina. Loss of RPE-mediated BRB integrity is a key feature of diabetic macular oedema (DME), a chronic pathology resulting from diabetic retinopathy (DR). Recent studies have shown that connexin43 hemichannel opening mediates key inflammatory pathways in DR, though its effect on the barrier properties of RPE cells remains unknown. Therefore, RPE breakdown was induced by exposing a monolayer of ARPE-19 cells to high glucose (HG) and 10 ng/mL each of the pro-inflammatory cytokines IL-1β and TNF-α. The role of connexin43 hemichannels was assessed using a connexin43 hemichannel blocker, Peptide5. METHODS Transepithelial resistance (TEER) and FITC-dextran dye leak across the ARPE-19 monolayer were used to measure RPE layer permeability. Immunohistochemistry was used to assess changes in connexin43, collagen IV and ZO-1 expression. ATP and lactate dehydrogenase (LDH) release were measured using commercially available kits. RESULTS Connexin43 hemichannel block with Peptide5 prevented TEER reduction and FITC-dextran dye leak induced by a combination of HG and inflammatory cytokines. Peptide5 also blocked LDH and ATP release induced by the addition of HG and inflammatory cytokines. ZO-1 and connexin43 disruption and internalisation as well as upregulated secretion of collagen IV following HG and inflammatory cytokine exposure were also prevented. The addition of exogenous ATP into the culture medium was able to reverse Peptide5 protection against LDH release and change in connexin43 localisation, indicating that the initiating pathway in RPE disruption is connexin43 hemichannel-mediated ATP release. CONCLUSION These findings support the idea that connexin43 hemichannels may mediate RPE disruption (and its role within the BRB) that occurs in DME through an ATP release/inflammasome pathway activation dependent manner. Connexin43 hemichannels are therefore a potential therapeutic target for the treatment of DME.
Collapse
Affiliation(s)
- Charisse Kuo
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
25
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
27
|
Reeves C, Pradim-Jardim A, Sisodiya SM, Thom M, Liu JYW. Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathol Appl Neurobiol 2019; 45:609-627. [PMID: 30636077 PMCID: PMC6767497 DOI: 10.1111/nan.12539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Aims Understanding the spatiotemporal dynamics of reactive cell types following brain injury is important for future therapeutic interventions. We have previously used penetrating cortical injuries following intracranial recordings as a brain repair model to study scar‐forming nestin‐expressing cells. We now explore the relationship between nestin‐expressing cells, PDGFRβ+ pericytes and Olig2+ glia, including their proliferation and functional maturation. Methods In 32 cases, ranging from 3 to 461 days post injury (dpi), immunohistochemistry for PDGFRβ, nestin, GFAP, Olig2, MCM2, Aquaporin 4 (Aq4), Glutamine Synthetase (GS) and Connexin 43 (Cx43) was quantified for cell densities, labelling index (LI) and cellular co‐expression at the injury site compared to control regions. Results PDGFRβ labelling highlighted both pericytes and multipolar parenchymal cells. PDGFRβ LI and PDGFRβ+/MCM2+ cells significantly increased in injury Zones at 10–13 dpi with migration of pericytes away from vessels with increased co‐localization of PDGRFβ with nestin compared to control regions (P < 0.005). Olig2+/MCM2+ cell populations peaked at 13 dpi with significantly higher cell densities at injury sites than in control regions (P < 0.01) and decreasing with dpi (P < 0.05). Cx43 LI was reduced in acute injuries but increased with dpi (P < 0.05) showing significant cellular co‐localization with nestin and GFAP (P < 0.005 and P < 0.0001) but not PDGFRβ. Conclusions These findings indicate that PDGFRβ+ and Olig2+ cells contribute to the proliferative fraction following penetrating brain injuries, with evidence of pericyte migration. Dynamic changes in Cx43 in glial cell types with dpi suggest functional alterations during temporal stages of brain repair.
