1
|
Ashrafi S, Wennrich JP, Becker Y, Maciá-Vicente JG, Brißke-Rode A, Daub M, Thünen T, Dababat AA, Finckh MR, Stadler M, Maier W. Polydomus karssenii gen. nov. sp. nov. is a dark septate endophyte with a bifunctional lifestyle parasitising eggs of plant parasitic cyst nematodes (Heterodera spp.). IMA Fungus 2023; 14:6. [PMID: 36998098 PMCID: PMC10064538 DOI: 10.1186/s43008-023-00113-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
In this study fungal strains were investigated, which had been isolated from eggs of the cereal cyst nematode Heterodera filipjevi, and roots of Microthlaspi perfoliatum (Brassicaceae). The morphology, the interaction with nematodes and plants and the phylogenetic relationships of these strains originating from a broad geographic range covering Western Europe to Asia Minor were studied. Phylogenetic analyses using five genomic loci including ITSrDNA, LSUrDNA, SSUrDNA, rpb2 and tef1-α were carried out. The strains were found to represent a distinct phylogenetic lineage most closely related to Equiseticola and Ophiosphaerella, and Polydomus karssenii (Phaeosphaeriaceae, Pleosporales) is introduced here as a new species representing a monotypic genus. The pathogenicity tests against nematode eggs fulfilled Koch's postulates using in vitro nematode bioassays and showed that the fungus could parasitise its original nematode host H. filipjevi as well as the sugar beet cyst nematode H. schachtii, and colonise cysts and eggs of its hosts by forming highly melanised moniliform hyphae. Light microscopic observations on fungus-root interactions in an axenic system revealed the capacity of the same fungal strain to colonise the roots of wheat and produce melanised hyphae and microsclerotia-like structure typical for dark septate endophytes. Confocal laser scanning microscopy further demonstrated that the fungus colonised the root cells by predominant intercellular growth of hyphae, and frequent formation of appressorium-like as well as penetration peg-like structures through internal cell walls surrounded by callosic papilla-like structures. Different strains of the new fungus produced a nearly identical set of secondary metabolites with various biological activities including nematicidal effects irrespective of their origin from plants or nematodes.
Collapse
Affiliation(s)
- Samad Ashrafi
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany.
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany.
| | - Jan-Peer Wennrich
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Anke Brißke-Rode
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthias Daub
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dürener Str. 71, 50189, Elsdorf, Germany
| | - Torsten Thünen
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), Emek, P.O. Box 39, 06511, Ankara, Turkey
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Wolfgang Maier
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| |
Collapse
|
2
|
Kobmoo N, Arnamnart N, Pootakham W, Sonthirod C, Khonsanit A, Kuephadungphan W, Suntivich R, Mosunova O, Giraud T, Luangsa-ard J. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. PERSOONIA 2021; 47:136-150. [PMID: 37693793 PMCID: PMC10486633 DOI: 10.3767/persoonia.2021.47.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Fungi are rich in complexes of cryptic species that need a combination of different approaches to be delimited, including genomic information. Beauveria (Cordycipitaceae, Hypocreales) is a well-known genus of entomopathogenic fungi, used as a biocontrol agent. In this study we present a polyphasic taxonomy regarding two widely distributed complexes of Beauveria: B. asiatica and B. bassiana s.lat. Some of the genetic groups as previously detected within both taxa were either confirmed or fused using population genomics. High levels of divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their subdivision as distinct species. Morphological examination focusing on the width and the length of phialides and conidia showed no difference among the clades within B. bassiana while conidial length was significantly different among clades within B. asiatica. The secondary metabolite profiles obtained by liquid chromatography-mass spectrometry (LC-MS) allowed a distinction between B. asiatica and B. bassiana, but not between the clades therein. Based on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana spp. nov. Such closely related but divergent species with different host ranges have potential to elucidate the evolution of host specificity, with potential biocontrol application. Citation: Kobmoo N, Arnamnart N, Pootakham W, et al. 2021. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia 47: 136-150. https://doi.org/10.3767/persoonia.2021.47.04.
