1
|
Utpal BK, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Madhuri YB, Gupta JK, Yaidikar L, Tummala T, Suseela R, Durairaj A, Reddy KTK, Al Fahaid AAF, Rab SO, Almahjari MS, Emran TB. Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases. Mol Cell Biochem 2025. [DOI: 10.1007/s11010-025-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/16/2025] [Indexed: 05/04/2025]
|
2
|
Chen S, Zhang X, Mo H, Peng Y, An Z, Wu J, Wei X, Zhang S, Xiong Y, Jiang W, Peng X, Zhuo L, Lei Z, Wang Z, Hu Z. Structure-activity relationship study of novel evodiamine amino acid conjugates with potent anti-colorectal cancer efficacy. Eur J Med Chem 2025; 283:117132. [PMID: 39647421 DOI: 10.1016/j.ejmech.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Evodiamine has been a promising lead structure with broad-spectrum antitumor activity. Druggability optimization is the most challenging part of evodiamine-based lead-to-candidate campaign. Amino acids as building blocks for conjugates are widely incorporated into approved drug and drug candidates, demonstrating highly attractive druggability. Herein, a series of evodiamine amino acid conjugates were designed and synthesized based on the evodiamine lead compound (±)-8b discovered in our previous work. The structure-activity relationship (SAR) studies culminated in the identification of a promising conjugate (-)-15h featuring a N-Boc-l-glutamine group and a chiral carbon atom (sinister), which exhibited nanomolar antiproliferative activity against LoVo and RKO colorectal cancer cells. Moreover, (-)-15h could inhibit topoisomerases I, arrest the cell cycle in the G2/M phase, and induce apoptosis. Importantly, (-)-15h (tumor growth inhibition rate was 82.53 % in 40 mpk) showed better efficacy and tolerability to that of parent compound (-)-8b (tumor growth inhibition rate was 51.22 % in 40 mpk) in LoVo xenograft model. Further, (-)-15h (tumor growth inhibition rate was 70.09 % in 40 mpk) showed comparable efficacy and better tolerability to that of topotecan (tumor growth inhibition rate was 70.67 % in 0.5 mpk) in HT-29 xenograft model. Collectively, this study further provided a strong scientific basis for amino acid-based structural modifications and a drug lead for anti-colorectal cancer applications.
Collapse
Affiliation(s)
- Shuting Chen
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hanxuan Mo
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Xiuzhen Wei
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Siyi Zhang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yongxia Xiong
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhengwen Lei
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Zecheng Hu
- The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Lin L, Liu Y, Tang R, Ding S, Lin H, Li H. Evodiamine: A Extremely Potential Drug Development Candidate of Alkaloids from Evodia rutaecarpa. Int J Nanomedicine 2024; 19:9843-9870. [PMID: 39345907 PMCID: PMC11430234 DOI: 10.2147/ijn.s459510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024] Open
Abstract
Evodiamine (EVO) is a tryptamine indole alkaloid and the main active ingredient in Evodia rutaecarpa. In recent years, the antitumor, cardioprotective, anti-inflammatory, and anti-Alzheimer's disease effects of EVO have been reported. EVO exerts antitumor effects by inhibiting tumor cell activity and proliferation, blocking the cell cycle, promoting apoptosis and autophagy, and inhibiting the formation of the tumor microvasculature. However, EVO has poor solubility and low bioavailability. Several derivatives with high antitumor activity have been discovered through the structural optimization of EVO, and new drug delivery systems have been developed to improve the solubility and bioavailability of EVO. Current research found that EVO could have toxic effects, such as hepatotoxicity, nephrotoxicity, and cardiac toxicity. This article reviews the pharmacological activity, derivatives, drug delivery systems, toxicity, and pharmacokinetics of EVO and provides research ideas and references for its further in-depth development and clinical applications.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuling Liu
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruying Tang
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shilan Ding
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- National Medical Products Administration Key Laboratory for Research Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Li
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Zhou Z, Zhou Y, Zhang Z, Zhao M, Hu C, Yang L, Zhou X, Zhang X, Liu L, Shen T. Progress on the effects and underlying mechanisms of evodiamine in digestive system diseases, and its toxicity: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155851. [PMID: 39018943 DOI: 10.1016/j.phymed.2024.155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE This study aimed to provide a reference for future research in this field. STUDY DESIGN A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-β, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.
Collapse
Affiliation(s)
- Zubing Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Yan Zhou
- South Sichuan Preschool Education College, Neijiang, China
| | - Zhongyi Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Mei Zhao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Chao Hu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Lele Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xin Zhou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xiaobo Zhang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Liyun Liu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tao Shen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
7
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
8
|
Wang Z, Lai C, Shen B, Li B, Chen J, Shen X, Huang Z, Yang C, Gao Y. Effects of Evodiamine on Behavior and Hippocampal Neurons through Inhibition of Angiotensin-Converting Enzyme and Modulation of the Renin Angiotensin Pathway in a Mouse Model of Post-Traumatic Stress Disorder. Nutrients 2024; 16:1957. [PMID: 38931311 PMCID: PMC11207023 DOI: 10.3390/nu16121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a persistent psychiatric condition that arises following exposure to traumatic events such as warfare, natural disasters, or other catastrophic incidents, typically characterized by heightened anxiety, depressive symptoms, and cognitive dysfunction. In this study, animals subjected to single prolonged stress (SPS) were administered evodiamine (EVO) and compared to a positive control group receiving sertraline. The animals were then assessed for alterations in anxiety, depression, and cognitive function. Histological analysis was conducted to examine neuronal changes in the hippocampus. In order to predict the core targets and related mechanisms of evodiamine intervention in PTSD, network pharmacology was used. The metabolic markers pre- and post-drug administration were identified using nontargeted serum metabolomics techniques, and the intersecting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were screened. Finally, the core targets were validated through molecular docking, enzyme-linked immunosorbent assays, and immunofluorescence staining to confirm the anti-PTSD effects and mechanisms of these targets. As well as improving cognitive impairment, evodiamine reversed anxiety- and depression-like behaviors. It also inhibited the reduction in the number of hippocampal neuronal cells and Nissl bodies in SPS mice inhibited angiotensin converting enzyme (ACE) levels in the hippocampus of SPS mice, and modulated the renin angiotensin pathway and its associated serum metabolites in brain tissue. Evodiamine shows promise as a potential candidate for alleviating the symptoms of post-traumatic stress disorder.
Collapse
Affiliation(s)
- Zhixing Wang
- Medical College, Qinghai University, Xining 810016, China; (Z.W.); (C.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Chengcai Lai
- Medical College, Qinghai University, Xining 810016, China; (Z.W.); (C.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Baoying Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Bowei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Junru Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Xin Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Zhengping Huang
- Department of Neurology, Fujian Medical University, Quanzhou 362000, China;
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| | - Yue Gao
- Medical College, Qinghai University, Xining 810016, China; (Z.W.); (C.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (B.S.); (B.L.); (J.C.); (X.S.); (C.Y.)
| |
Collapse
|
9
|
Cao Q, Dong P, Han H. Therapeutic Effects of the major alkaloid constituents of Evodia rutaecarpa in Alzheimer's disease. Psychogeriatrics 2024; 24:443-457. [PMID: 38173117 DOI: 10.1111/psyg.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Since the report of Alzheimer's disease (AD) in 1907, it has garnered widespread attention due to its intricate pathogenic mechanisms, significant impact on patients' lives, and the substantial burden it places on society. Presently, effective treatments for AD remain elusive. Recent pharmacological studies on the traditional East Asian herb, Evodia rutaecarpa, have revealed that the bioactive alkaloid components within it can ameliorate AD-related cognitive impairments and neurological damage through various pathways, including anti-inflammatory, antioxidant, and anti-acetylcholinesterase activities. Consequently, this article provides an overview of the pharmacological effects and research status of the four main alkaloid components found in Evodia concerning AD. We hope this article will serve as a valuable reference for experimental and clinical research on the use of Evodia in AD prevention and treatment.
