1
|
Xu Z, Wang S, Liu C, Kang J, Pan Y, Zhang Z, Zhou H, Xu M, Li X, Wang H, Niu S, Liu L, Sun D, Liu X. The Role of Gut Microbiota in Male Erectile Dysfunction of Rats. World J Mens Health 2025; 43:213-227. [PMID: 38772541 PMCID: PMC11704160 DOI: 10.5534/wjmh.230337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function. MATERIALS AND METHODS Male Sprague-Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection. RESULTS The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways. CONCLUSIONS Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
Collapse
Affiliation(s)
- Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiang Liu
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xia Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyu Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Niu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Dubey I, K N, G V, Rohilla G, Lalruatmawii, Naxine P, P J, Rachamalla M, Kushwaha S. Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health. Reprod Toxicol 2024; 130:108732. [PMID: 39395506 DOI: 10.1016/j.reprotox.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Vigneshwaran G
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gourav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Liu J, Pan R. Multi-omics association study integrating GWAS and pQTL data revealed MIP-1α as a potential drug target for erectile dysfunction. Front Pharmacol 2024; 15:1495970. [PMID: 39555095 PMCID: PMC11565697 DOI: 10.3389/fphar.2024.1495970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Erectile dysfunction (ED) brings heavy burden to patients and society. Despite the availability of established therapies, existing medications have restricted efficacy. Therefore, we utilized a two-sample Mendelian randomization (MR) approach to find the drug targets that might enhance the clinical outcome of ED. Methods Genetic instruments associated with circulating inflammatory proteins were obtained from a genome-wide association study (GWAS) involving 8,293 European participants. Summary statistics for ED were extracted from a meta-analysis of the United Kingdom Biobank cohort compromised of 6,175 cases and 217,630 controls with European descent. We utilized multi-omics method and MR study to explore potential drug targets by integrating GWAS and protein quantity trait loci (pQTL) data. Inverse-variance weighted (IVW) method was applied as the primary approach. Cochran's Q statistics was employed to investigate the presence of heterogeneity. Furthermore, we identify the potential therapeutic drug targets for the treatment of ED utilizing molecular docking technology. Results This MR analysis of integrating GWAS and pQTL data showed that macrophage inflammatory protein-1 alpha (MIP-1α) was causally associated with the risk of ED (OR:1.19, 95%CI:1.02-1.39, p = 0.023). Meanwhile, the results of the weighted median model were consistent with the IVW estimates (OR:1.26, 95%CI:1.04-1.52, p = 0.018). Sensitivity analysis revealed no horizontal pleiotropy and heterogeneity. Furthermore, four anti-inflammatory or tonifying small molecular compounds, encompassing echinacea, pinoresinol diglucoside, hypericin, and icariin were identified through molecular docking technology. Conclusion This study identified MIP-1α as an underlying druggable gene and promising novel therapeutic target for ED, necessitating further investigation to detect the potential mechanisms by which MIP-1α might impact the development of ED.
Collapse
Affiliation(s)
- Jingwen Liu
- Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou, Zhejiang, China
| | - Renbing Pan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
4
|
Yu Y, Yin Y, Deng J, Yang X, Bai S, Yu R. Unveiling the causal effects of gut microbiome on trimethylamine N-oxide: evidence from Mendelian randomization. Front Microbiol 2024; 15:1465455. [PMID: 39526138 PMCID: PMC11545679 DOI: 10.3389/fmicb.2024.1465455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The relationship between gut microbiome and trimethylamine oxide (TMAO) has not been fully elucidated. We aimed to assess the causal effects of different gut microbes on TMAO using Mendelian randomization (MR). Methods Gut microbiome and TMAO datasets were acquired from genome-wide association studies and screened for single nucleotide polymorphisms according to the basic assumptions of MR. Inverse variance weighted was used as the main method in MR analysis to assess the causal relationship between the gut microbiome and TMAO. Finally, the MR-Egger intercept, Cochran's Q test, and leave-one-out sensitivity analysis were used to assess the horizontal pleiotropy, heterogeneity, and robustness of the results, respectively. Results MR analysis revealed that the species Bacteroides finegoldii (odds ratio [OR] 1.064, 95% confidence interval [CI] 1.003 to 1.128, p = 0.039), family Sutterellaceae (OR 1.188, 95% CI 1.003 to 1.407, p = 0.047), and phylum Pseudomonadota (OR 1.205, 95% CI 1.036 to 1.401, p = 0.016), as well as the species Bacteroides uniformis (OR 1.263, 95% CI 1.039 to 1.535, p = 0.019), were positively associated with increased genetic susceptibility to TMAO. In contrast, the species Bacteroides thetaiotaomicron (OR 0.813, 95% CI 0.696 to 0.950, p = 0.009) and Bilophila wadsworthia (OR 0.828, 95% CI 0.690 to 0.995, p = 0.044) were associated with reduced genetic susceptibility to TMAO. Additionally, the MR-Egger intercept indicated no horizontal pleiotropy (p ≥ 0.05), and Cochran's Q test and sensitivity analysis demonstrated that the results were not heterogeneous (p ≥ 0.05) and were robust. Conclusion Our findings revealed the role of the phylum Pseudomonadota, family Sutterellaceae, species Bacteroides finegoldii, and Bacteroides uniformis in increasing TMAO, as well as the species Bacteroides thetaiotaomicron and Bilophila wadsworthia in decreasing TMAO. This study provides new insights into the relationship between the gut microbiome and TMAO levels.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Bai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Li Y, Ma H, Wang J. Effects of polycyclic aromatic hydrocarbons on the gut-testis axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116539. [PMID: 38870734 DOI: 10.1016/j.ecoenv.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds which are comprised of two or more fused benzene rings. As a typical environmental pollutant, PAHs are widely distributed in water, soil, atmosphere and food. Despite extensive researches on the mechanisms of health damage caused by PAHs, especially their carcinogenic and mutagenic toxicity, there is still a lack of comprehensive summarization and synthesis regarding the mechanisms of PAHs on the gut-testis axis, which represents an intricate interplay between the gastrointestinal and reproductive systems. Thus, this review primarily focuses on the potential forms of interaction between PAHs and the gut microbiota and summarizes their adverse outcomes that may lead to gut microbiota dysbiosis, then compiles the possible mechanistic pathways on dysbiosis of the gut microbiota impairing the male reproductive function, in order to provide valuable insights for future research and guide further exploration into the intricate mechanisms underlying the impact of gut microbiota dysbiosis caused by PAHs on male reproductive function.