Collapse
Affiliation(s)
- N. Kobmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - N. Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - C. Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - A. Khonsanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Kuephadungphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - R. Suntivich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - O.V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Giraud
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - J.J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Luteapyrone, a Novel ƴ-Pyrone Isolated from the Filamentous Fungus Metapochonia lutea. Molecules 2021; 26:molecules26216589. [PMID: 34770997 PMCID: PMC8588484 DOI: 10.3390/molecules26216589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
In the process of screening for new bioactive microbial metabolites we found a novel ƴ-pyrone derivative for which we propose the trivial name luteapyrone, in a recently described microscopic filamentous fungus, Metapochonia lutea BiMM-F96/DF4. The compound was isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structure was elucidated by NMR and LC-MS. The new compound was found to be non-cytotoxic against three mammalian cell lines (HEK 263, KB-3.1 and Caco-2). Similarly, no antimicrobial activity was observed in tested microorganisms (gram positive and negative bacteria, yeast and fungi).
Collapse
|
4
|
Antioxidant Activity and Cytotoxicity against Cancer Cell Lines of the Extracts from Novel Xylaria Species Associated with Termite Nests and LC-MS Analysis. Antioxidants (Basel) 2021; 10:antiox10101557. [PMID: 34679692 PMCID: PMC8533195 DOI: 10.3390/antiox10101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Xylaria species associated with termite nests or soil have been considered rare species in nature and the few which have been reported upon have been found to act as a rich source of bioactive metabolites. This study evaluated 10 ethyl acetate extracts of five new Xylaria species associated with termite nests or soil for their antioxidant activity, and cytotoxicity against different cancer and normal cell lines. DPPH and ABTS radical scavenging activities of the extracts demonstrated strong capacity with low IC50 values. The highest observed activities belonged to X. vinacea SWUF18-2.3 having IC50 values of 0.194 ± 0.031 mg/mL for DPPH assay and 0.020 ± 0.004 mg/mL for ABTS assay. Total phenolic content ranged from 0.826 ± 0.123 to 3.629 ± 0.381 g GAE/g crude extract which correlated with antioxidant activities. The high total phenolic content could contribute to the high antioxidant activities. Cytotoxicity was recorded against A549, HepG2, HeLa and PNT2 and resulted in broad spectrum to specific activity depending on the cell lines. The highest activities were observed with X. subintraflava SWUF16-11.1 which resulted in 11.15 ± 0.32 to 13.17 ± 2.37% cell viability at a concentration of 100 µg/mL. Moreover, LC-MS fingerprints indicated over 61 peaks from all isolates. There were 18 identified and 43 unidentified compounds compared to mass databases. The identified compounds were from various groups of diterpenoids, diterpenes, cytochalasin, flavones, flavonoids, polyphenols, steroids and derivatives, triterpenoids and tropones. These results indicate that Xylaria spp. has abundant secondary metabolites that could be further explored for their therapeutic properties.
Collapse
|
5
|
Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance. Curr Microbiol 2021; 78:2488-2509. [PMID: 34003333 DOI: 10.1007/s00284-021-02533-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Fungal metabolites are worthily taken into account as a pool of synthetically interesting and remarkably important new lead compounds for medical, agricultural, and chemical industries. Humicola species are known to have biotechnological and industrial potentials. Humicola genus (family Chaetomiaceae) is a prosperous fountainhead of unique and structurally diverse metabolites that have various bioactivities. Moreover, Humicola species attract substantial attention for their marked ability to produce thermostable enzymes with biotechnological and industrial importance. This review highlights the published researches on the isolated metabolites from the genus Humicola and their biological activities as well as the industrial importance of Humicola species. In the current review, more than 50 compounds are described and 84 references are cited.
Collapse
|
6
|
Bang S, Shim SH. Beta resorcylic acid lactones (RALs) from fungi: chemistry, biology, and biosynthesis. Arch Pharm Res 2020; 43:1093-1113. [PMID: 33113097 DOI: 10.1007/s12272-020-01275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
β-Resorcylic acid lactones (RALs) are one of the major polyketides produced by fungi, and some of them have a diverse array of biological activities. Most RALs feature a 14-membered macrocyclic ring fused to β-resorcylic acid (2,4-dihydroxybenzoic acid). In this review, more than 100 RAL-type of compounds are structurally classified into three groups; 14-membered RALs with 17R configuration, 14-membered RALs with 17S configuration, and benzopyranones/benzofuranones, and they are reviewed comprehensively in terms of chemistry, biological activities, and biosynthetic pathways.
