1
|
Panagea E, Messinis L, Patrikelis P, Malefaki S, Petri MC, Nasios G, Liontos A, Biros D, Kosmidis MH, Milionis H. Persistent neuropsychological deficits in recovered COVID-19 patients: Correlations with disease biomarkers. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-13. [PMID: 40353707 DOI: 10.1080/23279095.2025.2502871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
OBJECTIVE Cognitive impairment, including deficits in attention, memory, executive function, and processing speed, is common in post-COVID-19 conditions, though language performance remains less studied. The present study examined the long-term effects of COVID-19 condition on cognition and language - communication, and its associations with disease severity, Body Mass Index (BMI), inflammatory markers, and quality of life. METHOD Nighty eight Greek participants under 65 years of age were recruited for this study. Forty-seven participants were allocated in the COVID-19 group and 51 served as cognitively healthy controls. The COVID-19 group was categorized by disease severity and long COVID status. Assessments occurred 12 weeks post-infection, with 12 patients reevaluated after another 12 weeks. Neurocognitive tests included ABCD-II, verbal fluency, CCT, SDMT, and Euro QoL EQ-5D. Blood samples were analyzed for inflammatory markers. RESULTS Covid-19 survivors experienced significant cognitive deficits compared to healthy controls, particularly in processing speed, memory, and verbal fluency. Long COVID patients showed notably lower scores in processing speed and QoL, compared to those without Long COVID. However, no significant differences were observed between groups on episodic memory and executive functions tasks. Cognitive deficits were associated with biomarkers such as d-dimers and C-Reactive protein, with elevated d-dimers linked to poorer performance on generative drawing and cognitive flexibility. Higher education served as a protective factor, and was associated with higher scores in tasks such as story retelling, confrontation naming, generative drawing and reading comprehension. Older age and higher Body Mass Index were associated with poorer cognitive performance, especially on processing speed. Sex appears to influence language comprehension outcomes, with males exhibiting enhanced performance on the reading comprehension-sentence task. Disease severity negatively affected performance on the Symbol Digit Modalities Test and generative naming, indicating that greater severity was linked to poorer outcomes in these domains. Follow-up evaluations of recovered COVID-19 patients revealed significant improvements in processing speed and recall, suggesting partial recovery in these areas, although some deficits persisted over time. CONCLUSION The study supports findings that the prolonged effects of COVID-19 markedly impaired neurocognitive functions in recovering patients, especially those with severe or long COVID syndrome. Moreover, while several cognitive domains may improve over time, many other domains remain impaired and vulnerable.
Collapse
Affiliation(s)
- Evgenia Panagea
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Speech and Language Therapy, University Hospital of Patras, Patras, Greece
| | - Lambros Messinis
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Patrikelis
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sonia Malefaki
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Maria Christina Petri
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Angelos Liontos
- First Department of Internal Medicine, Faculty of Medicine, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | - Dimitris Biros
- First Department of Internal Medicine, Faculty of Medicine, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | - Mary H Kosmidis
- Laboratory of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haralampos Milionis
- First Department of Internal Medicine, Faculty of Medicine, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Wani MM, Cooper JM, Migliorini M, Strickland DK. The LDL receptor related protein 1 (LRP1) facilitates ACE2-mediated endocytosis of SARS-CoV2 spike protein-containing pseudovirions. J Biol Chem 2025:110227. [PMID: 40349772 DOI: 10.1016/j.jbc.2025.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, employs the viral spike (S) protein to associate with host cells. While angiotensin-converting enzyme 2 (ACE2) is a major receptor for the SARS-CoV-2 spike protein, evidence reveals that other cellular receptors may also contribute to viral entry. We interrogated the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the involvement of SARS-CoV-2 viral entry. Employing surface plasmon resonance studies, we demonstrated high affinity binding of the trimeric SARS-CoV-2 spike protein to purified LRP1. Further, we observed high affinity interaction of the SARS-CoV-2 spike protein with other low-density lipoprotein receptor (LDLR) family members as well, including LRP2 and the very low-density lipoprotein receptor (VLDLR). Binding of the SARS-CoV-2 spike protein to LRP1 was mediated by its receptor binding domain (RBD). Several LRP1 ligands require surface exposed lysine residues for their interaction with LRP1, and chemical modification of lysine residues on the RBD with sulfo-NHS-acetate ablated binding to LRP1. Using cellular model systems, we demonstrated that cells expressing LRP1, but not those lacking LRP1, rapidly internalized purified 125I-labeled S1 subunit of the SARS-CoV-2 spike protein. LRP1-mediated internalization of the 125I-labeled S1 subunit was enhanced in cells expressing ACE2. By employing pseudovirion particles containing a murine leukemia virus core and luciferase reporter that express the SARS-CoV-2 spike protein on their surface, we confirmed that LRP1 facilitates ACE2-mediated psuedovirion endocytosis. Together, these data implicate LRP1, and perhaps other LDLR family members as host factors for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mashhood M Wani
- The Center for Vascular and Inflammatory Diseases, Departments of
| | - Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, Departments of; Physiology and
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, Departments of
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, Departments of; Physiology and; Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.
| |
Collapse
|
3
|
Lin W, Huang H, Ou Y, Chen B, Du T, Wu Y, Huang H. Rising Prevalence of Urinary Incontinence and Nocturia Amid the COVID-19 Pandemic. Neurourol Urodyn 2025. [PMID: 40313157 DOI: 10.1002/nau.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Urinary incontinence (UI) and nocturia are common lower urinary tract symptoms (LUTS) that significantly affect quality of life. The COVID-19 pandemic has introduced behavioral, psychological, and physiological disruptions that may have exacerbated the prevalence of these conditions. Additionally, these changes may also be influenced by long-term sequelae of COVID-19 infection or other concurrent factors. However, large-scale investigations into these trends are limited. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2023 were used to analyze the prevalence of LUTS, including stress urinary incontinence (SUI), urgency urinary incontinence (UUI), mixed urinary incontinence (MUI), and nocturia, before (2017-2020) and during the pandemic (2021-2023). Age-adjusted prevalence trends were analyzed overall and by sex and race/ethnicity. Sensitivity analysis included data from 2013 to 2016 to differentiate natural trends from pandemic-related impacts. RESULTS The prevalence of SUI, UUI, MUI, and nocturia significantly increased during the pandemic compared to pre-pandemic levels (p < 0.0001). SUI rose from 24.89% to 29.65%, UUI from 20.80% to 28.65%, MUI from 9.17% to 16.83%, and nocturia from 26.96% to 34.78%. These trends were consistent across sexes and racial groups. Sensitivity analysis confirmed that these increases exceeded natural trends, suggesting a potential pandemic-related effect. CONCLUSION This study reveals a significant rise in the prevalence of LUTS, including SUI, UUI, MUI, and nocturia, during the COVID-19 pandemic. Further research is needed to determine whether these changes stem from the direct physiological effects of COVID-19 infection or are influenced by broader pandemic-related factors such as lifestyle changes, healthcare disruptions, and psychological stress.
Collapse
Affiliation(s)
- Weilong Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingliang Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Fujian, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Khullar V, Lemmon B, Acar Ö, Abrams P, Vahabi B. Re: Khullar V, Lemmon B, Acar O, Abrams P, Vahabi B Does COVID-19 Cause or Worsen LUT Dysfunction, What Are the Mechanisms and Possible Treatments? ICI-RS 2023. Neurourol Urodyn 2024 Aug;43(6):1458-1463. doi: 101002/nau25441. Epub 2024 Mar 20. PMID: 38506116. Neurourol Urodyn 2025; 44:965-966. [PMID: 39535296 DOI: 10.1002/nau.25609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Vik Khullar
- Department of Urogynaecology, St Mary's Hospital, Imperial College, London, UK
| | - Bernadette Lemmon
- Department of Urogynaecology, St Mary's Hospital, Imperial College, London, UK
| | - Ömer Acar
- Department of Urology, University of Illinois, Chicago, Illinois, USA
| | - Paul Abrams
- Bristol Urological Institute, Southmead Hospital Bristol, Bristol, UK
| | - Bahareh Vahabi
- School of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
5
|
Butticè S, Pappalardo R, Sener ET, Caldarera E. Re: Khullar V, Lemmon B, Acar O, Abrams P, Vahabi B. Does COVID-19 Cause or Worsen LUT Dysfunction, What Are the Mechanisms and Possible Treatments? ICI-RS 2023 Neurourol Urodyn 2024 Aug; 43(6):1458-1463 doi: 101002/nau25441 Epub 2024 Mar 20 PMID: 38506116. Neurourol Urodyn 2025; 44:963-964. [PMID: 39526617 DOI: 10.1002/nau.25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Salvatore Butticè
- Department of Urology, Paolo Borsellino Hospital, Marsala, Italy
- PETRA UroGroup, Progress in Endourology, Technology and Research Association, Paris, France
| | - Rosa Pappalardo
- Department of Urology, S. Antonio Abate Hospital, Trapani, Italy
| | - Emre T Sener
- PETRA UroGroup, Progress in Endourology, Technology and Research Association, Paris, France
- Department of Urology, Marmara University School of Medicine, Istanbul, Turkey
| | | |
Collapse
|
6
|
Zhuang Q, Zhu J, Peng B, Zhu Y, Cheng K, Ming Y. Correlation between peripheral lymphocyte subsets monitoring and COVID-19 pneumonia in kidney transplant recipients. BMC Infect Dis 2025; 25:426. [PMID: 40148763 PMCID: PMC11948920 DOI: 10.1186/s12879-025-10581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/30/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES In kidney transplant recipients (KTRs), immune monitoring of peripheral lymphocyte subsets (PLS) reflects the real immune status and aids in the diagnosis of the occurrence and development of infectious diseases, including COVID-19. Exploring the PLS of COVID-19 pneumonia in KTRs is important. METHODS In this study, a total of 103 KTRs were divided into mild pneumonia (MP) and severe pneumonia (SP) groups, as well as a stable group. The clinical information and PLS data were assessed via t or Mann-Whitney test and receiver operating curve analysis. Logistic regression was employed to identify the risk factors, and Spearman's correlation analysis was used to identify correlations. RESULTS Lymphopenia is a common manifestation of COVID-19 in KTRs, and it is positively related to the severity of COVID-19 pneumonia. The CD3 + T-cell count had the highest AUC between the MP and the SP. Multiple PLS measures were found to be independent risk factors for COVID-19 pneumonia progression in KTRs. CONCLUSIONS This study revealed a robust correlation between PLS and severe COVID-19 pneumonia progression in KTRs. PLS monitoring could facilitate real-time diagnosis and therapy for infection, as well as timely and precisive adjustment of immunosuppression instructions, for KTRs with COVID-19.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Jiang Zhu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Bo Peng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Yi Zhu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Ke Cheng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China
| | - Yingzi Ming
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Clinical Research Center for Infectious Diseases in Hunan Province, Changsha, 410013, China.
| |
Collapse
|
7
|
Venkatesh SS, T. M, Gowda MAS. A Cross-Sectional Study on Post-COVID-19 Menstrual Abnormalities in Women of Reproductive Age Group at a Tertiary Care Hospital. Obstet Gynecol Int 2025; 2025:1771858. [PMID: 40171476 PMCID: PMC11961280 DOI: 10.1155/ogi/1771858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
Purpose: This study aimed to evaluate the effect of COVID-19 infection and vaccination on all the menstrual cycle parameters in the women of reproductive age group, 18-45 years, at a tertiary care hospital. Methods: A single-center, descriptive cross-sectional study was done from January 2, 2023, to June 24, 2023. Sampling was nonprobabilistic and purposeful. Participants were recruited via calls, in-person interviews, and online surveys. A total of 931 participants were recruited, of which 141 participants were eligible for the study. Descriptive statistics were performed for all variables. Pearson's chi-square test was done to compare categorical variables among different groups, and the Wilcoxon matched pair signed-rank test was done to compare the menstrual cycle patterns before and after COVID-19 infection and vaccination. Simple linear regression and multiple linear regression analysis were done wherever necessary. p < 0.05 was considered statistically significant. Results: A total of 931 participants were recruited, of which 141 participants were eligible for the study. The median age was 29 years. Those who reported menstrual abnormalities were mainly of the age group 18-27 (n = 62, 44.0%), resided in an urban locality (n = 123, 87.2%), and were employed (full-time/part-time) (n = 57, 40.4%). Of the 42 participants with menstrual changes, 27 (64.3%) participants experienced changes post-COVID-19 infection before their first vaccination dose and 15 (35.7%) after the first vaccination dose. In this group, 15 (35.7%) continue to experience abnormalities in their cycles. Analysis showed that participants having severe COVID-19 symptoms were more likely to have an earlier onset of menstrual abnormalities (beta = -2.072, p=0.040). Participants with an above-normal BMI were more likely to have increased pain/cramps during menses (beta = 0.236, p=0.0.013). Participants who were students/employed (beta = -0.365, p=0.001) with an above-normal BMI (beta = 0.182, p=0.024) were more likely to experience increased mood swings/tension/irritability. On comparing the onset and duration of menstrual abnormalities in the post-COVID-19 infection and postvaccination groups, it was found that the latter group had a late-onset and short-term effect, while the former group had an early-onset and long-term effect on menses. Conclusion: Our study shows that there is evidence of the onset of menstrual irregularities following COVID-19 infection and vaccination. The study revealed COVID-19 infection and vaccination influence menstrual cycles, the former posing a higher risk, but their effects on menstruation independent of one another are to be studied further.