Collapse
Affiliation(s)
- Yuanjie Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Yan Z, Lei Y, Zhao P, Zhang D, Shen J, Zhang G, Wei R, Liu H, Liu X, He Y, Shen S, Liu D. Natural mating ability is associated with gut microbiota composition and function in captive male giant pandas. Ecol Evol 2024; 14:e11189. [PMID: 38571808 PMCID: PMC10985376 DOI: 10.1002/ece3.11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The issue of poor sexual performance of some male giant pandas seriously impairs the growth and the genetic diversity of the captive population, yet there is still no clear understanding of the cause of the loss of this ability and its underlying mechanism. In this study, we analyzed the gut microbiota and its function in 72 fecal samples obtained from 20 captive male giant pandas, with an equal allocation between individuals capable and incapable of natural mating. Additionally, we investigated fecal hormone levels and behavioral differences between the two groups. A correlation analysis was then conducted among these factors to explore the influencing factors of their natural mating ability. The results showed significant differences in the composition of gut microbiota between the two groups of male pandas. The capable group had significantly higher abundance of Clostridium sensu stricto 1 (p adjusted = .0021, GLMM), which was positively correlated with fatty acid degradation and two-component system functions (Spearman, p adjusted < .05). Additionally, the capable group showed higher gene abundance in gut microbiota function including purine and pyrimidine metabolism and galactose metabolism, as well as pathways related to biological processes such as ribosome and homologous recombination (DEseq2, p adjusted < .05). We found no significant differences in fecal cortisol and testosterone levels between the two groups, and no difference was found in their behavior either. Our study provides a theoretical and practical basis for further studying the behavioral degradation mechanisms of giant pandas and other endangered mammal species.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Yinghu Lei
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Pengpeng Zhao
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Danhui Zhang
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Jiena Shen
- Research Center for the Qinling Giant PandaShaanxi Rare Wildlife Rescue BaseXi'anShaanxiChina
| | - Guiquan Zhang
- China Conservation and Research Centre for the Giant PandaWolongSichuanChina
| | - Rongping Wei
- China Conservation and Research Centre for the Giant PandaWolongSichuanChina
| | - Haoqiu Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Xiaoyan Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Yan He
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Sijia Shen
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| | - Dingzhen Liu
- Department of Ecology, College of Life Sciences, Key Laboratory for Biodiversity and Ecological Engineering of Ministry of EducationBeijing Normal UniversityBeijingHebeiChina
| |
Collapse
|
8
|
Chen Y, Yang C, Deng Z, Xiang T, Ni Q, Xu J, Sun D, Luo F. Gut microbially produced tryptophan metabolite melatonin ameliorates osteoporosis via modulating SCFA and TMAO metabolism. J Pineal Res 2024; 76:e12954. [PMID: 38618998 DOI: 10.1111/jpi.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Osteoporosis (OP) is a severe global health issue that has significant implications for productivity and human lifespan. Gut microbiota dysbiosis has been demonstrated to be closely associated with OP progression. Melatonin (MLT) is an important endogenous hormone that modulates bone metabolism, maintains bone homeostasis, and improves OP progression. Multiple studies indicated that MLT participates in the regulation of intestinal microbiota and gut barrier function. However, the promising effects of gut microbiota-derived MLT in OP remain unclear. Here, we found that OP resulted in intestinal tryptophan disorder and decreased the production of gut microbiota-derived MLT, while administration with MLT could mitigate OP-related clinical symptoms and reverse gut microbiota dysbiosis, including the diversity of intestinal microbiota, the relative abundance of many probiotics such as Allobaculum and Parasutterella, and metabolic function of intestinal flora such as amino acid metabolism, nucleotide metabolism, and energy metabolism. Notably, MLT significantly increased the production of short-chain fatty acids and decreased trimethylamine N-oxide-related metabolites. Importantly, MLT could modulate the dynamic balance of M1/M2 macrophages, reduce the serum levels of pro-inflammatory cytokines, and restore gut-barrier function. Taken together, our results highlighted the important roles of gut microbially derived MLT in OP progression via the "gut-bone" axis associated with SCFA metabolism, which may provide novel insight into the development of MLT as a promising drug for treating OP.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Chinese PLA 76th Army Corps Hospital, Beijing, Xining, China
| | - Chuan Yang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Quan YX, Lao YD, Wu HY, He XX, Wu LH. Beneficial effects of the first case of washed microbiota transplantation for postorgasmic illness syndrome: a case report. Sex Med 2024; 12:qfae015. [PMID: 38560650 PMCID: PMC10973931 DOI: 10.1093/sexmed/qfae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Postorgasmic illness syndrome (POIS) is characterized by allergic symptoms and flu-like illness after ejaculation. There are still no effective treatments for POIS. Aim To report the first case of washed microbiota transplantation (WMT) to treat patient with POIS. Methods Data were collected from a patient with POIS who had received 3 courses of WMT: self-rating scale of POIS symptoms, Self-rating Anxiety Scale, Self-rating Depression Scale, and Symptom Checklist 90. The patient's stool samples for 16sDNA sequencing were collected 1 month after WMT. Results POIS symptoms improved after WMT. Scores decreased from baseline after WMT: self-rating scale of POIS symptoms (before WMT, 16; after first, 16; after second, 8; after third, 9), Self-rating Anxiety Scale (45, 42.5, 37.5, 45), Self-rating Depression Scale (63.75, 58.75, 47.5, 50), and Symptom Checklist 90 (143, 140, 109, 149). Characteristics of the patient's gut microbiota changed. At the genus level, the relative abundance of beneficial bacteria increased, and some opportunistic pathogenic bacteria decreased. Conclusion WMT may be an effective and safe choice for the treatment of patients with POIS by changing the gut microbiota of the host.
Collapse
Affiliation(s)
- Yong-Xi Quan
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ye-Dong Lao
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hui-Yi Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Li-Hao Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
10
|
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 2024; 15:1346035. [PMID: 38482009 PMCID: PMC10933031 DOI: 10.3389/fimmu.2024.1346035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
The influence of gut microbiota on physiological processes is rapidly gaining attention globally. Despite being under-studied, there are available data demonstrating a gut microbiota-gonadal cross-talk, and the importance of this axis in reproduction. This study reviews the impacts of gut microbiota on reproduction. In addition, the possible mechanisms by which gut microbiota modulates male and female reproduction are presented. Databases, including Embase, Google scholar, Pubmed/Medline, Scopus, and Web of Science, were explored using relevant key words. Findings showed that gut microbiota promotes gonadal functions by modulating the circulating levels of steroid sex hormones, insulin sensitivity, immune system, and gonadal microbiota. Gut microbiota also alters ROS generation and the activation of cytokine accumulation. In conclusion, available data demonstrate the existence of a gut microbiota-gonadal axis, and role of this axis on gonadal functions. However, majority of the data were compelling evidences from animal studies with a great dearth of human data. Therefore, human studies validating the reports of experimental studies using animal models are important.
Collapse
Affiliation(s)
- Victory J. Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, WY, United States
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tunmise M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Ejigbo, Osun State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Osman MM, Hammad MA, Barham DW, Toma R, El-Khatib FM, Dianatnejad S, Nguyen J, Towe M, Choi E, Wu Q, Banavar G, Cai Y, Moura P, Shen N, Vuyisich M, Yafi NR, Yafi FA. Comparison of the gut microbiome composition between men with erectile dysfunction and a matched cohort: a pilot study. Andrology 2024; 12:374-379. [PMID: 37316348 DOI: 10.1111/andr.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND To-date there have been minimal studies to investigate an association between the gut microbiome and erectile dysfunction. There have been many inflammatory diseases linked to gut microbiome dysbiosis; such as cardiovascular disease and metabolic syndrome. These same inflammatory diseases have been heavily linked to erectile dysfunction. Given the correlations between both conditions and cardiovascular disease and the metabolic syndrome, we believe that it is worthwhile to investigate a link between the two. OBJECTIVE To investigate the potential association between the gut microbiome and erectile dysfunction. METHODS Stool samples were collected from 28 participants with erectile dysfunction and 32 age-matched controls. Metatranscriptome sequencing was used to analyze the samples. RESULTS No significant differences were found in the gut microbiome characteristics, including Kyoto Encyclopedia of Genes and Genomes richness (p = 0.117), Kyoto Encyclopedia of Genes and Genomes diversity (p = 0.323), species richness (p = 0.364), and species diversity (p = 0.300), between the erectile dysfunction and control groups. DISCUSSION The association of gut microbiome dysbiosis and pro-inflammatory conditions has been well studied and further literature continues to add to this evidence. Our main limitation for this study was our small-sample size due to recruitment issues. We believe that a study with a larger population size may find an association between the gut microbiome and erectile dysfunction. CONCLUSIONS The results of this study do not support a significant association between the gut microbiome and erectile dysfunction. Further research is needed to fully understand the relationship between these two conditions.
Collapse
Affiliation(s)
- Mohamad M Osman
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri, USA
| | - Muhammed A Hammad
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - David W Barham
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Ryan Toma
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Farouk M El-Khatib
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Sharmin Dianatnejad
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Jeanie Nguyen
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Maxwell Towe
- Department of Urology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Edward Choi
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Qiaqia Wu
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| | - Guruduth Banavar
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Ying Cai
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Pedro Moura
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Nan Shen
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Momchilo Vuyisich
- Viome, Inc., Bellevue, Washington/Los Alamos, New Mexico/New York, New York/San Diego, California, USA
| | - Natalie R Yafi
- Independent Registered Dietitian, Irvine, California, USA
| | - Faysal A Yafi
- Department of Urology, University of California, Irvine Medical Center, Orange, California, USA
| |
Collapse
|
12
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
13
|
Li P, Tong T, Wu Y, Zhou X, Zhang M, Liu J, She Y, Li Z, Li Y. The Synergism of Human Lactobacillaceae and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice. J Microbiol Biotechnol 2023; 33:1657-1670. [PMID: 37734909 PMCID: PMC10772568 DOI: 10.4014/jmb.2304.04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_gnavus_group, Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed that lotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13(S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yusong Wu
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Xin Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Sino Canada health engineering research institute, Hefei, P.R. China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd, Beijing, 102209, P.R. China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, P.R. China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yongli Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
14
|
Andersen ML, Gozal D, Pires GN, Tufik S. Exploring the potential relationships among obstructive sleep apnea, erectile dysfunction, and gut microbiota: a narrative review. Sex Med Rev 2023; 12:76-86. [PMID: 37385976 DOI: 10.1093/sxmrev/qead026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Poor sleep quality is closely associated with comorbidities affecting a multitude of organ systems. Among the sleep disorders in the population, there has recently been an increase in the prevalence of obstructive sleep apnea (OSA), which has particularly affected men. The intermittent hypoxia and sleep fragmentation associated with OSA can result in the manifestation or aggravation of a number of pathophysiologic conditions, including the impairment of reproductive function in men and women. In this context, erectile dysfunction (ED) is of particular concern. Other consequences of OSA are changes in the gastrointestinal microbiota, with the resultant dysbiosis having potentially harmful consequences that promote downstream exacerbation of various comorbidities. OBJECTIVES This narrative review aims to explore the potential relationships among ED, gut microbiota, and OSA. METHODS A search of the relevant literature was performed in the PubMed, Embase, Medline, and Web of Science databases. RESULTS Sleep is important for regulating the body's functions, and sleep deprivation can negatively affect health. OSA can damage organic functions, including reproductive function, and can lead to ED. Restoring the microbiota and improving sleep can help to improve sexual function or reverse ED and enhance other associated conditions mediated through the gut-brain axis relationship. Probiotics and prebiotics can be used as supportive strategies in the prevention and treatment of OSA, as they help to reduce systemic inflammation and improve intestinal barrier function. CONCLUSION A good diet, a healthy lifestyle, and proper bowel function are essential in controlling depression and several other pathologies. Modulating the gut microbiota through probiotics and prebiotics can provide a viable strategy for developing new therapeutic options in treating many conditions. A better understanding of these a priori unrelated phenomena would foster our understanding of the effects of OSA on human fertility and how changes in gut microbiota may play a role.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| |
Collapse
|
15
|
Liu C, Gao Y, Ji J, Sun C, Chen M. Association between inflammatory indexes and erectile dysfunction in U.S. adults: National Health and Nutrition Examination Survey 2001-2004. Sex Med 2023; 11:qfad045. [PMID: 37577069 PMCID: PMC10413424 DOI: 10.1093/sexmed/qfad045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background The association of inflammatory biomarkers with erectile dysfunction (ED) is still largely unknown. Aim The study sought to explore the association of inflammatory biomarkers with ED in U.S. adults. Methods Participant data for this study were extracted from the National Health and Nutrition Examination Survey, and individuals that lacked information on clinical variables were excluded. Dose-response curve analysis was applied to explore the association of inflammatory biomarkers with ED prevalence. The confounders were adjusted for with weighted logistic regression analysis. We employed 1:1 propensity score matching to eliminate the effects of clinical variables to confirm the reliability of the results. Outcomes ED prevalence was investigated with potential risk factors. Results A total of 2331 men ≥20 years of age who participated in the National Health and Nutrition Examination Survey 2001-2004 were included in this study. Compared with individuals without ED, ED cohort displayed higher levels of neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammatory index, and systemic inflammation response index. Dose-response curve analysis indicated ED prevalence increased with the increase of platelet-to-lymphocyte ratio, systemic immune-inflammatory index, and systemic inflammation response index. Weighed logistic regression analysis revealed neutrophil-to-lymphocyte ratio was positively associated with ED. The reliability of the results was confirmed by 1:1 propensity score matching reanalysis. Clinical Implications Individuals with chronic inflammatory conditions should be alert for the development of ED. Strengths and Limitations It is a large controlled study to investigate the relationship between inflammatory indexes and ED. However, it is a cross-sectional study and it lacks an accurate assessment of the degree of ED. Conclusion Inflammatory biomarkers were associated with ED prevalence.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jie Ji
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| |
Collapse
|
16
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Russo GI, Bongiorno D, Bonomo C, Musso N, Stefani S, Sokolakis I, Hatzichristodoulou G, Falcone M, Cai T, Smarrazzo F, Verze P. The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. Int J Impot Res 2023; 35:350-355. [PMID: 35418604 DOI: 10.1038/s41443-022-00569-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Microbiota is defined as the group of commensal microorganisms that inhabit a specific human body site. The composition of each individual's gastrointestinal microbiota is influenced by several factors such as age, diet, lifestyle, and drug intake, but an increasing number of studies have shown that the differences between a healthy microbiota and a dysbiotic one can be related to different diseases such as benign prostatic hyperplasia (BPH) and erectile dysfunction (ED). The aim of this review is to give an overview of the role of the gut microbiota on BPH and ED. Gut microbiota modifications can influence prostate health indirectly by the activation of the immune system and the production of proinflammatory cytokines such as IL-17, IL-23, TNF-alpha, and IFN-gamma, which are able to promote an inflammatory state. Gut dysbiosis may lead to the onset of ED by the alteration of hormone levels and metabolic profiles, the modulation of stress/anxiety-mediated sexual dysfunction, the development of altered metabolic conditions such as obesity and diabetes mellitus, and the development of hypertension. In conclusion, much evidence suggests that the intestinal microbiota has an influence on various pathologies including BPH and ED.