Collapse
Affiliation(s)
- Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Sang Hee Shim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
7
|
Kuephadungphan W, Tasanathai K, Petcharad B, Khonsanit A, Stadler M, Luangsa-Ard JJ. Phylogeny- and morphology-based recognition of new species in the spider-parasitic genus Gibellula (Hypocreales, Cordycipitaceae) from Thailand. MycoKeys 2020; 72:17-42. [PMID: 32963487 PMCID: PMC7481265 DOI: 10.3897/mycokeys.72.55088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Thailand is known to be a part of what is called the Indo-Burma biodiversity hotspot, hosting a vast array of organisms across its diverse ecosystems. This is reflected by the increasing number of new species described over time, especially fungi. However, a very few fungal species from the specialized spider-parasitic genus Gibellula have ever been reported from this region. A survey of invertebrate-pathogenic fungi in Thailand over several decades has led to the discovery of a number of fungal specimens with affinities to this genus. Integration of morphological traits into multi-locus phylogenetic analysis uncovered four new species: G.cebrennini, G.fusiformispora, G.pigmentosinum, and G.scorpioides. All these appear to be exclusively linked with torrubiella-like sexual morphs with the presence of granulomanus-like asexual morph in G.pigmentosinum and G.cebrennini. A remarkably high host specificity of these new species towards their spider hosts was revealed, and for the first time, evidence is presented for manipulation of host behavior in G.scorpioides.
Collapse
Affiliation(s)
- Wilawan Kuephadungphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC) Pathum Thani Thailand
| | - Kanoksri Tasanathai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC) Pathum Thani Thailand
| | - Booppa Petcharad
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathumthani 12120 Thailand Thammasat University Pathumthani Thailand
| | - Artit Khonsanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC) Pathum Thani Thailand
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany Helmholtz Centre for Infection Research Braunschweig Germany
| | - J Jennifer Luangsa-Ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120 Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC) Pathum Thani Thailand
| |
Collapse
|
8
|
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms 2020; 8:microorganisms8091397. [PMID: 32932875 PMCID: PMC7565716 DOI: 10.3390/microorganisms8091397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
Collapse
|
9
|
Nguyen HTT, Choi S, Kim S, Lee JH, Park AR, Yu NH, Yoon H, Bae CH, Yeo JH, Choi GJ, Son H, Kim JC. The Hsp90 Inhibitor, Monorden, Is a Promising Lead Compound for the Development of Novel Fungicides. FRONTIERS IN PLANT SCIENCE 2020; 11:371. [PMID: 32300352 PMCID: PMC7144829 DOI: 10.3389/fpls.2020.00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Endophytic fungi are great resources for the identification of useful natural products such as antimicrobial agents. In this study, we performed the antifungal screening of various plant endophytic fungi against the dollar spot pathogen Sclerotinia homoeocarpa and finally selected Humicola sp. JS-0112 as a potential biocontrol agent. The bioactive compound produced by the strain JS-0112 was identified as monorden known as an inhibitor of heat shock protein 90 (Hsp90). Monorden exhibited strong antagonistic activity against most tested plant pathogenic fungi particularly against tree pathogens and oomycetes with the minimum inhibitory concentration values less than 2.5 μg mL-1. Extensive in planta assays revealed that monorden effectively suppressed the development of several important plant diseases such as rice blast, rice sheath blight, wheat leaf rust, creeping bentgrass dollar spot, and cucumber damping-off. Especially, it showed much stronger disease control efficacy against cucumber damping-off than a synthetic fungicide chlorothalonil. Subsequent molecular genetic analysis of fission yeast and Fusarium graminearum suggested that Hsp90 is a major inhibitory target of monorden, and sequence variation among fungal Hsp90 is a determinant for the dissimilar monorden sensitivity of fungi. This is the first report dealing with the disease control efficacy and antifungal mechanism of monorden against fungal plant diseases and we believe that monorden can be used as a lead molecule for developing novel fungicides with new action mechanism for the control of plant diseases caused by fungi and oomycetes.