Collapse
Affiliation(s)
- Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Wang W, Sun T. Impact of TRPV1 on Pathogenesis and Therapy of Neurodegenerative Diseases. Molecules 2023; 29:181. [PMID: 38202764 PMCID: PMC10779880 DOI: 10.3390/molecules29010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a transmembrane and non-selective cation channel protein, which can be activated by various physical and chemical stimuli. Recent studies have shown the strong pathogenetic associations of TRPV1 with neurodegenerative diseases (NDs), in particular Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) via regulating neuroinflammation. Therapeutic effects of TRPV1 agonists and antagonists on the treatment of AD and PD in animal models also are emerging. We here summarize the current understanding of TRPV1's effects and its agonists and antagonists as a therapeutic means in neurodegenerative diseases, and highlight future treatment strategies using natural TRPV1 agonists. Developing new targets and applying natural products are becoming a promising direction in the treatment of chronic disorders, especially neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China;
| |
Collapse
|
11
|
Chen L, Hu Y, Ye Z, Li L, Qian H, Wu M, Qin K, Li N, Wen X, Pan T, Ye Q. Major Indole Alkaloids in Evodia Rutaecarpa: The Latest Insights and Review of Their Impact on Gastrointestinal Diseases. Biomed Pharmacother 2023; 167:115495. [PMID: 37741256 DOI: 10.1016/j.biopha.2023.115495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.
Collapse
Affiliation(s)
- Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Province Orthopedic Hospital, Chengdu 610041, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China
| | - Tao Pan
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China.
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Cao Q, Liu J, Pang C, Liu K, Wang R, Chen Y, Yuan X, Zhang M, Ni J, Dong P, Han H. The study of therapeutic efficacy and mechanisms of Schisandra chinensis and Evodia rutaecarpa combined treatment in a rat model of Alzheimer's disease. Heliyon 2023; 9:e21942. [PMID: 38034776 PMCID: PMC10682611 DOI: 10.1016/j.heliyon.2023.e21942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Schisandra chinensis and Evodia rutaecarpa are traditional Chinese herbs used to treat neurodegenerative diseases. This study investigates the combined effects of SC and ER on learning and memory in an Alzheimer's disease rat model and their underlying mechanisms. Methods High-performance liquid chromatography was employed to analyze the primary active constituents of Schisandra and Evodia. The effects of the combined treatment of Schisandra and Evodia on learning and memory in an Alzheimer's disease rat model were evaluated through Morris water maze and Hematoxylin-Eosin staining experiments. Immunohistochemical analysis was conducted to investigate the impact of S-E on Aβ1-42 and P-tau proteins. Western blotting and real-time quantitative polymerase chain reaction were utilized to quantify the expression of pivotal proteins and genes within the BDNF/TRKB/CREB and GSK-3β/Tau pathways. Results The treatment group exhibited significant neuroprotective effects, ameliorating learning and memory impairments in the Alzheimer's disease rat model. The treatment regimen modulated the activity of the BDNF/TRKB/CREB and GSK-3β/Tau pathways by influencing the expression of relevant genes, thereby reducing the generation of Aβ1-42 and P-Tau proteins and inhibiting the deposition of senile plaques. Furthermore, among the three treatment groups, the combined treatment demonstrated notably superior therapeutic effects on Alzheimer's disease compared to the single-drug treatment groups.
Collapse
Affiliation(s)
- Qingyu Cao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jiaqi Liu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Chengguo Pang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Kemeng Liu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ruijiao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Yuanjin Chen
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xu Yuan
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Zhang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiliang Dong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
13
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
14
|
Akash S, Baeza J, Mahmood S, Mukerjee N, Subramaniyan V, Islam MR, Gupta G, Rajakumari V, Chinni SV, Ramachawolran G, Saleh FM, Albadrani GM, Sayed AA, Abdel-Daim MM. Development of a new drug candidate for the inhibition of Lassa virus glycoprotein and nucleoprotein by modification of evodiamine as promising therapeutic agents. Front Microbiol 2023; 14:1206872. [PMID: 37497547 PMCID: PMC10366616 DOI: 10.3389/fmicb.2023.1206872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
The Lassa virus (LASV), an RNA virus prevalent in West and Central Africa, causes severe hemorrhagic fever with a high fatality rate. However, no FDA-approved treatments or vaccines exist. Two crucial proteins, LASV glycoprotein and nucleoprotein, play vital roles in pathogenesis and are potential therapeutic targets. As effective treatments for many emerging infections remain elusive, cutting-edge drug development approaches are essential, such as identifying molecular targets, screening lead molecules, and repurposing existing drugs. Bioinformatics and computational biology expedite drug discovery pipelines, using data science to identify targets, predict structures, and model interactions. These techniques also facilitate screening leads with optimal drug-like properties, reducing time, cost, and complexities associated with traditional drug development. Researchers have employed advanced computational drug design methods such as molecular docking, pharmacokinetics, drug-likeness, and molecular dynamics simulation to investigate evodiamine derivatives as potential LASV inhibitors. The results revealed remarkable binding affinities, with many outperforming standard compounds. Additionally, molecular active simulation data suggest stability when bound to target receptors. These promising findings indicate that evodiamine derivatives may offer superior pharmacokinetics and drug-likeness properties, serving as a valuable resource for professionals developing synthetic drugs to combat the Lassa virus.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Javiera Baeza
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Smiley JF, Wilson DA, Das BC, Saito M. Anti-inflammatory Action of BT75, a Novel RARα Agonist, in Cultured Microglia and in an Experimental Mouse Model of Alzheimer's Disease. Neurochem Res 2023; 48:1958-1970. [PMID: 36781685 PMCID: PMC10355192 DOI: 10.1007/s11064-023-03888-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
BT75, a boron-containing retinoid, is a novel retinoic acid receptor (RAR)α agonist synthesized by our group. Previous studies indicated that activation of retinoic acid (RA) signaling may attenuate progression of Alzheimer's disease (AD). Presently, we aimed to examine the anti-inflammatory effect of BT75 and explore the possible mechanism using cultured cells and an AD mouse model. Pretreatment with BT75 (1-25 µM) suppressed the release of nitric oxide (NO) and IL-1β in the culture medium of mouse microglial SIM-A9 cells activated by LPS. BMS195614, an RARα antagonist, partially blocked the inhibition of NO production by BT75. Moreover, BT75 attenuated phospho-Akt and phospho-NF-κB p65 expression augmented by LPS. In addition, BT75 elevated arginase 1, IL-10, and CD206, and inhibited inducible nitric oxide synthase (iNOS) and IL-6 formation in LPS-treated SIM-A9 cells, suggesting the promotion of M1-M2 microglial phenotypic polarization. C57BL/6 mice were injected intracerebroventricularly (icv) with streptozotocin (STZ) (3 mg/kg) to provide an AD-like mouse model. BT75 (5 mg/kg) or the vehicle was intraperitoneally (ip) injected to icv-STZ mice once a day for 3 weeks. Immunohistochemical analyses indicated that GFAP-positive cells and rod or amoeboid-like Iba1-positive cells, which increased in the hippocampal fimbria of icv-STZ mice, were reduced by BT75 treatment. Western blot results showed that BT75 decreased levels of neuronal nitric oxide synthase (nNOS), GFAP, and phosphorylated Tau, and increased levels of synaptophysin in the hippocampus of icv-STZ mice. BT75 may attenuate neuroinflammation by affecting the Akt/NF-κB pathway and microglial M1-M2 polarization in LPS-stimulated SIM-A9 cells. BT75 also reduced AD-like pathology including glial activation in the icv-STZ mice. Thus, BT75 may be a promising anti-inflammatory and neuroprotective agent worthy of further AD studies.