1
|
Lan NSR, Watts GF. Quo Vadis after AEGIS: New Opportunities for Therapies Targeted at Reverse Cholesterol Transport? Curr Atheroscler Rep 2025; 27:35. [PMID: 40009132 DOI: 10.1007/s11883-025-01281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW High-density lipoprotein (HDL) is integral to reverse cholesterol transport (RCT), a process considered to protect against atherosclerotic cardiovascular disease (ASCVD). We summarise findings from the recent AEGIS-II trial and discuss new opportunities for HDL therapeutics targeted at RCT. RECENT FINDINGS Mendelian randomisation studies have suggested a causal association between the functional properties of HDL and ASCVD. However, the AEGIS-II trial of CSL112, an apolipoprotein A-I therapy that enhances cholesterol efflux, did not meet its primary endpoint. Exploratory analyses demonstrated that CSL112 significantly reduced ASCVD events among participants with a baseline low-density lipoprotein (LDL)-cholesterol ≥ 100 mg/dL, suggesting that RCT may depend on LDL-cholesterol levels. The role of HDL therapeutics in patients with familial hypercholesterolaemia, inherited low HDL-cholesterol and impaired HDL function, especially with inadequately controlled LDL-cholesterol, merits further investigation. The treatment of patients with monogenic defects in HDL metabolism remains a significant gap in care that needs further research.
Collapse
Affiliation(s)
- Nick S R Lan
- Medical School, The University of Western Australia, Crawley, Perth, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
| | - Gerald F Watts
- Medical School, The University of Western Australia, Crawley, Perth, Australia.
- Departments of Internal Medicine and Cardiology, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
2
|
Franchi E, Colombo A, Manzini S, Busnelli M, Chiesa G. The lack of apoA-I in apoE-KO mice affects the liver transcriptome. Nutr Metab Cardiovasc Dis 2025:103920. [PMID: 40087046 DOI: 10.1016/j.numecd.2025.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND AIMS Liver is the major organ involved in apoA-I synthesis and HDL-C turnover, but the impact of apoA-I/HDL on hepatic transcriptome has never been investigated before. In the present study, a transcriptomic analysis by high-throughput RNA-seq was conducted in the liver of atherosclerosis-prone mice, with the aim of identifying new genes/pathways modulated by apoA-I/HDL with a potential effect on atherosclerosis development. METHODS AND RESULTS Eight-week-old apoE knockout (apoEKO) mice lacking apoA-I/HDL (DKO) and with physiological levels of apoA-I/HDL (DKO/hA-I) were fed either a standard rodent diet (SRD) or a Western diet (WD) for 22 weeks. After both dietary treatments, DKO mice were characterized by lower cholesterol levels, but increased atherosclerosis development, compared to DKO/hA-I mice. The liver transcriptome of DKO and DKO/hA-I mice fed SRD diverged in a relatively small number of genes, suggestive of a greater activation of the PPAR signaling pathway and the retinoid metabolism pathway in DKO/hA-I mice. Following WD, transcriptomic analysis highlighted in both genotypes an upregulated expression of immune/inflammatory genes and a reduced activation of the retinoid metabolism. The evaluation of the hepatic response of the two genotypes to the dietary switch from SRD to WD revealed strong divergences in genes involved in metabolic pathways only in the presence of apoA-I/HDL, with reduced endogenous sterol biosynthesis and glutathione metabolism, together with increased glucose metabolism. CONCLUSION The presence or absence of apoA-I expression differently alters hepatic pathways involved not only in cholesterol metabolism, but also in those of glutathione and glucose metabolism.
Collapse
Affiliation(s)
- Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy.
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| |
Collapse
|
3
|
Li H, Li W, Wu Y, Wu H, Cai X. Integrating network pharmacology and animal experimental validation to investigate the mechanism of lotus leaf in obesity. Int Immunopharmacol 2025; 145:113719. [PMID: 39647284 DOI: 10.1016/j.intimp.2024.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/14/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Lotus leaf and its extracts have been reported to exert various beneficial effects; however, their anti-obesity mechanisms remain relatively unclear. Therefore, we investigated the mechanism by which lotus leaf regulates obesity using network pharmacology, molecular docking, and animal experimentation. METHODS Network pharmacology was used to identify potential targets and pathways through which lotus leaf regulates obesity. Molecular docking technology was used to verify the interaction between lotus leaves and core targets of obesity. Additionally, a rat model of obesity induced using a high-fat diet was established to examine the anti-obesity effects of lotus leaf. Moreover, western blotting was performed to examine the expression levels of the target proteins and elucidate the molecular mechanisms of lotus leaf. RESULTS Quercetin, nuciferin, catechin, kaempferol, and isorhamnetin were identified as the main active compounds in the lotus leaves involved in obesity treatment. Network pharmacology analysis identified fibroblast growth factor (FGF) 15 and farnesoid X receptor (FXR) as core targets of lotus leaf, and the AGE-RAGE signaling pathway in diabetic complications, neuroactive ligand-receptor interactions, insulin resistance, and cancer pathways, as biomechanistic pathways by which lotus leaf ameliorates obesity. Additionally, molecular docking analysis indicated a strong binding affinity between the main active ingredients of lotus leaf and the core targets. Moreover, western blotting showed that lotus leaf significantly downregulated FGF15 and FXR protein expression in intestinal tissues. CONCLUSIONS Lotus leaf ameliorates obesity through several pathways, including by downregulating FGF15 and FXR, providing a novel basis for the development of natural drug therapy for obesity.
Collapse
Affiliation(s)
- Haojing Li
- Heilongjiang Academy of Traditional Chinese Medicine, PR China
| | - Wenli Li
- Dazhou Dachuan District People's Hospital, PR China
| | - Yuanyuan Wu
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, PR China
| | - Huimin Wu
- Quzhou Maternal and Child Health Hospital, PR China
| | - Xiaojun Cai
- Heilongjiang Academy of Traditional Chinese Medicine, PR China.
| |
Collapse
|
4
|
Zhang Y, Luo S, Gao Y, Tong W, Sun S. High-Density Lipoprotein Subfractions Remodeling: A Critical Process for the Treatment of Atherosclerotic Cardiovascular Diseases. Angiology 2024; 75:441-453. [PMID: 36788038 DOI: 10.1177/00033197231157473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Numerous studies have shown that a low level of high-density lipoprotein cholesterol (HDL-C) is an independent biomarker of cardiovascular disease. High-density lipoprotein (HDL) is considered to be a protective factor for atherosclerosis (AS). Therefore, raising HDL-C has been widely recognized as a promising strategy to treat atherosclerotic cardiovascular diseases (ASCVD). However, several studies have found that increasing HDL-C levels does not necessarily reduce the risk of ASCVD. HDL particles are highly heterogeneous in structure, composition, and biological function. Moreover, HDL particles from atherosclerotic patients exhibit impaired anti-atherogenic functions and these dysfunctional HDL particles might even promote ASCVD. This makes it uncertain that HDL-raising therapy will prevent and treat ASCVD. It is necessary to comprehensively analyze the structure and function of HDL subfractions. We review current advances related to HDL subfractions remodeling and highlight how current lipid-modifying drugs such as niacin, statins, fibrates, and cholesteryl ester transfer protein inhibitors regulate cholesterol concentration of HDL and specific HDL subfractions.
Collapse
Affiliation(s)
- Yaling Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Gao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, China
| | - Shaowei Sun
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Li H, Wang M, Qu K, Xu R, Zhu H. MP Allosterically Activates AMPK to Enhance ABCA1 Stability by Retarding the Calpain-Mediated Degradation Pathway. Int J Mol Sci 2023; 24:17280. [PMID: 38139111 PMCID: PMC10743971 DOI: 10.3390/ijms242417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.
Collapse
Affiliation(s)
| | | | | | | | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China; (H.L.); (M.W.); (K.Q.); (R.X.)
| |
Collapse
|
6
|
Wang T, Cheng Z, Zhao R, Cheng J, Ren H, Zhang P, Liu P, Hao Q, Zhang Q, Yu X, Sun D, Zhang D. Sirt6 enhances macrophage lipophagy and improves lipid metabolism disorder by regulating the Wnt1/β-catenin pathway in atherosclerosis. Lipids Health Dis 2023; 22:156. [PMID: 37736721 PMCID: PMC10515036 DOI: 10.1186/s12944-023-01891-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023] Open
Abstract
Lipid metabolism disorders are considerably involved in the pathology of atherosclerosis; nevertheless, the fundamental mechanism is still largely unclear. This research sought to examine the function of lipophagy in lipid metabolism disorder-induced atherosclerosis and its fundamental mechanisms. Previously, Sirt6 has been reported to stimulate plaque stability by promoting macrophage autophagy. However, its role in macrophage lipophagy and its relationship with Wnt1 remains to be established. In this study, ApoE-/-: Sirt6-/- and ApoE-/-: Sirt6Tg mice were used and lipid droplets were analysed via transmission electron microscopy and Bodipy 493/503 staining in vitro. Atherosclerotic plaques in ApoE-/-: Sirt6-/- mice showed greater necrotic cores and lower stability score. Reconstitution of Sirt6 in atherosclerotic mice improved lipid metabolism disorder and prevented the progression of atherosclerosis. Furthermore, macrophages with Ac-LDL intervention showed more lipid droplets and increased expression of adipophilin and PLIN2. Reconstitution of Sirt6 recruited using SNF2H suppressed Wnt1 expression and improved lipid metabolism disorder by promoting lipophagy. In addition, downregulation of Sirt6 expression in Ac-LDL-treated macrophages inhibited lipid droplet degradation and stimulated foam cell formation. Innovative discoveries in the research revealed that atherosclerosis is caused by lipid metabolism disorders due to downregulated Sirt6 expression. Thus, modulating Sirt6's function in lipid metabolism might be a useful therapeutic approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengke Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyun Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qimeng Hao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaolei Yu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Asaduddin A, Aisyah F, Indarto D, Mashuri Y. A Systematic Review of Apolipoprotein A-I Mimetic Peptides for Atherosclerosis Therapy via Activation of the Reverse Cholesterol Transport Pathway. ARYA ATHEROSCLEROSIS 2022; 18:2709. [PMID: 40236972 PMCID: PMC11994864 DOI: 10.48305/arya.2022.11879.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/18/2022] [Indexed: 04/17/2025]
Abstract
BACKGROUND HDL has been identified a s a p otential n ew t reatment f or atherosclerosis. Targeting lipid metabolism via the Reverse Cholesterol Transport (RCT) pathway can improve HDL metabolism. Apolipoprotein A-I mimetic peptides (ApoA-I MPs) are able to increase HDL metabolism. Thus, this systematic review aimed to examine the potential effect o f A poA-I M Ps a gainst a therosclerosis i n mice models through the RCT mechanism. METHOD This systematic review was conducted using previous in vivo studies published in four scientific databases over the last ten years (PubMed, SCOPUS, ProQuest, and Science Direct) and was based on the Systematic Review Protocol for Animal Intervention Studies (SYRCLE) protocol. RESULTS This study's primary outcome was a reduction in atherosclerotic plaque, where 16 articles were qualified for this study. Based on the risk of bias analysis, these articles had a low risk of bias. Most in vivo studies (13 of 16) showed that ApoA-I MPs significantly reduced atherosclerotic plaque formation. Generally, ApoA-I MPs played an important role in regulating HDL metabolism (HDL remodeling process, increased cholesterol efflux, and stimulated RC T pathway) and an ti-inflammatory agent. Apo A-I MPs may differ in their ability to reduce atherosclerotic plaque depending on the peptide sequence and administration route. CONCLUSIONS ApoA-I MPs can reduce atherosclerotic plaque formation in mice by increasing cholesterol efflux vi a th e RC T pa thway. Fu rther in vestigation is re quired to su pport th e de velopment of ApoA-I MPs as a new therapy for atherosclerosis in humans.
Collapse
Affiliation(s)
- Aiman Asaduddin
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Farida Aisyah
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dono Indarto
- Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Yusuf Mashuri
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
10
|
Momtazi-Borojeni AA, Abdollahi E, Jaafari MR, Banach M, Watts GF, Sahebkar A. Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model. Curr Vasc Pharmacol 2022; 20:69-76. [PMID: 34414873 DOI: 10.2174/1570161119666210820115150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Negatively charged nanoliposomes have a strong attraction towards plasma lipoprotein particles and can thereby regulate lipid metabolism. Here, the impact of such nanoliposomes on dyslipidaemia and progression of atherosclerosis was investigated in a rabbit model. METHODS Two sets of negatively-charged nanoliposome formulations including [Hydrogenated Soy Phosphatidylcholine (HSPC)/1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)] and [1,2- Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPG)/Cholesterol] were evaluated. Rabbits fed a high-cholesterol diet were randomly divided into 3 groups (n=5/group) intravenously administrated with HSPC/DSPG formulation (DSPG group; 100 mmol/kg), DMPC/DMPG formulation (DMPG group; 100 mmol/kg), or the normal saline (control group; 0.9% NaCl) over a 4-week period. The atherosclerotic lesions of the aortic arch wall were studied using haematoxylin and eosin staining. RESULTS Both DSPG and DMPG nanoliposome formulations showed a nano-sized range in diameter with a negatively-charged surface and a polydispersity index of <0.1. After 4 weeks administration, the nanoliposome formulations decreased triglycerides (-62±3% [DSPG group] and -58±2% [DMPG group]), total cholesterol (-58±9% [DSPG group] and -37±5% [DMPG group]), and lowdensity lipoprotein cholesterol (-64±6% [DSPG group] and -53±10% [DMPG group]) levels, and increased high-density lipoprotein cholesterol (+67±28% [DSPG group] and +35±19% [DMPG group]) levels compared with the controls. The nanoliposomes showed a significant decrease in the severity of atherosclerotic lesions: mean values of the intima to media ratio in DMPG (0.96±0.1 fold) and DSPG (0.54±0.02 fold) groups were found to be significantly lower than that in the control (1.2±0.2 fold) group (p<0.05). CONCLUSION Anionic nanoliposomes containing [HSPC/DSPG] and [DMPC/DMPG] correct dyslipidaemia and inhibit the progression of atherosclerosis.
Collapse
Affiliation(s)
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland | Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | School of Medicine, The University of Western Australia, Perth, Australia | School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Increases Macrophage Cholesterol Efflux through Regulation of ABCA1 and ABCG1 in Different Mechanisms. Int J Mol Sci 2021; 22:8791. [PMID: 34445501 PMCID: PMC8395905 DOI: 10.3390/ijms22168791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
Lipid dysregulation in diabetes mellitus escalates endothelial dysfunction, the initial event in the development and progression of diabetic atherosclerosis. In addition, lipid-laden macrophage accumulation in the arterial wall plays a significant role in the pathology of diabetes-associated atherosclerosis. Therefore, inhibition of endothelial dysfunction and enhancement of macrophage cholesterol efflux is the important antiatherogenic mechanism. Rosmarinic acid (RA) possesses beneficial properties, including its anti-inflammatory, antioxidant, antidiabetic and cardioprotective effects. We previously reported that RA effectively inhibits diabetic endothelial dysfunction by inhibiting inflammasome activation in endothelial cells. However, its effect on cholesterol efflux remains unknown. Therefore, in this study, we aimed to assess the effect of RA on cholesterol efflux and its underlying mechanisms in macrophages. RA effectively reduced oxLDL-induced cholesterol contents under high glucose (HG) conditions in macrophages. RA enhanced ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) expression, promoting macrophage cholesterol efflux. Mechanistically, RA differentially regulated ABCA1 expression through JAK2/STAT3, JNK and PKC-p38 and ABCG1 expression through JAK2/STAT3, JNK and PKC-ERK1/2/p38 in macrophages. Moreover, RA primarily stabilized ABCA1 rather than ABCG1 protein levels by impairing protein degradation. These findings suggest RA as a candidate therapeutic to prevent atherosclerotic cardiovascular disease complications related to diabetes by regulating cholesterol efflux in macrophages.
Collapse
Affiliation(s)
- Jean-Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
12
|
Luna-Castillo KP, Lin S, Muñoz-Valle JF, Vizmanos B, López-Quintero A, Márquez-Sandoval F. Functional Food and Bioactive Compounds on the Modulation of the Functionality of HDL-C: A Narrative Review. Nutrients 2021; 13:1165. [PMID: 33916032 PMCID: PMC8066338 DOI: 10.3390/nu13041165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a serious public health problem and are the primary cause of death worldwide. High-density lipoprotein cholesterol (HDL-C) has been identified as one of the most important molecules in the prevention of CVD due to its multiple anti-inflammatories, anti-atherogenic, and antioxidant properties. Currently, it has been observed that maintaining healthy levels of HDL-C does not seem to be sufficient if the functionality of this particle is not adequate. Modifications in the structure and composition of HDL-C lead to a pro-inflammatory, pro-oxidant, and dysfunctional version of the molecule. Various assays have evaluated some HDL-C functions on risk populations, but they were not the main objective in some of these. Functional foods and dietary compounds such as extra virgin olive oil, nuts, whole grains, legumes, fresh fish, quercetin, curcumin, ginger, resveratrol, and other polyphenols could increase HDL functionality by improving the cholesterol efflux capacity (CEC), paraoxonase 1 (PON1), and cholesteryl ester transfer protein (CETP) activity. Nevertheless, additional rigorous research basic and applied is required in order to better understand the association between diet and HDL functionality. This will enable the development of nutritional precision management guidelines for healthy HDL to reduce cardiovascular risk in adults. The aim of the study was to increase the understanding of dietary compounds (functional foods and bioactive components) on the functionality of HDL.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
| | - Sophia Lin
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (K.P.L.-C.); (J.F.M.-V.); (B.V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
13
|
Interactions of Lipid Droplets with the Intracellular Transport Machinery. Int J Mol Sci 2021; 22:ijms22052776. [PMID: 33803444 PMCID: PMC7967230 DOI: 10.3390/ijms22052776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.
Collapse
|
14
|
Soltani S, Boozari M, Cicero AFG, Jamialahmadi T, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother Res 2021; 35:2854-2878. [PMID: 33464676 DOI: 10.1002/ptr.6991] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
High-density lipoprotein cholesterol (HDL) is the major promoter of reverse cholesterol transport and efflux of excess cellular cholesterol. The functions of HDL, such as cholesterol efflux, are associated with cardiovascular disease rather than HDL levels. We have reviewed the evidence base on the major classes of phytochemicals, including polyphenols, alkaloids, carotenoids, phytosterols, and fatty acids, and their effects on macrophage cholesterol efflux and its major pathways. Phytochemicals show the potential to improve the efficiency of each of these pathways. The findings are mainly in preclinical studies, and more clinical research is warranted in this area to develop novel clinical applications.
Collapse
Affiliation(s)
- Saba Soltani
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
15
|
Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:45-54. [PMID: 33861436 DOI: 10.1007/978-3-030-64872-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orally administered curcumin has been found to have a moderate therapeutic effect on dyslipidemia and atherosclerosis. The present study was conducted to determine lipid-modulating and antiatherosclerosis effects of injectable curcumin in the rabbit model of atherosclerosis induced by a high cholesterol diet (HCD). New Zealand white male rabbits were fed on a normal chow enriched with 0.5% (w/w) cholesterol for 8 weeks. Atherosclerotic rabbits were randomly divided into three groups, including a control group receiving intravenous (IV) injection of the saline buffer, two treatment groups receiving IV administration of the injectable curcumin at low (1 mg/kg/week) and high (10 mg/kg/week) over 4 weeks. Plasma lipid parameters, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC) were measured. Aortic arch atherosclerotic lesions were assessed using hematoxylin and eosin (H&E) staining. The low dose of curcumin significantly reduced plasma levels of TC, LDL-C, and TG by -14.19 ± 5.19%, -6.22 ± 1.77%, and - 29.84 ± 10.14%, respectively, and increased HDL-C by 14.05 ± 6.39% (p < 0.05). High dose of curcumin exerted greater lipid-modifying effects, in which plasma levels of TC, LDL-C, and TG were significantly (p < 0.05) decreased by -56.59 ± 10.22%, -44.36 ± 3.24%, and - 25.92 ± 5.57%, respectively, and HDL-C was significantly increased by 36.24 ± 12.5%. H&E staining showed that the lesion severity was lowered significantly in the high dose (p = 0.03) but not significantly (p > 0.05) in the low-dose curcumin groups, compared to control rabbits. The median (interquartile range) of plaque grades in the high dose and low dose, and control groups was found to be 2 [2-3], 3 [2-3], and 4 [3-4], respectively. The injectable curcumin could significantly improve dyslipidemia and alleviate atherosclerotic lesion in HCD-induced atherosclerotic rabbits.
Collapse
|
16
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
17
|
Gou S, Wang L, Zhong C, Chen X, Ouyang X, Li B, Bao G, Liu H, Zhang Y, Ni J. A novel apoA-I mimetic peptide suppresses atherosclerosis by promoting physiological HDL function in apoE -/- mice. Br J Pharmacol 2020; 177:4627-4644. [PMID: 32726461 DOI: 10.1111/bph.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Apolipoprotein A-I (apoA-I) mimetic peptides (AAMPs) are short peptides that can mimic the physiological effects of apoA-I, including the suppression of atherosclerosis by reversely transporting peripheral cholesterol to the liver. As the hydrophobicity of apoA-I is considered important for its lipid transport, novel AAMPs were designed and synthesized in this study by gradually increasing the hydrophobicity of the parent peptide, and their anti-atherosclerotic effects were tested. EXPERIMENTAL APPROACH Seventeen new AAMPs (P1-P17) with incrementally increased hydrophobicity were designed and synthesized by replacing the amino acids 221-240 of apoA-I (VLESFKVSFLSALEEYTKKL). Their effects on cholesterol efflux were evaluated. Their cytotoxicity and haemolytic activity were also measured. The in vitro mechanism of the action of the new peptides was explored. Adult apolipoprotein E-/- mice were used to evaluate the anti-atherosclerotic activity of the best candidate, and the mechanistic basis of its anti-atherosclerotic effects was explored. KEY RESULTS Seventeen new AAMPs (P1-P17) were synthesized, and their cholesterol efflux activity and cytotoxicity were closely related to their hydrophobicity. P12 (FLEKLKELLEHLKELLTKLL) was the best candidate and most strongly promoted cholesterol efflux among the non-toxic peptides (P1-P12). With its phospholipid affinity, P12 facilitated cholesterol transport through the ATP-binding cassette transporter A1. In vivo, P12 exhibited prominent anti-atherosclerotic activity via coupling with HDL. CONCLUSION AND IMPLICATIONS P12 featured adequate hydrophobicity, which ensured its efficient binding with cytomembrane phospholipids, cholesterol and HDL, and provided a basis for its ability to reversely transport cholesterol and treat atherosclerosis.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Li Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xinyue Chen
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Guangjun Bao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Ma Z, Sheng N, Liu X, Su Y, Zhou Y, Sun Y, Mu T, Xu J, Feng J, Zhao Z, Fu XY. Knockout of Stat5 in T cells ameliorates high cholesterol and high fat diet-induced hypercholesterolemia by influencing cholesterol metabolism in the liver. Cell Mol Immunol 2020:10.1038/s41423-020-0389-8. [PMID: 32139883 DOI: 10.1038/s41423-020-0389-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Zhongnan Ma
- Model Animal Research Center of Nanjing University, 210061, Nanjing, China
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
- West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Na Sheng
- Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Xinyu Liu
- Cancer Science Institute of Singapore, Singapore, 117599, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Yixun Su
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
- Cancer Science Institute of Singapore, Singapore, 117599, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, China
| | - Yi Zhou
- West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
- Cancer Science Institute of Singapore, Singapore, 117599, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Yan Sun
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Tianhao Mu
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
- West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
- Cancer Science Institute of Singapore, Singapore, 117599, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Jianqiang Xu
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiaxuan Feng
- Vascular Surgery Department, Changhai Hospital, 200433, Shanghai, China
- Navy Medical University, Yangpu District, Shanghai, China
| | - Zhiqing Zhao
- Vascular Surgery Department, Changhai Hospital, 200433, Shanghai, China
- Navy Medical University, Yangpu District, Shanghai, China
| | - Xin-Yuan Fu
- Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.
- West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
- Cancer Science Institute of Singapore, Singapore, 117599, Singapore.
- Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
19
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
20
|
The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21020601. [PMID: 31963445 PMCID: PMC7014265 DOI: 10.3390/ijms21020601] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD is related to disturbances in lipoprotein metabolism whose consequences are dyslipidemia and the accumulation of atherogenic particles. CKD not only fuels the reduction of high-density lipoprotein (HDL) cholesterol concentration, but also it modifies the composition of this lipoprotein. The key role of HDL is the participation in reverse cholesterol transport from peripheral tissues to the liver. Moreover, HDL prevents the oxidation of low-density lipoprotein (LDL) cholesterol by reactive oxygen species (ROS) and protects against the adverse effects of oxidized LDL (ox-LDL) on the endothelium. Numerous studies have demonstrated the ability of HDL to promote the production of nitric oxide (NO) by endothelial cells (ECs) and to exert antiapoptotic and anti-inflammatory effects. Increasing evidence suggests that in patients with chronic inflammatory disorders, HDLs may lose important antiatherosclerotic properties and become dysfunctional. So far, no therapeutic strategy to raise HDL, or alter the ratio of HDL subfractions, has been successful in slowing the progression of CKD or reducing cardiovascular disease in patients either with or without CKD.
Collapse
|
21
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
Saliba-Gustafsson P, Pedrelli M, Gertow K, Werngren O, Janas V, Pourteymour S, Baldassarre D, Tremoli E, Veglia F, Rauramaa R, Smit AJ, