1
|
Nasir A, Afridi M, Afridi OK, Khan MA, Khan A, Zhang J, Qian B. The persistent pain enigma: Molecular drivers behind acute-to-chronic transition. Neurosci Biobehav Rev 2025; 173:106162. [PMID: 40239909 DOI: 10.1016/j.neubiorev.2025.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The transition from acute to chronic pain is a complex and multifactorial process that presents significant challenges in both diagnosis and treatment. Key mechanisms of peripheral and central sensitization, neuroinflammation, and altered synaptic plasticity contribute to the amplification of pain signals and the persistence of pain. Glial cell activation, particularly microglia and astrocytes, is pivotal in developing chronic pain by releasing pro-inflammatory cytokines that enhance pain sensitivity. This review explores the molecular, cellular, and systemic mechanisms underlying the transition from acute to chronic pain, offering new insights into the molecular and neurobiological mechanisms involved, which are often underexplored in existing literature. It also addresses emerging therapeutic strategies beyond traditional pain management, offering valuable perspectives for future research and clinical applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Maryam Afridi
- Department of Pharmacy, Qurtuba University, Peshawar, KP, Pakistan
| | | | | | - Amir Khan
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Qian
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
2
|
King CP, Chitre AS, Leal‐Gutiérrez JD, Tripi JA, Netzley AH, Horvath AP, Lamparelli AC, George A, Martin C, St. Pierre CL, Missfeldt Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen K, Holl KL, Polesskaya O, Ishiwari K, Chen H, Robinson TE, Flagel SB, Solberg Woods LC, Palmer AA, Meyer PJ. Genetic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70018. [PMID: 40049657 PMCID: PMC11884905 DOI: 10.1111/gbb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues. Both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1596 heterogeneous stock (HS) rats. Rats underwent a Pavlovian conditioned approach task that characterized the responses to food-associated stimuli ("cues"). Responses ranged from cue-directed "sign-tracking" behavior to food-cup directed "goal-tracking" behavior (12 measures, SNP heritability: 0.051-0.215). Next, rats performed novel operant responses for unrewarded presentations of the cue using the conditioned reinforcement procedure. GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits across both tasks. Interval sizes of these QTLs varied widely. Seven traits shared a QTL on chromosome 1 that contained a few genes (e.g., Tenm4, Mir708) that have been associated with substance use disorders and other psychiatric disorders in humans. Other candidate genes (e.g., Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on addiction-related behaviors in HS rats and found that the QTL on chromosome 1 was also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive motivational processes and provide further support for a relationship between the attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Apurva S. Chitre
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Jordan A. Tripi
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Alesa H. Netzley
- Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Aidan P. Horvath
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Anthony George
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Connor Martin
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | | | | | | | - Jianjun Gao
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Riyan Cheng
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Khai‐Minh Nguyen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Katie L. Holl
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oksana Polesskaya
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Keita Ishiwari
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shelly B. Flagel
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience Institute, University of MichiganAnn ArborMichiganUSA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and MetabolismWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Paul J. Meyer
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
3
|
Stern S, Zhang L, Wang M, Wright R, Rosh I, Hussein Y, Stern T, Choudhary A, Tripathi U, Reed P, Sadis H, Nayak R, Shemen A, Agarwal K, Cordeiro D, Peles D, Hang Y, Mendes APD, Baul TD, Roth JG, Coorapati S, Boks MP, McCombie WR, Hulshoff Pol H, Brennand KJ, Réthelyi JM, Kahn RS, Marchetto MC, Gage FH. Monozygotic twins discordant for schizophrenia differ in maturation and synaptic transmission. Mol Psychiatry 2024; 29:3208-3222. [PMID: 38704507 PMCID: PMC11449799 DOI: 10.1038/s41380-024-02561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.
Collapse
Affiliation(s)
- Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Wright
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tchelet Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Patrick Reed
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hagit Sadis
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Diogo Cordeiro
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yuqing Hang
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ana P D Mendes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tithi D Baul
- Department of Psychiatry at the Boston Medical Center, Boston, MA, USA
| | - Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | | | - Hilleke Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Pamela Sklar Division of Psychiatric Genomics, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Department of Genetics, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - János M Réthelyi
- Molecular Psychiatry Research Group and Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
4
|
Karimi Z, Zarifkar A, Mirzaei E, Dianatpour M, Dara M, Aligholi H. Therapeutic effects of nanosilibinin in valproic acid-zebrafish model of autism spectrum disorder: Focusing on Wnt signaling pathway and autism spectrum disorder-related cytokines. Int J Dev Neurosci 2024; 84:454-468. [PMID: 38961588 DOI: 10.1002/jdn.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024] Open
Abstract
In this study, we delved into the intricate world of autism spectrum disorder (ASD) and its connection to the disturbance in the Wnt signaling pathway and immunological abnormalities. Our aim was to evaluate the impact of silibinin, a remarkable modulator of both the Wnt signaling pathway and the immune system, on the neurobehavioral and molecular patterns observed in a zebrafish model of ASD induced by valproic acid (VPA). Because silibinin is a hydrophobic molecule and highly insoluble in water, it was used in the form of silibinin nanoparticles (nanosilibinin, NS). After assessing survival, hatching rate, and morphology of zebrafish larvae exposed to different concentrations of NS, the appropriate concentrations were chosen. Then, zebrafish embryos were exposed to VPA (1 μM) and NS (100 and 200 μM) at the same time for 120 h. Next, anxiety and inattentive behaviors and the expression of CHD8, CTNNB, GSK3beta, LRP6, TNFalpha, IL1beta, and BDNF genes were assessed 7 days post fertilization. The results indicated that higher concentrations of NS had adverse effects on survival, hatching, and morphological development. The concentrations of 100 and 200 μM of NS could ameliorate the anxiety-like behavior and learning deficit and decrease ASD-related cytokines (IL1beta and TNFalpha) in VPA-treated larvae. In addition, only 100 μM of NS prevented raising the gene expression of Wnt signaling-related factors (CHD8, CTNNB, GSK3beta, and LRP6). In conclusion, NS treatment for the first 120 h showed therapeutic effect on an autism-like phenotype probably via reducing the expression of pro-inflammatory cytokines genes and changing the expression of Wnt signaling components genes.
Collapse
Affiliation(s)
- Zahra Karimi
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Luquero A, Pimentel N, Vilahur G, Badimon L, Borrell-Pages M. Unique Splicing of Lrp5 in the Brain: A New Player in Neurodevelopment and Brain Maturation. Int J Mol Sci 2024; 25:6763. [PMID: 38928468 PMCID: PMC11203723 DOI: 10.3390/ijms25126763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) is a constitutively expressed receptor with observed roles in bone homeostasis, retinal development, and cardiac metabolism. However, the function of LRP5 in the brain remains unexplored. This study investigates LRP5's role in the central nervous system by conducting an extensive analysis using RNA-seq tools and in silico assessments. Two protein-coding Lrp5 transcripts are expressed in mice: full-length Lrp5-201 and a truncated form encoded by Lrp5-202. Wt mice express Lrp5-201 in the liver and brain and do not express the truncated form. Lrp5-/- mice express Lrp5-202 in the liver and brain and do not express Lrp5-201 in the liver. Interestingly, Lrp5-/- mouse brains show full-length Lrp5-201 expression, suggesting that LRP5 has a role in preserving brain function during development. Functional gene enrichment analysis on RNA-seq unveils dysregulated expression of genes associated with neuronal differentiation and synapse formation in the brains of Lrp5-/- mice compared to Wt mice. Furthermore, Gene Set Enrichment Analysis highlights downregulated expression of genes involved in retinol and linoleic acid metabolism in Lrp5-/- mouse brains. Tissue-specific alternative splicing of Lrp5 in Lrp5-/- mice supports that the expression of LRP5 in the brain is needed for the correct synthesis of vitamins and fatty acids, and it is indispensable for correct brain development.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program, Institut de Recerca de Sant Pau, 08025 Barcelona, Spain; (A.L.); (N.P.); (G.V.); (L.B.)
- Biomedicine Doctorate Program, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Noelia Pimentel
- Cardiovascular Program, Institut de Recerca de Sant Pau, 08025 Barcelona, Spain; (A.L.); (N.P.); (G.V.); (L.B.)