Collapse
Affiliation(s)
- C Reeves
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - A Pradim-Jardim
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, UNIFESP, Sao Paulo/SP, Brazil
| | - S M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Bucks, SL9 0RJ, UK
| | - M Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - J Y W Liu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London.,School of life Sciences, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
28
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
29
|
Ortiz-Escribano N, Szymanska KJ, Bol M, Vandenberghe L, Decrock E, Van Poucke M, Peelman L, Van den Abbeel E, Van Soom A, Leybaert L. Blocking connexin channels improves embryo development of vitrified bovine blastocysts. Biol Reprod 2018; 96:288-301. [PMID: 28203704 DOI: 10.1095/biolreprod.116.144121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Connexins (Cxs) are required for normal embryo development and implantation. They form gap junctions (GJs) connecting the cytoplasm of adjacent cells and hemichannels (HCs), which are normally closed but open in response to stress conditions. Excessive HC opening is detrimental for cell function and may lead to cell death. We found that hatching of in vitro-produced bovine embryos, matured in serum-containing conditions, was significantly improved when vitrification/warming was done in the presence of Gap26 that targets GJA1 (Cx43) and GJA4 (Cx37). Further work showed that HCs from blastocysts produced after oocyte maturation in the presence of serum were open shortly after vitrification/warming, and this was prevented by Gap26. Gap26, applied for the exposure times used, inhibited Cx43 and Cx37 HCs while it did not have an effect on GJs. Interestingly, Gap26 had no effect on blastocyst degeneration or cell death. We conclude that blocking HCs protects embryos during vitrification and warming by a functional effect not linked to cell death.
Collapse
Affiliation(s)
| | | | - Melissa Bol
- Physiology group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Lynn Vandenberghe
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Elke Decrock
- Physiology group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | | | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Physiology group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Function of Connexins in the Interaction between Glial and Vascular Cells in the Central Nervous System and Related Neurological Diseases. Neural Plast 2018; 2018:6323901. [PMID: 29983707 PMCID: PMC6015683 DOI: 10.1155/2018/6323901] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Neuronal signaling together with synapse activity in the central nervous system requires a precisely regulated microenvironment. Recently, the blood-brain barrier is considered as a “neuro-glia-vascular unit,” a structural and functional compound composed of capillary endothelial cells, glial cells, pericytes, and neurons, which plays a pivotal role in maintaining the balance of the microenvironment in and out of the brain. Tight junctions and adherens junctions, which function as barriers of the blood-brain barrier, are two well-known kinds in the endothelial cell junctions. In this review, we focus on the less-concerned contribution of gap junction proteins, connexins in blood-brain barrier integrity under physio-/pathology conditions. In the neuro-glia-vascular unit, connexins are expressed in the capillary endothelial cells and prominent in astrocyte endfeet around and associated with maturation and function of the blood-brain barrier through a unique signaling pathway and an interaction with tight junction proteins. Connexin hemichannels and connexin gap junction channels contribute to the physiological or pathological progress of the blood-brain barrier; in addition, the interaction with other cell-cell-adhesive proteins is also associated with the maintenance of the blood-brain barrier. Lastly, we explore the connexins and connexin channels involved in the blood-brain barrier in neurological diseases and any programme for drug discovery or delivery to target or avoid the blood-brain barrier.