Collapse
Affiliation(s)
- Hang T. T. Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ju-Hee Lee
- GPS Screen Team, Drug R&D Institute, Bioneer Corporation, Daejeon, South Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Chang-Hwan Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Joo Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Noumeur SR, Helaly SE, Jansen R, Gereke M, Stradal TEB, Harzallah D, Stadler M. Preussilides A-F, Bicyclic Polyketides from the Endophytic Fungus Preussia similis with Antiproliferative Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:1531-1540. [PMID: 28398049 DOI: 10.1021/acs.jnatprod.7b00064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Six novel bioactive bicyclic polyketides (1-6) were isolated from cultures of an endophytic fungus of the medicinal plant Globularia alypum collected in Batna, Algeria. The producer organism was identified as Preussia similis using morphological and molecular phylogenetic methods. The structures of metabolites 1-6, for which the trivial names preussilides A-F are proposed, were elucidated using a combination of spectral methods, including extensive 2D NMR spectroscopy, high-resolution mass spectrometry, and CD spectroscopy. Preussilides were tested for antimicrobial and antiproliferative effects, and, in particular, compounds 1 and 3 showed selective activities against eukaryotes. Subsequent studies on the influence of 1 and 3 on the morphology of human osteosarcoma cells (U2OS) suggest that these two polyketides might target an enzyme involved in coordination of the cell division cycle. Hence, they might, for instance, affect timing or spindle assembly mechanisms, leading to defects in chromosome segregation and/or spindle geometry.
Collapse
Affiliation(s)
- Sara R Noumeur
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
- Department of Microbiology-Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2 , 05000 Batna, Algeria
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, Aswan University , 81528 Aswan, Egypt
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marcus Gereke
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Daoud Harzallah
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Kepler RM, Humber RA, Bischoff JF, Rehner SA. Clarification of generic and species boundaries forMetarhiziumand related fungi through multigene phylogenetics. Mycologia 2017; 106:811-29. [DOI: 10.3852/13-319] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryan M. Kepler
- Systematic Mycology and Microbiology Laboratory, USDA-ARS, Bldg. 010A, Beltsville, Maryland 20705
| | - Richard A. Humber
- Biological Integrated Pest Management Research, USDA-ARS, RW Holley Center for Agriculture and Health, Ithaca, New York 14853-2901
| | | | - Stephen A. Rehner
- Systematic Mycology and Microbiology Laboratory, USDA-ARS, Bldg. 010A, Beltsville, Maryland 20705
| |
Collapse
|
12
|
Degenkolb T, Vilcinskas A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 2015; 100:3799-812. [PMID: 26715220 PMCID: PMC4824826 DOI: 10.1007/s00253-015-7233-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Abstract
Plant-parasitic nematodes are estimated to cause global annual losses of more than US$ 100 billion. The number of registered nematicides has declined substantially over the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, are therefore urgently required. Nematophagous fungi are natural antagonists of nematode parasites, and these offer an ecophysiological source of novel biocontrol strategies. In this first section of a two-part review article, we discuss 83 nematicidal and non-nematicidal primary and secondary metabolites found in nematophagous ascomycetes. Some of these substances exhibit nematicidal activities, namely oligosporon, 4',5'-dihydrooligosporon, talathermophilins A and B, phomalactone, aurovertins D and F, paeciloxazine, a pyridine carboxylic acid derivative, and leucinostatins. Blumenol A acts as a nematode attractant. Other substances, such as arthrosporols and paganins, play a decisive role in the life cycle of the producers, regulating the formation of reproductive or trapping organs. We conclude by considering the potential applications of these beneficial organisms in plant protection strategies.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany. .,Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394, Giessen, Germany.
| |
Collapse
|
13
|
Cheikh-Ali Z, Glynou K, Ali T, Ploch S, Kaiser M, Thines M, Bode HB, Maciá-Vicente JG. Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp. PHYTOCHEMISTRY 2015; 118:83-93. [PMID: 26296744 DOI: 10.1016/j.phytochem.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
Members of the fungal genus Exophiala are common saprobes in soil and water environments, opportunistic pathogens of animals, or endophytes in plant roots. Their ecological versatility could imply a capacity to produce diverse secondary metabolites, but only a few studies have aimed at characterizing their chemical profiles. Here, we assessed the secondary metabolites produced by five Exophiala sp. strains of a particular phylotype, isolated from roots of Microthlaspi perfoliatum growing in different European localities. Exophillic acid and two previously undescribed compounds were isolated from these strains, and their structures were elucidated by spectroscopic methods using MS, 1D and 2D NMR. Bioassays revealed a weak activity of these compounds against disease-causing protozoa and mammalian cells. In addition, 18 related structures were identified by UPLC/MS based on comparisons with the isolated structures. Three Exophiala strains produced derivatives containing a β-d-glucopyranoside moiety, and their colony morphology was distinct from the other two strains, which produced derivatives lacking β-d-glucopyranoside. Whether the chemical/morphological strain types represent variants of the same genotype or independent genetic populations within Exophiala remains to be evaluated.
