1
|
Moysi E, Paris RM, Le Grand R, Koup RA, Petrovas C. Human lymph node immune dynamics as driver of vaccine efficacy: an understudied aspect of immune responses. Expert Rev Vaccines 2022; 21:633-644. [PMID: 35193447 DOI: 10.1080/14760584.2022.2045198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION During the last century, changes in hygiene, sanitation, and the advent of childhood vaccination have resulted in profound reductions in mortality from infectious diseases. Despite this success, infectious diseases remain an enigmatic public health threat, where effective vaccines for influenza, human immunodeficiency virus (HIV), tuberculosis, and malaria, among others remain elusive. AREA COVERED In addition to the immune evasion tactics employed by complex pathogens, our understanding of immunopathogenesis and the development of effective vaccines is also complexified by the inherent variability of human immune responses. Lymph nodes (LNs) are the anatomical sites where B cell responses develop. An important, but understudied component of immune response complexity is variation in LN immune dynamics and in particular variation in germinal center follicular helper T cells (Tfh) and B cells which can be impacted by genetic variation, aging, the microbiome and chronic infection. EXPERT OPINION This review describes the contribution of genetic variation, aging, microbiome and chronic infection on LN immune dynamics and associated Tfh responses and offers perspective on how inclusion of LN immune subset and cytoarchitecture analyses, along with peripheral blood biomarkers can supplement systems vaccinology or immunology approaches for the development of vaccines or other interventions to prevent infectious diseases.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Bhattacharyya C, Majumder PP, Pandit B. An exome wide association study of pulmonary tuberculosis patients and their asymptomatic household contacts. INFECTION GENETICS AND EVOLUTION 2019; 71:76-81. [PMID: 30898644 DOI: 10.1016/j.meegid.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
Tuberculosis is a leading cause of death in India. To identify genetic variants associated with susceptibility or resistance to Mycobacterium tuberculosis infection, we have performed an exome-wide association study with 0.2 million exonic variants among 119 pairs of tuberculosis patients and their clinically asymptomatic household contacts. The strongest association was identified for rs61104666[A], a synonymous variant (p.E292E) of exon 5 of the gene SIGLEC15 (OR = 2.4, p = 1.49 × 10-5). We also found association of non-coding variants in the 3'UTR region of a gene encoding the class II human leukocyte antigens (HLAs), HLA-DRA. rs13209234[A] (minor allele frequency (MAF) = 13.8%) (OR = 0.35, P = 2.5 × 10-4) and rs3177928[A] (minor allele frequency (MAF) = 13.7%) (OR = 0.35, P = 3.3 × 10-4) were associated with protection from tuberculosis. These two SNPs, rs13209234 and rs3177928, are in complete linkage disequilibrium. These associations remained valid when additional data on freshly recruited individuals were jointly analyzed on 250 patient-control pairs. The identified gene, HLA-DRA, suggest involvement of immune regulation, indicating pathways associated with antigen presentation in tuberculosis infection.
Collapse
Affiliation(s)
| | | | - Bhaswati Pandit
- National Institute of Biomedical Genomics, PO: NSS, Kalyani 741251, West Bengal, India.
| |
Collapse
|
3
|
Majumder PP. Genomics of immune response to typhoid and cholera vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0142. [PMID: 25964454 DOI: 10.1098/rstb.2014.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Considerable variation in antibody response (AR) was observed among recipients of an injectable typhoid vaccine and an oral cholera vaccine. We sought to find whether polymorphisms in genes of the immune system, both innate and adaptive, were associated with the observed variation in response. For both vaccines, we were able to discover and validate several polymorphisms that were significantly associated with immune response. For the typhoid vaccines, these polymorphisms were on genes that belonged to pathways of polysaccharide recognition, signal transduction, inhibition of T-cell proliferation, pro-inflammatory signalling and eventual production of antimicrobial peptides. For the cholera vaccine, the pathways included epithelial barrier integrity, intestinal homeostasis and leucocyte recruitment. Even though traditional wisdom indicates that both vaccines should act as T-cell-independent antigens, our findings reveal that the vaccines induce AR using different pathways.