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Colin R O Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Ave., Brooklyn, NY, 11201, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Siddiqui N, Ali J, Parvez S, Najmi AK, Akhtar M. Neuroprotective Role of DPP-4 Inhibitor Linagliptin Against Neurodegeneration, Neuronal Insulin Resistance and Neuroinflammation Induced by Intracerebroventricular Streptozotocin in Rat Model of Alzheimer's Disease. Neurochem Res 2023:10.1007/s11064-023-03924-w. [PMID: 37079222 DOI: 10.1007/s11064-023-03924-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is an age-related, multifactorial progressive neurodegenerative disorder manifested by cognitive impairment and neuronal death in the brain areas like hippocampus, yet the precise neuropathology of AD is still unclear. Continuous failure of various clinical trial studies demands the utmost need to explore more therapeutic targets against AD. Type 2 Diabetes Mellitus and neuronal insulin resistance due to serine phosphorylation of Insulin Receptor Substrate-1 at 307 exhibits correlation with AD. Dipeptidyl Peptidase-4 inhibitors (DPP-4i) have also indicated therapeutic effects in AD by increasing the level of Glucagon-like peptide-1 in the brain after crossing Blood Brain Barrier. The present study is hypothesized to examine Linagliptin, a DPP-4i in intracerebroventricular streptozotocin induced neurodegeneration, and neuroinflammation and hippocampal insulin resistance in rat model of AD. Following infusion on 1st and 3rd day, animals were treated orally with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) and donepezil (5 mg/kg) as a standard for 8 weeks. Neurobehavioral, biochemical and histopathological analysis was done at the end of treatment. Dose-dependently Linagliptin significantly reversed behavioral alterations done through locomotor activity (LA) and morris water maze (MWM) test. Moreover, Linagliptin augmented hippocampal GLP-1 and Akt-ser473 level and mitigated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level. Histopathological analysis also exhibited neuroprotective and anti-amylodogenic effect in Hematoxylin and eosin and Congo red staining respectively. The findings of our study concludes remarkable dose-dependent therapeutic potential of Linagliptin against neuronal insulin resistance via IRS-1 and AD-related complication. Thus, demonstrates unique molecular mechanism that underlie AD.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
17
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
18
|
Wang Z, Xiong Y, Peng Y, Zhang X, Li S, Peng Y, Peng X, Zhuo L, Jiang W. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship. Eur J Med Chem 2023; 247:115031. [PMID: 36549115 DOI: 10.1016/j.ejmech.2022.115031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
It is a well-known phenomenon that natural products can serve as powerful drug leads to generate new molecular entities with novel therapeutic utility. Evodiamine (Evo), a major alkaloid component in traditional Chinese medicine Evodiae Fructus, is considered a desirable lead scaffold as its multifunctional pharmacological properties. Although natural Evo has suboptimal biological activity, poor pharmacokinetics, low water solubility, and chemical instability, medicinal chemists have succeeded in producing synthetic analogs that overshadow the deficiency of Evo in terms of further clinical application. Recently, several reviews on the synthesis, structural modification, mechanism pharmacological actions, structure-activity relationship (SAR) of Evo have been published, while few reviews that incorporates intensive structural basis and extensive SAR are reported. The purpose of this article is to review the structural basis, anti-cancer activities, and mechanisms of Evo and its derivatives. Emphasis will be placed on the optimizing strategies to improve the anticancer activities, such as structural modifications, pharmacophore combination and drug delivery systems. The current review would benefit further structural modifications of Evo to discover novel anticancer drugs.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
19
|
Yang X, Leng M, Yang L, Peng Y, Wang J, Wang Q, Wu K, Zou J, Wan W, Li L, Ye Y, Meng Z. Effect of Evodiamine on Collagen-Induced Platelet Activation and Thrombosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4893859. [PMID: 35937403 PMCID: PMC9348926 DOI: 10.1155/2022/4893859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Evodia rutaecarpa has multiple pharmacological effects and is widely used in the prevention and treatment of migraine, diabetes, cardiovascular disease, cancer, and other chronic diseases; however, the pharmacological effects of its active compound evodiamine (Evo) have not been thoroughly investigated. The purpose of this study was to investigate the effects of Evo on antiplatelet activation and thrombosis. We discovered that Evo effectively inhibited collagen-induced platelet activation but had no effect on platelet aggregation caused by activators such as thrombin, ADP, and U46619. Second, we found that Evo effectively inhibited the release of platelet granules induced by collagen. Finally, evodiamine inhibits the transduction of the SFKs/Syk/Akt/PLCγ2 activation pathway in platelets. According to in vivo studies, Evo significantly prolonged the mesenteric thromboembolism induced by ferric chloride and had no discernible effect on the coagulation function of mice. In conclusion, the antiplatelet and thrombotic effects of Evo discovered in this study provide an experimental basis for the investigation of the pharmacological mechanisms of Evo and the development of antiplatelet drugs.
Collapse
Affiliation(s)
- Xiaona Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junhua Zou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Matysek A, Kimmantudawage SP, Feng L, Maier AB. Targeting Impaired Nutrient Sensing via the Glycogen Synthase Kinase-3 Pathway With Therapeutic Compounds to Prevent or Treat Dementia: A Systematic Review. FRONTIERS IN AGING 2022; 3:898853. [PMID: 35923682 PMCID: PMC9341294 DOI: 10.3389/fragi.2022.898853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Background: Dementia is a global challenge with 10 million individuals being diagnosed every year. Currently, there are no established disease-modifying treatments for dementia. Impaired nutrient sensing has been implicated in the pathogenesis of dementia. Compounds that inhibit the glycogen synthase kinase-3 (GSK3) pathway have been investigated as a possible treatment to attenuate the progression of the disease, particularly the suppression of the hyper-phosphorylation process of the tau protein. Aims: Systematically summarizing compounds which have been tested to inhibit the GSK3 pathway to treat cognitive impairment and dementia. Methods: PubMed, Embase and Web of Science databases were searched from inception until 28 July 2021 for articles published in English. Interventional animal studies inhibiting the GSK3 pathway in Alzheimer’s disease (AD), Parkinson’s dementia, Lewy body dementia, vascular dementia, mild cognitive impairment (MCI) and normal cognitive ageing investigating the change in cognition as the outcome were included. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias tool for animal studies was applied. Results: Out of 4,154 articles, 29 described compounds inhibiting the GSK3 pathway. All studies were based on animal models of MCI, AD or normal cognitive ageing. Thirteen out of 21 natural compounds and five out of nine synthetic compounds tested in MCI and dementia animal models showed an overall positive effect on cognition. No articles reported human studies. The risk of bias was largely unclear. Conclusion: Novel therapeutics involved in the modulation of the GSK3 nutrient sensing pathway have the potential to improve cognitive function. Overall, there is a clear lack of translation from animal models to humans.
Collapse
Affiliation(s)
- Adrian Matysek
- Department of Human Genetics, University of Amsterdam, Amsterdam UMC, University Medical Centers, Amsterdam, Netherlands
| | - Sumudu Perera Kimmantudawage
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Andrea B. Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Andrea B. Maier,
| |
Collapse
|
21
|
Xian S, Lin Z, Zhou C, Wu X. The Protective Effect of Evodiamine in Osteoarthritis: An In Vitro and In Vivo Study in Mice Model. Front Pharmacol 2022; 13:899108. [PMID: 35795554 PMCID: PMC9251407 DOI: 10.3389/fphar.2022.899108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease with high economic burden characterized by cartilage degradation and joint inflammation. Evodiamine (EV), which can be extracted from Evodia rutaecarpa (Rutaceae), is a traditional Chinese medicine to treat inflammation, cardiovascular disorders, infection, and obesity. Studies have shown that EV can suppress the activation of immune cells and restrain the secretion of pro-inflammatory cytokines. However, it is still not well known about its role in the treatment of OA. In this study, we utilized interleukin-1β (IL-1β)–stimulated mouse chondrocytes in vitro and the destabilization of the medial meniscus (DMM) model in vivo to demonstrate the anti-inflammatory properties of EV in OA. The results suggested that EV decreased the generation of NO, IL-6, TNF-α, and PGE2. Meanwhile, the increased expression of iNOS, COX-2, and MMP-13 and the degradation of aggrecan and Col-II were significantly alleviated by EV in IL-1β–activated mouse chondrocytes. Moreover, EV can inhibit the considerable IL-1β–stimulated phosphorylation of the NF-κB signaling pathway and nuclear translocation of p65, compared with the control group. Furthermore, EV alleviated cartilage degeneration and reversed the increased Osteoarthritis Research Society International (OARSI) scores in the OA model in vivo. Our study demonstrates that EV can suppress inflammation in vitro and cartilage degeneration in vivo in OA, which implies that EV may be a potential candidate for the treatment of OA.