Collapse
Affiliation(s)
- Zakaria Cheikh-Ali
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Tahir Ali
- Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Sebastian Ploch
- Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland
| | - Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Jose G Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M. Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. PHYTOCHEMISTRY 2015; 117:116-122. [PMID: 26071840 DOI: 10.1016/j.phytochem.2015.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
In the course of our screening for new bioactive natural products, a culture of Hypoxylon rickii, a xylariaceous ascomycete collected from the Caribbean island Martinique, was identified as extraordinary prolific producer of secondary metabolites. Ten metabolites of terpenoid origin were isolated from submerged cultures of this species by preparative HPLC. Their structures were elucidated using spectral techniques including 2D NMR and HRESIMS. Three of the compounds were elucidated as new botryanes (1-3) along with three known ones, i.e. (3aS)-3a,5,5,8-tetramethyl-3,3a,4,5-tetrahydro-1H-cyclopenta[de]isochromen-1-one (4), (3aS,8R)-3a,5,5,8-tetramethyl-3,3a,4,5,7,8-hexahydro-1H-cyclopenta[de]isochromen-1-one (5) and botryenanol (6). Further three new sesquiterpenoids featured a 14-noreudesmane-type skeleton and were named hypoxylan A-C (7-9); the diterpenoid rickitin A (10) contains an abietane-type backbone. Compounds 1, 2, 3, 7, and 10 showed cytotoxic effects against murine cells.
Collapse
Affiliation(s)
- Eric Kuhnert
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank Surup
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Vincent Wiebach
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Steffen Bernecker
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
15
|
Shen W, Mao H, Huang Q, Dong J. Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities. Eur J Med Chem 2015; 97:747-77. [DOI: 10.1016/j.ejmech.2014.11.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
|
16
|
Nielsen KF, Larsen TO. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 2015; 6:71. [PMID: 25741325 PMCID: PMC4330896 DOI: 10.3389/fmicb.2015.00071] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids - which can all undergo extensive modifications by tailoring enzymes - thus potentially providing a large array of products from a single pathway. Elucidating the full chemical profile of a fungal species is a challenging exercise, even with elemental composition provided by high-resolution mass spectrometry (HRMS) used in combination with chemical databases (e.g., AntiBase) to dereplicate known compounds. This has led to a continuous effort to improve chromatographic separation in conjunction with improvement in HRMS detection. Major improvements have also occurred with 2D chromatography, ion-mobility, MS/MS and MS(3), stable isotope labeling feeding experiments, classic UV/Vis, and especially automated data-mining and metabolomics software approaches as the sheer amount of data generated is now the major challenge. This review will focus on the development and implementation of dereplication strategies and will highlight the importance of each stage of the process from sample preparation to chromatographic separation and finally toward both manual and more targeted methods for automated dereplication of fungal natural products using state-of-the art MS instrumentation.
Collapse
Affiliation(s)
- Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby Denmark
| | - Thomas O Larsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby Denmark
| |
Collapse
|
17
|
Halecker S, Surup F, Kuhnert E, Mohr KI, Brock NL, Dickschat JS, Junker C, Schulz B, Stadler M. Hymenosetin, a 3-decalinoyltetramic acid antibiotic from cultures of the ash dieback pathogen, Hymenoscyphus pseudoalbidus. PHYTOCHEMISTRY 2014; 100:86-91. [PMID: 24529574 DOI: 10.1016/j.phytochem.2014.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 05/23/2023]
Abstract
A 3-decalinoyltetramic acid, for which the trivial name hymenosetin is proposed, was isolated from crude extracts of a virulent strain of the ash dieback pathogen, Hymenoscyphus pseudoalbidus (="Chalara fraxinea"). This compound was produced only under certain culture conditions in submerged cultures of the fungus. Its planar structure was determined by NMR spectroscopy and by mass spectrometry. The absolute stereochemistry was assigned by CD spectroscopy and HETLOC data. Hymenosetin exhibited broad spectrum antibacterial and antifungal activities (including strong inhibition of MRSA), as well as moderate cytotoxic effects. So far, the metabolite proved inactive in assays for evaluation of phytotoxicity, whereas viridiol, another secondary metabolite known from H. pseudoalbidus, was regarded as phytotoxic principle of the pathogen against its host, Fraxinus excelsior. Further studies will show whether hymenosetin constitutes a defence metabolite that is produced by the pathogenic fungus to combat other microbes and fungi in the natural environment.