Collapse
Affiliation(s)
- Samyama Sagare Venkatesh
- Department of Obstetrics and Gynecology, Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka 560070, India
| | - Malathi T.
- Department of Obstetrics and Gynecology, Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka 560070, India
| | - Manasa A. S. Gowda
- Department of General Medicine, Kempegowda Institute of Medical Sciences (KIMS), Bengaluru, Karnataka 560070, India
| |
Collapse
|
8
|
Zhang G, Wang N, Ma S, Zhang Y, Tao P, Cai H. Comprehensive Analysis of Potential Common Pathogenic Mechanisms for COVID-19 Infection and Gastric Cancer. Anal Cell Pathol (Amst) 2025; 2025:5106674. [PMID: 40224213 PMCID: PMC11991771 DOI: 10.1155/ancp/5106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025] Open
Abstract
A growing body of data suggests that the prevalence of COVID-19 pneumonia in patients with stomach cancer is much higher than in the general population. However, these mechanisms are still not fully understood. After a thorough examination of shared differentially expressed genes (DEGs) for gastric cancer (GC) and COVID-19 pneumonia, we performed functional annotation, protein-protein interaction (PPI) networks, module design, and pivot gene identification. qPCR was used to verify the expression of hub genes in GC. Finally, a pivotal gene transcription factor-gene regulatory network was created and validated. According to functional enrichment analysis, common genes are mainly enriched in biological processes such as extracellular matrix tissue and extracellular structural tissue. Finally, five genes were found to be pivotal genes in the pathogenesis of GC and COVID-19 pneumonia: BGN (biglycan), UBE2C (ubiquitin-conjugating enzymes 2C), SPP1 (secreted phosphoprotein 1), THBS2 (thrombospondin 2), and COL1A1 (type I collagen alpha 1). These shared pathways and pivotal genes could provide new insights for more mechanistic studies.
Collapse
Affiliation(s)
- Guiqian Zhang
- Otorhinolaryngology Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Ning Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Shixun Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
9
|
Fornt‐Suñé M, Puertas MC, Martinez‐Picado J, García‐Pardo J, Ventura S. Protein Nanoparticles for Targeted SARS-CoV-2 Trapping and Neutralization. Adv Healthc Mater 2025; 14:e2402744. [PMID: 39400473 PMCID: PMC11874693 DOI: 10.1002/adhm.202402744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to challenge global health despite widespread vaccination efforts, underscoring the need for innovative strategies to combat emerging infectious diseases effectively. Herein, LCB1-NPs and LCB3-NPs are engineered as a novel class of protein-only nanoparticles formed through coiled coil-driven self-assembly and tailored to interact specifically with the SARS-CoV-2 spike protein. The multivalency of LCB1-NPs and LCB3-NPs offers a strategy for efficiently targeting and neutralizing SARS-CoV-2 both in solution and when immobilized on surfaces. It is demonstrated that LCB1-NPs and LCB3-NPs bind to the SARS-CoV-2 spike protein's receptor-binding domain (RBD) with high affinity, effectively blocking the entry of SARS-CoV-2 virus-like particles into angiotensin-converting enzyme 2 (ACE2)-coated human cells. The cost-effectiveness, scalability, and straightforward production process of these protein nanoparticles make them suitable for developing novel anti-viral materials. Accordingly, it is shown how these nanostructures can be packed into columns to build up economic and highly potent trapping devices for SARS-CoV-2 adsorption.
Collapse
Affiliation(s)
- Marc Fornt‐Suñé
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Maria C. Puertas
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
| | - Javier Martinez‐Picado
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
- Infectious Diseases and Immunity DepartmentUniversity of Vic‐Central University of CataloniaVic (UVic‐UCC)Vic08500Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Javier García‐Pardo
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT CERCA)Universitat Autònoma de BarcelonaSabadell08208Spain
| |
Collapse
|
10
|
Wu H, Dong F, Li Y, Liu Z, Sun J, Gao B, Pehrsson P, He X, Wu X, Yu LL. Chemical profiles of allspice (Pimenta dioica (L.) Merr.) water and ethanol extracts and their antivirus and radical scavenging activities. Food Res Int 2025; 205:115950. [PMID: 40032448 DOI: 10.1016/j.foodres.2025.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Chemical compositions of the allspice water and ethanol extracts were characterized using UPLC-HRMS/MS. A total of 20 compounds were tentatively identified, with 12 reported for the first time in allspice. Both extracts dose-dependently inhibited the binding of SARS-CoV-2 spike protein to ACE2. The water extract showed 100 % inhibition at a concentration of 33.3 mg allspices botanical equivalents per mL (mg AE/mL), whereas the ethanol extract had a 100 % inhibition at 3.3 mg AE/mL. Both extracts also showed dose-dependent inhibition of ACE2 activities, suggesting their potential in reducing the ACE2 availability. In addition, both extracts had significant phenolic contents, and the radical scavenging capacities against HO, DPPH and ABTS+. These findings support the potential allspice utilization in reducing the risk of SARS-CoV-2 virus infection and the development of COVID-19 severe symptoms.
Collapse
Affiliation(s)
- Huan Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Fangxiang Dong
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States; Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pamela Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
11
|
Fratta Pasini AM, Stranieri C, Di Leo EG, Bertolone L, Aparo A, Busti F, Castagna A, Vianello A, Chesini F, Friso S, Girelli D, Cominacini L. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses 2025; 17:359. [PMID: 40143288 PMCID: PMC11946718 DOI: 10.3390/v17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to identify possible early biomarkers of mortality among clinical and biochemical parameters, iron metabolism parameters, and cytokines detected within 24 h from admission in hospitalized COVID-19 patients. We enrolled 80 hospitalized patients (40 survivors and 40 non-survivors) with COVID-19 pneumonia and acute respiratory failure. The median time from the onset of COVID-19 symptoms to hospital admission was lower in non-survivors than survivors (p < 0.05). Respiratory failure, expressed as the ratio of arterial oxygen partial pressure to the fraction of inspired oxygen (P/F), was more severe in non-survivors than survivors (p < 0.0001). Comorbidities were similar in both groups. Among biochemical parameters and cytokines, eGFR and interleukin (IL)-1β were found to be significantly lower (p < 0.05), while LDH, IL-10, and IL-8 were significantly higher in non-survivors than in survivors (p < 0.0005, p < 0.05 and p < 0.005, respectively). Among other parameters, LDH values distribution showed the most significant difference between study groups (p < 0.0001). LASSO feature selection combined with Cox proportional hazards and logistic regression models was applied to identify features distinguishing between survivors and non-survivors. Both approaches highlighted LDH as the strongest predictor, with IL-22 and creatinine emerging in the Cox model, while IL-10, eGFR, and creatinine were influential in the logistic model (AUC = 0.744 for Cox, 0.723 for logistic regression). In a similar manner, we applied linear regression for predicting LDH levels, identifying the P/F ratio as the top predictor, followed by IL-10 and eGFR (NRMSE = 0.128). Collectively, these findings underscore LDH's critical role in mortality prediction, with P/F and IL-10 as key determinants of LDH increases in this Italian COVID-19 cohort.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Chiara Stranieri
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Edoardo Giuseppe Di Leo
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Lorenzo Bertolone
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Antonino Aparo
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, 37134 Verona, Italy;
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Fabio Chesini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Simonetta Friso
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| |
Collapse
|
12
|
Banete A, Griffin BD, Corredor JC, Chien E, Yip L, Gunawardena TNA, Nirmalarajah K, Liang J, Lee Y, Leacy A, Pagliarani S, de Borja R, Yim W, Lee H, Onodera Y, Aftanas P, Budylowski P, Ahn SK, Pei Y, Ouyang H, Kent L, Li XA, Ostrowski MA, Kozak RA, Wootton SK, Christie-Holmes N, Gray-Owen SD, Taipale M, Simpson JT, Maguire F, McGeer AJ, Zhang H, Susta L, Moraes TJ, Mubareka S. Pathogenesis and transmission of SARS-CoV-2 D614G, Alpha, Gamma, Delta, and Omicron variants in golden hamsters. NPJ VIRUSES 2025; 3:15. [PMID: 40295859 PMCID: PMC11850601 DOI: 10.1038/s44298-025-00092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025]
Abstract
Since the emergence of SARS-CoV-2 in humans, novel variants have evolved to become dominant circulating lineages. These include D614G (B.1 lineage), Alpha (B.1.1.7), Gamma (P.1), Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529) and BA.2 (B.1.1.529.2) viruses. Here, we compared the viral replication, pathogenesis, and transmissibility of these variants. Replication kinetics and innate immune response against the viruses were tested in ex vivo human nasal epithelial cells (HNEC) and induced pluripotent stem cell-derived lung organoids (IPSC-LOs), and the golden hamster model was employed to test pathogenicity and potential for transmission by the respiratory route. Delta, BA.1, and BA.2 viruses replicated more efficiently, and outcompeted D614G, Alpha, and Gamma viruses in an HNEC competition assay. BA.1 and BA.2 viruses, however, replicated poorly in IPSC-LOs compared to other variants. Moreover, BA.2 virus infection significantly increased secretion of IFN-λ1, IFN-λ2, IFN-λ3, IL-6, and IL-1RA in HNECs relative to D614G infection, but not in IPSC-LOs. The BA.1 and BA.2 viruses replicated less effectively in hamster lungs compared to the other variants; and while the Gamma virus reached titers comparable to D614G and Delta viruses, it caused greater lung pathology. Lastly, the Gamma and Delta variants transmitted more efficiently by the respiratory route compared to the other viruses, while BA.1 and BA.2 viruses transmitted less efficiently. These findings demonstrate the ongoing utility of experimental risk assessment as SARS-CoV-2 variants continue to evolve.