Collapse
|
31
|
Sasaki T, Numano R, Yokota-Hashimoto H, Matsui S, Kimura N, Takeuchi H, Kitamura T. A central-acting connexin inhibitor, INI-0602, prevents high-fat diet-induced feeding pattern disturbances and obesity in mice. Mol Brain 2018; 11:28. [PMID: 29793524 PMCID: PMC5968494 DOI: 10.1186/s13041-018-0372-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
A high-fat diet (HFD) causes obesity by promoting excessive energy intake, and simultaneously, by disturbing the timing of energy intake. Restoring the feeding pattern is sufficient to prevent HFD-induced obesity in mice. However, the molecular mechanism(s) underlying HFD-induced feeding pattern disturbances remain elusive. Saturated fatty acids activate microglia and cause hypothalamic inflammation. Activated microglia cause neuroinflammation, which spreads via inflammatory cytokines and gap-junction hemichannels. However, the role of gap-junction hemichannels in HFD-induced obesity remains unaddressed. We used a novel, central-acting connexin inhibitor, INI-0602, which has high affinity for gap junction hemichannels and does not affect the induction of inflammatory cytokines. We analyzed ad libitum feeding behavior and locomotor activity in mice that were fed normal chow (NC), a HFD with elevated saturated fatty acids (SFAs), or a HFD with very high SFAs. We found that HFD feeding induced acute hyperphagia, mainly during the light cycle. Feeding pattern disturbances were more pronounced in mice that consumed the HFD with very high SFAs than in mice that consumed the HFD with elevated SFAs. When INI-0602 was administered before the HFD was introduced, it blocked the feeding pattern disturbance, but not locomotor activity disturbances; moreover, it prevented subsequent diet-induced obesity. However, when INI-0602 was administered after the HFD had disturbed the feeding pattern, it failed to restore the normal feeding pattern. Therefore, we propose that SFAs in HFDs played a major role in disrupting feeding patterns in mice. Moreover, the feeding pattern disturbance required the function of central, gap junction hemichannels at the initiation of a HFD. However, altering hemichannel function after the feeding pattern disturbance was established had no effect. Thus, preventing the occurrence of a feeding pattern disturbance by blocking the hemichannel pathway was associated with the prevention of the HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| | - Rika Numano
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan.,Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Naobumi Kimura
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| |
Collapse
|
32
|
Wu XL, Ma DM, Zhang W, Zhou JS, Huo YW, Lu M, Tang FR. Cx36 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Epilepsy Res 2018; 141:64-72. [PMID: 29476948 DOI: 10.1016/j.eplepsyres.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022]
Abstract
Gap junctions play an important role in the synchronization activity of coupled cells. Hippocampal inhibitory interneurons are involved in epileptogenesis and seizure activity, and express gap junction protein connexin (Cx) 36. Cx36 is also localized in the axons (mossy fibers) of granule cells in the dentate gyrus. While it has been documented that Cx36 is involved in epileptogenesis, there are still controversies regarding the expression levels of Cx36 at different developmental stages of human and animal models of epileptogenesis. In this study, the expression of Cx36 was investigated in the mouse hippocampus at 1 h, 4 h during pilocarpine-induced status epilepticus (PISE) and 1 week, 2 months after PISE. We found that Cx36 was down-regulated in neurons at different time points during and after PISE, whereas it was increased significantly in the stratum lucidum of CA3 area at 2 months after PISE. Double immunofluorescence indicated that Cx36 was localized in parvalbumin (PV) immunopositive interneuron in CA1 area and in mossy fibers and their terminals in the stratum lucidum of CA3 area. It suggests that decreased expression of Cx36 in interneurons may be related to less effective inhibitory control of excitatory activity of hippocampal principal neurons. However, the increased Cx36 immunopositive product in mossy fibers at the chronic stage after PISE may enhance the contacts between granule cells in the dentate gyrus and pyramidal neurons in CA3 area. The two different changes of Cx36 may be implicated in the epileptogenesis.
Collapse
Affiliation(s)
- X L Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - D M Ma
- Department of Thoracic Surgery, The Ninth Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, China
| | - W Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - J S Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Y W Huo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - M Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - F R Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower 138602, Singapore.
| |
Collapse
|
33
|
Janssens Y, Wynendaele E, Verbeke F, Debunne N, Gevaert B, Audenaert K, Van DeWiele C, De Spiegeleer B. Screening of quorum sensing peptides for biological effects in neuronal cells. Peptides 2018; 101:150-156. [PMID: 29360479 DOI: 10.1016/j.peptides.2018.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing peptides (QSP) are an important class of bacterial peptides which can have an effect on human host cells. These peptides are used by bacteria to communicate with each other. Some QSP are able to cross the blood-brain barrier and reach the brain parenchyma. However, nothing is known about the effects of these peptides in the brain. Therefore, 85 quorum sensing peptides were screened on six different neuronal cell lines using MTT toxicity, neurite differentiation, cytokine production and morphology as biological outcomes. This primary screening resulted in 22 peptides with effects observed on neuronal cell lines, indicating a possible role in the gut-brain axis. Four peptides (Q138, Q143, Q180 and Q212) showed induction of neurite outgrowth while two peptides (Q162 and Q208) inhibited NGF-induced neurite outgrowth in PC12 cells. Eight peptides (Q25, Q135, Q137, Q146, Q151, Q165, Q208 and Q298) induced neurite outgrowth in human SH-SY5Y neuroblastoma cells. Two peptides (Q13 and Q52) were toxic for SH-SY5Y cells and one (Q123) for BV-2 microglia cells based on the MTT assay. Six peptides had an effect on BV-2 microglia, Q180, Q184 and Q191 were able to induce IL-6 expression and Q164, Q192 and Q208 induced NO production. Finally, Q75 and Q147 treated C8D1A astrocytes demonstrated a higher fraction of round cells. Overall, these in vitro screening study results indicate for the first time possible effects of QSP on neuronal cells.