Collapse
Affiliation(s)
- Sandra Halecker
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank Surup
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Eric Kuhnert
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Kathrin I Mohr
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Nelson L Brock
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Corina Junker
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Barbara Schulz
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Helmholtz Centre for Infection Research GmbH (HZI), Department Microbial Drugs, Inhoffenstraße 7, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
18
|
Kuephadungphan W, Phongpaichit S, Luangsa-ard JJ, Rukachaisirikul V. Antimicrobial activity of invertebrate-pathogenic fungi in the genera Akanthomyces and Gibellula. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0264-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Nonaka K, Omura S, Masuma R, Kaifuchi S, Masuma R. Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia 2013; 105:1202-18. [PMID: 23921245 DOI: 10.3852/12-132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fifty Pochonia strains were isolated from soil samples collected throughout Japan. Using a combination of micromorphological characters and multigene (SSU, LSU, TEF, RPB1, RPB2) phylogenics, seven taxa were identified, three of which previously were undescribed. In this paper we describe the new species, P. boninensis, and two new varieties, P. chlamydosporia var. ellipsospora and var. spinulospora. They were recovered from Chichi-jima, Aogashima and Okinawa's main island. The three new taxa are distinguished from known species and varieties by conidial morphology. We also report the first finding of P. rubescens from Japan.
Collapse
Affiliation(s)
- Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
21
|
Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO. Dereplication of microbial natural products by LC-DAD-TOFMS. JOURNAL OF NATURAL PRODUCTS 2011; 74:2338-2348. [PMID: 22026385 DOI: 10.1021/np200254t] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dereplication, the rapid identification of known compounds present in a mixture, is crucial to the fast discovery of novel natural products. Determining the elemental composition of compounds in mixtures and tentatively identifying natural products using MS/MS and UV/vis spectra is becoming easier with advances in analytical equipment and better compound databases. Here we demonstrate the use of LC-UV/vis-MS-based dereplication using data from UV/vis diode array detection and ESI+/ESI- time-of-flight MS for assignment of 719 microbial natural product and mycotoxin reference standards. ESI+ was the most versatile ionization method, detecting 93% of the compounds, although with 12% ionizing poorly. Using ESI+ alone, 56.1% of the compounds could be unambiguously assigned based on characteristic patterns of multiple adduct ions. Using ESI-, 36.4% of the compounds could have their molecular mass assigned unambiguously using multiple adduct ions, while a further 41% of the compounds were detected only as [M - H]-. The most reliable interpretations of conflicting ESI+ and ESI- data on a chromatographic peak were from the ionization polarity with the most intense ionization. Poor ionization was most common with small molecules (<200 Da). In ESI-, these were often polar and basic, while in ESI+ they were small aromatic acids or anthraquinones. No single ion-source settings could be applied over a m/z 60-2000 range. However, continuous switching among three settings (e.g., for 0.5 s each) during the chromatographic run allowed MS of both small labile molecules and large peptides, and pseudo MS/MS data on labile molecules since the settings for large molecules often induce fragmentation into small molecules.
Collapse
Affiliation(s)
- Kristian F Nielsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark , Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
22
|
Towards an efficient phenotypic classification of fungal cultures from environmental samples using digital imagery. Mycol Prog 2011. [DOI: 10.1007/s11557-011-0753-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Isaka M, Sappan M, Jennifer Luangsa-Ard J, Hywel-Jones NL, Mongkolsamrit S, Chunhametha S. Chemical taxonomy of Torrubiella s. lat.: zeorin as a marker of Conoideocrella. Fungal Biol 2011; 115:401-5. [PMID: 21530922 DOI: 10.1016/j.funbio.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The insect pathogens in the genus Torrubiella s. lat. were recently divided into new genera based on molecular phylogenetic characters. Isolates collected at various locations in Thailand, were tested for their productivity of a hopane-type triterpene, zeorin (6α,22-dihydroxyhopane), when cultured in potato dextrose broth under static conditions. Among the 49 strains of Torrubiella s. lat. species, Conoideocrella luteorostrata (ten strains) and C. tenuis (seven strains), all collected on scale insects (Hemiptera), produced zeorin, whereas another six strains of Orbiocrella petchii (which was recently removed from Torrubiella) failed in the detection of this secondary metabolite. All other Torrubiella s. lat. (26 strains), collected on other insect hosts including leafhoppers (eight strains), Lepidoptera (one strain), and spiders (17 strains), produced no detectable zeorin. Paecilomyces cinnamomeus (nine strains), the anamorph of C. luteorostrata, also produced zeorin. These results correspond with the recent taxonomic reclassification based on multigene phylogeny.
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | | | | | |
Collapse
|
24
|
Engels B, Heinig U, Grothe T, Stadler M, Jennewein S. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides. J Biol Chem 2010; 286:6871-8. [PMID: 21148562 PMCID: PMC3044942 DOI: 10.1074/jbc.m110.165845] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6–7 double bond into the 7–8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns.
Collapse
Affiliation(s)
- Benedikt Engels
- Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
25
|
Luangsa-ard JJ, Berkaew P, Ridkaew R, Hywel-Jones NL, Isaka M. A beauvericin hot spot in the genus Isaria. ACTA ACUST UNITED AC 2009; 113:1389-95. [DOI: 10.1016/j.mycres.2009.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/15/2022]
|
26
|
Wicklow DT, Jordan AM, Gloer JB. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. ACTA ACUST UNITED AC 2009; 113:1433-42. [PMID: 19825415 DOI: 10.1016/j.mycres.2009.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/01/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
Abstract
Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several C. graminicola isolates from Michigan and Illinois were found to be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I-III as major components. Monorden and monocillin I displayed in vitro activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alternata, Bipolaris zeicola, and Curvularia lunata. Using LC-HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the C. graminicola disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from C. graminicola, as well as the production of monorden and monocillins by a pathogen of cereals.
Collapse
Affiliation(s)
- Donald T Wicklow
- Mycotoxin Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, Peoria, IL 61604, USA.
| | | | | |
Collapse
|
27
|
Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Appl Environ Microbiol 2008; 74:5121-9. [PMID: 18567690 DOI: 10.1128/aem.00478-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene clusters for biosynthesis of the fungal polyketides hypothemycin and radicicol from Hypomyces subiculosus and Pochonia chlamydosporia, respectively, were sequenced. Both clusters encode a reducing polyketide synthase (PKS) and a nonreducing PKS like those in the zearalenone cluster of Gibberella zeae, plus enzymes with putative post-PKS functions. Introduction of an O-methyltransferase (OMT) knockout construct into H. subiculosus resulted in a strain with increased production of 4-O-desmethylhypothemycin, but because transformation of H. subiculosus was very difficult, we opted to characterize hypothemycin biosynthesis using heterologous gene expression. In vitro, the OMT could methylate various substrates lacking a 4-O-methyl group, and the flavin-dependent monooxygenase (FMO) could epoxidate substrates with a 1',2' double bond. The glutathione S-transferase catalyzed cis-trans isomerization of the 7',8' double bond of hypothemycin. Expression of both hypothemycin PKS genes (but neither gene alone) in yeast resulted in production of trans-7',8'-dehydrozearalenol (DHZ). Adding expression of OMT, expression of FMO, and expression of cytochrome P450 to the strain resulted in methylation, 1',2'-epoxidation, and hydroxylation of DHZ, respectively. The radicicol gene cluster encodes halogenase and cytochrome P450 homologues that are presumed to catalyze chlorination and epoxidation, respectively. Schemes for biosynthesis of hypothemycin and radicicol are proposed. The PKSs encoded by the two clusters described above and those encoded by the zearalenone cluster all synthesize different products, yet they have significant sequence identity. These PKSs may provide a useful system for probing the mechanisms of fungal PKS programming.