Collapse
Affiliation(s)
- Shuyuan Xian
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zeng Lin
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhou
- Department of Orthopaedics, Yinshanhu Hospital of Wuzhong District, Suzhou, China
- *Correspondence: Chao Zhou, ; Xing Wu,
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chao Zhou, ; Xing Wu,
| |
Collapse
|
22
|
Catalpol Ameliorates Neurotoxicity in N2a/APP695swe Cells and APP/PS1 Transgenic Mice. Neurotox Res 2022; 40:961-972. [PMID: 35699892 DOI: 10.1007/s12640-022-00524-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) causes progressive decline of memory and cognitive deficits. Because of its complicated pathogenesis, the prevention and therapy of AD remain an enormous challenge. It has been reported that catalpol possessed neuroprotective effects against AD. However, the involved mechanism still needs to be intensively studied. Therefore, the effects of catalpol on N2a/APP695swe cells and APP/PS1 mice were identified in the current study. Catalpol could improve cytotoxicity according to CCK-8 assay and ameliorate cellular morphological changes in N2a/APP695swe cells. Neuronal structural damage in the hippocampal CA1 region of APP/PS1 AD mice was improved according to HE staining and immunohistochemistry of NeuN. Meanwhile, catalpol administration ameliorated cognitive deficits confirmed by behavior performance of APP/PS1 mice. Hoechst 33,342 staining and Annexin V-FITC/PI double staining demonstrated that catalpol could reduce apoptosis in N2a/APP695swe cells. Likewise, TUNEL staining also manifested that catalpol significantly reduced apoptosis in hippocampal CA1 region of APP/PS1 mice. Catalpol administration also could improve mitochondrial functions indicated by the ameliorative mitochondrial morphology, the decreased ROS generation, and the increased MMP in N2a/APP695swe cells. Subsequently, catalpol restrained oligomerization of Aβ1-42, verified by a reduced ThT fluorescence dose- and time-dependently. Additionally, both Aβ1-40 and Aβ1-42 aggregation were decreased in N2a/APP695swe cells and APP/PS1 mice administrated with catalpol confirmed by ELISA and western blot. Western blot also showed that catalpol facilitated the phosphorylation of AKT and GSK3β, and impeded the expression of BACE1 both in vivo and in vitro. Finally, a slight alteration in lactylation, 2-hydroxyisobutyrylation, and phosphorylation were found in N2a/APP695swe cells treated with catalpol. Together, these findings manifested that catalpol served a neuroprotective effect in AD and might be a novel and expecting prophylactic or curative candidate for AD or neurodegenerative diseases therapy.
Collapse
|
23
|
Tideglusib Ameliorates Ischemia/Reperfusion Damage by Inhibiting GSK-3β and Apoptosis in Rat Model of Ischemic Stroke. J Stroke Cerebrovasc Dis 2022; 31:106349. [PMID: 35152130 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, gets activated and worsen stroke outcome after ischemia/reperfusion (I/R) injury by inducing inflammation and apoptosis. In this study, tideglusib, a selective irreversible and non-ATP competitive inhibitor of GSK-3β, was explored in cerebral I/R damage using middle cerebral artery occlusion (MCAo) model in rats. MATERIALS AND METHODS MCAo was done for 90 min in male Wistar rats (250-280 g) using doccol suture. In pre-treatment group, tideglusib (50 mg/kg) was administered once daily for 2 days and on the day of surgery, 30 min before MCAo. Next day, rats were examined for neurobehavioral parameters and MRI was performed to assess brain damage. In post-treatment group, tideglusib was started at 30 min after MCAo and continued for the next 2 days. After 72 h of MCAo, behavioral parameters and brain damage by MRI were assessed. Further, oxidative stress markers (MDA and GSH), inflammatory cytokines (TNF-α, IL-1β and IL-10) and expression levels of pGSK-3β S9, Bcl-2 and Bax were estimated in pre-treatment group. RESULTS Tideglusib pre-treatment but not post-treatment significantly improved neurobehavioral parameters (p < 0.05) and reduced brain damage (p < 0.01) when compared with MCAo group. I/R induced changes in MDA (p < 0.01), TNF-α and IL-1β (p < 0.05) were significantly attenuated by pre-treatment. Further, tideglusib pre-treatment ameliorated MCAo induced altered expressions of pGSK-3β S9, Bcl-2 and Bax. CONCLUSION The results of our exploratory study indicated prophylactic potential of tideglusib in I/R injury by modulating pGSK-3β S9, apoptosis and neuro-inflammation.
Collapse
|
24
|
Fan M, Yao L. The Synthesis, Structural Modification and Mode of Anticancer Action of Evodiamine: a review. Recent Pat Anticancer Drug Discov 2021; 17:284-296. [PMID: 34939550 DOI: 10.2174/1574892817666211221165739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding novel antitumor reagents from naturally occurring alkaloids is a widely accepted strategy. Evodiamine, a tryptamine indole alkaloid isolated from Evodia rutaecarpa, has a wide range of biological activities, such as antitumor, anti-inflammation, and anti-bacteria. Hence, research works on the structural modification of evodiamine will facilitate the discovery of new antitumor drugs. OBJECTIVE The recent advances in the synthesis of evodiamine, and studies on the drug design, biological activities, and structure-activity-relationships of its derivatives, published in patents and primary literatures, are reviewed in this paper. METHODS The literatures, including patents and follow-up research papers from 2015 to 2020, related to evodiamine is searched in the Scifinder, PubMed, Espacenet, China National Knowledge Infrastructure (CNKI), and Wanfang databases. The key words are evodiamine, synthesis, modification, anticancer, mechanism. RESULTS The synthesis of evodiamine are summarized. Then, structural modifications of evodiamine are described, and the possible modes of actions are discussed. CONCLUSION Evodiamine has a 6/5/6/6/6 ring system, and the structural modifications are focused on ring A, D, E, C5, N-13, and N-14. Some compounds show promising anticancer potentials and warrant further study.
Collapse
Affiliation(s)
- Meixia Fan
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| | - Lei Yao
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| |
Collapse
|
25
|
Umuhengerin Neuroprotective Effects in Streptozotocin-Induced Alzheimer's Disease Mouse Model via Targeting Nrf2 and NF-Kβ Signaling Cascades. Antioxidants (Basel) 2021; 10:antiox10122011. [PMID: 34943114 PMCID: PMC8698785 DOI: 10.3390/antiox10122011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and is characterized by advanced cognitive deterioration, deposition of Aβ (amyloid-beta), and the formation of neurofibrillary tangles. Administration of streptozotocin (STZ) via the intracerebroventricular (ICV) route is a reliable model resembling sporadic AD (SAD) associated neuropathological changes. The present study was undertaken to explore the neuroprotective effects of the methoxy flavonoid, umuhengerin, in an STZ-induced SAD mouse model as a potential therapy for AD. Mice were injected once with STZ (3 mg/kg, ICV), followed by daily administration of umuhengerin (orally, 30 mg/kg) or the positive control donepezil (orally, 2.5 mg/kg) for 21 days. The pharmacological activity of umuhengerin was assessed through estimation of oxidative stress and inflammatory markers via mouse ELISA kits, Western blot analysis, and brain histopathological examination. Morris water maze test was also conducted to investigate umuhengerin-induced cognitive enhancement. The results showed that umuhengerin attenuated STZ-produced neuroinflammation and oxidative stress with a notable rise in the expression of Nrf2 (nuclear factor erythroid 2-related factor 2). In contrast, it downregulated Keap-1 (Kelch-like ECH associated protein 1), as well as elevated brain contents of GSH (reduced glutathione) and HO-1 (heme oxygenase-1). STZ-injected animals receiving umuhengerin showed marked downregulation of the nuclear factor kappa beta (NF-Kβp65) and noticeable increment in the expression of its inhibitor kappa beta alpha protein (IKβα), as well as prominent reduction in malondialdehyde (MDA), H2O2 (hydrogen peroxide), and TNF-α (tumor-necrosis factor-alpha) contents. Β-secretase protein expression and acetylcholinesterase (AchE) activity were also diminished upon umuhengerin injection in the STZ group, leading to decreased Aβ formation and cognitive improvement, respectively. In conclusion, umuhengerin neuroprotective effects were comparable to the standard drug donepezil; thus, it could be an alternative approach for AD management.
Collapse
|
26
|
Abdallah HM, El Sayed NS, Sirwi A, Ibrahim SRM, Mohamed GA, Abdel Rasheed NO. Mangostanaxanthone IV Ameliorates Streptozotocin-Induced Neuro-Inflammation, Amyloid Deposition, and Tau Hyperphosphorylation via Modulating PI3K/Akt/GSK-3β Pathway. BIOLOGY 2021; 10:biology10121298. [PMID: 34943213 PMCID: PMC8698304 DOI: 10.3390/biology10121298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 04/08/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by amyloid deposition and neurofibrillary tangles formation owing to tau protein hyperphosphorylation. Intra-cerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as a model of sporadic AD as it mimics many neuro-pathological changes witnessed in this form of AD. In the present study, mangostanaxanthone IV (MX-IV)-induced neuro-protective effects in the ICV-STZ mouse model were investigated. STZ (3 mg/kg, ICV) was injected once, followed by either MX-IV (30 mg/kg/day, oral) or donepezil (2.5 mg/kg/day, oral) for 21 days. Treatment with MX-IV diminished ICV-STZ-induced oxidative stress, neuro-inflammation, and apoptosis which was reflected by a significant reduction in malondialdehyde (MDA), hydrogen peroxide (H2O2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) brain contents contrary to increased glutathione (GSH) content. Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase content and cleaved caspase-3 activity were reduced together with a marked decrement in amyloid plaques number and phosphorylated tau expression via PI3K/Akt/GSK-3β pathway modulation, leading to obvious enhancement in neuronal survival and cognition. Therefore, MX-IV is deemed as a prosperous nominee for AD management with obvious neuro-protective effects that were comparable to the standard drug donepezil.
Collapse
Affiliation(s)
- Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
- Correspondence: ; Tel.: +966-544-733-110
| | - Nesrine S. El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (N.S.E.S.); (N.O.A.R.)
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; or
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Nora O. Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (N.S.E.S.); (N.O.A.R.)
| |
Collapse
|
27
|
Dhami M, Raj K, Singh S. Neuroprotective Effect of Fucoxanthin against Intracerebroventricular Streptozotocin (ICV-STZ) Induced Cognitive Impairment in Experimental Rats. Curr Alzheimer Res 2021; 18:623-637. [PMID: 34792011 DOI: 10.2174/1567205018666211118144602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological disorder characterized by loss of memory and cognitive functions caused by oxidative stress, neuroinflammation, change in neurotransmitter levels, and excessive deposition of Aβ(1-42) plaques. Fucoxanthin is a carotenoid with potential antioxidant, anti-inflammatory, and neuroprotective actions. OBJECTIVE In the present study, fucoxanthin was employed as a protective strategy in Intracerebroventricular Streptozotocin (ICV-STZ) induced experimental model of cognitive impairment. METHODS STZ was injected twice ICV (3 mg/kg) on alternate days 1 and 3, and Wistar rats were evaluated for the memory analysis using Morris water maze and elevated plus-maze. Fucoxanthin at low 50 mg/kg, p.o. and high dose 100 mg/kg, p.o. was administered for 14 days. All animals were sacrificed on day 29, and brain hippocampus tissue after isolation was used for biochemical (MDA, nitrite, GSH, SOD and Catalase), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (ACh, GABA Glutamate), Aβ(1-42) and Tau protein measurements. RESULTS STZ-infused rats showed significant impairment in learning and memory, increased oxidative stress (MDA, nitrite), reduced antioxidant defense (GSH, SOD and Catalase), promoted cytokine release, and change in neurotransmitters level. However, fucoxanthin improved cognitive functions, restored antioxidant levels, reduced inflammatory markers dose-dependently, and restored neurotransmitters concentration. CONCLUSION The finding of the current study suggests that fucoxanthin could be the promising compound for improving cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms, and inhibition of acetylcholinesterase (AChE) enzyme activities, Aβ(1-42) accumulation, and tau protein.
Collapse
Affiliation(s)
- Mahadev Dhami
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
28
|
Salem MA, Budzyńska B, Kowalczyk J, El Sayed NS, Mansour SM. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer's disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways. Toxicol Appl Pharmacol 2021; 429:115697. [PMID: 34428446 DOI: 10.1016/j.taap.2021.115697] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurodegenerative disorder. This study aimed to investigate neuroprotective potential of tadalafil (TAD) and bergapten (BG) in SAD-induced cognitive impairment in mice. SAD was induced by single injection of streptozotocin (STZ; 3 mg/kg, ICV). STZ resulted in AD-like pathologies including Aβ deposition, tau aggregation, impaired insulin and Wnt/β-catenin signaling, as well as autophagic dysfunction and neuroinflammation. Administration of TAD or BG at doses of 20 and 25 mg/kg, respectively, for 21 consecutive days attenuated STZ-induced hippocampal insult, preserved neuronal integrity, and improved cognitive function in the Morris water maze and object recognition tests paralleled by reduction in Aβ expression by 79 and 89% and tau hyperphosphorylation by 60 and 61%, respectively. TAD and BG also enhanced protein expression of pAkt, pGSK-3β, beclin-1 and methylated protein phosphatase 2A (PP2A) and gene expression of cyclin D1, while raised BDNF immunoreactivity. Furthermore, TAD and BG boosted hippocampal levels of cGMP, PKG, Wnt3a, and AMPK and reduced expression of β-catenin and mTOR by 74% and 51%, respectively. TAD and BG also halted neuroinflammation by reducing IL-23 and IL-27 levels, as well as protein expression of NF-κB by 62% & 61%, respectively. In conclusion, this study offers novel insights on the neuroprotective effects of TAD or BG in the management of SAD as evidenced by improved cognitive function and histological architecture. This could be attributed to modulation of the crosstalk among PI3K/Akt/GSK-3β, PP2A, mTOR/autophagy, cGMP/PKG, and Wnt/β-catenin signaling cascades and mitigation of neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Joanna Kowalczyk
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland; Chair and Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
29
|
Neuroprotective Studies of Evodiamine in an Okadaic Acid-Induced Neurotoxicity. Int J Mol Sci 2021; 22:ijms22105347. [PMID: 34069531 PMCID: PMC8161163 DOI: 10.3390/ijms22105347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is the most common neurodegenerative disease, and it manifests as progressive memory loss and cognitive decline. However, there are no effective therapies for AD, which is an urgent problem to solve. Evodiamine, one of the main bioactive ingredients of Evodia rutaecarpa, has been reported to ameliorate blood–brain barrier (BBB) permeability and improve cognitive impairment in ischemia and AD mouse models. However, whether evodiamine alleviates tauopathy remains unclear. This study aimed to examine whether evodiamine ameliorates tau phosphorylation and cognitive deficits in AD models. Methods: A protein phosphatase 2A inhibitor, okadaic acid (OA), was used to induce tau phosphorylation to mimic AD-like models in neuronal cells. Protein expression and cell apoptosis were detected using Western blotting and flow cytometry, respectively. Spatial memory/cognition was assessed using water maze, passive avoidance tests, and magnetic resonance imaging assay in OA-induced mice models, and brain slices were evaluated further by immunohistochemistry. Results: The results showed that evodiamine significantly reduced the expression of phosphor-tau, and further decreased tau aggregation and neuronal cell death in response to OA treatment. This inhibition was found to be via the inhibition of glycogen synthase kinase 3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase pathways. In vivo results indicated that evodiamine treatment ameliorated learning and memory impairments in mice, whereas Western blotting and immunohistochemical analysis of the mouse brain also confirmed the neuroprotective effects of evodiamine. Conclusions: Evodiamine can decrease the neurotoxicity of tau aggregation and exhibit a neuroprotective effect. Our results demonstrate that evodiamine has a therapeutic potential for AD treatment.