Collapse
Affiliation(s)
- Yorick Janssens
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Frederick Verbeke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Kurt Audenaert
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Christophe Van DeWiele
- Department of Radiology and Nuclear Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, De Pintelaan 185, Ghent B-9000, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
34
|
Malik S, Theis M, Eugenin EA. Connexin43 Containing Gap Junction Channels Facilitate HIV Bystander Toxicity: Implications in NeuroHIV. Front Mol Neurosci 2017; 10:404. [PMID: 29259541 PMCID: PMC5723329 DOI: 10.3389/fnmol.2017.00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection compromises the central nervous system (CNS) in a significant number of infected individuals, resulting in neurological dysfunction that ranges from minor cognitive deficits to frank dementia. While macrophages/microglia are the predominant CNS cells infected by HIV, our laboratory and others have shown that HIV-infected astrocytes, although present in relatively low numbers with minimal to undetectable viral replication, play key role in NeuroAIDS pathogenesis. Our laboratory has identified that HIV "hijacks" connexin (Cx) containing channels, such as gap junctions (GJs) and hemichannels (HCs), to spread toxicity and apoptosis to uninfected cells even in the absence of active viral replication. In this study, using a murine model with an astrocyte-directed deletion of Cx43 gene (hGFAP-cre Cx43fl/fl) and control Cx43fl/fl mice, we examined whether few HIV-infected human astrocytoma cells (U87-CD4-CCR5), microinjected into the mouse cortex, can spread toxicity and apoptosis through GJ-mediated mechanisms, into the mouse cells, which are resistant to HIV infection. In the control Cx43fl/fl mice, microinjection of HIV-infected U87-CD4-CCR5 cells led to apoptosis in 84.28 ± 6.38% of mouse brain cells around the site of microinjection, whereas hGFAP-cre Cx43fl/fl mice exhibited minimal apoptosis (2.78 ± 1.55%). However, simultaneous injection of GJ blocker, 18α-glycyrrhetinic acid, and Cx43 blocking peptide along with microinjection of HIV-infected cells prevented apoptosis in Cx43fl/fl mice, demonstrating the Cx43 is essential for HIV-induced bystander toxicity. In conclusion, our findings demonstrate that Cx43 expression, and formation of GJs is essential for bystander apoptosis during HIV infection. These findings reveal novel potential therapeutic targets to reduce astrocyte-mediated bystander toxicity in HIV-infected individuals because despite low to undetectable viral replication in the CNS, Cx channels hijacked by HIV amplify viral neuropathogenesis.
Collapse
Affiliation(s)
- Shaily Malik
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Martin Theis
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
35
|
Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Sci Rep 2017; 7:16660. [PMID: 29192225 PMCID: PMC5709493 DOI: 10.1038/s41598-017-16600-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Cell-to-cell communication is essen for the development of multicellular systems and is coordinated by soluble factors, exosomes, gap junction (GJ) channels, and the recently described tunneling nanotubes (TNTs). We and others have demonstrated that TNT-like structures are mostly present during pathogenic conditions, including HIV infection. However, the nature, function, and communication properties of TNTs are still poorly understood. In this manuscript, we demonstrate that TNTs induced by HIV infection have functional GJs at the ends of their membrane extensions and that TNTs mediate long-range GJ communication during HIV infection. Blocking or reducing GJ communication during HIV infection resulted in aberrant TNT cell-to-cell contact, compromising HIV spread and replication. Thus, TNTs and associated GJs are required for the efficient cell-to-cell communication and viral spread. Our data indicate that targeting TNTs/GJs may provide new therapeutic opportunities for the treatment of HIV.