- Biomedicine Doctorate Program, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca de Sant Pau, 08025 Barcelona, Spain; (A.L.); (N.P.); (G.V.); (L.B.)
- Centro Investigación Biomédica en Red-Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca de Sant Pau, 08025 Barcelona, Spain; (A.L.); (N.P.); (G.V.); (L.B.)
- Centro Investigación Biomédica en Red-Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program, Institut de Recerca de Sant Pau, 08025 Barcelona, Spain; (A.L.); (N.P.); (G.V.); (L.B.)
- Centro Investigación Biomédica en Red-Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
7
|
Han H, Xu M, Wang J, Li MD, Yang Z. CRISPR/Cas9 based gene editing of Frizzled class receptor 6 (FZD6) reveals its role in depressive symptoms through disrupting Wnt/β-catenin signaling pathway. J Adv Res 2024; 58:129-138. [PMID: 37321345 PMCID: PMC10982865 DOI: 10.1016/j.jare.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/18/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION As one of the common psychiatric diseases, depression poses serious threats to human health. Although many genes have been nominated for depression, few of them were investigated in details at the molecular level. OBJECTIVES To demonstrate Frizzled class receptor 6 (FZD6) functions in depression through disrupting Wnt/β-catenin signal pathway. METHODS The FZD6 edited cell line and mouse model were generated by using CRISPR/Cas9 technique. The expression of key genes and proteins in Wnt/β-catenin pathway was determined by qRT-PCR and Western blotting, respectively. Animal behavioral tests, including open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), tail suspension test (TST), and sucrose preference test (SPT), were employed to determine anxiety- and depressive-like behaviors. Immunofluorescent staining was used to assess cell proliferation in the hippocampus of mouse brain. RESULTS Among patients with depression, FZD6, one of the receptors of Wnt ligand, was significantly decreased. In CRISPR/Cas9-based FZD6 knockdown cells, we showed that FZD6 plays a significant role in regulating expression of genes involved in Wnt/β-catenin pathway. Subsequently behavioral studies on Fzd6 knockdown mice (with a 5-nucleotide deletion; Fzd6-Δ5) revealed significant changes in depressive symptoms, including increased immobility duration in FST, less preference of sucrose in SPT, reduction of distance traveled in OFT, and decreased time spent in open arms in EPM. Immunofluorescent staining showed decreased cell proliferation in the hippocampus of Fzd6-Δ5 mice with reduced number of Ki67+ and PCNA+ cells. Moreover, decreased Gsk3β mRNA expression, phosphorylated GSK3β, and cytoplasmic β-catenin in the hippocampus of Fzd6-Δ5 mice provided further evidence supporting the role of Fzd6 in depression. CONCLUSION Together, above findings proved the significant role of FZD6 in depression through its effect on hippocampal cell proliferation and its ability to regulate canonical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- VIT University, Chennai, India
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Tang M, Wu X, Zhang W, Cui H, Zhang L, Yan P, Yang C, Wang Y, Chen L, Xiao C, Liu Y, Zou Y, Yang C, Zhang L, Yao Y, Liu Z, Li J, Jiang X, Zhang B. Epidemiological and Genetic Analyses of Schizophrenia and Breast Cancer. Schizophr Bull 2024; 50:317-326. [PMID: 37467357 PMCID: PMC10919785 DOI: 10.1093/schbul/sbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS While the phenotypic association between schizophrenia and breast cancer has been observed, the underlying intrinsic link is not adequately understood. We aim to conduct a comprehensive interrogation on both phenotypic and genetic relationships between schizophrenia and breast cancer. STUDY DESIGN We first used data from UK Biobank to evaluate a phenotypic association and performed an updated meta-analysis incorporating existing cohort studies. We then leveraged genomic data to explore the shared genetic architecture through a genome-wide cross-trait design. STUDY RESULTS Incorporating results of our observational analysis, meta-analysis of cohort studies suggested a significantly increased incidence of breast cancer among women with schizophrenia (RR = 1.30, 95% CIs = 1.14-1.48). A positive genomic correlation between schizophrenia and overall breast cancer was observed (rg = 0.12, P = 1.80 × 10-10), consistent across ER+ (rg = 0.10, P = 5.74 × 10-7) and ER- subtypes (rg = 0.09, P = .003). This was further corroborated by four local signals. Cross-trait meta-analysis identified 23 pleiotropic loci between schizophrenia and breast cancer, including five novel loci. Gene-based analysis revealed 27 shared genes. Mendelian randomization demonstrated a significantly increased risk of overall breast cancer (OR = 1.07, P = 4.81 × 10-10) for genetically predisposed schizophrenia, which remained robust in subgroup analysis (ER+: OR = 1.10, P = 7.26 × 10-12; ER-: OR = 1.08, P = 3.50 × 10-6). No mediation effect and reverse causality was found. CONCLUSIONS Our study demonstrates an intrinsic link underlying schizophrenia and breast cancer, which may inform tailored screening and management of breast cancer in schizophrenia.
Collapse
Affiliation(s)
- Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Eren F, Schwieler L, Orhan F, Malmqvist A, Piehl F, Cervenka S, Sellgren CM, Fatouros-Bergman H, Engberg G, Erhardt S. Immunological protein profiling of first-episode psychosis patients identifies CSF and blood biomarkers correlating with disease severity. Brain Behav Immun 2023; 111:376-385. [PMID: 37146654 DOI: 10.1016/j.bbi.2023.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND AND HYPOTHESIS Immune activation is suggested to play an important role in psychosis. In this study, a large number of immune-related proteins were analyzed to obtain a more comprehensive picture of immune aberrations in schizophrenia. STUDY DESIGN Ninety-two immune markers were analyzed by the Olink Protein Extension Assay (Inflammatory Panel) in plasma and cerebrospinal fluid (CSF) from 77 first-episode psychosis (FEP) patients (of which 43 later received the diagnosis of schizophrenia) and 56 healthy controls, all recruited from the Karolinska Schizophrenia Project (KaSP), Stockholm, Sweden. STUDY RESULTS Differential analysis showed that 12 of 92 inflammatory proteins were significantly higher in the plasma of FEP patients (n = 77) than in controls, and several proteins were positively correlated with disease severity. Patients from the same cohort diagnosed with schizophrenia (n = 43), showed significantly higher levels of 15 plasma proteins compared to controls whereas those not receiving this diagnosis showed no significant differences. The presently used OLINK inflammatory panel allowed the detection of only 47 CSF proteins of which only CD5 differed between patients and controls. CONCLUSIONS The levels of several peripheral immune markers, particularly those interfering with WNT/β-catenin signaling, were significantly higher in patients with FEP than in healthy controls and associated with illness severity.
Collapse
Affiliation(s)
- Feride Eren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Malmqvist
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Yde Ohki CM, Walter NM, Rickli M, Salazar Campos JM, Werling AM, Döring C, Walitza S, Grünblatt E. Protocol for a Wnt reporter assay to measure its activity in human neural stem cells derived from induced pluripotent stem cells. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100095. [PMID: 37426743 PMCID: PMC10329100 DOI: 10.1016/j.crneur.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
The canonical Wnt signaling is an essential pathway that regulates cellular proliferation, maturation, and differentiation during neurodevelopment and maintenance of adult tissue homeostasis. This pathway has been implicated with the pathophysiology of neuropsychiatric disorders and was associated with cognitive processes, such as learning and memory. However, the molecular investigation of the Wnt signaling in functional human neural cell lines might be challenging since brain biopsies are not possible and animal models may not represent the polygenic profile of some neurological and neurodevelopmental disorders. In this context, using induced pluripotent stem cells (iPSCs) has become a powerful tool to model disorders that affect the Central Nervous System (CNS) in vitro, by maintaining patients' genetic backgrounds. In this method paper, we report the development of a virus-free Wnt reporter assay in neural stem cells (NSCs) derived from human iPSCs from two healthy individuals, by using a vector containing a reporter gene (luc2P) under the control of a TCF/LEF (T-cell factor/lymphoid enhancer factor) responsive element. Dose-response curve analysis from this luciferase-based method might be useful when testing the activity of the Wnt signaling pathway after agonists (e.g. Wnt3a) or antagonists (e.g. DKK1) administration, comparing activity between cases and controls in distinct disorders. Using such a reporter assay method may help to elucidate whether neurological or neurodevelopmental mental disorders show alterations in this pathway, and testing whether targeted treatment may reverse these. Therefore, our established assay aims to help researchers on the functional and molecular investigation of the Wnt pathway in patient-specific cell types comprising several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Biomedicine PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Natalie Monet Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Michelle Rickli
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - José Maria Salazar Campos
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Christian Döring
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| |
Collapse
|
11
|
Yu G, Xu M, Chen Y, Ke H. 25(OH)Vitamin D and autism spectrum disorder: genetic overlap and causality. GENES & NUTRITION 2023; 18:8. [PMID: 37101109 PMCID: PMC10134540 DOI: 10.1186/s12263-023-00727-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To identify whether there exists a genetic correlation and causal relationship between 25(OH)D and autism spectrum disorder (ASD). METHODS Based on large-scale genome-wide association studies, a series of genetic approaches were adopted to obtain summary statistics. Using linkage disequilibrium score regression, we assessed the shared polygenic structure between traits and performed pleiotropic analysis under composite null hypothesis (PLACO) to identify pleiotropic loci between complex traits. A bidirectional Mendelian randomization (MR) analysis was applied to investigate whether there is a causal relationship between 25(OH)D and ASD. RESULTS The linkage disequilibrium score regression (LDSC) showed a negative genetic correlation between 25(OH)D and ASD (rg = - 0.227, P < 0.05), and PLACO analysis identified 20 independent pleiotropic loci matched to 24 pleiotropic genes, of which the function reveals an underlying mechanism on 25(OH)D and ASD. In Mendelian randomization analysis, the inverse variance-weighted (IVW) method with OR = 0.941 (0.796, 1.112) and p < 0.474 did not show a causal relationship between 25(OH)D and ASD, while, in the reverse Mendelian randomization analysis, IVW method showed OR = 1.042 (0.930, 1.169), indicating no causal relationship either. CONCLUSION This study provides evidence for a shared genetic overlap between 25(OH)D and ASD. Bidirectional MR analysis also did not show a definite causal relationship between 25(OH)D and ASD.
Collapse
Affiliation(s)
- GuoSheng Yu
- Department of Pediatrics, Li shui People’s Hospital, The Sixth Affiliated Hospital, Wenzhou Medical University, Li shui, Zhejiang, 323000 China
| | - MinZhi Xu
- Department of Pediatrics, Li shui People’s Hospital, The Sixth Affiliated Hospital, Wenzhou Medical University, Li shui, Zhejiang, 323000 China
| | - Yao Chen
- Department of Pediatrics, Li shui People’s Hospital, The Sixth Affiliated Hospital, Wenzhou Medical University, Li shui, Zhejiang, 323000 China
| | - HaiYan Ke
- Department of Pediatrics, Tongde hospital of Zhejiang Province, 234 Gucui Road, Xihu District, Hangzhou City, 310006 China
| |
Collapse
|
12
|
Custodio RJP, Kim HJ, Kim J, Ortiz DM, Kim M, Buctot D, Sayson LV, Lee HJ, Kim BN, Yi EC, Cheong JH. Hippocampal dentate gyri proteomics reveals Wnt signaling involvement in the behavioral impairment in the THRSP-overexpressing ADHD mouse model. Commun Biol 2023; 6:55. [PMID: 36646879 PMCID: PMC9842619 DOI: 10.1038/s42003-022-04387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) often struggle with impaired executive function, temporal processing, and visuospatial memory, hallmarks of the predominantly inattentive presentation (ADHD-PI), subserved by the hippocampus. However, the specific genes/proteins involved and how they shape hippocampal structures to influence ADHD behavior remain poorly understood. As an exploratory tool, hippocampal dentate gyri tissues from thyroid hormone-responsive protein overexpressing (THRSP OE) mice with defining characteristics of ADHD-PI were utilized in proteomics. Integrated proteomics and network analysis revealed an altered protein network involved in Wnt signaling. Compared with THRSP knockout (KO) mice, THRSP OE mice showed impaired attention and memory, accompanied by dysregulated Wnt signaling affecting hippocampal dentate gyrus cell proliferation and expression of markers for neural stem cell (NSC) activity. Also, combined exposure to an enriched environment and treadmill exercise could improve behavioral deficits in THRSP OE mice and Wnt signaling and NSC activity. These findings show new markers specific to the ADHD-PI presentation, converging with the ancient and evolutionary Wnt signaling pathways crucial for cell fate determination, migration, polarity, and neural patterning during neurodevelopment. These findings from THRSP OE mice support the role of Wnt signaling in neurological disorders, particularly ADHD-PI presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- grid.419241.b0000 0001 2285 956XDepartment of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystr. 67, 44139 Dortmund, Germany ,grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| | - Hee Jin Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Jiyeon Kim
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Darlene Mae Ortiz
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Mikyung Kim
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea ,grid.412357.60000 0004 0533 2063Department of Chemistry & Life Science, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Danilo Buctot
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Leandro Val Sayson
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Hyun Jun Lee
- grid.412357.60000 0004 0533 2063Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu Seoul, 01795 Republic of Korea
| | - Bung-Nyun Kim
- grid.31501.360000 0004 0470 5905Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu Seoul, 03080 Republic of Korea
| | - Eugene C. Yi
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jae Hoon Cheong
- grid.411545.00000 0004 0470 4320Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si Jeollabuk-do, 54896 Republic of Korea
| |
Collapse
|
13
|
Beheshti M, Rabiei N, Taghizadieh M, Eskandari P, Mollazadeh S, Dadgostar E, Hamblin MR, Salmaninejad A, Emadi R, Mohammadi AH, Mirazei H. Correlations between single nucleotide polymorphisms in obsessive-compulsive disorder with the clinical features or response to therapy. J Psychiatr Res 2023; 157:223-238. [PMID: 36508934 DOI: 10.1016/j.jpsychires.2022.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.
Collapse
Affiliation(s)
- Masoumeh Beheshti
- Pathophysiology Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pariya Eskandari
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Raziye Emadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirazei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
The Expansion of the Spectrum in Stuttering Disorders to a Novel ARMC Gene Family ( ARMC3). Genes (Basel) 2022; 13:genes13122299. [PMID: 36553564 PMCID: PMC9778410 DOI: 10.3390/genes13122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Stuttering is a common neurodevelopment speech disorder that negatively affects the socio-psychological dimensions of people with disability. It displays many attributes of a complex genetic trait, and a few genetic loci have been identified through linkage studies. Stuttering is highly variable regarding its phenotypes and molecular etiology. However, all stutters have some common features, including blocks in speech, prolongation, and repetition of sounds, syllables, and words. The involuntary actions associated with stuttering often involve increased eye blinking, tremors of the lips or jaws, head jerks, clenched fists, perspiration, and cardiovascular changes. In the present study, we recruited a consanguineous Pakistani family showing an autosomal recessive mode of inheritance. The exome sequencing identified a homozygous splice site variant in ARMC3 (Armadillo Repeat Containing 3) in a consanguineous Pashtun family of Pakistani origin as the underlying genetic cause of non-syndromic stuttering. The homozygous splice site variant (NM_173081.5:c.916 + 1G > A) segregated with the stuttering phenotype in this family. The splice change leading to the skipping of exon-8 is a loss of function (LoF) variant, which is predicted to undergo NMD (Nonsense mediated decay). Here, we report ARMC3 as a novel candidate gene causing the stuttering phenotype. ARMC3 may lead to neurodevelopmental disorders, including stuttering in humans.
Collapse
|
15
|
Xiao Q, Wang L, Zhang J, Zhong X, Guo Z, Yu J, Ma Y, Wu H. Activation of Wnt/β-Catenin Signaling Involves 660 nm Laser Radiation on Epithelium and Modulates Lipid Metabolism. Biomolecules 2022; 12:1389. [PMID: 36291598 PMCID: PMC9599573 DOI: 10.3390/biom12101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Research has proven that light treatment, specifically red light radiation, can provide more clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure. RNA sequencing results revealed that light exposure with a higher intervention dosage could cause a number of differentially expressed genes compared with a low intervention dosage. Gene ontology analysis, protein-protein interaction network analysis, and gene set enrichment analysis results suggested that 660 nm light exposure can activate more transcription-related pathways in HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized that this pathway might play a major role in response to 660 nm light exposure. To validate our hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and relative results corroborated that laser radiation could promote expression levels of β-catenin and relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that 660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings suggest that the Wnt/β-catenin pathway may be the major sensor for 660 nm laser radiation, and it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative interventional agents.
Collapse
Affiliation(s)
- Qiyang Xiao
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| | - Lijing Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Juling Zhang
- Center for Faculty Development, South China Normal University, Guangzhou 510631, China
| | - Xinyu Zhong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhou Guo
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jiahao Yu
- Shandong Zhongbaokang Medical Implements Co., Ltd., Zibo 255000, China
| | - Yuanyuan Ma
- School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Haigang Wu
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| |
Collapse
|
16
|
Hédou J, Cederberg KL, Ambati A, Lin L, Farber N, Dauvilliers Y, Quadri M, Bourgin P, Plazzi G, Andlauer O, Hong SC, Huang YS, Leu-Semenescu S, Arnulf I, Taheri S, Mignot E. Proteomic biomarkers of Kleine-Levin syndrome. Sleep 2022; 45:zsac097. [PMID: 35859339 PMCID: PMC9453623 DOI: 10.1093/sleep/zsac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/21/2022] [Indexed: 07/23/2023] Open
Abstract
STUDY OBJECTIVES Kleine-Levin syndrome (KLS) is characterized by relapsing-remitting episodes of hypersomnia, cognitive impairment, and behavioral disturbances. We quantified cerebrospinal fluid (CSF) and serum proteins in KLS cases and controls. METHODS SomaScan was used to profile 1133 CSF proteins in 30 KLS cases and 134 controls, while 1109 serum proteins were profiled in serum from 26 cases and 65 controls. CSF and serum proteins were both measured in seven cases. Univariate and multivariate analyses were used to find differentially expressed proteins (DEPs). Pathway and tissue enrichment analyses (TEAs) were performed on DEPs. RESULTS Univariate analyses found 28 and 141 proteins differentially expressed in CSF and serum, respectively (false discovery rate <0.1%). Upregulated CSF proteins included IL-34, IL-27, TGF-b, IGF-1, and osteonectin, while DKK4 and vWF were downregulated. Pathway analyses revealed microglial alterations and disrupted blood-brain barrier permeability. Serum profiles show upregulation of Src-family kinases (SFKs), proteins implicated in cellular growth, motility, and activation. TEA analysis of up- and downregulated proteins revealed changes in brain proteins (p < 6 × 10-5), notably from the pons, medulla, and midbrain. A multivariate machine-learning classifier performed robustly, achieving a receiver operating curve area under the curve of 0.90 (95% confidence interval [CI] = 0.78-1.0, p = 0.0006) in CSF and 1.0 (95% CI = 1.0-1.0, p = 0.0002) in serum in validation cohorts, with some commonality across tissues, as the model trained on serum sample also discriminated CSF samples of controls versus KLS cases. CONCLUSIONS Our study identifies proteomic KLS biomarkers with diagnostic potential and provides insight into biological mechanisms that will guide future research in KLS.
Collapse
Affiliation(s)
- Julien Hédou
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Katie L Cederberg
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Aditya Ambati
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Neal Farber
- Kleine-Levin Syndrome Foundation, Boston, MA, USA
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy-Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, Univ Montpellier, Montpellier, France
- Department of Neurology, Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Patrice Bourgin
- Sleep Disorders Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Seung-Chul Hong
- Department of Psychiatry, St. Vincent’s Hospital, Catholic University of Korea, Seoul, South Korea
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Smaranda Leu-Semenescu
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
| | - Isabelle Arnulf
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
- Sorbonne University, Institut Hospitalo-Universitaire, Institut du Cerveau et de la Moelle, Paris, France
| | - Shahrad Taheri
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine—Qatar, Qatar Foundation—Education City, Doha, Qatar
| | - Emmanuel Mignot
- Corresponding author. Emmanuel Mignot, Center for Narcolepsy and Related Disorders, Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
17
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
18
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
19
|
Moderate Folic Acid Supplementation in Pregnant Mice Results in Altered Sex-Specific Gene Expression in Brain of Young Mice and Embryos. Nutrients 2022; 14:nu14051051. [PMID: 35268026 PMCID: PMC8912750 DOI: 10.3390/nu14051051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Food fortification and increased vitamin intake have led to higher folic acid (FA) consumption by many pregnant women. We showed that FA-supplemented diet in pregnant mice (fivefold higher FA than the recommended level (5xFASD)) led to hyperactivity-like behavior and memory impairment in pups. Disturbed choline/methyl metabolism and altered placental gene expression were identified. The aim of this study was to examine the impact of 5xFASD on the brain at two developmental stages, postnatal day (P) 30 and embryonic day (E) 17.5. Female C57BL/6 mice were fed a control diet or 5xFASD for 1 month before mating. Diets were maintained throughout the pregnancy and lactation until P30 or during pregnancy until E17.5. The 5xFASD led to sex-specific transcription changes in P30 cerebral cortex and E17.5 cerebrum, with microarrays showing a total of 1003 and 623 changes, respectively. Enhanced mRNA degradation was observed in E17.5 cerebrum. Expression changes of genes involved in neurotransmission, neuronal growth and development, and angiogenesis were verified by qRT-PCR; 12 and 15 genes were verified at P30 and E17.5, respectively. Hippocampal collagen staining suggested decreased vessel density in FASD male embryos. This study provides insight into the mechanisms of neurobehavioral alterations and highlights potential deleterious consequences of moderate folate oversupplementation during pregnancy.
Collapse
|
20
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Chien YL, Chen YC, Chiu YN, Tsai WC, Gau SSF. A translational exploration of the effects of WNT2 variants on altered cortical structures in autism spectrum disorder. J Psychiatry Neurosci 2021; 46:E647-E658. [PMID: 34862305 PMCID: PMC8648347 DOI: 10.1503/jpn.210022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Evidence suggests that cortical anatomy may be aytpical in autism spectrum disorder. The wingless-type MMTV integration site family, member 2 (WNT2), a candidate gene for autism spectrum disorder, may regulate cortical development. However, it is unclear whether WNT2 variants are associated with altered cortical thickness in autism spectrum disorder. METHODS In a sample of 118 people with autism spectrum disorder and 122 typically developing controls, we investigated cortical thickness using FreeSurfer software. We then examined the main effects of the WNT2 variants and the interactions of group × SNP and age × SNP for each hemisphere and brain region that was altered in people with autism spectrum disorder. RESULTS Compared to neurotypical controls, people with autism spectrum disorder showed reduced mean cortical thickness in both hemispheres and 9 cortical regions after false discovery rate correction, including the right cingulate gyrus, the orbital gyrus, the insula, the inferior frontal gyrus (orbital part and triangular part), the lateral occipitotemporal gyrus, the posterior transverse collateral sulcus, the lateral sulcus and the superior temporal sulcus. In the full sample, 2 SNPs of WNT2 (rs6950765 and rs2896218) showed age × SNP interactions for the mean cortical thickness of both hemispheres, the middle-posterior cingulate cortex and the superior temporal cortex. LIMITATIONS We examined the genetic effect for each hemisphere and the 9 regions that were altered in autism spectrum disorder. The age effect we found in this cross-sectional study needs to be examined in longitudinal studies. CONCLUSION Based on neuroimaging and genetic data, our findings suggest that WNT2 variants might be associated with altered cortical thickness in autism spectrum disorder. Whether and how these WNT2 variants might involve cortical thinning requires further investigation. TRIAL REGISTRATION ClinicalTrials.gov no. NCT01582256. PROTOCOL REGISTRATION National Institutes of Health no. NCT00494754.
Collapse
Affiliation(s)
| | | | | | | | - Susan Shur-Fen Gau
- From the Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan (Chien, Chen, Chiu, Tsai, Gau); and the Graduate Institute of Clinical Medicine, and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (Chen, Gau)
| |
Collapse
|
22
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
23
|
Salem JB, Nkambeu B, Arvanitis DN, Beaudry F. Resiniferatoxin Hampers the Nocifensive Response of Caenorhabditis elegans to Noxious Heat, and Pathway Analysis Revealed that the Wnt Signaling Pathway is Involved. Neurochem Res 2021; 47:622-633. [PMID: 34694534 DOI: 10.1007/s11064-021-03471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 - 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.
Collapse
Affiliation(s)
- Jennifer Ben Salem
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.,Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Université de Toulouse, Toulouse, France
| | - Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Dina N Arvanitis
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Université de Toulouse, Toulouse, France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada. .,Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Rijlaarsdam J, Barker ED, Caserini C, Koopman-Verhoeff ME, Mulder RH, Felix JF, Cecil CA. Genome-wide DNA methylation patterns associated with general psychopathology in children. J Psychiatr Res 2021; 140:214-220. [PMID: 34118639 PMCID: PMC8578013 DOI: 10.1016/j.jpsychires.2021.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Psychiatric symptoms are interrelated and found to be largely captured by a general psychopathology factor (GPF). Although epigenetic mechanisms, such as DNA methylation (DNAm), have been linked to individual psychiatric outcomes, associations with GPF remain unclear. Using data from 440 children aged 10 years participating in the Generation R Study, we examined the associations of DNAm with both general and specific (internalizing, externalizing) factors of psychopathology. Genome-wide DNAm levels, measured in peripheral blood using the Illumina 450K array, were clustered into wider co-methylation networks ('modules') using a weighted gene co-expression network analysis. One co-methylated module associated with GPF after multiple testing correction, while none associated with the specific factors. This module comprised of 218 CpG probes, of which 198 mapped onto different genes. The CpG most strongly driving the association with GPF was annotated to FZD1, a gene that has been implicated in schizophrenia and wider neurological processes. Associations between the probes contained in the co-methylated module and GPF were supported in an independent sample of children from the Avon Longitudinal Study of Parents and Children (ALSPAC), as evidenced by significant correlations in effect sizes. These findings might contribute to improving our understanding of dynamic molecular processes underlying complex psychiatric phenotypes.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Edward D. Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Caserini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - M. Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rosa H. Mulder
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F. Felix
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A.M. Cecil
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Vandebergh M, Andlauer TFM, Zhou Y, Mallants K, Held F, Aly L, Taylor BV, Hemmer B, Dubois B, Goris A. Genetic Variation in WNT9B Increases Relapse Hazard in Multiple Sclerosis. Ann Neurol 2021; 89:884-894. [PMID: 33704824 PMCID: PMC8252032 DOI: 10.1002/ana.26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Many multiple sclerosis (MS) genetic susceptibility variants have been identified, but understanding disease heterogeneity remains a key challenge. Relapses are a core feature of MS and a common primary outcome of clinical trials, with prevention of relapses benefiting patients immediately and potentially limiting long-term disability accrual. We aim to identify genetic variation associated with relapse hazard in MS by analyzing the largest study population to date. METHODS We performed a genomewide association study (GWAS) in a discovery cohort and investigated the genomewide significant variants in a replication cohort. Combining both cohorts, we captured a total of 2,231 relapses occurring before the start of any immunomodulatory treatment in 991 patients. For assessing time to relapse, we applied a survival analysis utilizing Cox proportional hazards models. We also investigated the association between MS genetic risk scores and relapse hazard and performed a gene ontology pathway analysis. RESULTS The low-frequency genetic variant rs11871306 within WNT9B reached genomewide significance in predicting relapse hazard and replicated (meta-analysis hazard ratio (HR) = 2.15, 95% confidence interval (CI) = 1.70-2.78, p = 2.07 × 10-10 ). A pathway analysis identified an association of the pathway "response to vitamin D" with relapse hazard (p = 4.33 × 10-6 ). The MS genetic risk scores, however, were not associated with relapse hazard. INTERPRETATION Genetic factors underlying disease heterogeneity differ from variants associated with MS susceptibility. Our findings imply that genetic variation within the Wnt signaling and vitamin D pathways contributes to differences in relapse occurrence. The present study highlights these cross-talking pathways as potential modulators of MS disease activity. ANN NEUROL 2021;89:884-894.
Collapse
Affiliation(s)
- Marijne Vandebergh
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Klara Mallants
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Friederike Held
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bénédicte Dubois
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
27
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
29
|
Molecular insights into therapeutic promise of targeting of Wnt/β-catenin signaling pathway in obesity. Mol Biol Rep 2020; 47:8091-8100. [PMID: 32886327 DOI: 10.1007/s11033-020-05784-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a curable disorder which is a global health concern, linked to an excess amount of fat. It is caused by inherited and environmental factors and can be grim to maintain through dieting only. The importance of peculiar Wnt/β-catenin signaling has directed considerable efforts in the future production of therapeutic approaches in metabolic complications, including obesity. The article aims to examine the prospects of Wnt/β-catenin signaling cascade in obesity via directing effects of Wnt/β-catenin cascade in regulating appetite. A deep research on the literature available to date, for Wnt/β-catenin cascade in obesity is conducted using various medical databases like PubMed, MEDLINE from the internet. The articles published in English language were mainly preferred. Obesity has developed endemic worldwide, which initiates various obesity-related comorbidities. Obesity is implied by excessive deposition of fat primarily in the adipose tissue. Numerous studies have shown the vital impact of the Wnt/β-catenin signaling pathway in the growth of body part and biological homeostasis, while latent data illustrate the inherited variations in the Wnt/β-catenin cascade, correlating to several complications. The current article enlightens the stimulation of the Wnt/β-catenin cascade in obesity, mainly depot-explicit impact among adipose tissue during high caloric intake regulation and WAT browning event. Taken all together these data illustrate Wnt/β-catenin signaling cascade subsidizes to obesity promoted insulin resistance independent proliferation of adipose tissue.
Collapse
|
30
|
Liu X, Low SK, Atkins JR, Wu JQ, Reay WR, Cairns HM, Green MJ, Schall U, Jablensky A, Mowry B, Michie PT, Catts SV, Henskens F, Pantelis C, Loughland C, Boddy AV, Tooney PA, Scott RJ, Carr VJ, Cairns MJ. Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian Schizophrenia Research Bank cohort. Aust N Z J Psychiatry 2020; 54:902-908. [PMID: 31735061 DOI: 10.1177/0004867419885443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Large-scale genetic analysis of common variation in schizophrenia has been a powerful approach to understanding this complex but highly heritable psychotic disorder. To further investigate loci, genes and pathways associated more specifically in the well-characterized Australian Schizophrenia Research Bank cohort, we applied genome-wide single-nucleotide polymorphism analysis in these three annotation categories. METHODS We performed a case-control genome-wide association study in 429 schizophrenia samples and 255 controls. Post-genome-wide association study analyses were then integrated with genomic annotations to explore the enrichment of variation at the gene and pathway level. We also examine candidate single-nucleotide polymorphisms with potential function within expression quantitative trait loci and investigate overall enrichment of variation within tissue-specific functional regulatory domains of the genome. RESULTS The strongest finding (p = 2.01 × 10-6, odds ratio = 1.82, 95% confidence interval = [1.42, 2.33]) in genome-wide association study was with rs10252923 at 7q21.13, downstream of FZD1 (frizzled class receptor 1). While this did not stand alone after correction, the involvement of FZD1 was supported by gene-based analysis, which exceeded the threshold for genome-wide significance (p = 2.78 × 10-6). CONCLUSION The identification of FZD1, as an independent association signal at the gene level, supports the hypothesis that the Wnt signalling pathway is altered in the pathogenesis of schizophrenia and may be an important target for therapeutic development.
Collapse
Affiliation(s)
- Xiaoman Liu
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Siew-Kee Low
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath M Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, WA, Australia
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia T Michie
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Stan V Catts
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Medicine, University of Queensland, Herston, QLD Australia
| | - Frans Henskens
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Health Behaviour and Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,NorthWestern Mental Health, Sunshine Hospital, St Albans, VIC, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC, Australia
| | - Carmel Loughland
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,School of Psychology, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,Hunter New England Health, Newcastle, NSW, Australia
| | - Alan V Boddy
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NSW Health Pathology, Newcastle, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
31
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
32
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|
33
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
34
|
Cruz-Correa MR, Sala AC, Cintrón B, Hernández J, Olivera M, Cora A, Moore CM, Luciano CA, Soto-Salgado M, Giardiello FM, Hooper SR. Ubiquitous neurocognitive dysfunction in familial adenomatous polyposis: proof-of-concept of the role of APC protein in neurocognitive function. Hered Cancer Clin Pract 2020; 18:4. [PMID: 32123549 PMCID: PMC7041079 DOI: 10.1186/s13053-020-0135-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is an autosomal dominant disorder caused by germline mutations in the APC gene. Patients with FAP have multiple extraintestinal manifestations that follow a genotype-phenotype pattern; however, few data exist characterizing their cognitive abilities. Given the role of the APC protein in development of the central nervous system, we hypothesized that patients with FAP would show differences in cognitive functioning compared to controls. METHODS Matched case-control study designed to evaluate cognitive function using the Test of Nonverbal Intelligence-4, the Bateria III Woodcock-Munoz, and the Behavior Rating Inventory of Executive Functions-Adult. Twenty-six individuals with FAP (mean age = 34.2 ± 15.0 years) and 25 age-gender and educational level matched controls (mean age = 32.7 ± 13.8 years) were evaluated. RESULTS FAP-cases had significantly lower IQ (p = 0.005). Across all tasks of the Batería III Woodcock-Muñoz, FAP-cases performed significantly lower than controls, with all of the summary scores falling in the bottom quartile compared to controls (p < 0.0001). Patients with FAP scored within the deficient range for Long-Term Retrieval and Cognitive Fluency. CONCLUSION APC protein has an important role in neurocognitive function. The pervasive nature of the observed cognitive dysfunction suggests that loss or dysfunction of the APC protein impacts processes in cortical and subcortical brain regions. Additional studies examining larger ethnically diverse cohorts with FAP are warranted.
Collapse
Affiliation(s)
- Marcia Roxana Cruz-Correa
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Division of Gastroenterology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Ana Cecilia Sala
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Beatriz Cintrón
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Jessica Hernández
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Myrta Olivera
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Adrian Cora
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | | | - Carlos A. Luciano
- Department of Medicine, Neurology Section, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Marievelisse Soto-Salgado
- Department of Medicine, University of Puerto Rico School of Medicine, UPR Medical Sciences Campus, PO BOX 365067, San Juan, 00936 Puerto Rico
| | - Francis M. Giardiello
- Division of Gastroenterology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Stephen R. Hooper
- Department of Allied Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
35
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
36
|
Martinez M, Torres VI, Vio CP, Inestrosa NC. Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Mol Neurobiol 2019; 57:1389-1404. [DOI: 10.1007/s12035-019-01785-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
|
37
|
Le Duc D, Giulivi C, Hiatt SM, Napoli E, Panoutsopoulos A, Harlan De Crescenzo A, Kotzaeridou U, Syrbe S, Anagnostou E, Azage M, Bend R, Begtrup A, Brown NJ, Büttner B, Cho MT, Cooper GM, Doering JH, Dubourg C, Everman DB, Hildebrand MS, Santos FJR, Kellam B, Keller-Ramey J, Lemke JR, Liu S, Niyazov D, Payne K, Person R, Quélin C, Schnur RE, Smith BT, Strober J, Walker S, Wallis M, Walsh L, Yang S, Yuen RKC, Ziegler A, Sticht H, Pride MC, Orosco L, Martínez-Cerdeño V, Silverman JL, Crawley JN, Scherer SW, Zarbalis KS, Jamra R. Pathogenic WDFY3 variants cause neurodevelopmental disorders and opposing effects on brain size. Brain 2019; 142:2617-2630. [PMID: 31327001 PMCID: PMC6736092 DOI: 10.1093/brain/awz198] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Alexios Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Angelo Harlan De Crescenzo
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg, Germany
| | | | - Meron Azage
- Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, LA, USA
| | - Renee Bend
- Greenwood Genetic Center, Greenwood, SC, USA
| | - Amber Begtrup
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | - Natasha J Brown
- Department of Pediatrics, University of Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Benjamin Büttner
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Megan T Cho
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Jan H Doering
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg, Germany
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, F-35033, France
- Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, F-35000, France
| | | | - Michael S Hildebrand
- Department of Pediatrics, University of Melbourne, VIC, Australia
- Epilepsy Research Centre, Austin Health, Heidelberg, VIC, Australia
| | | | - Barbara Kellam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | | | - Johannes R Lemke
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Shuxi Liu
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, LA, USA
| | | | - Richard Person
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | - Chloé Quélin
- Service de Génétique Clinique, CHU, Rennes, F-35203, France
| | - Rhonda E Schnur
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | | | | | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Mathew Wallis
- Austin Health Clinical Genetics Service, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | | | - Sandra Yang
- GeneDx, Clinical Genomics, 207 Perry Parkway Gaithersburg, MD, USA
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andreas Ziegler
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael C Pride
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, CA, USA
| | - Lori Orosco
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, CA, USA
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Konstantinos S Zarbalis
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Rami Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Zhao WN, Hylton NK, Wang J, Chindavong PS, Alural B, Kurtser I, Subramanian A, Mazitschek R, Perlis RH, Haggarty SJ. Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA). Mol Cell Neurosci 2019; 99:103386. [PMID: 31202891 PMCID: PMC7001743 DOI: 10.1016/j.mcn.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
A subset of individuals with major depressive disorder (MDD) elects treatment with complementary and alternative medicines (CAMs), including the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies in rodents suggest that DHA modulates neurodevelopmental processes, including adult neurogenesis and neuroplasticity, but the molecular and cellular mechanisms of DHA's potential therapeutic effect in the context of human neurobiology have not been well established. Here we sought to address this knowledge gap by investigating the effects of DHA using human iPSC-derived neural progenitor cells (NPCs) and post-mitotic neurons using pathway-selective reporter genes, multiplexed mRNA expression profiling, and a panel of metabolism-based viability assays. Finally, real-time, live-cell imaging was employed to monitor neurite outgrowth upon DHA treatment. Overall, these studies showed that DHA treatment (0-50 μM) significantly upregulated both WNT and CREB signaling pathways in human neuronal cells in a dose-dependent manner with 2- to 3-fold increases in pathway activation. Additionally, we observed that DHA treatment enhanced survival of iPSC-derived NPCs and differentiation of post-mitotic neurons with live-cell imaging, revealing increased neurite outgrowth with DHA treatment within 24 h. Taken together, this study provides evidence that DHA treatment activates critical pathways regulating neuroplasticity, which may contribute to enhanced neuronal cell viability and neuronal connectivity. The extent to which these pathways represent molecular mechanisms underlying the potential beneficial effects of omega-3 fatty acids in MDD and other brain disorders merits further investigation.
Collapse
Affiliation(s)
- Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Norma K Hylton
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Jennifer Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Center for Quantitative Health, Center for Genomic Medicine, Division of Clinical Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Peter S Chindavong
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Begum Alural
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir 35210, Turkey
| | - Iren Kurtser
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Aravind Subramanian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States of America
| | - Ralph Mazitschek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States of America; Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Center for Quantitative Health, Center for Genomic Medicine, Division of Clinical Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America.
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America.
| |
Collapse
|
39
|
Sajdel-Sulkowska EM, Makowska-Zubrycka M, Czarzasta K, Kasarello K, Aggarwal V, Bialy M, Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A. Common Genetic Variants Link the Abnormalities in the Gut-Brain Axis in Prematurity and Autism. THE CEREBELLUM 2019; 18:255-265. [PMID: 30109601 PMCID: PMC6443615 DOI: 10.1007/s12311-018-0970-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review considers a link between prematurity and autism by comparing symptoms, physiological abnormalities, and behavior. It focuses on the bidirectional signaling between the microbiota and the brain, here defined as the microbiota-gut-vagus-heart-brain (MGVHB) axis and its systemic disruption accompanying altered neurodevelopment. Data derived from clinical and animal studies document increased prevalence of gastrointestinal, cardiovascular, cognitive, and behavioral symptoms in both premature and autistic children and suggest an incomplete maturation of the gut-blood barrier resulting in a “leaky gut,” dysbiosis, abnormalities in vagal regulation of the heart, altered development of specific brain regions, and behavior. Furthermore, this review posits the hypothesis that common genetic variants link the abnormalities in the MGVHB axis in premature and autistic pathologies. This hypothesis is based on the recently identified common genetic variants: early B cell factor 1 (EBF1), selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC), and angiotensin II receptor type 2 (AGTR2), in the maternal and infant DNA samples, associated with risk of preterm birth and independently implicated in a risk of autism. We predict that the AGTR2 variants involved in the brain maturation and oxytocin-arginine-vasopressin (OXT-AVP) pathways, related to social behavior, will contribute to our understanding of the link between prematurity and autism paving a way to new therapies.
Collapse
Affiliation(s)
- Elżbieta M Sajdel-Sulkowska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
- Department of Psychiatry Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Monika Makowska-Zubrycka
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Kasarello
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Vishal Aggarwal
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Michał Bialy
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Kapitansky O, Gozes I. ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience 2019; 41:321-340. [PMID: 31264075 DOI: 10.1007/s11357-019-00079-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for embryonic development with ADNP mutations leading to syndromic autism, coupled with intellectual disabilities and motor developmental delays. Here, mining human muscle gene-expression databases, we have investigated the association of ADNP transcripts with muscle aging. We discovered increased ADNP and its paralogue ADNP2 expression in the vastus lateralis muscle of aged compared to young subjects, as well as altered expression of the ADNP and the ADNP2 genes in bicep brachii muscle of elderly people, in a sex-dependent manner. Prolonged exercise resulted in decreased ADNP expression, and increased ADNP2 expression in an age-dependent manner in the vastus lateralis muscle. ADNP expression level was further correlated with 49 genes showing age-dependent changes in muscle transcript expression. A high degree of correlation with ADNP was discovered for 24 genes with the leading gene/protein being NMNAT1 (nicotinamide nucleotide adenylyl transferase 1). Looking at correlations differentiating the young and the old muscles and comparing protein interactions revealed an association of ADNP with the cell division cycle 5-like protein (CDC5L), and an aging-muscle-related interactive pathway in the vastus lateralis. In the bicep brachii, very high correlation was detected with genes associated with immune functions as well as mitochondrial structure and function among others. Taken together, the results suggest a direct association of ADNP with muscle strength and implicate ADNP fortification in the protection against age-associated muscle wasting.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
41
|
Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 2019; 11:10. [PMID: 31202261 PMCID: PMC6571119 DOI: 10.1186/s11689-019-9268-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background The development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment. Main body Recent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD. Conclusion The understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Sunil Rai
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Vicari S, Napoli E, Cordeddu V, Menghini D, Alesi V, Loddo S, Novelli A, Tartaglia M. Copy number variants in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:421-427. [PMID: 30797015 DOI: 10.1016/j.pnpbp.2019.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/24/2022]
Abstract
In recent years, there has been an explosive increase in genetic studies related to autism spectrum disorder (ASD). This implicated the accumulation of a large amount of molecular data that may be used to verify various hypotheses and models developed to explore the complex genetic component of ASD. Several lines of evidence support the view that structural genomic variation contributes to the pathogenesis of ASD. The introduction of more sophisticated techniques for whole-genome screening, including array comparative genome hybridization and high-resolution single nucleotide polymorphism analysis, has allowed to identify an increasing number of ASD susceptibility loci. Copy number variants (CNVs) are the most common type of structural variation in the human genome and are considered important contributors to the pathogenesis of neurodevelopmental disorders, including ASD. In this review, we describe the accumulated evidence concerning the genetic events associated with ASD, and summarize current knowledge about the clinical relevance of CNVs in these disorders.
Collapse
Affiliation(s)
- Stefano Vicari
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Eleonora Napoli
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Cordeddu
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Deny Menghini
- Department of Neuroscience, Child Neuropsychiatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Loddo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
43
|
Douzgou S, Liang HW, Metcalfe K, Somarathi S, Tischkowitz M, Mohamed W, Kini U, McKee S, Yates L, Bertoli M, Lynch SA, Holder S, Banka S. The clinical presentation caused by truncating CHD8 variants. Clin Genet 2019; 96:72-84. [PMID: 31001818 DOI: 10.1111/cge.13554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Variants in the chromodomain helicase DNA-binding protein 8 (CHD8) have been associated with intellectual disability (ID), autism spectrum disorders (ASDs) and overgrowth and CHD8 is one of the causative genes for OGID (overgrowth and ID). We investigated 25 individuals with CHD8 protein truncating variants (PTVs), including 10 previously unreported patients and found a male to female ratio of 2.7:1 (19:7) and a pattern of common features: macrocephaly (62.5%), tall stature (47%), developmental delay and/or intellectual disability (81%), ASDs (84%), sleep difficulties (50%), gastrointestinal problems (40%), and distinct facial features. Most of the individuals in this cohort had moderate-to-severe ID, some had regression of speech (37%), seizures (27%) and hypotonia (27%) and two individuals were non-ambulant. Our study shows that haploinsufficiency of CHD8 is associated with a distinctive OGID syndrome with pronounced autistic traits and supports a sex-dependent penetrance of CHD8 PTVs in humans.
Collapse
Affiliation(s)
- Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Hui Wen Liang
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Suresh Somarathi
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Marc Tischkowitz
- Academic Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - Wafik Mohamed
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Laura Yates
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow, UK.,KwaZulu-Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | - Marta Bertoli
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow, UK
| | - Sally Ann Lynch
- Department of Clinical Genetics, Temple Street Children's Hospital, Dublin, Ireland
| | - Susan Holder
- North West Thames Regional Genetics Service, London, UK
| | -
- Wellcome Sanger Institute, Cambridge, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Vallée A, Vallée JN, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 2019; 24:643-652. [PMID: 30104725 DOI: 10.1038/s41380-018-0131-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Paris-Descartes University; Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital; AP-HP, Paris, France. .,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054, Amiens, France.,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100, Meaux, France
| |
Collapse
|
45
|
Yao YY, Bian LG, Yang P, Sui Y, Li R, Chen YL, Sun L, Ai QL, Zhong LM, Lu D. Gastrodin attenuates proliferation and inflammatory responses in activated microglia through Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:190-203. [PMID: 31026457 DOI: 10.1016/j.brainres.2019.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
Microglia contribute to the regulation of neuroinflammation and play an important role in the pathogenesis of brain disorders. Thus, regulation of neuroinflammation triggered by activation of microglia has become a promising therapeutic strategy. Here, we investigated the beneficial effects of Gastrodin in activated microglia and analyzed the underlying molecular mechanisms. Microglia activation was regulated by Gastrodin not only in terms of microglia population size but also production of inflammatory mediators. Gastrodin inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclin-D1 and Ki67 in lipopolysaccharide (LPS)-stimulated BV-2 or primary microglia. Gastrodin also suppressed the expression of iNOS and Ki67 in activated microglia in three-day-old LPS-injected postnatal rats. In addition, the present results have shown that Gastrodin inhibited LPS-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser 9 and β-catenin activity. We further extended our investigation to determine whether Wnt/β-catenin signaling pathway was involved in the anti-inflammatory and anti-proliferation function of Gastrodin. β-Catenin antagonist (XAV939) was used to block LPS-mediated upregulation of iNOS, TNF-α, cyclin-D1, nitric oxide (NO) and the number of cells in the G2/M+S phase of cell cycle. Moreover, treatment with LiCl, a special Wnt/β-catenin pathway agonist significantly blocked Gastrodin-mediated down-regulation of iNOS, TNF-α, cyclin-D1, NO and the number of cells in the G2/M+S phase of cell cycle in LPS-stimulated BV-2 microglia. Taken together, the present results suggested that Gastrodin mediated anti-inflammatory and anti-proliferation effects in activated microglia by modulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Li-Gong Bian
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yue Sui
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Run Li
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Yuan-Li Chen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Qing-Long Ai
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Lian-Mei Zhong
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
46
|
Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A. Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet B Neuropsychiatr Genet 2019; 180:103-112. [PMID: 29704323 DOI: 10.1002/ajmg.b.32638] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Our hypothesis is that machine learning (ML) analysis of whole exome sequencing (WES) data can be used to identify individuals at high risk for schizophrenia (SCZ). This study applies ML to WES data from 2,545 individuals with SCZ and 2,545 unaffected individuals, accessed via the database of genotypes and phenotypes (dbGaP). Single nucleotide variants and small insertions and deletions were annotated by ANNOVAR using the reference genome hg19/GRCh37. Rare (predicted functional) variants with a minor allele frequency ≤1% and genotype quality ≥90 including missense, frameshift, stop gain, stop loss, intronic, and exonic splicing variants were selected. A file containing all cases and controls, the names of genes with variants meeting our criteria, and the number of variants per gene for each individual, was used for ML analysis. The supervised machine-learning algorithm used the patterns of variants observed in the different genes to determine which subset of genes can best predict that an individual is affected. Seventy percent of the data was used to train the algorithm and the remaining 30% of data (n = 1,526) was used to evaluate its efficiency. The supervised ML algorithm, gradient boosted trees with regularization (eXtreme Gradient Boosting implementation) was the best performing algorithm yielding promising results (accuracy: 85.7%, specificity: 86.6%, sensitivity: 84.9%, area under the receiver-operator characteristic curve: 0.95). The top 50 features (genes) of the algorithm were analyzed using bioinformatics resources for new insights about the pathophysiology of SCZ. This manuscript presents a novel predictor which could potentially enable studies exploring disease-modifying intervention in the early stages of the disease.
Collapse
Affiliation(s)
- Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Sameer Sardaar
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Anthony Chen
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Vanessa Fulginiti
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Ankur Krishnan
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| |
Collapse
|
47
|
Xu Q, Liu YY, Wang X, Tan GH, Li HP, Hulbert SW, Li CY, Hu CC, Xiong ZQ, Xu X, Jiang YH. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism 2018; 9:65. [PMID: 30574290 PMCID: PMC6299922 DOI: 10.1186/s13229-018-0244-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background Mutations in CHD8, chromodomain helicase DNA-binding protein 8, are among the most replicated and common findings in genetic studies of autism spectrum disorder (ASD). The CHD8 protein is believed to act as a transcriptional regulator by remodeling chromatin structure and recruiting histone H1 to target genes. The mechanism by which deficiency of CHD8 causes ASD has not been fully elucidated. Methods We examined the expression of CHD8 in human and mouse brains using both immunohistochemistry and RNA in situ hybridization. We performed in utero electroporation, neuronal culture, and biochemical analysis using RNAi to examine the functional consequences of CHD8 deficiency. Results We discovered that CHD8 is expressed highly in neurons and at low levels in glia cells in both humans and mice. Specifically, CHD8 is localized predominately in the nucleus of both MAP2 and parvalbumin-positive neurons. In the developing mouse brain, expression of Chd8 peaks from E16 to E18 and then decreases significantly at P14 to adulthood. Knockdown of Chd8 results in reduced axon and dendritic growth, disruption of axon projections to the contralateral cortex, and delayed neuronal migration at E18.5 which recovers by P3 and P7. Conclusion Our findings indicate an important role for CHD8 in dendritic and axon development and neuronal migration and thus offer novel insights to further dissect the underlying molecular and circuit mechanisms of ASD caused by CHD8 deficiency.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, 201102 China
- Department of Pediatrics, Duke University School of Medicine, Durham, 27710 NC USA
| | - Yuan-yuan Liu
- Guangxi Key Laboratory of Regenerative Medicine & Guangxi Collaborative Innovation Center for Biomedicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine, Durham, 27710 NC USA
| | - Guo-he Tan
- Guangxi Key Laboratory of Regenerative Medicine & Guangxi Collaborative Innovation Center for Biomedicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Hui-ping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Samuel W. Hulbert
- Department of Neurobiology, Duke University School of Medicine, Durham, 27710 NC USA
| | - Chun-yang Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Chun-chun Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Zhi-qi Xiong
- Institute of Neuroscience & State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Yong-hui Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham, 27710 NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, 27710 NC USA
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, 27710 NC USA
- Cellular Molecular Biology, Duke University School of Medicine, Durham, 27710 NC USA
| |
Collapse
|
48
|
Moore A, Beidler J, Hong MY. Resveratrol and Depression in Animal Models: A Systematic Review of the Biological Mechanisms. Molecules 2018; 23:E2197. [PMID: 30200269 PMCID: PMC6225181 DOI: 10.3390/molecules23092197] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Depression is currently treated by pharmacotherapies that can elicit debilitating side effects for patients. Novel treatment options with limited side effects are currently being researched. Resveratrol is a polyphenol and phytoalexin found in the skins of grapes, red wine, Japanese knotweed, and peanuts. It has been studied extensively for its antioxidant and anti-inflammatory properties. Resveratrol has also gained attention for its neuroprotective properties. The aim of the review was to examine the mechanisms by which resveratrol reduces depressive behaviors in animal models. In total, 22 studies met the established criteria for final review. Behavioral aspects of depression were investigated using validated measures such as the forced swimming test, tail suspension test, sucrose preference test, and open field test. While many physical measures were taken, three main biological mechanisms were explored: Regulation of the hypothalamic⁻pituitary⁻adrenal axis; decreased inflammation; and increased Brain-Derived Neurotrophic Factor and neurogenesis. Based on these findings, resveratrol may be deemed an effective treatment for depression in animal models at doses between 10⁻80 mg/kg/day, although higher doses had the most significant effects. Future studies should examine the effects of resveratrol on depression in humans to determine the eligibility of resveratrol as a natural antidepressant with less severe side effects.
Collapse
Affiliation(s)
- Alyssa Moore
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| | - Joshua Beidler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
49
|
Sorokina AM, Saul M, Goncalves TM, Gogola JV, Majdak P, Rodriguez-Zas SL, Rhodes JS. Striatal transcriptome of a mouse model of ADHD reveals a pattern of synaptic remodeling. PLoS One 2018; 13:e0201553. [PMID: 30110355 PMCID: PMC6093675 DOI: 10.1371/journal.pone.0201553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the prevalence and high heritability of Attention-Deficit/Hyperactivity Disorder (ADHD), genetic etiology remains elusive. Clinical evidence points in part to reduced function of the striatum, but which specific genes are differentially expressed and how they sculpt striatal physiology to predispose ADHD are not well understood. As an exploratory tool, a polygenic mouse model of ADHD was recently developed through selective breeding for high home cage activity. Relative to the Control line, the High-Active line displays hyperactivity and motor impulsivity which are ameliorated with amphetamine. This study compared gene expression in the striatum between Control and High-Active mice to develop a coherent hypothesis for how genes might affect striatal physiology and predispose ADHD-like symptoms. To this end, striatal transcriptomes of High-Active and Control mice were analyzed after mice were treated with saline or amphetamines. The pseudogene Gm6180 for n-cofilin (Cfl1) displayed 20-fold higher expression in High-Active mice corresponding with reduced Cfl1 expression suggesting synaptic actin dysregulation. Latrophilin 3 (Lphn3), which is associated with ADHD in human populations and is involved in synapse structure, and its ligand fibronectin leucine rich transmembrane protein 3 (Flrt3), were downregulated in High-Active mice. Multiple genes were altered in High-Active mice in a manner predicted to downregulate the canonical Wnt pathway. A smaller and different set of genes including glyoxalase (Glo1) were differentially regulated in High-Active as compared to Control in response to amphetamine. Together, results suggest genes involved in excitatory synapse regulation and maintenance are downregulated in ADHD-like mice. Consistent with the molecular prediction, stereological analysis of the striatum from a separate set of mice processed for imunohistochemical detection of synaptophysin revealed approximately a 46% reduction in synaptophysin immunoreactivity in High-Active relative to Control. Results provide a new set of molecular targets related to synapse maintenance for the next generation of ADHD medicines.
Collapse
Affiliation(s)
- Anastasia M. Sorokina
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Michael Saul
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Tassia M. Goncalves
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Joseph V. Gogola
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Department of Psychology, University of Chicago, Chicago, Illinois, United States of America
| | - Petra Majdak
- The Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Justin S. Rhodes
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- The Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
50
|
Abstract
Obesity has become epidemic worldwide, which triggers several obesity-associated complications. Obesity is characterized by excess fat storage mainly in the visceral white adipose tissue (vWAT), subcutaneous WAT (sWAT), and other tissues. Myriad studies have demonstrated the crucial role of canonical Wnt/β-catenin cascade in the development of organs and physiological homeostasis, whereas recent studies show that genetic variations/mutations in the Wnt/β-catenin pathway are associated with human metabolic diseases. In this review, we highlight the regulation of updated Wnt/β-catenin signaling in obesity, especially the distinctly depot-specific roles between subcutaneous and visceral adipose tissue under high-fed diet stimulation and WAT browning process.
Collapse
Affiliation(s)
- Na Chen
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|