Collapse
|
30
|
Roflumilast and tadalafil improve learning and memory deficits in intracerebroventricular Aβ1-42 rat model of Alzheimer's disease through modulations of hippocampal cAMP/cGMP/BDNF signaling pathway. Pharmacol Rep 2021; 73:1287-1302. [PMID: 33860460 DOI: 10.1007/s43440-021-00264-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent age-dependent neurodegenerative disease characterized by progressive impairment of memory and cognitive functions. Cyclic nucleotides like cAMP and cGMP are well-known to play an important role in learning and memory functions. Enhancement of cAMP and cGMP levels in the hippocampus by phosphodiesterase (PDE) inhibitors might be a novel therapeutic approach for AD. Thus, the present study was planned to explore the therapeutic potential of roflumilast (RFM) and tadalafil (TDF) phosphodiesterase inhibitors in intracerebroventricular (ICV) Aβ1-42 induced AD in rats. METHODS ICV Aβ1-42 was administered in rats followed by treatment with RFM (0.05 mg/kg) and TDF (0.51 mg/kg) for 15 days. Novel object recognition (NOR), and Morris water maze (MWM) test were performed during the drug treatment schedule. On the day, 22 rats were sacrificed, and hippocampus was separated for biochemical, neuroinflammation, and histopathological analysis. RESULTS Aβ1-42 infused rats were induce behavioral impairment and increased AChE, BACE-1, Aβ1-42, GSK-3β, phosphorylated tau (p-Tau), pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, oxidative stress (increased MDA, Nitrite and decreased GSH), histopathological changes, and reduced cAMP, cGMP, and BDNF levels. RFM and TDF significantly attenuated Aβ1-42 induced memory deficits and neuropathological alterations in the hippocampus. CONCLUSION The outcomes of the current study indicate that RFM and TDF lead to memory enhancement through upregulation of cAMP/cGMP/BDNF pathway, thus they may have a therapeutic potential in cognitive deficits associated with AD.
Collapse
|
31
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
32
|
Ye C, Zhang N, Zhao Q, Xie X, Li X, Zhu HP, Peng C, Huang W, Han B. Evodiamine alleviates lipopolysaccharide-induced pulmonary inflammation and fibrosis by activating apelin pathway. Phytother Res 2021; 35:3406-3417. [PMID: 33657655 DOI: 10.1002/ptr.7062] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/25/2023]
Abstract
Inflammation can cause a series of inflammatory lung disease, which seriously endangers human health. Pulmonary fibrosis is a kind of inflammatory disease with end-stage lung pathological changes. It has complicated and unknown pathogenesis and is still lack of effective therapeutic drugs. LPS-induced inflammation is a common feature of many infectious inflammations such as pneumonia, bacteremia, glomerulonephritis, etc. Evodiamine, one of the main components of Evodia rutaecarpa, is an alkaloid with excellent antiinflammatory effects. In this study, we evaluated the protective capacities of evodiamine on LPS-induced inflammatory damages in vitro and in vivo. MTT method, flow cytometry, immunofluorescence, and other methods were used for in vitro study to determine the protective capacities of evodiamine. The results suggest that evodiamine can protect murine macrophages from the LPS-nigericin-induced damages by (a) inhibiting cellular apoptosis, (b) inhibiting inflammatory cytokines releasing, and (c) activating the apelin pathway. We also used the exogenous apelin-13 peptide co-cultured with LPS-nigericin in RAW264.7 cells and found that apelin-13 contributes to protecting the effects of evodiamine. In vivo, the ELISA method and immunohistochemistry were used to examine inflammatory cytokines, apelin, and histological changes. BALB/c mice were exposed to LPS and subsequent administration of evodiamine (p.o.)for some time, the results of the alveolar lavage fluid and the tissue slices showed that evodiamine treatment alleviated the pulmonary inflammation and fibrosis, stimulated apelin expression and inhibited the inflammatory cytokines. These results provide a basis for the protective effect and mechanism of evodiamine in LPS-induced inflammation and suggest that it might be potential therapeutics in human pulmonary infections.
Collapse
Affiliation(s)
- Cui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Qi CC, Chen XX, Gao XR, Xu JX, Liu S, Ge JF. Impaired Learning and Memory Ability Induced by a Bilaterally Hippocampal Injection of Streptozotocin in Mice: Involved With the Adaptive Changes of Synaptic Plasticity. Front Aging Neurosci 2021; 13:633495. [PMID: 33732137 PMCID: PMC7957014 DOI: 10.3389/fnagi.2021.633495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, psychiatric symptoms and behavioral disorders, resulting in disability, and loss of self-sufficiency. Objective: To establish an AD-like mice model, investigate the behavioral performance, and explore the potential mechanism. Methods: Streptozotocin (STZ, 3 mg/kg) was microinjected bilaterally into the dorsal hippocampus of C57BL/6 mice, and the behavioral performance was observed. The serum concentrations of insulin and nesfatin-1 were measured by ELISA, and the activation of hippocampal microglia and astrocytes was assessed by immunohistochemistry. The protein expression of several molecular associated with the regulation of synaptic plasticity in the hippocampus and the pre-frontal cortex (PFC) was detected via western blotting. Results: The STZ-microinjected model mice showed a slower bodyweight gain and higher serum concentration of insulin and nesfatin-1. Although there was no significant difference between groups with regard to the ability of balance and motor coordination, the model mice presented a decline of spontaneous movement and exploratory behavior, together with an impairment of learning and memory ability. Increased activated microglia was aggregated in the hippocampal dentate gyrus of model mice, together with an increase abundance of Aβ1-42 and Tau in the hippocampus and PFC. Moreover, the protein expression of NMDAR2A, NMDAR2B, SynGAP, PSD95, BDNF, and p-β-catenin/β-catenin were remarkably decreased in the hippocampus and the PFC of model mice, and the expression of p-GSK-3β (ser9)/GSK-3β were reduced in the hippocampus. Conclusion: A bilateral hippocampal microinjection of STZ could induce not only AD-like behavioral performance in mice, but also adaptive changes of synaptic plasticity against neuroinflammatory and endocrinal injuries. The underlying mechanisms might be associated with the imbalanced expression of the key proteins of Wnt signaling pathway in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Cong-Cong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Zameer S, Ali J, Vohora D, Najmi AK, Akhtar M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer's disease in intracerebroventricular streptozotocin model for brain delivery. J Drug Target 2021; 29:199-216. [PMID: 32876502 DOI: 10.1080/1061186x.2020.1817041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
The current study aimed to develop alendronate (ALN)-loaded chitosan nanoparticles (CS-ALN-NPs) for brain delivery via intranasal route. These CS-ALN-NPs reduced the peripheral side effects and released ALN directly to brain. These NPs were formulated through ionic gelation technique by mixing sodium tripolyphosphate (1.5 mg/ml) in ALN-CS (1.75 mg/ml) solution. CS-ALN-NPs attained 135.75 ± 5.80 nm, 0.21 ± 0.013, 23.8 ± 3.69 mV, 72.46 ± 0.879% and 30.92 ± 0.375% mean particle size, PDI, zeta potential, entrapment efficiency and loading capacity, respectively. Furthermore, the TEM and SEM analysis of CS-ALN-NPs, respectively, revealed the particle size in 200 nm range and spherical shape. The in vitro and ex vivo release profile revealed a sustained drug release through CS-ALN-NPs as compared to pure drug solution. Also these NPs acquired a high concentration in mice brain and better pharmacokinetic profile than ALN solution (intranasal) CS-ALN-NPs were then evaluated against intracerebroventricular-streptozotocin (ICV-STZ) induced Alzheimer's disease (AD)-like pathologies in mice. The intranasal CS-ALN-NP altered the ICV-STZ induced neurobehavioral, neurochemical and histopathological changes in mice. These effects were significant to those of ALN solution (intranasal). The neuroprotective potential of CS-ALN-NPs observed in ICV-STZ mice model of AD may be a promising brain-targeted delivery system for AD treatment along with further extensive exploration at both pre-clinical and clinical edge. HIGHLIGHTS CS-ALN-NPs were developed and optimised to overcome the poor pharmacokinetic profile and associated side effects of ALN CS-ALN-NPs showed particle size within 200 nm range as well as controlled and sustained release in in vitro release study These optimised NPs of ALN attained higher brain:blood ratio and better pharmacokinetic profile (Cmax, tmax, AUC) CS-ALN-NPs markedly altered ICV STZ induced impairment in cognitive functions of mice and changes in APP processing, neuroinflammatory cytokines and other biochemical parameters in mice hippocampus.