Collapse
|
36
|
Mugisho OO, Green CR, Zhang J, Binz N, Acosta ML, Rakoczy E, Rupenthal ID. Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas. Int J Mol Sci 2017; 18:ijms18122567. [PMID: 29186067 PMCID: PMC5751170 DOI: 10.3390/ijms18122567] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1β and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| | - Nicolette Binz
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth 6009, Western Australia, Australia.
| | - Monica L Acosta
- School of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| | - Elizabeth Rakoczy
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth 6009, Western Australia, Australia.
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
37
|
Fiori MC, Krishnan S, Kjellgren A, Cuello LG, Altenberg GA. Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria. Molecules 2017; 22:molecules22122063. [PMID: 29186829 PMCID: PMC6149774 DOI: 10.3390/molecules22122063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46). Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Abbey Kjellgren
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
- Honors College, McClellan Hall, Box 41017, Texas Tech University, Lubbock, TX 79409-1017, USA.
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6551, USA.
| |
Collapse
|
38
|
Sarrouilhe D, Dejean C, Mesnil M. Connexin43- and Pannexin-Based Channels in Neuroinflammation and Cerebral Neuropathies. Front Mol Neurosci 2017; 10:320. [PMID: 29066951 PMCID: PMC5641369 DOI: 10.3389/fnmol.2017.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Connexins (Cx) are largely represented in the central nervous system (CNS) with 11 Cx isoforms forming intercellular channels. Moreover, in the CNS, Cx43 can form hemichannels (HCs) at non-junctional membrane as does the related channel-forming Pannexin1 (Panx1) and Panx2. Opening of Panx1 channels and Cx43 HCs appears to be involved in inflammation and has been documented in various CNS pathologies. Over recent years, evidence has accumulated supporting a link between inflammation and cerebral neuropathies (migraine, Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder, autism spectrum disorder (ASD), epilepsy, schizophrenia, bipolar disorder). Involvement of Panx channels and Cx43 HCs has been also proposed in pathophysiology of neurological diseases and psychiatric disorders. Other studies showed that following inflammatory injury of the CNS, Panx1 activators are released and prolonged opening of Panx1 channels triggers neuronal death. In neuropsychiatric diseases, comorbidities are frequently present and can aggravate the symptoms and make therapeutic management more complex. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving inflammatory pathways and Panx1 channels or Cx43 HCs. Thus, anti-inflammatory therapy opens perspectives of targets for new treatments and could have real potential in controlling a cerebral neuropathy and some of its comorbidities. The purpose of this mini review is to provide information of our knowledge on the link between Cx43- and Panx-based channels, inflammation and cerebral neuropathies.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Marc Mesnil
- STIM Laboratory, ERL 7368-CNRS, Université de Poitiers, Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
39
|
Castellano P, Prevedel L, Eugenin EA. HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci Rep 2017; 7:12866. [PMID: 28993666 PMCID: PMC5634422 DOI: 10.1038/s41598-017-12758-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
While HIV kills most of the cells it infects, a small number of infected cells survive and become latent viral reservoirs, posing a significant barrier to HIV eradication. However, the mechanism by which immune cells resist HIV-induced apoptosis is still incompletely understood. Here, we demonstrate that while acute HIV infection of human microglia/macrophages results in massive apoptosis, a small population of HIV-infected cells survive infection, silence viral replication, and can reactivate viral production upon specific treatments. We also found that HIV fusion inhibitors intended for use as antiretroviral therapies extended the survival of HIV-infected macrophages. Analysis of the pro- and anti-apoptotic pathways indicated no significant changes in Bcl-2, Mcl-1, Bak, Bax or caspase activation, suggesting that HIV blocks a very early step of apoptosis. Interestingly, Bim, a highly pro-apoptotic negative regulator of Bcl-2, was upregulated and recruited into the mitochondria in latently HIV-infected macrophages both in vitro and in vivo. Together, these results demonstrate that macrophages/microglia act as HIV reservoirs and utilize a novel mechanism to prevent HIV-induced apoptosis. Furthermore, they also suggest that Bim recruitment to mitochondria could be used as a biomarker of viral reservoirs in vivo.