Collapse
|
28
|
Paterson RRM. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? PHYTOCHEMISTRY 2008; 69:1469-95. [PMID: 18343466 PMCID: PMC7111646 DOI: 10.1016/j.phytochem.2008.01.027] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 05/06/2023]
Abstract
Traditional Chinese medicines (TCM) are growing in popularity. However, are they effective? Cordyceps is not studied as systematically for bioactivity as another TCM, Ganoderma. Cordyceps is fascinating per se, especially because of the pathogenic lifestyle on Lepidopteron insects. The combination of the fungus and dead insect has been used as a TCM for centuries. However, the natural fungus has been harvested to the extent that it is an endangered species. The effectiveness has been attributed to the Chinese philosophical concept of Yin and Yang and can this be compatible with scientific philosophy? A vast literature exists, some of which is scientific, although others are popular myth, and even hype. Cordyceps sinensis is the most explored species followed by Cordyceps militaris. However, taxonomic concepts were confused until a recent revision, with undefined material being used that cannot be verified. Holomorphism is relevant and contamination might account for some of the activity. The role of the insect has been ignored. Some of the analytical methodologies are poor. Data on the "old" compound cordycepin are still being published: ergosterol and related compounds are reported despite being universal to fungi. There is too much work on crude extracts rather than pure compounds with water and methanol solvents being over-represented in this respect (although methanol is an effective solvent). Excessive speculation exists as to the curative properties. However, there are some excellent pharmacological data and relating to apoptosis. For example, some preparations are active against cancers or diabetes which should be fully investigated. Polysaccharides and secondary metabolites are of particular interest. The use of genuine anamorphic forms in bioreactors is encouraged.
Collapse
Affiliation(s)
- R Russell M Paterson
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Campus de Gualtar, University of Minho, Braga, Portugal.
| |
Collapse
|
29
|
Bitzer J, Læssøe T, Fournier J, Kummer V, Decock C, Tichy HV, Piepenbring M, Peršoh D, Stadler M. Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. ACTA ACUST UNITED AC 2008; 112:251-70. [DOI: 10.1016/j.mycres.2007.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/15/2007] [Accepted: 07/11/2007] [Indexed: 11/25/2022]
|
30
|
The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. ACTA ACUST UNITED AC 2007; 112:231-40. [PMID: 18319145 DOI: 10.1016/j.mycres.2007.08.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 07/10/2007] [Accepted: 08/22/2007] [Indexed: 11/20/2022]
Abstract
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.
Collapse
|
31
|
Stadler M, Hellwig V, Mayer-Bartschmid A, Denzer D, Wiese B, Burkhardt N. Novel Analgesic Triglycerides from Cultures of Agaricus macrosporus and Other Basidiomycetes as Selective Inhibitors of Neurolysin. J Antibiot (Tokyo) 2005; 58:775-86. [PMID: 16506695 DOI: 10.1038/ja.2005.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The agaricoglycerides are a new class of fungal secondary metabolites that constitute esters of chlorinated 4-hydroxy benzoic acid and glycerol. They are produced in cultures of the edible mushroom, Agaricus macrosporus, and several other basidiomycetes of the genera Agaricus, Hypholoma, Psathyrella and Stropharia. The main active principle, agaricoglyceride A, showed strong activities against neurolysin, a protease involved in the regulation of dynorphin and neurotensin metabolism (IC50 = 200 nM), and even exhibited moderate analgesic in vivo activities in an in vivo model. Agaricoglyceride monoacetates (IC50 = 50 nM) showed even stronger in vitro activities. Several further co-metabolites with weaker or lacking bioactivities were also obtained and characterized. Among those were further agaricoglyceride derivatives, as well as further chlorinated phenol derivatives such as the new compound, agaricic ester. The characteristics of the producer organisms, the isolation of bioactive metabolites from cultures of A. macrosporus, their biological activities, and preliminary results on their occurrence in basidiomycetes, are described.
Collapse
Affiliation(s)
- Marc Stadler
- Bayer Health Care, Pharma Division, Research Center Wuppertal, Bldg. 0452, P.O.B. 10 17 09, D-42096 Wuppertal, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 2005. [DOI: 10.1007/s11557-006-0108-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|