Collapse
Affiliation(s)
- Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Duggal P, Jadaun KS, Siqqiqui EM, Mehan S. Investigation of Low Dose Cabazitaxel Potential as Microtubule Stabilizer in Experimental Model of Alzheimer's Disease: Restoring Neuronal Cytoskeleton. Curr Alzheimer Res 2020; 17:601-615. [PMID: 33030130 DOI: 10.2174/1567205017666201007120112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Neuronal Microtubule (MT) tau protein, providing cytoskeleton to neuronal cells, plays a vital role, including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediated MT destabilization results in axonopathy, additionally neurotransmitter deficit and ultimately causing Alzheimer's disease. Pre-clinically, streptozotocin (3mg/kg, 10μl/ unilateral, ICV) stereotaxically mimics the behavioral and neurochemical alterations similar to Alzheimer's tau pathology resulting in MT assembly defects further lead to neuropathological cascades. OBJECTIVE Clinically approved medications such as Donepezil (DNP), rivastigmine, and Memantine (MEM) are responsible for symptomatic care only, but there is no specific pharmacological intervention that directly interacts with the neuronal microtubule destabilization. METHODS The current study focused on the involvement of anti-cancer agent microtubule stabilizer cabazitaxel at a low dose (0.5 and 2 mg/kg) alone and in combination with standard drugs DNP (5 mg/kg), MEM (10 mg/kg) and microtubule stabilizer Epothilone D (EpoD) (3 mg/kg) in the prevention of intracerebroventricular streptozotocin (ICV-STZ) intoxicated microtubule-associated tau protein hyperphosphorylation. RESULTS Chronic treatment of CBZ at a low dose alone and in combination with standard drugs showing no side effect and significantly improve the cognitive impairment, neurochemical alterations along with reducing the level of hyperphosphorylated tau by preventing the breakdown of the neuronal cytoskeleton, respectively. CONCLUSION The above findings suggested that CBZ at low dose show neuroprotective effects against ICV-STZ induced microtubule-associated tau protein hyperphosphorylation in rats and may be an effective agent for the preventive treatment of AD.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kuldeep S Jadaun
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz M Siqqiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
36
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
37
|
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020; 15:82. [PMID: 32774447 PMCID: PMC7409421 DOI: 10.1186/s13020-020-00359-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases in elderly people with a high incidence of dementia at approximately 60-80%. The pathogenesis of AD was quite complicated and currently there is no unified conclusion in the academic community, so no efficiently clinical treatment is available. In recent years, with the development of traditional Chinese medicine (TCM), researchers have proposed the idea of relying on TCM to prevent and treat AD based on the characteristic of multiple targets of TCM. This study reviewed the pathological hypothesis of AD and the potential biomarkers found in the current researches. And the potential targets of berberine and evodiamine from Evodia rutaecarpa in AD were summarized and further analyzed. A compound-targets-pathway network was carried out to clarify the mechanism of action of berberine and evodiamine for AD. Furthermore, the limitations of current researches on the TCM and AD were discussed. It is hoped that this review will provide some references for development of TCM in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiling Fang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Jiaming Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Qinwen Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
38
|
Zameer S, Alam M, Hussain S, Vohora D, Ali J, Najmi AK, Akhtar M. Neuroprotective role of alendronate against APP processing and neuroinflammation in mice fed a high fat diet. Brain Res Bull 2020; 161:197-212. [PMID: 32389800 DOI: 10.1016/j.brainresbull.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Obesity and consumption of diet rich in fat are known to contribute to the development of Alzheimer's disease (AD) which is a complex and multifactorial neurodegenerative disease and a leading cause of mortality with unmet medical needs. Hypercholesterolemia was discovered to increase neuropathological changes along with cognitive decline in AD mouse models but still the underlying mechanism is elusive. Furthermore, isoprenoids, the crucial products of Mevalonate-pathway produced by the action of farnesyl pyrophosphate synthase (FPPS) enzyme, are also demonstrated to play a key role in AD. Nevertheless, bisphosphonates target this enzyme in order to treat osteoporosis and also found to alleviate dementia in such patients. As per the cited inhibitory action of alendronate, against acetylcholinesterase and cholesterol level, we hypothesized to explore the potential of alendronate against high fat diet (HFD) induced neuropathologies and cognitive disabilities in AD mouse model. Here we noticed that in mice provided with HFD for 14 weeks, spatial memory was compromised as interpreted in different behavioral paradigms. Together with cognitive depletion, there was observed a provoking effect on amyloid precursor protein (APP)-processing via amyloidogenic pathway due to enhanced β-site APP cleaving enzyme-1 (BACE-1) level which in turn leads to augmented release of amyloid beta (Aβ) in hippocampus of HFD mice. Relevant to these, significant elevation in hippocampal level of neuroinflammatory cytokines, oxidative stress markers and isoprenoids and serum cholesterol were also found after HFD exposure. Marked reversal of cognitive impairment, enhanced APP-processing, neuroinflammation along with other neuropathological alterations in hippocampus was demonstrated following oral administration of alendronate (1.76 mg/kg) for 15 days despite of HFD treatment. These changes were noted to be due to modulation of isoprenoids and cholesterol level by alendronate. Supporting these, histopathological analysis done by congo red revealed the reduced Aβ deposition in hippocampus of drug treated HFD mice The current outcomes provide important implications for the contribution of Mevalonate-pathway and HFD for the onset of AD and also support alendronate as a prominent intervention for amelioration of AD-like pathologies.
Collapse
Affiliation(s)
- Saima Zameer
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahtab Alam
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
39
|
Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep 2020; 47:5737-5745. [PMID: 32648077 DOI: 10.1007/s11033-020-05629-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
Abstract
Recent studies have showed that the long non-coding RNAs (lncRNAs) expression is dysregulated in different neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the effects of memantine on the level of Bace1-as and Bace1 genes' expression in streptozotocin (STZ)-induced Alzheimer's and memantine treated rats were investigated. The male Wistar rats were randomly divided into four groups: 1-Normal control, 2-Sham-operated control, 3- Alzheimer'scontrol rats (ICV-STZ), 4-Experimental group rats treated by memantine in a dose of 30 mg/kg/day for 28 days in ICV-STZ rats. The expression of Bace1-as and Bace1 genes was measured by quantitative-PCR in the brain and blood tissues. ELISA was used to analyze Bace1 and Aβ proteins. Expression of Bace1-as was significantly increased in the brain and blood tissues of the experimental group (p = 0.032 and p = 0.034, respectively). The expression of Bace1 gene showed no significant changes in the brain. Furthermore, the ELISA analysis revealed that Bace1 protein was significantly increased in the plasma of the Alzheimer's control group (p = 0.000) and in the brain tissue of the experimental group (p = 0.000). Additionally, Aβ levels had no significant changes between all groups studied. The Bace1 protein may be used as a prognostic biomarker in plasma, or before using memantine as a treatment. Furthermore, Bace1-as gene expression may play a role in monitoring the progression of AD.
Collapse
|
40
|
Nazifi M, Ashrafpoor M, Oryan S, Esfahani DE, Moghadamnia AA. Neurotoxic effects of high-dose piperine on hippocampal synaptic transmission and synaptic plasticity in a rat model of memory impairment. Neurotoxicology 2020; 79:200-208. [DOI: 10.1016/j.neuro.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
|
41
|
Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer's disease in mice. Biomed Pharmacother 2020; 128:110303. [PMID: 32480228 DOI: 10.1016/j.biopha.2020.110303] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Hibiscus sabdariffa L. (Malvaceae) is one of the well-known traditionally used remedy worldwide. It exhibited numerous pharmacological properties including antioxidant, antidepressant, sedative, anti-inflammatory, antiproliferative, antimicrobial and neuroprotective activities. The aim of this study is to highlight the mechanisms underlying the neuroprotective effects of anthocyanin-enriched extracts of two Hibiscus varieties (white and red calyces) in the management of Alzheimer's disease (AD) in addition to their metabolic profiling. The anthocyanin contents were determined quantitatively using the pH-differential technique and qualitatively by LC/MS/MS. The extracts were tested in vitro for their antioxidant potential as well as acetylcholinesterase inhibition activity and both showed promising activities. The LC/MS/MS analysis allowed the tentative identification of 26 and 24 metabolites in red and white calyces, respectively, represented by anthocyanins, flavonoids, aliphatic and phenolic acids. In vivo, streptozotocin induced AD in mice model was established and Hibiscus extracts were tested at a dose of 200 mg kg-1 compared to celecoxib (30 mg/kg). Histopathology of cerebral cortex and hippocampus, immunohistochemistry for tau- protein and caspase-3 with behavioral tests and measurement of several biochemical parameters were done. Hibiscus prevented memory impairment, and this could be attributed to the amelioration of STZ-induced neuroinflammation and amyloidogenesis. Consequently, Hibiscus represents a promising safe agent that can be repurposed for AD through exerting anti-inflammatory, anti-acetylcholinesterase, antioxidant, and anti-amyloidogenic activities.
Collapse
|
42
|
Lv H, Tang L, Guo C, Jiang Y, Gao C, Wang Y, Jian C. Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance. Cogn Neurodyn 2020; 14:323-338. [PMID: 32399074 DOI: 10.1007/s11571-020-09571-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
It is well known in clinical practice that Alzheimer's disease (AD) is closely associated with brain insulin resistance, and the cerebral insulin pathway has been proven to play a critical role in the pathogenesis of AD. However, finding the most efficient way to improve brain insulin resistance remains challenging. Peripheral administration of insulin does not have the desired therapeutic effect and may induce adverse reactions, such as hyperinsulinemia, but intranasal administration may be an efficient way. In the present study, we established a brain insulin resistance model through an intraventricular injection of streptozotocin, accompanied by cognitive impairment. Following intranasal insulin treatment, the learning and memory functions of mice were significantly restored, the neurogenesis in the hippocampus was improved, the level of insulin in the brain increased, and the activation of the IRS-1-PI3K-Akt-GSK3β insulin signal pathway, but not the Ras-Raf-MEK-MAPK pathway, was markedly increased. The olfactory bulb-subventricular zone-subgranular zone (OB-SVZ-SGZ) axis might be the mechanism through which intranasal insulin regulates cognition in brain-insulin-resistant mice. Thus, intranasal insulin administration may be a highly efficient way to improve cognitive function by increasing cerebral insulin levels and reversing insulin resistance.
Collapse
Affiliation(s)
- Hui Lv
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Lingjiao Tang
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Canshou Guo
- The 6th Hospital of Wu Han, Wuhan, 430015 Hubei People's Republic of China
| | - Yongming Jiang
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Ce Gao
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Yifan Wang
- 2Graduate College of Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Chongdong Jian
- 1Youjiang Medical University for Nationalities, Chengxiang Avenue, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| |
Collapse
|
43
|
Zhang H, Yin L, Lu M, Wang J, Li YT, Gao WL, Yin ZS. Evodiamine attenuates adjuvant-induced arthritis in rats by inhibiting synovial inflammation and restoring the Th17/Treg balance. J Pharm Pharmacol 2020; 72:798-806. [PMID: 32056223 DOI: 10.1111/jphp.13238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Evodiamine (Evo) possesses strong anti-inflammatory activity. In this study, we determine the antiarthritic effect of Evo. METHODS Evo was administered to rats with adjuvant-induced arthritis (AA). We evaluated arthritis symptoms & histopathological changes and measured inflammatory cell infiltration, pro-inflammatory cytokine production and Th17 & Treg percentages in arthritic rats. KEY FINDINGS Evo significantly improved the clinical signs of AA in rats, including decreases in paw swelling, the polyarthritis index and the number of swollen paw joints. Based on the histopathological analysis, Evo improved synovial inflammation and bone injury by inhibiting inflammatory cell infiltration, synoviocyte proliferation, pannus formation and cartilage erosion. Furthermore, the numbers of synovial CD3+ or CD68+ inflammatory cells were reduced, and the elevated levels of tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6 were restored to control levels by the Evo treatment. In addition, Evo therapy regulated the abnormal differentiation of Treg and Th17 cells, decreasing IL-17 production and increasing IL-10 levels. Finally, Evo inhibited Stat3 phosphorylation and induced Stat5 phosphorylation in rats with AA. CONCLUSIONS Based on our results, Evo is a promising antiarthritic agent, potentially due to its inhibitory effect on synovial inflammation and regulatory effects on Treg and Th17 differentiation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Lu
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye-Tian Li
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Lu Gao
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Evodiamine alleviates kidney ischemia reperfusion injury in rats: A biochemical and histopathological study. J Cell Biochem 2019; 120:17159-17166. [DOI: 10.1002/jcb.28976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
45
|
Zameer S, Kaundal M, Vohora D, Ali J, Kalam Najmi A, Akhtar M. Ameliorative effect of alendronate against intracerebroventricular streptozotocin induced alteration in neurobehavioral, neuroinflammation and biochemical parameters with emphasis on Aβ and BACE-1. Neurotoxicology 2019; 70:122-134. [PMID: 30481507 DOI: 10.1016/j.neuro.2018.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age related neurodegenerative disorder manifested by progressive cognitive decline and neuronal loss in the brain, yet precise etiopathology of majority of sporadic or late-onset AD cases is unknown. AD is associated with various pathological events such as Aβ deposition due to BACE-1 induced cleavage of APP, neuroinflammation, increased cholesterol synthesis, cholinergic deficit and oxidative stress. It was found that bone drug, alendronate (ALN) that cross blood brain barrier inhibits brain cholesterol synthesis and AChE enzyme activity. As cholesterol modifying agents have been supposed to alter AD like pathologies, the current study was designed to investigate the possible neuroprotective and therapeutic potential of ALN against ICV STZ induced experimental sporadic AD (SAD) in mice in a non-cholesterol dependent manner, using donepezil (5 mg/kg) as a reference standard. The preliminary study was done by molecular modelling to identify the binding affinity of ALN with BACE-1 in silico. The prevention of cognitive impairment in mice induced by ICV STZ (3 mg/kg) infused on first and third day, by ALN (1.76 mg/kg p.o.) administered for 15 consecutive days was assessed through Spontaneous Alternation Behavior (SAB) and Morris water maze (MWM) test. Additionally, the protective effect of ALN was also observed by the reversal of altered levels of Aβ1-42, BACE-,1 neuroinflammatory cytokines, AChE activity and oxidative stress markers (except TBARS) in ICV-STZ infused mice. However, the findings of the present study imply the therapeutic potential of ALN against SAD-like complications.
Collapse
Affiliation(s)
- Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Madhu Kaundal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|