Collapse
Affiliation(s)
- Andra Banete
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bryan D Griffin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan C Corredor
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Emily Chien
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Lily Yip
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tarini N A Gunawardena
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yaejin Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Sara Pagliarani
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Winfield Yim
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hunsang Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Yu Onodera
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | | | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Laura Kent
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xinliu Angel Li
- Department of Microbiology, Sinai Health System, Toronto, ON, Canada
| | - Mario A Ostrowski
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Robert A Kozak
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Shared Hospital Laboratory, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Natasha Christie-Holmes
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Toronto High Containment Facility, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Finlay Maguire
- Shared Hospital Laboratory, Toronto, ON, Canada
- Department of Community Health and Epidemiology, Faculty of Medicine Dalhousie University, Halifax, NS, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Allison J McGeer
- Department of Microbiology, Sinai Health System, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Samira Mubareka
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Mo Y, Wei D, Chen X, Zhang Z, Huo W, Wu M, Chen D, Yu J. The burden of COVID-19 death for different cancer types: a large population-based study. J Glob Health 2025; 15:04046. [PMID: 39946554 PMCID: PMC11825124 DOI: 10.7189/jogh.15.04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Background Viral mutations and immune dysfunction still lead to recurrent infections of COVID-19 in cancer patients. Our aim in this study was to explore the differences in cumulative risk of COVID-19 death from different cancer types and characterise clinical and demographic factors associated with COVID-19 death. Methods We conducted a population-based study using the National Cancer Database, which included all cancer types. We calculated age-standardised mortality, cancer mortality, and COVID-19 mortality. Further, we employed a multivariate competing risk analysis to calculate the cumulative risk of COVID-19 death in different cancer types. Results 5.3% of cancer patients suffered from COVID-19 death. The highest COVID-19 mortality was in chronic lymphocytic leukaemia, while lung and bronchus cancer exhibited lower risk. Notably, years from cancer diagnosis independently predict COVID-19 death. The hazard ratios (HR) in different types of cancers were as follows: lung and bronchus cancer HR = 1.29 (95% confidence interval (CI) = 1.20-1.40, P < 0.001), colon and rectum cancer HR = 1.22 (95% CI = 1.16-1.29, P < 0.001), urinary bladder cancer HR = 1.22 (95% CI = 1.15-1.30, P < 0.001), non-Hodgkin lymphoma HR = 1.17 (95% CI = 1.11-1.23, P < 0.001), kidney cancer HR = 1.15 (95% CI = 1.06-1.24, P < 0.001), and breast cancer HR = 1.11 (95% CI = 1.06-1.16, P < 0.001). Radiotherapy, chemotherapy, and surgical resection did not significantly correlate with COVID-19 death. Conclusions We revealed the burden of COVID-19 death across different cancer types. COVID-19 mortality was highest in chronic lymphocytic leukaemia and prostate cancer, while patients with lung and bronchus cancer had a lower risk. Years from diagnosis independently predict COVID-19 death. Based on the results, we support more prompt risk assessment and treatment for various types of cancer.
Collapse
Affiliation(s)
- You Mo
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Duncan Wei
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaozheng Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zengfu Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Huo
- Department of Radiation Oncology, Affiliated Tumour Hospital of Xinjiang Medical University, Urumqi, China
| | - Meng Wu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Adamopoulos PG, Bartzoka N, Tsiakanikas P, Scorilas A. Characterization of novel ACE2 mRNA transcripts: The potential role of alternative splicing in SARS-CoV-2 infection. Gene 2025; 936:149092. [PMID: 39549777 DOI: 10.1016/j.gene.2024.149092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach. Bioinformatics analysis of the massive parallel sequencing data led to the identification of novel ACE2 mRNA splice variants (ACE2 sv.7-sv.12) that demonstrate previously uncharacterized exon-skipping events as well as 5' and/or 3' alternative splice sites. Demultiplexing of the sequencing data elucidated the differential expression profile of the identified splice variants in multiple human cell types, whereas in silico analysis suggests that some of the novel splice variants could produce truncated ACE2 isoforms with altered functionalities, potentially influencing their interaction with the SARS-CoV-2 spike protein. In summary, our study sheds light on the complex alternative splicing landscape of the ACE2 gene in cancer cell lines, revealing novel splice variants that could have significant implications for SARS-CoV-2 susceptibility in cancer patients. These findings contribute to the increased understanding of ACE2's role in COVID-19 and highlight the importance of considering alternative splicing as a key factor in viral pathogenesis. Undoubtably, further research is needed to explore the functional roles of these variants and their potential as therapeutic targets in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natalia Bartzoka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
15
|
Shafigh A, Mohammadi-Garebagh A, Shahsavarinia K, Tayebi S, Mostafaei A, Salehi-Pourmehr H, Hajebrahimi S. A systematic review on the correlation between COVID-19 and lower urinary tract symptoms. JOURNAL OF CLINICAL VIROLOGY PLUS 2025; 5:100202. [DOI: 10.1016/j.jcvp.2025.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
|
16
|
Sánchez-García S, Jaén RI, Lozano-Rodríguez R, Avendaño-Ortiz J, Pascual‐Iglesias A, Hurtado-Navarro L, López-Collazo E, Boscá L, Prieto P. Lipoxin A 4 levels correlate with severity in a Spanish COVID-19 cohort: potential use of endogenous pro-resolving mediators as biomarkers. Front Immunol 2025; 15:1509188. [PMID: 39916956 PMCID: PMC11798798 DOI: 10.3389/fimmu.2024.1509188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Background SARS-CoV-2, the causative virus of the COVID-19 global pandemic, leads to a wide variety of responses among patients. Some of them present a very severe phenotype, while others only experience mild symptoms or are even asymptomatic. This differential prognosis is tightly related to the inflammatory status of the patient. Although WHO declared the end of the emergency, the pandemic caused a great socio-sanitary impact in all countries. Thus, the possible outbreak of new biological diseases in the future makes it necessary to deepen the knowledge of this uncontrolled immune response and look for reliable biomarkers to help us predict its potential health impact. Specialized pro-resolving lipid mediators (SPMs) as lipoxins are endogenous mediators synthesized from arachidonic acid in the resolution stage of any inflammatory process. These lipids have pro-resolving actions in several pathological models, including reducing NF-κB-mediated inflammation, and inducing the antioxidant response through the Nrf-2 pathway. Thus, although a potential relationship has already been suggested between low levels of SPMs and COVID-19 severity, their true role as a predictive biomarker is still unknown. Methods and results In this study, we have analyzed by ELISA the serum levels of lipoxin A4 (LXA4) in a representative Spanish cohort. We found reduced levels in deceased patients when compared to mild or severe patients, concomitant with a decrease in the LXA4 biosynthetic pathway and an increase in its degradation pathway. Furthermore, we have studied the correlation between the levels of this SPM and several pathology indicators, finding a significant correlation between increased LXA4 levels and a better prognosis of the patients. Conclusion We propose to measure systemic LXA4 as a new promising biomarker to predict the survival in patients affected by SARS-CoV-2 and presumably to other viruses that can affect humanity in the future.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Rafael I. Jaén
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Roberto Lozano-Rodríguez
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - José Avendaño-Ortiz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alejandro Pascual‐Iglesias
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Laura Hurtado-Navarro
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisardo Boscá
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Hawley HB. Long COVID: Clinical Findings, Pathology, and Endothelial Molecular Mechanisms. Am J Med 2025; 138:91-97. [PMID: 37704072 DOI: 10.1016/j.amjmed.2023.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/29/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
Persistence of COVID-19 symptoms may follow severe acute respiratory syndrome coronavirus 2 infection. The incidence of long COVID increases with the severity of acute disease, but even mild disease can be associated with sequelae. The symptoms vary widely, with fatigue, shortness of breath, and cognitive dysfunction the most common. Abnormalities of multiple organs have been documented, and histopathology has revealed widespread microthrombi. Elevated levels of complement are present in acute COVID-19 patients and may persist at lower levels in long COVID. Evidence supports complement activation, with endotheliopathy-associated disease as the molecular mechanism causing both acute and long COVID.
Collapse
Affiliation(s)
- H Bradford Hawley
- Department of Medicine, Wright State University Boonshoft School of Medicine, Dayton, Ohio.
| |
Collapse
|
18
|
Ibraheem AAA, Saleh SA, Emam AA, Yousef AA, Abdulhay M, Haridi MK, Wahba AA, Al-Fahham MM, Selim DM, Razek SA, Sorour EI, Abouzied ESHF, Ismail AH, Mohamed SA, Soliman AA, Shehata H, Arab F, Rashad MLM, Hafez SFM, Abdelkhalek K, Ibrahim DM, Ashraf B, Saleh ASE, Fouad RA, Omar WE, Nabil RM, Ramadan RA, El-Sehsah EM, Afify MR, Bawazir Y, Mustafa M, Daghistani Y, Thabit RA, Salah W, Almoraie LM, Aljamei HM, Hummdi LA, Arishi EA, Salem HF, Massoud YM, Khalil DM, Raouf BMA, Elmikaty HA, El-Gaaly SAA, Fakhreldin AR, Hashem MIA. Angiotensin-Converting Enzyme 2 (G8790A) Gene Polymorphism as a Risk Factor for COVID-19 in Egyptian Children and Adolescents. Pediatr Pulmonol 2025; 60:e27479. [PMID: 39821718 DOI: 10.1002/ppul.27479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE Recently, angiotensin-converting enzyme 2 (ACE2) gene has emerged as a potential candidate gene for susceptibility to SARS-CoV-2 infection. We investigated whether ACE2 G8790A (rs2285666) polymorphism could be a genetic marker for susceptibility to COVID-19 and disease severity in Egyptian children and adolescents. METHODS This was a prospective case-control study included 580 cases diagnosed with COVID-19, and 580 matched control children and adolescents. The ACE2 G8790A (rs2285666) polymorphism was genotyped using polymerase chain reaction (PCR) and ACE2 serum level was measured by ELISA. RESULTS The ACE2 A/A genotype and A-allele were significantly more represented in cases with COVID-19 as compared to control group (44% vs. 30%; OR = 2.83; [95% CI: 1.27-2.63]; p = 0.006; for the A/A genotype) and (65% vs. 51%; OR = 1.9; [95% CI: 1.06-1.72]; p = 0.01; for the A-allele). The presence of ACE2 G/G genotype was an independent risk factor for severe disease (adjusted OR: 2.08; [95% CI: 1.57-6.78]; p = 0.003). CONCLUSION The ACE2 G8790A (rs2285666) polymorphism may confer susceptibility to COVID-19 in Egyptian children and adolescents. The ACE2 G/G genotype and G-allele was associated with lower ACE2 serum levels and may constitute independent risk factors for disease severity.
Collapse
Affiliation(s)
- Ahmed A A Ibraheem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sarah A Saleh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aly A Yousef
- Department of Pediatrics, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Mohamed Abdulhay
- Department of Pediatrics, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Mohammed K Haridi
- Department of Pediatrics, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Ali A Wahba
- Department of Pediatrics at SSMC, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Marwa M Al-Fahham
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Dalia M Selim
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Suzan A Razek
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ehab I Sorour
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt
| | - El Sayed H F Abouzied
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt
| | - Ahmed H Ismail
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Assiut, Egypt
| | - Soma A Mohamed
- Department of Pediatrics, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Shehata
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faika Arab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa L M Rashad
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sahbaa F M Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Khalil Abdelkhalek
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Dina M Ibrahim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Bassem Ashraf
- Department of Otorhinolaryngology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S E Saleh
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Rania A Fouad
- Department of Medical Biochemistry, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa E Omar
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rehab M Nabil
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Raghdaa A Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M El-Sehsah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Mona R Afify
- Department of Basic Medical Science, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser Bawazir
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mustafa
- Department of Medicine, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yassir Daghistani
- Department of Medicine, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Rawan A Thabit
- Department of Radiology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Wed Salah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Almoraie
- Department of Family Medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanan Maas Aljamei
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila Ahmed Hummdi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Hanan F Salem
- Department of Anesthesia, Faculty of Medicine, Benha University, Banha, Egypt
| | - Yasmine M Massoud
- Department of Tropical Medicine, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Dalia M Khalil
- Department of Psychiatry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Batoul M Abdel Raouf
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Hani A Elmikaty
- Department of Pediatrics, National Research Centre, Ad Doqi, Egypt
| | - Sonya A A El-Gaaly
- Department of Internal Medicine, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed R Fakhreldin
- Department of Pediatrics, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Zhang Y, Song SJ, He J, Zhao ZH, Zhang K, Zhang Y, Li X. Targeted Drug Delivery to ACE2 + Cells Using Engineered Extracellular Vesicles: A Potential Therapeutic Approach for COVID-19. Curr Pharm Biotechnol 2025; 26:443-454. [PMID: 38551053 DOI: 10.2174/0113892010282251240324123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are emerging as potential drug carriers in the fight against COVID-19. This study investigates the ability of EVs as drug carriers to target SARS-CoV-2-infected cells. METHODS EVs were modified using Xstamp technology to carry the virus's RBD, enhancing targeting ability to hACE2+ cells and improving drug delivery efficiency. Characterization confirmed EVs' suitability as drug carriers. For in vitro tests, A549, Caco-2, and 4T1 cells were used to assess the targeting specificity of EVRs (EVs with membrane-surface enriched RBD). Moreover, we utilized an ex vivo lung tissue model overexpressing hACE2 as an ex vivo model to confirm the targeting capability of EVRs toward lung tissue. The study also evaluated drug loading efficiency and assessed the potential of the anti-inflammatory activity on A549 lung cancer cells exposed to lipopolysaccharide. RESULTS The results demonstrate the successful construction of RBD-fused EVRs on the membrane- surface. In both in vitro and ex vivo models, EVRs significantly enhance their targeting ability towards hACE2+ cells, rendering them a safe and efficient drug carrier. Furthermore, ultrasound loading efficiently incorporates IL-10 into EVRs, establishing an effective drug delivery system that ameliorates the pro-inflammatory response induced by LPS-stimulated A549 cells. CONCLUSION These findings indicate promising opportunities for engineered EVs as a novel nanomedicine carrier, offering valuable insights for therapeutic strategies against COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yao Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Zhuo-Hua Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Ke Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
20
|
Changela S, Ashraf S, Lu JY, Duong KE, Henry S, Wang SH, Duong TQ. New-onset gastrointestinal disorders in COVID-19 patients 3.5 years post-infection in the inner-city population in the Bronx. Sci Rep 2024; 14:31850. [PMID: 39738536 PMCID: PMC11685902 DOI: 10.1038/s41598-024-83232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
This study examined the incidence, characteristics, and risk factors of new gastrointestinal disorders (GID) associated with SARS-CoV-2 infection up to 3.5 years post-infection. This retrospective study included 35,102 COVID-19 patients and 682,594 contemporary non-COVID-19 patients without past medical history of GID (controls) from the Montefiore Health System in the Bronx (3/1/2020 to 7/31/2023). Comparisons were made with unmatched and propensity-matched (1:2) controls. The primary outcome was new GID which included peptic ulcer, inflammatory bowel disease, irritable bowel syndrome, diverticulosis, diverticulitis, and biliary disease. Multivariate Cox proportional hazards model analysis was performed with adjustment for covariates. There were 2,228 (6.34%) COVID-19 positive patients who developed new GID compared to 38,928 (5.70%) controls. COVID-19 patients had an elevated risk of developing new GID (adjusted HR = 1.18 (95% CI 1.12-1.25) compared to propensity-matched controls, after adjusting for confounders that included smoking, obesity, diabetes, hypertension. These findings underscore the need for additional research and follow-up of at-risk individuals for developing GID post infection.
Collapse
Affiliation(s)
- Sagar Changela
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Samad Ashraf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Justin Y Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin E Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
21
|
Li C, Chen H. Unlike common pneumonia, COVID-19 is a risk factor for multiple cardiovascular diseases: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e41015. [PMID: 39969327 PMCID: PMC11688020 DOI: 10.1097/md.0000000000041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/02/2024] [Indexed: 02/20/2025] Open
Abstract
This study investigates the differences between COVID-19 and past common forms of pneumonia and to determine if COVID-19 acts as a contributing factor in various cardiovascular diseases (CVDs). We retrieved large-sample genome-wide association study data from the Open GWAS database related to COVID-19, bacterial pneumonia (BP), viral pneumonia (VP), stable angina (SA), unstable angina (UA), heart failure (HF), ischemic heart disease (IHD), atrial fibrillation (AF), and myocardial infarction (MI). We selected single-nucleotide polymorphisms with strong correlations as instrumental variables (P < 5E-06), and set the threshold for the F-statistic to be over 10. Five statistical methods were used for analysis including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode, with inverse variance weighted as the primary method. We assessed the reliability of our results through heterogeneity, pleiotropy, and sensitivity testing; Our analysis probed the relationship between COVID-19, BP, VP, and 6 CVDs. COVID-19 infection was found to enhance the incidence of SA, UA, HF, and MI (SA: odds ratio [OR], 1.12; 95% confidence interval [CI], 1.04-1.20; P = .002; UA: OR, 1.14; 95% CI, 1.01-1.29; P = .041; HF: OR, 1.12; 95% CI, 1.03-1.23; P = .012; MI: OR, 1.11; 95% CI, 1.02-1.25; P = .032). There was no significant effect on the incidence of AF or IHD (P > .05), and no pleiotropy or sensitivity issues were found in the results. In contrast, neither past common BP nor VP was found to contribute to the progression of these 6 CVDs (P > .05). Unlike past common BP or VP, COVID-19 was found to increase the risks of SA, UA, HF, and MI, with no evidence supporting an increased risk for AF or IHD following COVID-19 infection.
Collapse
Affiliation(s)
- Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huijun Chen
- Heilongjiang University of Chinese Medicine affiliated second hospital, Harbin, China
| |
Collapse
|
22
|
Arppo A, Barker H, Parkkila S. Bioinformatic characterization of ENPEP, the gene encoding a potential cofactor for SARS-CoV-2 infection. PLoS One 2024; 19:e0307731. [PMID: 39661628 PMCID: PMC11633960 DOI: 10.1371/journal.pone.0307731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4). Recent studies have proposed a role for ENPEP as a viral receptor in humans, and ENPEP and ACE2 are both closely involved in the renin-angiotensin-aldosterone system proposed to play an important role in SARS-CoV-2 pathophysiology. We performed bioinformatic analyses using publicly available bulk (>17,000 samples from 49 distinct tissues) and single-cell (>2.5 million cells) RNA-Seq gene expression datasets to evaluate the expression and function of the ENPEP gene. We also investigated age- and sex-related changes in ENPEP expression. Overall, expression of ENPEP was highest in the small intestine enterocyte brush border and the kidney cortex. ENPEP is widely expressed in a subset of vascular smooth muscle cells (likely pericytes) in systemic vasculature, the heart, and the brain. ENPEP is expressed at low levels in the lower respiratory epithelium. In the lung, ENPEP is most highly expressed in para-alveolar fibroblasts. Single-cell data revealed ENPEP expression in a substantial fraction of ependymal cells, a finding not reported before in humans. Age increases ENPEP expression in skeletal muscle and the prostate, while decreasing it in the heart and aorta. Angiogenesis was found to be a central biological function associated with the ENPEP gene. Tissue-specific roles, such as protein digestion and fat metabolism, were also identified in the intestine. In the liver, the gene is linked to the complement system, a connection that has not yet been thoroughly investigated. Expression of ENPEP and ACE2 is strongly correlated in the small intestine and renal cortex. Both overall and in blood vessels, ENPEP and ACE2 have a stronger correlation than many other genes associated with SARS-CoV-2, such as TMPRSS2, CTSL, and NRP1. Possible interaction between glutamyl aminopeptidase and SARS-CoV-2 should be investigated experimentally.
Collapse
Affiliation(s)
- Antti Arppo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
23
|
Bartoli G, Strologo AD, Arena M, Galenandro E, Ferro M, Diomedi-Camassei F, Pesce F, Grandaliano G. Late Recurrence of C3 Glomerulopathy After SARS-CoV-2 Infection in a Long-Term Kidney Transplant Recipient: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e944208. [PMID: 39628044 PMCID: PMC11627295 DOI: 10.12659/ajcr.944208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/23/2024] [Accepted: 06/18/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Kidney transplantation is the optimal treatment for end-stage kidney disease. Over the last decades, the long-term survival of renal allografts has significantly increased. Nevertheless, several causes, including the recurrence of native kidney disease, can impair the allograft function over time. C3 glomerulopathy (C3GN) is a rare disease, characterized by an abnormal activation of the alternative complement pathway that leads to the accumulation of C3 complement component in the glomeruli. C3GN frequently recurs after kidney transplantation during the first years, leading to graft failure. Recently, during the Covid-19 pandemic, the outcome of kidney transplant patients generally worsened, and several studies showed the effects of SARS-CoV-2 infection on renal function. CASE REPORT Here, we present the clinical case of a female kidney transplant recipient whose renal function worsened after 28 years of transplantation concurrently with two SARS-CoV-2 infections (in October 2020 and March 2022). In 1994, the patient received a diagnosis of acute post-infectious glomerulonephritis, leading to end-stage kidney disease and a living-donor kidney. The most recent allograft biopsy and laboratory test results showed chronic rejection and features of C3GN. Thus, given the possibility of a recurrent glomerulopathy, we reanalyzed the previous patient's renal biopsies performed in 1982 and 1988 and found that both suggested C3GN. CONCLUSIONS Based on these data and the current evidence, we could conclude that in this case, C3GN occurred as a late recurrence disease caused by complement activation after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Giulia Bartoli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Dello Strologo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Arena
- Unit of Nephrology, Dialysis and Transplantation, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Egidio Galenandro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Ferro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Francesco Pesce
- Division of Renal Medicine, “Ospedale Isola Tiberina – Gemelli Isola”, Rome, Italy
| | - Giuseppe Grandaliano
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Nephrology, Dialysis and Transplantation, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
24
|
Subbarayan K, Al-Samadi A, Schäfer H, Massa C, Salo T, Biehl K, Vaxevanis CK, Ulagappan K, Wahbi W, Reimers M, Drexler F, Moreira-Soto A, Bachmann M, Seliger B. Altered ACE2 and interferon landscape in the COVID-19 microenvironment correlate with the anti-PD-1 response in solid tumors. Cell Mol Life Sci 2024; 81:473. [PMID: 39625479 PMCID: PMC11615173 DOI: 10.1007/s00018-024-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Angiotensensin-converting enzyme-2 (ACE2) is a receptor for SARS-CoV-2, allowing the virus to enter cells. Although tumor patients infected by SARS-CoV-2 often have a worse outcome, the expression, function and clinical relevance of ACE2 in tumors has not yet been thoroughly analyzed. In this study, RNA sequencing (RNA-seq) data from tumors, adjacent tissues and whole blood samples of COVID-19 patients from genome databases and from tumor cell lines and endothelial cells infected with different SARS-CoV-2 variants or transfected with an ACE2 expression vector (ACE2high) or mock (ACE2low) were analyzed for the expression of ACE2 and immune response relevant molecules in silico or by qPCR, flow cytometry, Western blot and/or RNA-seq. The differential expression profiles in ACE2high vs. ACE2low cells correlated with available SARS-CoV-2 RNA-seq datasets. ACE2high cells demonstrated upregulated mRNA and/or protein levels of HLA class I, programmed death ligand 1 (PD-L1), components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway compared to ACE2low cells. Co-cultures of ACE2high cells with peripheral blood mononuclear cells increased immune cell migration and infiltration towards ACE2high cells, apoptosis of ACE2high cells, release of innate immunity-related cytokines and altered NK cell-mediated cytotoxicity. Thus, ACE2 expression was associated in different model systems and upon SARS-CoV-2 infection with an altered host immunogenicity, which might influence the efficacy of immune checkpoint inhibitors. These results provide novel insights into the (patho)physiological role of ACE2 on immune response-relevant mechanisms and suggest an alternative strategy to reduce COVID-19 severity in infected tumor patients targeting the ACE2-induced IFN-PD-L1 axis.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ahmed Al-Samadi
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Helene Schäfer
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
- Institute of Translational Immunology, Brandenburg an der Havel, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Christoforos K Vaxevanis
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Kamatchi Ulagappan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Matthias Reimers
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | | | | | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Institute of Translational Immunology, Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Translational Medicine, Medical School Theodor Fontane, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
25
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
26
|
Yu Y, Ye J, Wang R, Wang J, Wang J, Xu Q, Wang P, Wang B, Zhang Y. Research trends and hotspots of the applications of single-cell RNA sequencing in cardiovascular diseases: a bibliometric and visualized study. Ann Med Surg (Lond) 2024; 86:7164-7177. [PMID: 39649887 PMCID: PMC11623828 DOI: 10.1097/ms9.0000000000002681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 12/11/2024] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading causes of death globally. The use of single-cell RNA sequencing (scRNA-seq) in CVDs has gained significant attention in recent years, and there is a growing body of literature on the subject. However, a thorough and impartial analysis of the existing state and trends of scRNA-seq in CVDs is lacking. This study aims to examine the development of scRNA-seq in CVDs using bibliometric and visualized analysis. Methods Global publications on scRNA-seq and CVDs from 2009 to 2023 were extracted from the Web of Science Core Collection (WoSCC) database. The R package "Bibliometrix", VOSviewer, and CiteSpace were employed to perform a bibliometric study. Results After applying the screening criteria and omitting documents that met exclusive criteria, this bibliometric study included 1170 papers. These were authored by 8595 scholars from 1565 organizations in 57 countries or regions and were published in 369 journals, with 51 073 co-cited references included. Publication volume, citations, and relative research interest index focusing on this field have dramatically increased since 2019. The cooperation network showed that the USA, the Chinese Academy of Medical Sciences, and Qingbo Xu were the most active countries, institutes, and authors in this field, respectively. Circulation Research was the journal with the most publications, which was confirmed to be the top core source by Bradford's law. The hotspots and emerging direction in the field manifest in (1) three CVDs (atherosclerosis, myocardial infarction, and heart failure) and (2) three cell types (macrophage, fibroblast, and smooth muscle cell). Conclusions Our study provides a systematic visualization of the research literature on scRNA-seq in CVDs and provides guidance and reference for understanding the current research status and discovering new research directions.
Collapse
Affiliation(s)
- Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Juan Ye
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Rubing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - JingJing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Junnan Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Qiumeng Xu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Pei Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Bei Wang
- Department of Nursing, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Gonzalez-Orozco M, Tseng HC, Hage A, Xia H, Behera P, Afreen K, Peñaflor-Tellez Y, Giraldo MI, Huante M, Puebla-Clark L, van Tol S, Odle A, Crown M, Teruel N, Shelite TR, Moreno-Contreras J, Terasaki K, Makino S, Menachery V, Endsley M, Endsley JJ, Najmanovich RJ, Bashton M, Stephens R, Shi PY, Xie X, Freiberg AN, Rajsbaum R. TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication. Nat Commun 2024; 15:10438. [PMID: 39616206 PMCID: PMC11608229 DOI: 10.1038/s41467-024-54762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7-/- mice exhibit increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients reveal that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus shows reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hsiang-Chi Tseng
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Padmanava Behera
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kazi Afreen
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yoatzin Peñaflor-Tellez
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthew Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abby Odle
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas R Shelite
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Joaquin Moreno-Contreras
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kaori Terasaki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rafael J Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
28
|
Khalil M, Abdallah H, Calasso M, Khalil N, Daher A, Missaoui J, Diab F, Zeaiter L, Vergani L, Di Ciaula A, Portincasa P. Herbal Medicine in Three Different Mediterranean Living Areas During the COVID-19 Pandemic: The Role of Polyphenolic-Rich Thyme-like Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3340. [PMID: 39683135 PMCID: PMC11644039 DOI: 10.3390/plants13233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Despite herbal medicine being popular across the Mediterranean basin, there is no evidence in favor of COVID-19 infection. This study investigates the utilization and effects of medicinal plants in Italy, Lebanon, and Tunisia during COVID-19 and its effects on post-COVID-19 pandemics. We used a tailored, web-based "Google Form" questionnaire with the random sampling method. We gathered 812 complete responses (Italy: 116, Lebanon: 557, and Tunisia: 139), revealing diverse demographics and symptom experiences. Fatigue prevailed across all groups (89.0-94.2%), while psychological impacts ranged from 20.1% to 30.9%, with higher rates in Lebanon. Post-COVID-19 symptoms affected 22.4% (Italy), 48.8% (Lebanon), and 31.7% (Tunisia). General use of herbs was consistent (41.4-50.4%), with 23.3% (Italy), 50.2% (Lebanon), and 65.5% (Tunisia) employing herbs for COVID-19 therapy. Notably, in Lebanon, Za'atar, a thyme-like plant, correlated with reduced symptoms, suggesting potential protective effects that are likely due to its polyphenol richness. This study underscores the persistent reliance on traditional medicinal plants remedies in the Mediterranean area, with regional variations. Further exploration of herbal compounds for COVID-19-like symptoms is warranted.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy;
| | - Nour Khalil
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon; (N.K.); (A.D.)
| | - Ahmad Daher
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon; (N.K.); (A.D.)
| | - Jihen Missaoui
- Research Laboratory of BIORESSOURCES—Integrative Biology & Valorisation BIOLIVAL (LR14 ES06) at ISBM, Monastir 5000, Tunisia;
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.D.); (L.Z.); (L.V.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy; (H.A.); (A.D.C.)
| |
Collapse
|
29
|
Avilez ND, Gon LM, Achermann VC, Riccetto CLZ. Prolonged urinary retention in COVID-19 survivors: observational study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240845. [PMID: 39536242 PMCID: PMC11554313 DOI: 10.1590/1806-9282.20240845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Initially diagnosed as a respiratory disease, SARS-CoV-2 revealed numerous extrapulmonary implications. The aim of this study was to investigate prolonged urinary retention in survivors post-COVID-19 infection that led to hospitalization. METHODS A retrospective cohort analysis included male and female patients hospitalized during the COVID-19 pandemic in a reference center hospital. Exclusions were patients with a history of lower urinary tract surgeries or symptoms, including urinary incontinence, those using medication affecting detrusor contractile activity, and those with established neurological diseases. Clinical, laboratory, and radiographic data were obtained from medical records and analyzed using chi-square, Fisher's exact, Mann-Whitney, Kruskal-Wallis, and Dunn tests. RESULTS The study included 834 patients, with 471 (56.5%) male and 363 (43.5%) female. Of these, 300 patients used a urinary catheter, and 12.6% were unable to remove it due to sustained urinary retention. Orotracheal intubation, thrombocytopenia, urinary tract infections, and higher Sequential Organ Failure Assessment scores were associated with urinary retention. Correlation analysis showed that the highest percentage of pulmonary involvement on computed tomography was related to longer catheterization time and failed attempts to remove the catheter, affecting men and women equally. CONCLUSIONS Urinary tract involvement in COVID-19 infection is increasingly evident. The correlation between COVID-19 severity and failure to remove the urinary catheter in a similar percentage of men and women reinforces the hypothesis that sex-independent urothelial injury and bladder dysfunction might be caused by COVID-19.
Collapse
Affiliation(s)
| | - Lucas Mira Gon
- Universidade Estadual de Campinas – Campinas (SP), Brazil
| | | | | |
Collapse
|
30
|
Aikwanich A, Eksombatchai D, Petnak T, Tassaneeyasin T, Boonsarngsuk V. Risk Factors for Secondary Organizing Pneumonia and Acute Fibrinous and Organizing Pneumonia in Patients with COVID-19 Pneumonia. Infect Drug Resist 2024; 17:5017-5026. [PMID: 39554470 PMCID: PMC11566205 DOI: 10.2147/idr.s481540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Secondary organizing pneumonia (OP) and acute fibrinous and organizing pneumonia (AFOP) are frequently observed in cases of COVID-19 pneumonia. Nevertheless, the identification of risk factors related to OP/AFOP and their impact on patient outcomes remain inadequately elucidated. Patients and Methods This retrospective study aimed to identify risk factors associated with OP/AFOP in patients with COVID-19 pneumonia and to compare clinical outcomes between patients with and without OP/AFOP. The study included hospitalized patients with COVID-19 pneumonia admitted between July 1 and September 30, 2021. Factors associated with OP/AFOP were identified using multivariable regression analysis. Additionally, a multivariable Cox proportional hazard model was used to evaluate the association of OP/AFOP with 90-day mortality. Results Among the 666 hospitalized patients with COVID-19 pneumonia, 53 (8%) developed OP/AFOP during their admission. When compared to patients younger than 50 years old, those aged 50-70 and over 70 years old exhibited an increased risk of developing OP/AFOP, with adjusted odds ratios (aOR) of 3.87 (95% CI, 1.24-12.11; P=0.02) and 5.74 (95% CI, 1.80-18.27; P=0.003), respectively. Other factors associated with OP/AFOP included a history of diabetes mellitus (aOR 2.37; 95% CI, 1.27-4.44; P=0.01) and patients with oxygen saturation at admission below 88% (aOR 4.52; 95% CI, 1.22-16.67; P=0.02). Furthermore, the presence of OP/AFOP was correlated with an increased risk of various complications, such as respiratory failure, acute kidney injury, secondary infections, pneumothorax, pneumomediastinum, and pulmonary embolism. Lastly, patients with OP/AFOP exhibited significantly higher 90-day mortality (adjusted hazard ratio 3.40; 95% CI, 1.68-6.92; P=0.001) compared to those without OP/AFOP. Conclusion We identified factors associated with an increased risk of OP/AFOP in patients with COVID-19 pneumonia, which included age ≥50 years, a history of DM, and hypoxemia on admission (SpO2 <88%). Furthermore, our study revealed that OP/AFOP was significantly linked to higher 90-day mortality.
Collapse
Affiliation(s)
- Alisa Aikwanich
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Dararat Eksombatchai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tananchai Petnak
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Tanapat Tassaneeyasin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Viboon Boonsarngsuk
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
31
|
Monteonofrio L, Virdia I, Pozzi S, Quadri R, Amendolare A, Marzano F, Braile M, Sulfaro V, Paroni M, Tullo A, Soddu S, Guerrini L. Molecular mechanisms of thalidomide effectiveness on COVID-19 patients explained: ACE2 is a new ΔNp63α target gene. J Mol Med (Berl) 2024; 102:1371-1380. [PMID: 39294414 PMCID: PMC11525293 DOI: 10.1007/s00109-024-02485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
COVID-19 pandemic is caused by the SARS-CoV-2 virus, whose internalization and infection are mediated by the angiotensin-converting enzyme 2 (ACE2). The identification of novel approaches to tackle this step is instrumental for the development of therapies for the management of COVID-19 and other diseases with a similar mechanism of infection. Thalidomide, a drug sadly known for its teratogenic effects, has potent immunomodulatory and anti-inflammatory properties. Treatment with this drug has been shown to improve the immune functions of COVID-19 patients and proposed for the management of COVID-19 in clinical practice through drug repositioning. Here, we investigated the molecular details linking thalidomide to ACE2 and COVID-19, showing that in conditions mimicking SARS-CoV-2-associated cytokine storm, the transcription factor ΔNp63α and ACE2 are stabilized, and IL-8 production is increased. In such conditions, we found p63 to bind to and regulate the expression of the ACE2 gene. We previously showed that ΔNp63α is degraded upon thalidomide treatment and now found that treatment with this drug-or with its analogue lenalidomide-downregulates ACE2 in a p63-dependent manner. Finally, we found that thalidomide treatment reduces in vitro infection by pseudo-SARS-CoV-2, a baculovirus pseudotyped with the SARS-CoV-2 spike protein. Overall, we propose the dual effect of thalidomide in reducing SARS-CoV-2 viral re-entry and inflammation through p63 degradation to weaken SARS-CoV-2 entry into host cells and mitigate lung inflammation, making it a valuable option in clinical management of COVID-19. KEY MESSAGES: Thalidomide treatment results in p63-dependent ACE2 downregulation. ACE2 is a p63 transcriptional target. Thalidomide reduces the "cytokine storm" associated to COVID-19. Thalidomide prevents viral re-entry of SARS-CoV-2 by p63-dependent ACE2 downregulation. Thalidomide is a modulator of SARS-CoV-2 or other ACE2-dependent infections. ACE2 is modulated by a pharmacological substance.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Dipartimento Di Ricerca E Tecnologie Avanzate, Istituto Nazionale Tumori Regina Elena IRCCS, 00144, Rome, Italy
| | - Ilaria Virdia
- Dipartimento Di Ricerca E Tecnologie Avanzate, Istituto Nazionale Tumori Regina Elena IRCCS, 00144, Rome, Italy
| | - Sara Pozzi
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Quadri
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Alessandra Amendolare
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), Consiglio Nazionale Delle Ricerche, 70025, Bari, Italy
| | - Flaviana Marzano
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), Consiglio Nazionale Delle Ricerche, 70025, Bari, Italy
| | - Micaela Braile
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Virginia Sulfaro
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Moira Paroni
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Apollonia Tullo
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), Consiglio Nazionale Delle Ricerche, 70025, Bari, Italy
| | - Silvia Soddu
- Dipartimento Di Ricerca E Tecnologie Avanzate, Istituto Nazionale Tumori Regina Elena IRCCS, 00144, Rome, Italy
| | - Luisa Guerrini
- Dipartimento Di Bioscienze, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
32
|
Lu J, Zuo X, Cai A, Xiao F, Xu Z, Wang R, Miao C, Yang C, Zheng X, Wang J, Ding X, Xiong W. Cerebral small vessel injury in mice with damage to ACE2-expressing cerebral vascular endothelial cells and post COVID-19 patients. Alzheimers Dement 2024; 20:7971-7988. [PMID: 39352003 PMCID: PMC11567838 DOI: 10.1002/alz.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2. METHODS We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements. RESULTS Here, we show an array of pathological and behavioral alterations characteristic of cerebral small vessel disease (CSVD) in mice that targeted damage to ACE2-expressing CVECs, and COVID-19 survivors. These CSVD-like manifestations persist for at least 7 months post-recovery from COVID-19. DISCUSSION Our findings suggest that SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae, underscoring the imperative for heightened clinical vigilance in mitigating or treating SARS-CoV-2-mediated cerebral endothelial injury throughout infection and convalescence. HIGHLIGHTS Cerebral small vessel disease-associated changes were observed after targeted damage to angiotensin-converting enzyme 2-expressing cerebral vascular endothelial cells. SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae. Clinical vigilance is needed in preventing SARS-CoV-2-induced cerebral endothelial damage during infection and recovery.
Collapse
Affiliation(s)
- Jieping Lu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xin Zuo
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical UniversityChangzhou Second People's HospitalChangzhou Medical CenterNanjing Medical UniversityChangzhouChina
| | - Fang Xiao
- Department of RadiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhenyu Xu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Rui Wang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chenjian Miao
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chen Yang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xingxing Zheng
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Ding
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wei Xiong
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
- Anhui Province Key Laboratory of Biomedical Aging ResearchHefeiChina
- CAS Key Laboratory of Brain Function and DiseaseHefeiChina
| |
Collapse
|
33
|
Donkers A, Seel W, Klümpen L, Simon MC. The Multiple Challenges of Nutritional Microbiome Research During COVID-19-A Perspective and Results of a Single-Case Study. Nutrients 2024; 16:3693. [PMID: 39519526 PMCID: PMC11547757 DOI: 10.3390/nu16213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has affected multiple aspects of people's lives, which may also influence the results of studies conducted during this period across diverse research domains. This particularly includes the field of nutritional science, investigating the gut microbiota as a potential mediator in the association between dietary intake and health-related outcomes. This article identifies the challenges currently facing this area of research, points out potential solutions, and highlights the necessity to consider a range of issues when interpreting trials conducted during this period. Some of these issues have arisen specifically because of the measures implemented to interrupt the spread of small acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while others remain relevant beyond the pandemic.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Simon
- Nutrition and Microbiota, Institute of Nutrition and Food Science, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
34
|
Wang CH, Chung KT, Su LY, Wu WJ, Wang PH, Lee MC, Shen SC, Wu CH. Chinese Herbal Medicines as Natural Alternative Products to Antibiotics in Weaned Piglets through Intestinal Microbiota Regulation. Int J Mol Sci 2024; 25:11034. [PMID: 39456815 PMCID: PMC11506844 DOI: 10.3390/ijms252011034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
During the growth process of weaned piglets, digestive problems such as gastrointestinal disorders and diarrhea are common. Farmers usually use antibiotics to help piglets grow smoothly. However, the overuse of antibiotics can lead to antibiotic resistance issues. Therefore, this study chose to use plant extracts as feed additives to explore their potential as alternatives to antibiotics. Additionally, Tilmicosin was used as the antibiotic because it is widely used in treating respiratory infections in piglets. Since traditional Chinese medicine often uses natural products, we selected Guizhi Li-Zhong (GLZ) extract as an alternative to antibiotics. The experiment involved 126 piglets, each 4 weeks old, which were randomly assigned to one of four groups: the sham group (basal diet without supplements, 10.3 ± 0.4 kg, n = 31), the low-dose GLZ group (basal diet with 0.05% GLZ, 10.9 ± 0.4 kg, n = 32), the regular-dose GLZ group (basal diet with 0.2% GLZ, 10.6 ± 0.4 kg, n = 32), and the regular-dose Tilmicosin antibiotic group (basal diet with 0.2% Tilmicosin, 10.2 ± 0.3 kg, n = 31). We recorded and compared the survival rate, growth rate, feed conversion ratio, and diarrhea incidence among four groups of weaned piglets from the 4th to the 10th weeks of age. Then, we examined the oxidative stress, inflammation, and apoptosis in small intestine tissue (jejunum and ileum) through immunohistochemistry and Western blot and compared the gut microbiota in large intestine tissue (colon and rectum) through a next-generation sequencing (NGS) analysis. Our results showed that weaned piglets supplemented with 0.05% and 0.2% GLZ had better survival rates, growth rates (p < 0.01), and feed conversion ratios (p < 0.01) compared to those receiving sham treatment. Even weaned piglets supplemented with 0.2% GLZ performed better than those supplemented with 0.2% Tilmicosin antibiotics (p < 0.05). Furthermore, the incidence of diarrhea and small intestine injury (indicated by oxidative stress-, inflammation-, and apoptosis-related proteins) in piglets supplemented with 0.05% and 0.2% GLZ was lower than in piglets receiving sham treatment (p < 0.05). Even piglets supplemented with 0.2% GLZ had less injury than those supplemented with 0.2% Tilmicosin antibiotics (p < 0.05). The NGS results further showed that GLZ treatment significantly improved beneficial bacteria in weaned piglets (p < 0.05), while antibiotic treatment reduced beneficial bacteria (p < 0.05). In summary, we recommend adding GLZ to the feed as an alternative to antibiotics. This not only effectively reduces intestinal damage but also improves the gut microbiota, thereby promoting the growth of weaning piglets.
Collapse
Affiliation(s)
- Che-Hsuan Wang
- School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; (C.-H.W.); (S.-C.S.)
| | - Kou-Toung Chung
- Department of Health Nutrition and Chemical Engineering, Army Academy of ROC, Taoyuan City 320, Taiwan;
| | - Li-Yu Su
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 106, Taiwan;
| | - Wan-Jhen Wu
- Graduate Program for Nanotechnology, Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Hwa Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City 231, Taiwan;
| | - Szu-Chuan Shen
- School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; (C.-H.W.); (S.-C.S.)
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; (C.-H.W.); (S.-C.S.)
| |
Collapse
|
35
|
Considine JA, O’Hollaren K, Knapp J, Radoiu C, Liaw A, Dhar N. Therapeutic efficacy and short-term durability of trans-urethral amniotic bladder injections for the treatment of refractory COVID-associated cystitis. Bladder (San Franc) 2024; 11:e21200010. [PMID: 39539472 PMCID: PMC11555134 DOI: 10.14440/bladder.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction COVID-19-associated cystitis (CAC) may arise following a COVID-19 infection and is characterized by the development of novel or worsening overactive bladder (OAB). CAC is possibly associated with bladder mucosal damage and the release of pro-inflammatory cytokines, resulting in inflammation and fibrosis of the bladder wall. Amniotic membrane (AM) has been shown to possess anti-inflammatory and anti-fibrotic properties and might potentially be beneficial for CAC. This study investigated the safety and efficacy of bladder injections of AM in CAC patients with resistant OAB symptoms. Methods Five CAC patients, with an average age of 73 ± 1.0 years and a median disease duration of 2.4 years, received intra-detrusor injections of 100 mg micronized AM under general anesthesia and were followed for 20 weeks. Key urodynamic measures (involuntary detrusor contraction and maximum cystometric capacity) were determined to evaluate treatment response. Quality of life (QOL) was assessed using the OAB assessment tool, and safety was analyzed. Results All five patients showed improved urodynamic bladder function and significantly improved QOL improvements. The improvement was evident from 4 weeks post-treatment and sustained until 12 weeks. Symptoms re-surged at 20 weeks. No safety concerns arose during the study. Conclusion The observed improvements in symptom scores and bladder volume parameters highlighted the promise of AM bladder injections as a viable intervention for CAC patients with refractory OAB symptoms. Comprehensive studies are needed to validate its therapeutic potential, and treatment protocol refinement is warranted to address the observed reduction in efficacy over time.
Collapse
Affiliation(s)
- Jack A. Considine
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Kyle O’Hollaren
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - John Knapp
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Codrut Radoiu
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aron Liaw
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Nivedita Dhar
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
| |
Collapse
|
36
|
Boraey NF, Bebars MA, Wahba AA, Abd El Lateef HM, Attia MA, Elsayed AH, Rashed KA, Sorour EI, Ahmed MF, Abd-Elrehim GAB, Soliman AA, Shehab MMM, Elhindawy EM, Ibraheem AAA, Shehata H, Yousif YM, Hashem MIA, Ahmed AA, Emam AA, Gameil DM, Abdelhady EM, Abdelkhalek K, Morsi WEMA, Selim DM, Razek SA, Ashraf B, Saleh ASE, Eltrawy HH, Alanwar MI, Fouad RA, Omar WE, Nabil RM, Abdelhamed MR, Ibrahim MY, Malek MM, Afify MR, Alharbi MT, Nagshabandi MK, Tarabulsi MK, Qashqary ME, Almoraie LM, Salem HF, Rashad MM, El-Gaaly SAA, El-Deeb NA, Abdallah AM, Fakhreldin AR, Hassouba M, Massoud YM, Attaya MSM, Haridi MK. Association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Egyptian children and adolescents. Pediatr Res 2024; 96:1347-1354. [PMID: 38177248 PMCID: PMC11521986 DOI: 10.1038/s41390-023-02982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/19/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Given the sparse data on the renin-angiotensin system (RAS) and its biological effector molecules ACE1 and ACE2 in pediatric COVID-19 cases, we investigated whether the ACE1 insertion/deletion (I/D) polymorphism could be a genetic marker for susceptibility to COVID-19 in Egyptian children and adolescents. METHODS This was a case-control study included four hundred sixty patients diagnosed with COVID-19, and 460 well-matched healthy control children and adolescents. The I/D polymorphism (rs1799752) in the ACE1 gene was genotyped by polymerase chain reaction (PCR), meanwhile the ACE serum concentrations were assessed by ELISA. RESULTS The ACE1 D/D genotype and Deletion allele were significantly more represented in patients with COVID-19 compared to the control group (55% vs. 28%; OR = 2.4; [95% CI: 1.46-3.95]; for the DD genotype; P = 0.002) and (68% vs. 52.5%; OR: 1.93; [95% CI: 1.49-2.5] for the D allele; P = 0.032). The presence of ACE1 D/D genotype was an independent risk factor for severe COVID-19 among studied patients (adjusted OR: 2.6; [95% CI: 1.6-9.7]; P < 0.001. CONCLUSIONS The ACE1 insertion/deletion polymorphism may confer susceptibility to SARS-CoV-2 infection in Egyptian children and adolescents. IMPACT Recent studies suggested a crucial role of renin-angiotensin system and its biological effector molecules ACE1 and ACE2 in the pathogenesis and progression of COVID-19. To our knowledge, ours is the first study to investigate the association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Caucasian children and adolescents. The presence of the ACE1 D/D genotype or ACE1 Deletion allele may confer susceptibility to SARS-CoV-2 infection and being associated with higher ACE serum levels; may constitute independent risk factors for severe COVID-19. The ACE1 I/D genotyping help design further clinical trials reconsidering RAS-pathway antagonists to achieve more efficient targeted therapies.
Collapse
Affiliation(s)
- Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Marwa A Bebars
- Department of Pediatrics, Princess Alexandra hospital, Harlow, UK
| | - Ali A Wahba
- Department of Pediatrics at SSMC (Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | - Mohamed Atif Attia
- Department of Pediatrics at SKMC (Sheikh khalifa Medical City, Abu Dhabi, UAE
| | - Ahmed H Elsayed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Khalid A Rashed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Ehab I Sorour
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Mohamed F Ahmed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | | | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Elhindawy
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A A Ibraheem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Shehata
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yousif M Yousif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amani A Ahmed
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Dalia M Gameil
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Abdelhady
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Khalil Abdelkhalek
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walaa E M A Morsi
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia M Selim
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Suzan A Razek
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Bassem Ashraf
- Department of Otorhinolaryngology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S E Saleh
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Heba H Eltrawy
- Department of Chest diseases, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Fouad
- Department of Medical Biochemistry, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa E Omar
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rehab M Nabil
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed R Abdelhamed
- Department of Clinical pathology, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Mona Yousri Ibrahim
- Department of Clinical pathology, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona R Afify
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohanned T Alharbi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohammed K Nagshabandi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohammed Esmail Qashqary
- Department of Family and community medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Almoraie
- Department of Family and community medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanan F Salem
- Department of Anesthesia, Faculty of Medicine, Benha University, Banha, Egypt
| | - Manal M Rashad
- Department of Anesthesia, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sonya A A El-Gaaly
- Department of Internal Medicine, Faculty of Medicine, Ain-Shams University, Ain-Shams, Egypt
| | - Nahawand A El-Deeb
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Abdallah
- Department of Family Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed R Fakhreldin
- Department of Pediatrics, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mohamed Hassouba
- Department of Pediatrics, SUNY Downstate Health Science University, Kings County Hospital, Brooklyn, NY, USA
| | - Yasmine M Massoud
- Department of Tropical Medicine, Faculty of Medicine, Ain-Shams University, Ain-Shams, Egypt
| | - Mona S M Attaya
- Department of Pediatrics, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mohammed K Haridi
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
37
|
Lu T, Zhang C, Li Z, Wei Y, Sadewasser A, Yan Y, Sun L, Li J, Wen Y, Lai S, Chen C, Zhong H, Jiménez MR, Klar R, Schell M, Raith S, Michel S, Ke B, Zheng H, Jaschinski F, Zhang N, Xiao H, Bachert C, Wen W. Human angiotensin-converting enzyme 2-specific antisense oligonucleotides reduce infection with SARS-CoV-2 variants. J Allergy Clin Immunol 2024; 154:1044-1059. [PMID: 38909634 DOI: 10.1016/j.jaci.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The Spike protein mutation severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to decreased protective effect of various vaccines and mAbs, suggesting that blocking SARS-CoV-2 infection by targeting host factors would make the therapy more resilient against virus mutations. Angiotensin-converting enzyme 2 (ACE2) is the host receptor of SARS-CoV-2 and its variants, as well as many other coronaviruses. Downregulation of ACE2 expression in the respiratory tract may prevent viral infection. Antisense oligonucleotides (ASOs) can be rationally designed on the basis of sequence data, require no delivery system, and can be administered locally. OBJECTIVE We sought to design ASOs that can block SARS-CoV-2 by downregulating ACE2 in human airway. METHODS ACE2-targeting ASOs were designed using a bioinformatic method and screened in cell lines. Human primary nasal epithelial cells cultured at the air-liquid interface and humanized ACE2 mice were used to detect the ACE2 reduction levels and the safety of ASOs. ASO-pretreated nasal epithelial cells and mice were infected and then used to detect the viral infection levels. RESULTS ASOs reduced ACE2 expression on mRNA and protein level in cell lines and in human nasal epithelial cells. Furthermore, they efficiently suppressed virus replication of 3 different SARS-CoV-2 variants in human nasal epithelial cells. In vivo, ASOs also downregulated human ACE2 in humanized ACE2 mice and thereby reduced viral load, histopathologic changes in lungs, and increased survival of mice. CONCLUSIONS ACE2-targeting ASOs can effectively block SARS-CoV-2 infection. Our study provides a new approach for blocking SARS-CoV-2 and other ACE2-targeting virus in high-risk populations.
Collapse
Affiliation(s)
- Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Chengcheng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | | | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Lin Sun
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China
| | - Hua Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Monika Schell
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Stefanie Raith
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co. KG, Martinsried, Germany
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Claus Bachert
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany; Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, China; Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Hajimaghsoodi S, Paydar E, Owlia F. Determination of objective taste perception among Iranian medical sciences students during COVID‑19 pandemic in Yazd, Eastern Iran: a case-control pilot study. BMC Infect Dis 2024; 24:997. [PMID: 39294570 PMCID: PMC11409811 DOI: 10.1186/s12879-024-09897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Taste disorders in patients suffering from COVID-19 were popular. Some people even after recovery report residual effects of loss of smell and taste. This study aimed to investigate the taste Perception of Iranian Medical Sciences students during the COVID-19 pandemic. METHODS The case-control study evaluated 50 Medical Sciences students with a history of COVID-19 infection, as confirmed by the Novel Coronavirus (2019-nCOV) CFX96™ Real-Time PCR Detection System. The other participants consisted of 50 volunteer students with COVID-19 negative. The taste perception was measured with 4 different concentrations of the basic tastes. The stimuli were applied to the protruded tongue. Subjects were asked to identify the researcher when they felt the taste. Data are expressed as frequency distribution and analyzed with the Chi-Square test (P < 0.05). RESULTS In this survey, 54% of participants were male and 46% were female, the mean age of participants was 22.96 ± 5 years. The results showed a significant difference in the sweet and bitter taste perception score according to the history of dietary supplement use. The bitter taste perception score declared a considerable difference since COVID-19 infection. There was no significant difference between the taste perception in the two studied groups for all 4 basic tastes according to gender, COVID-19 infection status, history of taste and smell disorders, and the elapsed time since COVID-19 infection. CONCLUSION Our findings could provide important insights into taste perception. The history of dietary supplementation may influence how sweetness and saltiness are perceived. There was a noticeable difference in bitter taste perception depending on the time that had elapsed since the most recent COVID-19 infection.
Collapse
Affiliation(s)
- Samira Hajimaghsoodi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Paydar
- Dentist, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Owlia
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
39
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Milostić-Srb A, Srb N, Talapko J, Meštrović T, Žiger T, Pačarić S, Fureš R, Makarović V, Škrlec I. The Effect of COVID-19 and COVID-19 Vaccination on Assisted Human Reproduction Outcomes: A Systematic Review and Meta-Analysis. Diseases 2024; 12:201. [PMID: 39329870 PMCID: PMC11431602 DOI: 10.3390/diseases12090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
The most discussed infectious disease is coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Many research endeavors have focused on the effects of the virus on reproductive organs, as these have also been shown to carry the receptors to which the virus attaches. The results of assisted reproductive technology (ART) have been significantly affected by the pandemic, with some in vitro fertilization (IVF) centers being closed due to the risk of further spread of the disease. According to World Health Organization statistics, 17.5% of adults worldwide suffered from fertility problems in 2023; in other words, one in six people in the world have reproductive health problems. As infertility is a growing problem in the modern world and new developments in assisted reproduction are always a topic of profound interest, it is important to understand the impact of SARS-CoV-2 on reproductive health. This systematic review aimed to examine studies describing patients undergoing ART procedures with a COVID-19-positive history and to shed light on the recent evidence on the safety of COVID-19 vaccination in the ART context. A meta-analysis was conducted to confirm the results of the systematic review. The results showed a significant difference in clinical pregnancy rates between the vaccinated and unvaccinated groups and an increased miscarriage rate in those with a COVID-19-positive history. However, no significant difference in clinical pregnancy and birth rates was found in participants with a previous COVID-19 infection. The results show that further studies and research are needed, even though the spread and impact of the virus have decreased. Evidence-based information for individuals and couples undergoing infertility treatment is vital to enable informed decision-making.
Collapse
Affiliation(s)
- Andrea Milostić-Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nika Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia;
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tihomil Žiger
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Stana Pačarić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Vedrana Makarović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
41
|
Claas AM, Lee M, Huang PH, Knutson CG, Bullara D, Schoeberl B, Gaudet S. Viral Kinetics Model of SARS-CoV-2 Infection Informs Drug Discovery, Clinical Dose, and Regimen Selection. Clin Pharmacol Ther 2024; 116:757-769. [PMID: 38676291 DOI: 10.1002/cpt.3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Quantitative systems pharmacology (QSP) has been an important tool to project safety and efficacy of novel or repurposed therapies for the SARS-CoV-2 virus. Here, we present a QSP modeling framework to predict response to antiviral therapeutics with three mechanisms of action (MoA): cell entry inhibitors, anti-replicatives, and neutralizing biologics. We parameterized three distinct model structures describing virus-host interaction by fitting to published viral kinetics data of untreated COVID-19 patients. The models were used to test theoretical behaviors and map therapeutic design criteria of the different MoAs, identifying the most rapid and robust antiviral activity from neutralizing biologic and anti-replicative MoAs. We found good agreement between model predictions and clinical viral load reduction observed with anti-replicative nirmatrelvir/ritonavir (Paxlovid®) and neutralizing biologics bamlanivimab and casirivimab/imdevimab (REGEN-COV®), building confidence in the modeling framework to inform a dose selection. Finally, the model was applied to predict antiviral response with ensovibep, a novel DARPin therapeutic designed as a neutralizing biologic. We developed a new in silico measure of antiviral activity, area under the curve (AUC) of free spike protein concentration, as a metric with larger dynamic range than viral load reduction. By benchmarking to bamlanivimab predictions, we justified dose levels of 75, 225, and 600 mg ensovibep to be administered intravenously in a Phase 2 clinical investigation. Upon trial completion, we found model predictions to be in good agreement with the observed patient data. These results demonstrate the utility of this modeling framework to guide the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Allison M Claas
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - Meelim Lee
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - Pai-Hsi Huang
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | | | | | | | - Suzanne Gaudet
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Diekman CO, Thomas PJ, Wilson CG. COVID-19 and silent hypoxemia in a minimal closed-loop model of the respiratory rhythm generator. BIOLOGICAL CYBERNETICS 2024; 118:145-163. [PMID: 38884785 PMCID: PMC11289179 DOI: 10.1007/s00422-024-00989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Silent hypoxemia, or "happy hypoxia," is a puzzling phenomenon in which patients who have contracted COVID-19 exhibit very low oxygen saturation ( SaO 2 < 80%) but do not experience discomfort in breathing. The mechanism by which this blunted response to hypoxia occurs is unknown. We have previously shown that a computational model of the respiratory neural network (Diekman et al. in J Neurophysiol 118(4):2194-2215, 2017) can be used to test hypotheses focused on changes in chemosensory inputs to the central pattern generator (CPG). We hypothesize that altered chemosensory function at the level of the carotid bodies and/or the nucleus tractus solitarii are responsible for the blunted response to hypoxia. Here, we use our model to explore this hypothesis by altering the properties of the gain function representing oxygen sensing inputs to the CPG. We then vary other parameters in the model and show that oxygen carrying capacity is the most salient factor for producing silent hypoxemia. We call for clinicians to measure hematocrit as a clinical index of altered physiology in response to COVID-19 infection.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Christopher G Wilson
- Department of Pediatrics and Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, 11223 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
43
|
Wang P, Jin L, Zhang M, Wu Y, Duan Z, Guo Y, Wang C, Guo Y, Chen W, Liao Z, Wang Y, Lai R, Lee LP, Qin J. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat Biomed Eng 2024; 8:1053-1068. [PMID: 37349391 DOI: 10.1038/s41551-023-01054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood-brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation. Transcriptomic analyses indicated downregulated expression of the actin cytoskeleton in brain endothelium and upregulated expression of inflammatory genes in glial cells. We also observed early cerebral microvascular damage following lung infection with a low viral load in the brains of transgenic mice expressing human angiotensin-converting enzyme 2. Our findings suggest that systemic inflammation is probably contributing to neuropathogenesis following SARS-CoV-2 infection, and that direct viral neural invasion might not be a prerequisite for this neuropathogenesis. Lung-brain microphysiological systems should aid the further understanding of the systemic effects and neurological complications of viral infection.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingqi Guo
- Core Technology Facility of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Witarto AP, Rosyid AN, Witarto BS, Pramudito SL, Putra AJE. An in-depth investigation of serum Krebs von den Lungen-6 and other biomarkers in COVID-19 severity and mortality. Monaldi Arch Chest Dis 2024. [PMID: 39077858 DOI: 10.4081/monaldi.2024.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 07/31/2024] Open
Abstract
Krebs von den Lungen-6 (KL-6) is a glycoprotein mainly expressed by type II pneumocytes and recently known as a lung injury biomarker. However, the number of studies is still limited, especially in Indonesian COVID-19 populations. Therefore, we aim to provide correlation, sensitivity, and specificity analyses of KL-6 and other biomarkers in Indonesian COVID-19 severity and mortality. We conducted a cross-sectional study involving adult COVID-19 patients at Universitas Airlangga Hospital, Surabaya, East Java, Indonesia, between March 26, 2021, and August 25, 2021. KL-6 and other biomarker levels were compared according to severity (severe versus non-severe) and mortality (non-survivor versus survivor). We also included the receiver operating characteristic analysis to define the optimal cut-off, sensitivity, and specificity of KL-6 to determine COVID-19 severity and mortality. We enrolled 78 COVID- 19 patients (23 non-survivors), including 39 non-severe and 39 severe patients. There was no significant difference in serum KL-6 levels, neither in severity nor mortality groups. KL-6 had the strongest positive correlations with ferritin in severe patients (r=0.313) and non-survivors (r=0.467). We observed that the best sensitivity was KL-6 combined with platelet-to- lymphocyte ratio (PLR) (0.818) in severe patients and with neutrophil-to-lymphocyte ratio (NLR)/PLR/ferritin/C-reactive protein (0.867) in non-survivors. In contrast, the best specificity was found when KL-6 was combined with NLR/D-dimer (0.750) in severe patients and with D-dimer (0.889) in non-survivors. Serum KL-6 is a useful auxiliary laboratory evaluation index for COVID-19 lung injury to depict its severity and mortality.
Collapse
Affiliation(s)
| | - Alfian Nur Rosyid
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya.
| | | | | | | |
Collapse
|
45
|
Pechous RD, Malaviarachchi PA, Banerjee SK, Byrum SD, Alkam DH, Ghaffarieh A, Kurten RC, Kennedy JL, Zhang X. An ex vivo human precision-cut lung slice platform provides insight into SARS-CoV-2 pathogenesis and antiviral drug efficacy. J Virol 2024; 98:e0079424. [PMID: 38940558 PMCID: PMC11265413 DOI: 10.1128/jvi.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has claimed millions of lives since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and lung disease appears the primary cause of death in COVID-19 patients. However, the underlying mechanisms of COVID-19 pathogenesis remain elusive, and there is no existing model where human disease can be faithfully recapitulated and conditions for the infection process can be experimentally controlled. Herein we report the establishment of an ex vivo human precision-cut lung slice (hPCLS) platform for studying SARS-CoV-2 pathogenicity and innate immune responses, and for evaluating the efficacy of antiviral drugs against SARS-CoV-2. We show that while SARS-CoV-2 continued to replicate during the course of infection of hPCLS, infectious virus production peaked within 2 days, and rapidly declined thereafter. Although most proinflammatory cytokines examined were induced by SARS-CoV-2 infection, the degree of induction and types of cytokines varied significantly among hPCLS from individual donors. Two cytokines in particular, IP-10 and IL-8, were highly and consistently induced, suggesting a role in the pathogenesis of COVID-19. Histopathological examination revealed focal cytopathic effects late in the infection. Transcriptomic and proteomic analyses identified molecular signatures and cellular pathways that are largely consistent with the progression of COVID-19 in patients. Furthermore, we show that homoharringtonine, a natural plant alkaloid derived from Cephalotoxus fortunei, not only inhibited virus replication but also production of pro-inflammatory cytokines, and thus ameliorated the histopathological changes caused by SARS-CoV-2 infection, demonstrating the usefulness of the hPCLS platform for evaluating antiviral drugs. IMPORTANCE Here, established an ex vivo human precision-cut lung slice platform for assessing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, viral replication kinetics, innate immune response, disease progression, and antiviral drugs. Using this platform, we identified early induction of specific cytokines, especially IP-10 and IL-8, as potential predictors for severe coronavirus disease 2019 (COVID-19), and uncovered a hitherto unrecognized phenomenon that while infectious virus disappears at late times of infection, viral RNA persists and lung histopathology commences. This finding may have important clinical implications for both acute and post-acute sequelae of COVID-19. This platform recapitulates some of the characteristics of lung disease observed in severe COVID-19 patients and is therefore a useful platform for understanding mechanisms of SARS-CoV-2 pathogenesis and for evaluating the efficacy of antiviral drugs.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priyangi A. Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Duah H. Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alireza Ghaffarieh
- Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Richard C. Kurten
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Lung Cell Biology Laboratory, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Joshua L. Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Lung Cell Biology Laboratory, Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
46
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
47
|
Daneshwar D, Lee Y, Nordin A. COVID-19 and Prostatitis: A Review of Current Evidence. Diseases 2024; 12:157. [PMID: 39057128 PMCID: PMC11276594 DOI: 10.3390/diseases12070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a global health threat. The virus enters host cells by binding with angiotensin-converting enzyme 2 (ACE2), which is then facilitated by the protease activity of transmembrane serine protease 2 (TMPRSS2). It triggers a cytokine storm that eventually leads to cell apoptosis, tissue damage, and organ failure. Therefore, any organs in the human body that have both receptors are highly susceptible to COVID-19 infection, potentially resulting in multiple-organ failure. The prostate has been reported to express high levels of ACE2 and TMPRSS2. While there are limited studies regarding the association between COVID-19 and prostatitis, the possibility that SARS-CoV-2 could cause prostatitis cannot be denied. Thus, through this review, a better insight into the associations of SAR-CoV-2 can be provided.
Collapse
Affiliation(s)
- Datesh Daneshwar
- Urology Clinic, Prince Court Medical Centre, 39, Jalan Kia Peng, Kuala Lumpur 50450, Malaysia
| | - Yemin Lee
- MedCentral Consulting, International Youth Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Abid Nordin
- Graduate School of Medicine, KPJ Healthcare University, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|
48
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
49
|
Grune J, Bajpai G, Ocak PT, Kaufmann E, Mentkowski K, Pabel S, Kumowski N, Pulous FE, Tran KA, Rohde D, Zhang S, Iwamoto Y, Wojtkiewicz GR, Vinegoni C, Green U, Swirski FK, Stone JR, Lennerz JK, Divangahi M, Hulsmans M, Nahrendorf M. Virus-Induced Acute Respiratory Distress Syndrome Causes Cardiomyopathy Through Eliciting Inflammatory Responses in the Heart. Circulation 2024; 150:49-61. [PMID: 38506045 PMCID: PMC11216864 DOI: 10.1161/circulationaha.123.066433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation. METHODS We assessed cardiac macrophage subsets using immunofluorescence histology of autopsy specimens from 21 patients with COVID-19 with SARS-CoV-2-associated ARDS and 33 patients who died from other causes. In mice, we compared cardiac immune cell dynamics after SARS-CoV-2 infection with ARDS induced by intratracheal instillation of Toll-like receptor ligands and an ACE2 (angiotensin-converting enzyme 2) inhibitor. RESULTS In humans, SARS-CoV-2 increased total cardiac macrophage counts and led to a higher proportion of CCR2+ (C-C chemokine receptor type 2 positive) macrophages. In mice, SARS-CoV-2 and virus-free lung injury triggered profound remodeling of cardiac resident macrophages, recapitulating the clinical expansion of CCR2+ macrophages. Treating mice exposed to virus-like ARDS with a tumor necrosis factor α-neutralizing antibody reduced cardiac monocytes and inflammatory MHCIIlo CCR2+ macrophages while also preserving cardiac function. Virus-like ARDS elevated mortality in mice with pre-existing heart failure. CONCLUSIONS Our data suggest that viral ARDS promotes cardiac inflammation by expanding the CCR2+ macrophage subset, and the associated cardiac phenotypes in mice can be elicited by activating the host immune system even without viral presence in the heart.
Collapse
Affiliation(s)
- Jana Grune
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité, Berlin, Germany (J.G.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Physiology, Germany (J.G.)
- German Center for Cardiovascular Research, Partner Site Berlin (J.G.)
| | - Geetika Bajpai
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Pervin Tülin Ocak
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiology, University Hospital Heidelberg, Germany (P.T.O.)
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada (E.K.)
| | - Kyle Mentkowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Steffen Pabel
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (S.P.)
| | - Nina Kumowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine I, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Germany (N.K.)
| | - Fadi E Pulous
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kim A Tran
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - David Rohde
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Shuang Zhang
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Yoshiko Iwamoto
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Gregory R Wojtkiewicz
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Claudio Vinegoni
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (F.K.S.)
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.R.S.)
- Massachusetts General Hospital, Boston (J.R.S.)
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - Maarten Hulsmans
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Gordon Center for Medical Imaging (M.N.)
- Department of Internal Medicine, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
50
|
Roy J, Banerjee A, Mukherjee S, Maji BK. Uncovering the coronavirus outbreak: present understanding and future research paths. J Basic Clin Physiol Pharmacol 2024; 35:241-251. [PMID: 39287470 DOI: 10.1515/jbcpp-2024-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION The review discusses the pathophysiological mechanisms of SARS-CoV-2, the modes of transmission, and the long-term health consequences of COVID-19, emphasizing the importance of research and successful public health initiatives. CONTENT COVID-19 taxonomy, pathophysiology, symptomatology, and epidemiological importance are the key objects of this research paper. This review explains how COVID-19 affects different systems of the body, including respiratory, cardiovascular, and reproductive systems of the human body. It describes the modes of entry of the virus into the cell; more precisely, ACE2 and TMPRSS2 in viral entry. In addition, the present study analyzes the situation of COVID-19 in India regarding vaccine development and the transmission rate related to socioeconomic factors. SUMMARY The manifestation of COVID-19 presents a lot of symptoms and post-acute problems, issues which are seriously impacting mental health and physical health as well. The present review summarizes current research into pathogenicity and the mode of virus transmission, together with immunological responses. Coupled with strong vaccination programs, public health initiatives should hold the key to fighting this pandemic. OUTLOOK Long-term effects and the development of treatment methods will need further study, as ambiguities on COVID-19 remain. Multidisciplinary collaboration across healthcare sectors in this respect is of paramount importance for the prevention of further spread and protection of public health.
Collapse
Affiliation(s)
- Jayati Roy
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Bithin K Maji
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| |
Collapse
|