Collapse
Affiliation(s)
- Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
4
|
Garg R, Akhade AS, Yadav J, Qadri A. MyD88-dependent pro-inflammatory activity in Vi polysaccharide vaccine against typhoid promotes Ab switching to IgG. Innate Immun 2015; 21:778-83. [PMID: 26303218 PMCID: PMC4572389 DOI: 10.1177/1753425915599242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/14/2015] [Indexed: 01/02/2023] Open
Abstract
Vi capsular polysaccharide is currently in use as a vaccine against human typhoid caused by Salmonella Typhi. The vaccine efficacy correlates with IgG anti-Vi Abs. We have recently reported that Vi can generate inflammatory responses through activation of the TLR2/TLR1 complex. In the present study, we show that immunization with Vi produces IgM as well as IgG Abs in wild type mice. This ability is not compromised in mice deficient in T cells. However, immunization of mice lacking the TLR adaptor protein, MyD88, with Vi elicits only IgM Abs. These results suggest that MyD88-dependent pro-inflammatory ability of the Vi vaccine might be vital in generating IgG Abs with this T-independent Ag.
Collapse
Affiliation(s)
- Rohini Garg
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajay Suresh Akhade
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Yadav
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. INFECTION GENETICS AND EVOLUTION 2013; 21:351-8. [PMID: 24333371 PMCID: PMC7106259 DOI: 10.1016/j.meegid.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
The genetic basis of host responses to infectious bronchitis virus is unclear. We detected 20 significant markers for the antibody response to infectious bronchitis virus in chicken. Loci on chromosomes 1 and 5 explained 12% and 13% of phenotypic variation. The host immune response cluster had 13 beta-defensin and interleukin-17F genes. Our results will contribute to the control of outbreaks of infectious bronchitis.
Coronaviruses are a hot research topic because they can cause severe diseases in humans and animals. Infectious bronchitis virus (IBV), belonging to gamma-coronaviruses, causes a highly infectious respiratory viral disease and can result in catastrophic economic losses to the poultry industry worldwide. Unfortunately, the genetic basis of the host immune responses against IBV is poorly understood. In the present study, the antibody levels against IBV post-immunization were measured by an enzyme-linked immunosorbent assay in the serum of 511 individuals from a commercial chicken (Gallus gallus) population. A genome-wide association study using 43,211 single nucleotide polymorphism markers was performed to identify the major loci affecting the immune response against IBV. This study detected 20 significant (P < 1.16 × 10−6) effect single nucleotide polymorphisms for the antibody level against IBV. These single nucleotide polymorphisms were distributed on five chicken chromosomes (GGA), involving GGA1, GGA3, GGA5, GGA8, and GGA9. The genes in the 1-Mb windows surrounding each single nucleotide polymorphism with significant effect for the antibody level against IBV were associated with many biological processes or pathways related to immunity, such as the defense response and mTOR signaling pathway. A genomic region containing a cluster of 13 beta-defensin (GAL1–13) and interleukin-17F genes on GGA3 probably plays an important role in the immune response against IBV. In addition, the major loci significantly associated with the antibody level against IBV on GGA1 and GGA5 could explain about 12% and 13% of the phenotypic variation, respectively. This study suggested that the chicken genome has several important loci affecting the immune response against IBV, and increases our knowledge of how to control outbreaks of infectious bronchitis.
Collapse
|
6
|
Majumder PP, Sarkar-Roy N, Staats H, Ramamurthy T, Maiti S, Chowdhury G, Whisnant CC, Narayanasamy K, Wagener DK. Genomic correlates of variability in immune response to an oral cholera vaccine. Eur J Hum Genet 2013; 21:1000-6. [PMID: 23249958 PMCID: PMC3746254 DOI: 10.1038/ejhg.2012.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 11/09/2022] Open
Abstract
Cholera is endemic to many countries. Recent major outbreaks of cholera have prompted World Health Organization to recommend oral cholera vaccination as a public-health strategy. Variation in percentage of seroconversion upon cholera vaccination has been recorded across populations. Vaccine-induced responses are influenced by host genetic differences. We have investigated association between single-nucleotide polymorphic (SNP) loci in and around 296 immunologically relevant genes and total anti-lipopolysaccharide (LPS) antibody response to a killed whole-cell vaccine, comprising LPS from multiple strains of Vibrio cholerae. Titers derived from standard vibriocidal assays were also analyzed to gain further insights on validated SNP associations. Vaccination was administered to 1000 individuals drawn from India. Data on two independent random subsets, each comprising ∼500 vaccinees, were used for discovery of genomic associations and validation, respectively. Significant associations of four SNPs and haplotypes in three genes (MARCO, TNFAIP3 and CXCL12) with AR were discovered and validated, of which two in TNFAIP3 and CXCL12 were also significantly associated with immunity (fourfold increase in vibriocidal titers). CXCL12 is a neutrophil and lymphocyte chemoattractant that is upregulated in response to V. cholerae infection. LPS in the vaccine possibly provides signals that mimic those of the live bacterium. TNFAIP3 promotes intestinal epithelial barrier integrity and provides tight junction protein regulation; possible requirements for adequate response to the vaccine. LPS is a potent activator of innate immune responses and a ligand of MARCO. Variants in this gene have been found to be associated with LPS response, but not with high vibriocidal titer level.
Collapse
|
7
|
Zaccaro DJ, Wagener DK, Whisnant CC, Staats HF. Evaluation of vaccine-induced antibody responses: impact of new technologies. Vaccine 2013; 31:2756-61. [PMID: 23583812 PMCID: PMC3672347 DOI: 10.1016/j.vaccine.2013.03.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 11/17/2022]
Abstract
Host response to vaccination has historically been evaluated based on a change in antibody titer that compares the post-vaccination titer to the pre-vaccination titer. A four-fold or greater increase in antigen-specific antibody has been interpreted to indicate an increase in antibody production in response to vaccination. New technologies, such as the bead-based assays, provide investigators and clinicians with precise antibody levels (reported as concentration per mL) in ranges below and above those previously available through standard assays such as ELISA. Evaluations of bead assay data to determine host response to vaccination using fold change and absolute change, with a general linear model used to calculate adjusted statistics, present very different pictures of the antibody response when pre-vaccination antibody levels are low. Absolute changes in bead assay values, although not a standard computation, appears to more accurately reflect the host response to vaccination for those individuals with extremely low pre-vaccination antibody levels. Conversely, for these same individuals, fold change may be very high while post-vaccination antibodies do not achieve seroprotective levels. Absolute change provides an alternate method to characterize host response to vaccination, especially when pre-vaccination levels are very low, and may be useful in studies designed to determine associations between host genotypes and response to vaccination.
Collapse
Affiliation(s)
- Daniel J. Zaccaro
- Health Sciences Division, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Diane K. Wagener
- Health Sciences Division, RTI International, 500W Harbor Dr. #1114, San Diego, CA 92101, USA
| | - Carol C. Whisnant
- Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710, USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710, USA
| |
Collapse
|
8
|
Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.
Collapse
|
9
|
Narayanasamy K, Chery L, Basu A, Duraisingh MT, Escalante A, Fowble J, Guler JL, Herricks T, Kumar A, Majumder P, Maki J, Mascarenhas A, Rodrigues J, Roy B, Sen S, Shastri J, Smith J, Valecha N, White J, Rathod PK. Malaria evolution in South Asia: knowledge for control and elimination. Acta Trop 2012; 121:256-66. [PMID: 22266213 PMCID: PMC3894252 DOI: 10.1016/j.actatropica.2012.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
The study of malaria parasites on the Indian subcontinent should help us understand unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. The Malaria Evolution in South Asia (MESA) research program is one of ten International Centers of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. In this second of two reviews, we describe why population structures of Plasmodia in India will be characterized and how we will determine their consequences on disease presentation, outcome and patterns. Specific projects will determine if genetic diversity, possibly driven by parasites with higher genetic plasticity, plays a role in changing epidemiology, pathogenesis, vector competence of parasite populations and whether innate human genetic traits protect Indians from malaria today. Deep local clinical knowledge of malaria in India will be supplemented by basic scientists who bring new research tools. Such tools will include whole genome sequencing and analysis methods; in vitro assays to measure genome plasticity, RBC cytoadhesion, invasion, and deformability; mosquito infectivity assays to evaluate changing parasite-vector compatibilities; and host genetics to understand protective traits in Indian populations. The MESA-ICEMR study sites span diagonally across India and include a mixture of very urban and rural hospitals, each with very different disease patterns and patient populations. Research partnerships include government-associated research institutes, private medical schools, city and state government hospitals, and hospitals with industry ties. Between 2012 and 2017, in addition to developing clinical research and basic science infrastructure at new clinical sites, our training workshops will engage new scientists and clinicians throughout South Asia in the malaria research field.
Collapse
Affiliation(s)
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | | | - Joseph Fowble
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | | | - Ashwani Kumar
- National Institute of Malaria Research (ICMR), Panaji, Goa, India
| | - Partha Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Jennifer Maki
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | | | - Bikram Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Somdutta Sen
- SphaeraPharma Research and Development, Manesar, Haryana, India
| | - Jayanthi Shastri
- Kasturba Hospital for Infectious Diseases, Mumbai, Maharashtra, India
- Topiwala Medical College & BYL Nair Hospital, Mumbai, Maharashtra, India
| | - Joseph Smith
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), New Delhi, India
| | - John White
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
10
|
Moore CE, Hennig BJ, Perrett KP, Hoe JC, Lee SJ, Fletcher H, Brocklebank D, O'Connor D, Snape MD, Hall AJ, Segal S, Hill AVS, Pollard AJ. Single nucleotide polymorphisms in the Toll-like receptor 3 and CD44 genes are associated with persistence of vaccine-induced immunity to the serogroup C meningococcal conjugate vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:295-303. [PMID: 22205660 PMCID: PMC3294616 DOI: 10.1128/cvi.05379-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
The rate of decay of antibody concentration following serogroup C meningococcal (MenC) polysaccharide-protein conjugate vaccination varies between individuals. This depends partly on vaccination age but may be influenced by human genetics. We studied 721 single nucleotide polymorphisms (SNPs) across 131 candidate genes in a first cohort of 905 Caucasians (11 to 21 years old; mean time after vaccination, 4.9 years) and 30 SNPs across 17 genes in a replication study using 155 children, aged 6 to 12 years (mean time after vaccination, 6.7 years), and 196 infants (1 year old; mean time after vaccination, 8 months). Individuals were classified as responders or nonresponders for total MenC IgG concentration and MenC serum bactericidal antibody (SBA) measurements. Associated genes were examined further for quantitative outcome measures. Fifty-nine SNPs in 37 genes were associated with IgG persistence (adjusted for age at measurement), and 56 SNPs in 36 genes were associated with SBA persistence (adjusted for age at measurement and vaccine used). Three SNPs each within the Toll-like receptor 3 (TLR3) (rs3775291, rs3775292, and rs5743312) and CD44 (rs11033013, rs353644, and rs996076) genes were associated with IgG (adjusted for age at measurement) or SBA (adjusted for age at measurement and vaccine used) persistence in the initial genetic study (P, 0.02 to 0.04). Single SNPs within the TLR3 (rs7657186) (P = 0.004 [unadjusted]) and CD44 (rs12419062) (P = 0.01 [unadjusted]) genes were associated with IgG persistence in the replication study. These results suggest that genetic polymorphisms in the TLR3 and CD44 genes are associated with the persistence of the immune response to MenC vaccines 1 to 6 years after vaccination.
Collapse
Affiliation(s)
- Catrin E Moore
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cox DR. Genetic variation in response to a typhoid vaccine. THE HUGO JOURNAL 2010; 3:15-6. [PMID: 21119759 PMCID: PMC2882651 DOI: 10.1007/s11568-010-9135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/06/2010] [Indexed: 11/26/2022]
Affiliation(s)
- David R Cox
- Applied Quantitative Genotherapeutics, Pfizer Inc., 230 East Grand Ave., South San Francisco, CA 94080 USA
| |
Collapse
|