Collapse
Affiliation(s)
- Paul Castellano
- Public Health Research Institute (PHRI), Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ, USA
| | - Lisa Prevedel
- Public Health Research Institute (PHRI), Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ, USA.
| |
Collapse
|
40
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
41
|
Malik S, Eugenin EA. Mechanisms of HIV Neuropathogenesis: Role of Cellular Communication Systems. Curr HIV Res 2017; 14:400-411. [PMID: 27009098 DOI: 10.2174/1570162x14666160324124558] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 03/22/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the major complications of Human Immunodeficiency Virus (HIV) infection is the development of HIV-Associated Neurocognitive Disorders (HANDs) in approximately 50-60% of HIV infected individuals. Despite undetectable viral loads in the periphery owing to anti-retroviral therapy, neuroinflammation and neurocognitive impairment are still prevalent in HIV infected individuals. Several studies indicate that the central nervous system (CNS) abnormalities observed in HIV infected individuals are not a direct effect of viral replication in the CNS, rather these neurological abnormalities are associated with amplification of HIV specific signals by unknown mechanisms. We propose that some of these mechanisms of damage amplification are mediated by gap junction channels, pannexin and connexin hemichannels, tunneling nanotubes and microvesicles/exosomes. OBJECTIVE Our laboratory and others have demonstrated that HIV infection targets cell to cell communication by altering all these communication systems resulting in enhanced bystander apoptosis of uninfected cells, inflammation and viral infection. Here we discuss the role of these communication systems in HIV neuropathogenesis. CONCLUSION In the current manuscript, we have described the mechanisms by which HIV "hijacks" these host cellular communication systems, leading to exacerbation of HIV neuropathogenesis, and to simultaneously promote the survival of HIV infected cells, resulting in the establishment of viral reservoirs.
Collapse
Affiliation(s)
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI) and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
42
|
Prevedel L, Morocho C, Bennett MVL, Eugenin EA. HIV-Associated Cardiovascular Disease: Role of Connexin 43. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1960-1970. [PMID: 28688235 DOI: 10.1016/j.ajpath.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022]
Abstract
Chronic HIV infection due to effective antiretroviral treatment has resulted in a broad range of clinical complications, including accelerated heart disease. Individuals with HIV infection have a 1.5 to 2 times higher incidence of cardiovascular diseases than their uninfected counterparts; however, the underlying mechanisms are poorly understood. To explore the link between HIV infection and cardiovascular diseases, we used postmortem human heart tissues obtained from HIV-infected and control uninfected individuals to examine connexin 43 (Cx43) expression and distribution and HIV-associated inflammation. Here, we demonstrate that Cx43 is dysregulated in the hearts of HIV-infected individuals. In all HIV heart samples analyzed, there were areas where Cx43 was overexpressed and found along the lateral membrane of the cardiomyocyte and in the intercalated disks. Areas of HIV tissue with anomalous Cx43 expression and localization also showed calcium overload, sarcofilamental atrophy, and accumulation of collagen. All these changes were independent of viral replication, CD4 counts, inflammation, and type of antiretroviral treatment. Overall, we propose that HIV infection increases Cx43 expression in heart, resulting in tissue damage that likely contributes to the high rates of cardiovascular disease in HIV-infected individuals.
Collapse
Affiliation(s)
- Lisa Prevedel
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Camilla Morocho
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey
| | - Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
43
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
44
|
Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:154-165. [PMID: 28559189 DOI: 10.1016/j.bbamem.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Connexin (Cx) and pannexin (Panx) containing channels - gap junctions (GJs) and hemichannels (HCs) - are present in virtually all cells and tissues. Currently, the role of these channels under physiological conditions is well defined. However, their role in the immune response and pathological conditions has only recently been explored. Data from several laboratories demonstrates that infectious agents, including HIV, have evolved to take advantage of GJs and HCs to improve viral/bacterial replication, enhance inflammation, and help spread toxicity into neighboring areas. In the current review, we discuss the role of Cx and Panx containing channels in immune activation and the pathogenesis of several infectious diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Andrea Barreto
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
45
|
Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca 2+ influx through cyclic nucleotide-gated channels. J Physiol 2017; 595:2497-2517. [PMID: 28075020 DOI: 10.1113/jp273150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Willem Bintig
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anne Klett
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Ina G Siller
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Babette Weksler
- Weill Medical College of Cornell University, New York, NY, USA
| | - Ignacio Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
46
|
Belousov AB, Fontes JD, Freitas-Andrade M, Naus CC. Gap junctions and hemichannels: communicating cell death in neurodevelopment and disease. BMC Cell Biol 2017; 18:4. [PMID: 28124625 PMCID: PMC5267333 DOI: 10.1186/s12860-016-0120-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gap junctions are unique membrane channels that play a significant role in intercellular communication in the developing and mature central nervous system (CNS). These channels are composed of connexin proteins that oligomerize into hexamers to form connexons or hemichannels. Many different connexins are expressed in the CNS, with some specificity with regard to the cell types in which distinct connexins are found, as well as the timepoints when they are expressed in the developing and mature CNS. Both the main neuronal Cx36 and glial Cx43 play critical roles in neurodevelopment. These connexins also mediate distinct aspects of the CNS response to pathological conditions. An imbalance in the expression, translation, trafficking and turnover of connexins, as well as mutations of connexins, can impact their function in the context of cell death in neurodevelopment and disease. With the ever-increasing understanding of connexins in the brain, therapeutic strategies could be developed to target these membrane channels in various neurological disorders.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Joseph D Fontes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, The University of Kansas, Kansas City, KS, 66160, USA
| | - Moises Freitas-Andrade
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
47
|
Badin AS, Fermani F, Greenfield SA. The Features and Functions of Neuronal Assemblies: Possible Dependency on Mechanisms beyond Synaptic Transmission. Front Neural Circuits 2017; 10:114. [PMID: 28119576 PMCID: PMC5223595 DOI: 10.3389/fncir.2016.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
"Neuronal assemblies" are defined here as coalitions within the brain of millions of neurons extending in space up to 1-2 mm, and lasting for hundreds of milliseconds: as such they could potentially link bottom-up, micro-scale with top-down, macro-scale events. The perspective first compares the features in vitro versus in vivo of this underappreciated "meso-scale" level of brain processing, secondly considers the various diverse functions in which assemblies may play a pivotal part, and thirdly analyses whether the surprisingly spatially extensive and prolonged temporal properties of assemblies can be described exclusively in terms of classic synaptic transmission or whether additional, different types of signaling systems are likely to operate. Based on our own voltage-sensitive dye imaging (VSDI) data acquired in vitro we show how restriction to only one signaling process, i.e., synaptic transmission, is unlikely to be adequate for modeling the full profile of assemblies. Based on observations from VSDI with its protracted spatio-temporal scales, we suggest that two other, distinct processes are likely to play a significant role in assembly dynamics: "volume" transmission (the passive diffusion of diverse bioactive transmitters, hormones, and modulators), as well as electrotonic spread via gap junctions. We hypothesize that a combination of all three processes has the greatest potential for deriving a realistic model of assemblies and hence elucidating the various complex brain functions that they may mediate.
Collapse
Affiliation(s)
- Antoine-Scott Badin
- Neuro-Bio Ltd., Culham Science CentreAbingdon, UK; Department of Physiology, Anatomy and Genetics, Mann Group, University of OxfordOxford, UK
| | | | | |
Collapse
|
48
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
49
|
Sica RE, Caccuri R, Quarracino C, Capani F. Are astrocytes executive cells within the central nervous system? ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:671-8. [DOI: 10.1590/0004-282x20160101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 11/22/2022]
Abstract
ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.
Collapse
|
50
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|