Collapse
Affiliation(s)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Ioannis Sokolakis
- Department of Urology, 'Martha-Maria' Hospital Nuremberg, Nuremberg, Germany
| | | | - Marco Falcone
- Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, 21100, Varese, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Trento, Italy
| | - Francesco Smarrazzo
- Urology Unit, Department of Medicine, Surgery, Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Paolo Verze
- Urology Unit, Department of Medicine, Surgery, Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| |
Collapse
|
18
|
Defeudis G, Mazzilli R, Di Tommaso AM, Zamponi V, Carlomagno F, Tuccinardi D, Watanabe M, Faggiano A, Gianfrilli D. Effects of diet and antihyperglycemic drugs on erectile dysfunction: A systematic review. Andrology 2023; 11:282-294. [PMID: 35485604 PMCID: PMC10084359 DOI: 10.1111/andr.13192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Erectile dysfunction is recognized as one of the complications of diabetes mellitus. To date, a wide gap of knowledge is present on the efficacy of pharmacological treatments of diabetes mellitus on erectile function, acting not only through metabolic control. Similarly, the effects of different diet regimens on erectile dysfunction are still debated. OBJECTIVES We aimed to explore the effects of diet and antihyperglycemic drugs, considering both old and novel therapeutic approaches, on erectile function. MATERIALS/METHODS We performed a systematic review, following the PRISMA guidelines. The research was conducted on studies reporting erectile dysfunction assessment in subjects with diabetes and the relationship with diet and antihyperglycemic drugs. RESULTS The Mediterranean diet was effective in most studies for the protection of erectile function. Furthermore, antihyperglycemic drugs seem to show an overall protective role on erectile function. DISCUSSION/CONCLUSION Although encouraging results are present for all classes of antihyperglycemic drugs, several studies are needed in humans, mainly on acarbose, pioglitazone, dipeptidyl-peptidase-4 inhibitors, and sodium-glucose cotransporter-2 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Rossella Mazzilli
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfonso Maria Di Tommaso
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Virginia Zamponi
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Antongiulio Faggiano
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Fabozzi G, Rebuzzini P, Cimadomo D, Allori M, Franzago M, Stuppia L, Garagna S, Ubaldi FM, Zuccotti M, Rienzi L. Endocrine-Disrupting Chemicals, Gut Microbiota, and Human (In)Fertility-It Is Time to Consider the Triad. Cells 2022; 11:3335. [PMID: 36359730 PMCID: PMC9654651 DOI: 10.3390/cells11213335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 07/29/2023] Open
Abstract
The gut microbiota (GM) is a complex and dynamic population of microorganisms living in the human gastrointestinal tract that play an important role in human health and diseases. Recent evidence suggests a strong direct or indirect correlation between GM and both male and female fertility: on the one hand, GM is involved in the regulation of sex hormone levels and in the preservation of the blood-testis barrier integrity; on the other hand, a dysbiotic GM is linked to the onset of pro-inflammatory conditions such as endometriosis or PCOS, which are often associated with infertility. Exposure to endocrine-disrupting chemicals (EDCs) is one of the main causes of GM dysbiosis, with important consequences to the host health and potential transgenerational effects. This perspective article aims to show that the negative effects of EDCs on reproduction are in part due to a dysbiotic GM. We will highlight (i) the link between GM and male and female fertility; (ii) the mechanisms of interaction between EDCs and GM; and (iii) the importance of the maternal-fetal GM axis for offspring growth and development.
Collapse
Affiliation(s)
- Gemma Fabozzi
- B-Woman, Via dei Monti Parioli 6, 00197 Rome, Italy
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Marica Franzago
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| |
Collapse
|
20
|
Cai H, Cao X, Qin D, Liu Y, Liu Y, Hua J, Peng S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front Microbiol 2022; 13:977574. [PMID: 36060736 PMCID: PMC9434149 DOI: 10.3389/fmicb.2022.977574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) is a major component of the gastrointestinal tract. Growing evidence suggests that it has various effects on many distal organs including the male reproductive system in mammals. GM and testis form the gut-testis axis involving the production of key molecules through microbial metabolism or de novo synthesis. These molecules have nutrition, immunity, and hormone-related functions and promote the male reproductive system via the circulatory system. GM helps maintain the integral structure of testes and regulates testicular immunity to protect the spermatogenic environment. Factors damaging GM negatively impact male reproductive function, however, the related mechanism is unknown. Also, the correlation between GM and testis remains to be yet investigated. This review discusses the complex influence of GM on the male reproductive system highlighting the impact on male fertility.
Collapse
Affiliation(s)
- Hui Cai
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xuanhong Cao
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yundie Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yang Liu
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Sha Peng
- Shaanxi Centre of Stem Cells Engineering and Technology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
- *Correspondence: Sha Peng,
| |
Collapse
|
21
|
Jannini TB, Sansone A, Rossi R, Di Lorenzo G, Toscano M, Siracusano A, Jannini EA. Pharmacological strategies for sexual recovery in men undergoing antipsychotic treatment. Expert Opin Pharmacother 2022; 23:1065-1080. [PMID: 35470768 DOI: 10.1080/14656566.2022.2071124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : First- and second-generation antipsychotics are highly accountable for causing a plethora of medical side effects, ranging from metabolic imbalances to sexual dysfunction (SD), that frequently undermine patient-doctor relationships. Nevertheless, to date antipsychotics are one of the best treatment options for dealing with numerous either acute or chronic conditions like agitation, suicidality, depression, dementia, and of course psychosis. For these reasons, clinicians need to handle them wisely to preserve patients' sexual health, avoid poor therapeutic adherence and prevent high rates of therapy drop-out. AREAS COVERED : This article reviews the literature on pharmacologic approaches for management strategies in men who are administered with antipsychotics and developed SD. The etiology of antipsychotic-induced SD is also discussed. EXPERT OPINION : Clinicians must consider sexual life as a major health domain. To do so, a first step would be to measure and monitor sexual function by means of psychometric tools. Secondly, primary prevention should be conducted when choosing antipsychotics, i.e., picking sex-sparing compounds like aripiprazole or brexpiprazole. Thirdly, if sexolytic compounds cannot be dismissed, such as first-generation antipsychotics, risperidone, paliperidone, or amisulpride, then aripiprazole 5-20 mg/day adjunctive therapy has proven to be most effective in normalizing prolactin levels and consequently treating antipsychotic-induced SD.
Collapse
Affiliation(s)
- Tommaso B Jannini
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rodolfo Rossi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Alberto Siracusano
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
An M, Xu Y, Xiao N, Huang J, Wu S, Zhuo Q, Lai Y, Chen J, Li P, Du B. Douchi ameliorates high‐fat diet‐induced hyperlipidaemia by regulation of intestinal microflora in rats. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miaoqing An
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Ya‐nan Xu
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Nan Xiao
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Jian‐zhao Huang
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Shan‐shan Wu
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Qianting Zhuo
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Yuping Lai
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - JianPing Chen
- School of Chinese Medicine, LKS faculty of Medicine The University of Hong Kong Pokfulam Hong Kong 999077 China
| | - Pan Li
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| | - Bing Du
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
- School of Chinese Medicine, LKS faculty of Medicine The University of Hong Kong Pokfulam Hong Kong 999077 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
23
|
Geng Q, Chen S, Sun Y, Zhao Y, Li Z, Wang F, Yu G, Yan X, Zhang J. Correlation between gut microbiota diversity and psychogenic erectile dysfunction. Transl Androl Urol 2022; 10:4412-4421. [PMID: 35070823 PMCID: PMC8749073 DOI: 10.21037/tau-21-915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background To analyze the distribution of gut microbiota in erectile dysfunction (ED) patients and explore the relationship between the diversity of gut microbiota and psychogenic ED. Methods Stool specimen were collected from 30 patients with ED and 30 healthy persons (healthy donors, HDs) and analyzed Paired end (PE) 300 sequencing on V3-V4 region sequences of bacterial 16S rRNA gene by using Illumina's Miseq platform, whereby sequencing results were analyzed to assess differences in species composition and diversity. The analysis comprised five modules: sequencing data quality control, operational taxonomic units (OTU) species clustering and annotation, alpha diversity, beta diversity and the use of t-tests and analysis of linear discriminant analysis effect size (LEfSe) differences. Results The International Index of Erectile Function (IIEF-5) score ranged between 8 and 21. The scores of ED patients were ≥11 and ≤20, and the mean value was 15.67±2.94. The flora diversity in the group of ED patients was significantly different from that of HDs (P<0.01), with the ED group having low bacterial diversity. There were no significant differences in the genus level between the ED and HD group, and abundant bacteria (TOP10) and core flora (90%). Comparison of total flora (the abundance >1%) display, Alloprevotella genera showed differences, whereby Alloprevotella was only be identified in the HD group. Erectile dysfunction and HD showed good separation and clustering respectively in principal component analysis, showing significant differences in two kinds of microflora. T-tests showed that six species were significantly different, and that in the ED group, streptococci and Subdoligranulum were significantly increasing, and Prevotella sp.9, Blautia, Lachnospiraceae NK4A136 groups and Roseburia were significantly lower. Analysis using LEfSe analysis revealed 24 species were significantly different between ED and HD groups. Conclusions When gene sequencing was performed of ED and HD specimens, the microbial community structure and diversity showed significant differences, suggesting that ED specimen had lower gut microbiota diversity.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Guojin Yu
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | | | - Jiwei Zhang
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Wang Y, Xie Z. Exploring the role of gut microbiome in male reproduction. Andrology 2021; 10:441-450. [PMID: 34918486 DOI: 10.1111/andr.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The impact of the gut microbiome on the organism has become a growing research focus with the development of 16S rRNA sequencing. However, the effect of the gut microbiome in male reproduction has yet to be investigated. OBJECTIVE To overview on possible mechanisms by which gut microbiome could affect male reproduction and therapeutic opportunities related to the gut microbiome METHODS: Authors searched PubMed/MEDLINE, EMBASE, Web of Science, Cochrane Library for medical subject headings terms and free text words referred to "male infertility" "testis" "gut microbiome" "insulin resistance" "erectile dysfunction" "therapy" "sex hormones" "Genital Diseases." until Dec 2nd 2021. RESULTS Evidence suggests that immune system activation caused by the gut microbiome translocation not only leads to testicular and epididymal inflammation but can also induce insulin resistance together with gastrointestinal hormones such as leptin and ghrelin, which in turn affects the secretion of various sex hormones such as LH, FSH, and T to regulate spermatogenesis. In addition, the gut microbiome can influence spermatogenesis by controlling and metabolizing androgens as well as affecting the blood-testis barrier. It also promotes vascular inflammation by raising trimethylamine-N-oxide (TMAO) levels in the blood, which causes erectile dysfunction. Testicular microbiome and gut microbiome can interact to influence male reproductive function. This study discusses therapeutic options such as probiotics, prebiotics, and fecal microbiota transplantation, as well as the challenges and opportunities behind ongoing research, and emphasizes the need for additional research in the future to demonstrate the links and underlying mechanisms between gut microbiome and male reproduction. Therapeutic options such as probiotic, prebiotics and fecal microbiota transplantation are potential treatments for male infertility. DISCUSSION AND CONCLUSION Gut microbiota may have a causal role in male reproduction health, therapeutic strategies such as supplementation with appropriate probiotics could be undertaken as a complementary treatment. In the future, additional research is needed to demonstrate the links and underlying mechanisms between gut microbiome and male reproduction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Wang
- Zhejiang Chinese Medical University, Second Clinical Medical School, Zhejiang, 310053, China
| | - Zuogang Xie
- Wenzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Zhejiang, University of Traditional Chinese Medicine, Andrology, Zhejiang, 325000, China
| |
Collapse
|
25
|
Wang S, Guo C, Xing Z, Li M, Yang H, Zhang Y, Ren F, Chen L, Mi S. Dietary Intervention With α-Amylase Inhibitor in White Kidney Beans Added Yogurt Modulated Gut Microbiota to Adjust Blood Glucose in Mice. Front Nutr 2021; 8:664976. [PMID: 34712684 PMCID: PMC8545863 DOI: 10.3389/fnut.2021.664976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
White kidney beans contain α-amylase inhibitors that can be used in diet for weight reduction. In this study, we investigated the potential of white kidney bean (phaseolus vulgaris L.) extract enriched in α-amylase inhibitor as a food additive in yogurt to regulate blood glucose in hyperglycemic animals. Five groups of C57BL/6J mice were fed for 8 weeks with standard chow diets, high-fat diets (HFD), or high-fat diets with supplement of α-amylase inhibitor in white kidney beans (P. vulgaris extract, PVE), yogurt (Y), and PVE added yogurt (YPVE), respectively. The HFD weakened glucose tolerance and caused insulin resistance in mice, and changed the characteristics of intestinal flora. The intervention of Y, PVE, and YPVE decreased blood glucose, insulin, hyperlipidemia, and inflammatory cytokine levels in mice fed with HFD. Moreover, the YPVE could regulate the components of host intestinal microbiota toward a healthy pattern, significantly increased the metabolic-related flora Corynebacterium, Granulicatella, and Streptococcus, while it decreased Paraprevotella and Allobaculum. Thus, YPVE markedly increased functions of "Amino Acid Metabolism," "Energy Metabolism," "Nucleotide Metabolism," and declined functions of "Glycan Biosynthesis and Metabolism." Consequently, YPVE could be developed as a new functional food because of its beneficial prebiotic properties in the metabolic syndrome.
Collapse
Affiliation(s)
- Shenli Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China.,Brand Food R&D Center, Nutrition & Health Research Institute (China Oil & Foodstuffs Corporation-NHRI), Beijing, China
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Meng Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Haiying Yang
- Brand Food R&D Center, Nutrition & Health Research Institute (China Oil & Foodstuffs Corporation-NHRI), Beijing, China
| | - Yunting Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Lishui Chen
- Brand Food R&D Center, Nutrition & Health Research Institute (China Oil & Foodstuffs Corporation-NHRI), Beijing, China
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
27
|
Borgo F, Macandog AD, Diviccaro S, Falvo E, Giatti S, Cavaletti G, Melcangi RC. Alterations of gut microbiota composition in post-finasteride patients: a pilot study. J Endocrinol Invest 2021; 44:1263-1273. [PMID: 32951160 PMCID: PMC8124058 DOI: 10.1007/s40618-020-01424-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Post-finasteride syndrome (PFS) has been reported in a subset of patients treated with finasteride (an inhibitor of the enzyme 5alpha-reductase) for androgenetic alopecia. These patients showed, despite the suspension of the treatment, a variety of persistent symptoms, like sexual dysfunction and cognitive and psychological disorders, including depression. A growing body of literature highlights the relevance of the gut microbiota-brain axis in human health and disease. For instance, alterations in gut microbiota composition have been reported in patients with major depressive disorder. Therefore, we have here analyzed the gut microbiota composition in PFS patients in comparison with a healthy cohort. METHODS Fecal microbiota of 23 PFS patients was analyzed by 16S rRNA gene sequencing and compared with that reported in ten healthy male subjects. RESULTS Sexual dysfunction, psychological and cognitive complaints, muscular problems, and physical alterations symptoms were reported in more than half of the PFS patients at the moment of sample collection. The quality sequence check revealed a low library depth for two fecal samples. Therefore, the gut microbiota analyses were conducted on 21 patients. The α-diversity was significantly lower in PFS group, showing a reduction of richness and diversity of gut microbiota structure. Moreover, when visualizing β-diversity, a clustering effect was found in the gut microbiota of a subset of PFS subjects, which was also characterized by a reduction in Faecalibacterium spp. and Ruminococcaceae UCG-005, while Alloprevotella and Odoribacter spp were increased compared to healthy control. CONCLUSION Gut microbiota population is altered in PFS patients, suggesting that it might represent a diagnostic marker and a possible therapeutic target for this syndrome.
Collapse
Affiliation(s)
- F Borgo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - A D Macandog
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - G Cavaletti
- Experimental Neurology Unit, Università di Milano-Bicocca, Monza, Italy
- Milan Center for Neuroscience, Università di Milano-Bicocca, Monza, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
28
|
Dietary Annatto-Extracted Tocotrienol Reduces Inflammation and Oxidative Stress, and Improves Macronutrient Metabolism in Obese Mice: A Metabolic Profiling Study. Nutrients 2021; 13:nu13041267. [PMID: 33924335 PMCID: PMC8069008 DOI: 10.3390/nu13041267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and its related complications are a world-wide health problem. Dietary tocotrienols (TT) have been shown to improve obesity-associated metabolic disorders, such as hypercholesterolemia, hyperglycemia, and gut dysbiosis. This study examined the hypothesis that the antioxidant capacity of TT alters metabolites of oxidative stress and improves systemic metabolism. C57BL/6J mice were fed either a high-fat diet (HFD control) or HFD supplemented with 800 mg annatto-extracted TT/kg (HFD+TT800) for 14 weeks. Sera from obese mice were examined by non-targeted metabolite analysis using UHPLC/MS. Compared to the HFD group, the HFD+TT800 group had higher levels of serum metabolites, essential amino acids (lysine and methionine), sphingomyelins, phosphatidylcholine, lysophospholipids, and vitamins (pantothenate, pyridoxamine, pyridoxal, and retinol). TT-treated mice had lowered levels of serum metabolites, dicarboxylic fatty acids, and inflammatory/oxidative stress markers (trimethylamine N-oxide, kynurenate, 12,13-DiHOME, and 13-HODE + 9-HODE) compared to the control. The results suggest that TT supplementation lowered inflammation and oxidative stress (oxidized glutathione and GSH/GSSH) and improved macronutrient metabolism (carbohydrates) in obese mice. Thus, TT actions on metabolites were beneficial in reducing obesity-associated hypercholesterolemia/hyperglycemia. The effects of a non-toxic dose of TT in mice support the potential for clinical applications in obesity and metabolic disease.
Collapse
|
29
|
Chen Q, Ma X, Li C, Shen Y, Zhu W, Zhang Y, Guo X, Zhou J, Liu C. Enteric Phageome Alterations in Patients With Type 2 Diabetes. Front Cell Infect Microbiol 2021; 10:575084. [PMID: 33552999 PMCID: PMC7862107 DOI: 10.3389/fcimb.2020.575084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes is a complex metabolic disease and has been shown to involve alteration of the gut microbiota. Previous studies have primarily focused on changes in the bacterial microbiome, while ignoring the phage community composition. Extracellular phages can lyse host bacteria and thus influence the microbiota through positive or negative interactions with bacteria. We investigated changes in the extracellular phageome and discussed its role in T2D pathogenesis. We used a sequencing-based approach to identify bacteriophage after isolation of VLPs (virus like particles) from fecal samples. We identified 330 species of phages according to the predicted host bacteria from T2D patients (N=17) and nondiabetic controls (N=29). The phageome characteristics were highly diverse among individuals. In the T2D group, the intestinal phage population was altered, and the abundance of phages specific to Enterobacteriaceae hosts increased markedly. Meanwhile, the abundance of Enterobacteriaceae in the gut was significantly increased, and systemic LPS content elevation was observed in the T2D group. Additionally, a consortia of eight phages was found to distinguish T2D patients from nondiabetic controls with good performance (AUC>0.99).
Collapse
Affiliation(s)
- Qian Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chong Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yan Zhang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Kaya-Sezginer E, Gur S. The Inflammation Network in the Pathogenesis of Erectile Dysfunction: Attractive Potential Therapeutic Targets. Curr Pharm Des 2021; 26:3955-3972. [PMID: 32329680 DOI: 10.2174/1381612826666200424161018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Erectile dysfunction (ED) is an evolving health problem in the aging male population. Chronic low-grade inflammation is a critical component of ED pathogenesis and a probable intermediate stage of endothelial dysfunction, especially in metabolic diseases, with the inclusion of obesity, metabolic syndrome, and diabetes. OBJECTIVE This review will present an overview of preclinical and clinical data regarding common inflammatory mechanisms involved in the pathogenesis of ED associated with metabolic diseases and the effect of antiinflammatory drugs on ED. METHODS A literature search of existing pre-clinical and clinical studies was performed on databases [Pubmed (MEDLINE), Scopus, and Embase] from January 2000 to October 2019. RESULTS Low-grade inflammation is a possible pathological role in endothelial dysfunction as a consequence of ED and other related metabolic diseases. Increased inflammation and endothelial/prothrombotic markers can be associated with the presence and degree of ED. Pharmacological therapy and modification of lifestyle and risk factors may have a significant role in the recovery of erectile response through reduction of inflammatory marker levels. CONCLUSION Inflammation is the least common denominator in the pathology of ED and metabolic disorders. The inflammatory process of ED includes a shift in the complex interactions of cytokines, chemokines, and adhesion molecules. These data have established that anti-inflammatory agents could be used as a therapeutic opportunity in the prevention and treatment of ED. Further research on inflammation-related mechanisms underlying ED and the effect of therapeutic strategies aimed at reducing inflammation is required for a better understanding of the pathogenesis and successful management of ED.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Serap Gur
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
31
|
Yan D, Fan P, Sun W, Ding Q, Zheng W, Xiao W, Zhang B, Zhang T, Zhang T, Shi J, Chen X, Chen P, Zhang J, Hao Y, Sun X, Pang X, Dong Y, Xu P, Yu L, Ma B. Anemarrhena asphodeloides modulates gut microbiota and restores pancreatic function in diabetic rats. Biomed Pharmacother 2021; 133:110954. [PMID: 33378992 DOI: 10.1016/j.biopha.2020.110954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Anemarrhena asphodeloides is an herb widely used to treat symptoms associated with diabetes in traditional Chinese medicine. However, its key components and metabolites have low bioavailability and poor host absorption. To clarify the anti-diabetic mechanism of A. asphodeloides extract (AAE), we examined the anti-diabetic effects of AAE in rats with diabetes induced by a high-fat diet and streptozotocin. Faeces levels of the main components and metabolites of AAE were significantly higher than levels in plasma, which indicated that gut microbiota might play important roles in its anti-diabetic effect. Microbiological studies showed that unabsorbed components increased the diversity of the gut microbiota, enriched potentially beneficial bacteria, and suppressed potentially harmful bacteria. In vitro studies showed that AAE promoted the proliferation of Blautia coccoides, a bacterium with positive implication for diabetes, in a dose-dependent manner. AAE also promoted pancreatic cell regeneration and restored the function of pancreatic islet cells via peroxiredoxin 4 overexpression. Overall, these results suggest that AAE alleviates diabetes via modulating gut microbiota and protein expression.
Collapse
MESH Headings
- Anemarrhena/chemistry
- Animals
- Bacteria/drug effects
- Bacteria/growth & development
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Dysbiosis
- Gastrointestinal Microbiome/drug effects
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Inflammation Mediators/blood
- Intestines/microbiology
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lipids/blood
- Male
- Peroxiredoxins/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Streptozocin
- Rats
Collapse
Affiliation(s)
- Dong Yan
- Beijing Institute of Radiation Medicine, Beijing, China; China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengcheng Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China
| | - Wenlong Sun
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qianzhi Ding
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China
| | - Bowei Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xinguang Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, China.
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
32
|
Gu W, Yang M, Bi Q, Zeng LX, Wang X, Dong JC, Li FJ, Yang XX, Li JP, Yu J. Water extract from processed Polygonum multiflorum modulate gut microbiota and glucose metabolism on insulin resistant rats. BMC Complement Med Ther 2020; 20:107. [PMID: 32248799 PMCID: PMC7132990 DOI: 10.1186/s12906-020-02897-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background The incidence of insulin resistance (IR) has rapidly increased worldwide over the last 20 years, no perfect solution has yet been identified. Finding new therapeutic drugs will help improve this situation. As a traditional Chinese medicine, PPM (processed Polygonum multiflorum) has widely been used in the clinic. Recently, other clinical functions of PPM have been widely analyzed. Results Administration of the water extract from PPM decreased the level of FBG, TC, and TG, and increased the level of FGC, thereby reducing the IR index and improving IR. Furthermore, Western blot analysis revealed that PPM significantly increased GPR43 and AMPK expression when compared with the MOD group, and GPR43, AMPK were known as glucose metabolism-related proteins. In addition, treatment with PPM can restore the balance of gut microbiota by adjusting the relative abundance of bacteria both at the phylum and genus level, and these changes have been reported to be related to IR. Methods Sprague Dawley (SD) rats were fed a high-fat diet and were gavaged daily with either normal saline solution or PPM for 12 weeks. Major biochemical indexes, such as fasting blood glucose (FBG), fasting glucagon (FGC), total cholesterol (TC), and triglyceride (TG) were measured. Then the protein expression of adenosine 5′-monophosphate -activated protein kinase (AMPK) and G protein-coupled receptor 43 (GPR43) was evaluated by using Western blot analysis. Moreover, the composition of gut microbiota was assessed by analyzing 16S rRNA sequences. Conclusions Our findings showed that PPM reversed the increasing of FBG and the decreasing of IRI, PPM accelerated the expression of glucose metabolism-related proteins and regulated the intestinal microecological balance. Therefore, we hold the opinion that PPM may be an effective option for treating IR.
Collapse
Affiliation(s)
- Wen Gu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Min Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Qian Bi
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Lin-Xi Zeng
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xi Wang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jin-Cai Dong
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Feng-Jiao Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jing-Ping Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
33
|
Martínez-Oca P, Robles-Vera I, Sánchez-Roncero A, Escrivá F, Pérez-Vizcaíno F, Duarte J, Álvarez C, Fernández-Millán E. Gut DYSBIOSIS and altered barrier function precedes the appearance of metabolic syndrome in a rat model of nutrient-induced catch-up growth. J Nutr Biochem 2020; 81:108383. [PMID: 32388252 DOI: 10.1016/j.jnutbio.2020.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Nutritional restriction early in life followed by catch-up growth has been associated with increased risk of metabolic syndrome in adulthood. To elucidate whether altered gut colonization underlies the mechanisms responsible of this predisposition gut microbiome was studied before or afterwards catch-up growth. Offspring of dams fed ad libitum (C) or undernourished during pregnancy and suckling (U), were weaned onto high-fat diet (HFD) for 22 weeks (CHF and UHF, respectively) or continued on their diet. HF-feeding induced glucose intolerance (P<.05), insulin resistance (P<.001), and white adipose tissue inflammation (P<.001) in UHF rats compared to CHF. Analyses of gut microbial composition before catch-up growth revealed reduced F/B ratio and significant expansion of the mucolytic genera Akkermansia (P<.05) and Desulfovibrio (P<.05) in U pups. Although relative abundance of Akkermansia remained elevated to adulthood in U rats, HFD normalized its levels to C and CHF. Food-restriction increased intestinal permeability causing disorganization on the tight-junction proteins of colonic epithelium, Zonula Occludens-1 (ZO-1) and occludin, and reducing the mucus thickness layer in U adult rats. The levels of ZO-1 and occludin were not recovered in U rats after HF-feeding. This event was correlated with increased circulating levels of bacterial lipopolysaccharides in both U and UHF adult rats. Even more, serum lipopolysaccharides were already elevated in U rats compared to C group (P<.001) at weaning. Thus, gut dysbiosis and chronic endotoxemia observed in U rats, even before catch-up growth, might anticipate a pro-inflammatory milieu promoting metabolic diseases when fed hyperlipidic diets.
Collapse
Affiliation(s)
- P Martínez-Oca
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - I Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - A Sánchez-Roncero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Escrivá
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain
| | - F Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, Spain; Ciber Enfermedades Respiratorias (Ciberes, ISCIII) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - J Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain; Ciber de Enfermedades Cardiovasculares (CiberCV, ISCIII), Granada, Spain
| | - C Álvarez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| | - E Fernández-Millán
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain; Ciber de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem, ISCIII), Madrid, Spain.
| |
Collapse
|
34
|
Gao J, Yan KT, Wang JX, Dou J, Wang J, Ren M, Ma J, Zhang X, Liu Y. Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci Rep 2020; 10:2639. [PMID: 32060329 PMCID: PMC7021689 DOI: 10.1038/s41598-020-59235-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Plasma trimethylamine N-oxide (TMAO) is associated with coronary atherosclerotic plaque and cardiovascular disease risk, but associations between gut microbes in acute coronary syndrome (ACS) and post-ST-segment elevation myocardial infarction (post-STEMI) events are unknown. We investigated associations between gut microbial taxa and systemic TMAO levels and the possible TMAO contribution to incident post-STEMI cardiovascular events. PATIENTS AND METHODS A total of 60 patients, including 30 with unstable angina pectoris (UAP), 30 post-STEMI and 30 healthy controls, were enrolled from June to November 2017. Metagenomic sequencing was performed and TMAO and IL-6 were detected. RESULTS Minimal discriminators of gut microbial taxa (top 40) distinguished ACS patients from controls. Serum TMAO levels were positively associated with increased abundance of Aerococcaceae, Ruminococcaceae_UCG.005, Ruminococcaceae_UCC.014 and X. Eubacterium_fissicatena, and decreased abundance of Lachnospiraceae_FCS020 (P < 0.05). Elevated serum TMAO levels correlated independently with ACS (P < 0.05). Risk stratification for incident major adverse cardiovascular events (MACE) improved at one year in patients with serum TMAO levels ≦2.19 µM. Serum interleukin-6 levels were not significantly increased in patients with ACS and post-STEMI MACE. CONCLUSIONS ACS and incident post-STEMI MACE may be associated with the gut bacteria choline metabolite TMAO. The specific gut microbial taxa identified in association with serum TMAO levels may be potential predictive biomarkers for accurate diagnosis of ACS onset.
Collapse
Affiliation(s)
- Jing Gao
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Kun-Tao Yan
- TEDA International Cardiovascular Hospital, No.61,Third Street, Economic and Technological District, Tianjin, 300457, P. R. China
| | - Ji-Xiang Wang
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Jing Dou
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Jie Wang
- Tianjin Medical University, No.22 Qi xiang tai Road, Heping District, Tianjin, 300070, P.R. China
| | - Min Ren
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Jing Ma
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Xu Zhang
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China
| | - Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai er zhuang Road, Jinnan District, Tianjin, 300222, P. R. China.
| |
Collapse
|
35
|
Wang J, He Y, Yu D, Jin L, Gong X, Zhang B. Perilla oil regulates intestinal microbiota and alleviates insulin resistance through the PI3K/AKT signaling pathway in type-2 diabetic KKAy mice. Food Chem Toxicol 2020; 135:110965. [DOI: 10.1016/j.fct.2019.110965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/10/2023]
|
36
|
Liang D, Li M, Wei R, Wang J, Li Y, Jia W, Chen T. Strategy for Intercorrelation Identification between Metabolome and Microbiome. Anal Chem 2019; 91:14424-14432. [PMID: 31638380 DOI: 10.1021/acs.analchem.9b02948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulating evidence points to the strong and complicated associations between the metabolome and the microbiome, which play diverse roles in physiology and pathology. Various correlation analysis approaches were applied to identify microbe-metabolite associations. Given the strengths and weaknesses of the existing methods and considering the characteristics of different types of omics data, we designed a special strategy, called Generalized coRrelation analysis for Metabolome and Microbiome (GRaMM), for the intercorrelation discovery between the metabolome and microbiome. GRaMM can properly deal with two types of omics data, the effect of confounders, and both linear and nonlinear correlations by integrating several complementary methods such as the classical linear regression, the emerging maximum information coefficient (MIC), the metabolic confounding effect elimination (MCEE), and the centered log-ratio transformation (CLR). GRaMM contains four sequential computational steps: (1) metabolic and microbial data preprocessing, (2) linear/nonlinear type identification, (3) data correction and correlation detection, and (4) p value correction. The performances of GRaMM, including the accuracy, sensitivity, specificity, false positive rate, applicability, and effects of preprocessing and confounder adjustment steps, were evaluated and compared with three other methods in multiple simulated and real-world datasets. To our knowledge, GRaMM is the first strategy designed for the intercorrelation analysis between metabolites and microbes. The Matlab function and an R package were developed and are freely available for academic use (comply with GNU GPL.V3 license).
Collapse
Affiliation(s)
- Dandan Liang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| | - Mengci Li
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China.,School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Runmin Wei
- University of Hawaii Cancer Center , 701 Ilalo Street , Honolulu , Hawaii 96813 , United States
| | - Jingye Wang
- University of Hawaii Cancer Center , 701 Ilalo Street , Honolulu , Hawaii 96813 , United States
| | - Yitao Li
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China.,Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong 999077 , China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China.,University of Hawaii Cancer Center , 701 Ilalo Street , Honolulu , Hawaii 96813 , United States.,Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong 999077 , China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| |
Collapse
|
37
|
Li BY, Xu XY, Gan RY, Sun QC, Meng JM, Shang A, Mao QQ, Li HB. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods 2019; 8:440. [PMID: 31557941 PMCID: PMC6835620 DOI: 10.3390/foods8100440] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the biggest public health concerns worldwide, which includes type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other rare forms of diabetes mellitus. Accumulating evidence has revealed that intestinal microbiota is closely associated with the initiation and progression of diabetes mellitus. In addition, various dietary natural products and their bioactive components have exhibited anti-diabetic activity by modulating intestinal microbiota. This review addresses the relationship between gut microbiota and diabetes mellitus, and discusses the effects of natural products on diabetes mellitus and its complications by modulating gut microbiota, with special attention paid to the mechanisms of action. It is hoped that this review paper can be helpful for better understanding of the relationships among natural products, gut microbiota, and diabetes mellitus.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
38
|
Niu YW, Qu CQ, Wang GH, Yan GY. RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction. Front Microbiol 2019; 10:1578. [PMID: 31354672 PMCID: PMC6635699 DOI: 10.3389/fmicb.2019.01578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Based on advancements in deep sequencing technology and microbiology, increasing evidence indicates that microbes inhabiting humans modulate various host physiological phenomena, thus participating in various disease pathogeneses. Owing to increasing availability of biological data, further studies on the establishment of efficient computational models for predicting potential associations are required. In particular, computational approaches can also reduce the discovery cycle of novel microbe-disease associations and further facilitate disease treatment, drug design, and other scientific activities. This study aimed to develop a model based on the random walk on hypergraph for microbe-disease association prediction (RWHMDA). As a class of higher-order data representation, hypergraph could effectively recover information loss occurring in the normal graph methodology, thus exclusively illustrating multiple pair-wise associations. Integrating known microbe-disease associations in the Human Microbe-Disease Association Database (HMDAD) and the Gaussian interaction profile kernel similarity for microbes, random walk was then implemented for the constructed hypergraph. Consequently, RWHMDA performed optimally in predicting the underlying disease-associated microbes. More specifically, our model displayed AUC values of 0.8898 and 0.8524 in global and local leave-one-out cross-validation (LOOCV), respectively. Furthermore, three human diseases (asthma, Crohn's disease, and type 2 diabetes) were studied to further illustrate prediction performance. Moreover, 8, 10, and 8 of the 10 highest ranked microbes were confirmed through recent experimental or clinical studies. In conclusion, RWHMDA is expected to display promising potential to predict disease-microbe associations for follow-up experimental studies and facilitate the prevention, diagnosis, treatment, and prognosis of complex human diseases.
Collapse
Affiliation(s)
- Ya-Wei Niu
- School of Mathematics, Shandong University, Jinan, China
| | - Cun-Quan Qu
- School of Mathematics, Shandong University, Jinan, China.,Data Science Institute, Shandong University, Jinan, China
| | - Guang-Hui Wang
- School of Mathematics, Shandong University, Jinan, China.,Data Science Institute, Shandong University, Jinan, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Nyavor Y, Estill R, Edwards H, Ogden H, Heideman K, Starks K, Miller C, May G, Flesch L, McMillan J, Gericke M, Forney L, Balemba O. Intestinal nerve cell injury occurs prior to insulin resistance in female mice ingesting a high-fat diet. Cell Tissue Res 2019; 376:325-340. [PMID: 30778729 DOI: 10.1007/s00441-019-03002-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Diabetic patients suffer from gastrointestinal disorders associated with dysmotility, enteric neuropathy and dysbiosis of gut microbiota; however, gender differences are not fully known. Previous studies have shown that a high-fat diet (HFD) causes type two diabetes (T2D) in male mice after 4-8 weeks but only does so in female mice after 16 weeks. This study seeks to determine whether sex influences the development of intestinal dysmotility, enteric neuropathy and dysbiosis in mice fed HFD. We fed 8-week-old C57BL6 male and female mice a standard chow diet (SCD) or a 72% kcal HFD for 8 weeks. We analyzed the associations between sex and intestinal dysmotility, neuropathy and dysbiosis using motility assays, immunohistochemistry and next-generation sequencing. HFD ingestion caused obesity, glucose intolerance and insulin resistance in male but not female mice. However, HFD ingestion slowed intestinal propulsive motility in both male and female mice. This was associated with decreased inhibitory neuromuscular transmission, loss of myenteric inhibitory motor neurons and axonal swelling and loss of cytoskeletal filaments. HFD induced dysbiosis and changed the abundance of specific bacteria, especially Allobaculum, Bifidobacterium and Lactobacillus, which correlated with dysmotility and neuropathy. Female mice had higher immunoreactivity and numbers of myenteric inhibitory motor neurons, matching larger amplitudes of inhibitory junction potentials. This study suggests that sex influences the development of HFD-induced metabolic syndrome but dysmotility, neuropathy and dysbiosis occur independent of sex and prior to T2D conditions. Gastrointestinal dysmotility, neuropathy and dysbiosis might play a crucial role in the pathophysiology of T2D in humans irrespective of sex.
Collapse
Affiliation(s)
- Yvonne Nyavor
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Rachel Estill
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Hannah Edwards
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Hailey Ogden
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Kaila Heideman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Kiefer Starks
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Christopher Miller
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - George May
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Lance Flesch
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - John McMillan
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Martin Gericke
- Institute for Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA
| | - Onesmo Balemba
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, LSS 252, Moscow, ID, 83844, USA.
| |
Collapse
|
40
|
Polygonatum odoratum Polysaccharides Modulate Gut Microbiota and Mitigate Experimentally Induced Obesity in Rats. Int J Mol Sci 2018; 19:ijms19113587. [PMID: 30428630 PMCID: PMC6274832 DOI: 10.3390/ijms19113587] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that the gut microbiota plays vital roles in metabolic diseases. Polygonatum odoratum extract alleviates hyperglycemia and hyperlipidemia, but the underlying mechanism remains unclear. This study investigated the effects of P. odoratum polysaccharides (POPs) on high-fat diet (HFD)-induced obesity in rats and whether these effects were related to modulation of gut microbiota. POP treatment attenuated weight gain, fat accumulation, epididymal adipocyte size, liver triglycerides, and total liver cholesterol content in HFD-fed rats. POP administration also increased short-chain fatty acids (SCFAs), including isobutyric acid, butyric acid, and valeric acid. POP upregulated the expression of genes involved in adipocyte differentiation (Pparg, Cebpa, Cebpb) and lipolysis (Ppara, Atgl), and downregulated those related to lipid synthesis (Srebpf1, Fabp4, Fas), with corresponding changes in PPARγ and FABP4 protein expression. Finally, POP enhanced species richness and improved the gut microbiota community structure, reducing the relative abundances of Clostridium, Enterococcus, Coprobacillus, Lactococcus, and Sutterella. Principal coordinates analysis (PCoA) revealed a clear separation between HFD-fed rats and all other treatment groups. Correlation analysis identified negative and positive associations between obesity phenotypes and 28 POP-influenced operational taxonomic units (OTUs), including putative SCFA-producing bacteria. Our data suggest that POP supplementation may attenuate features of obesity in HFD-fed rats in association with the modulation of gut microbiota.
Collapse
|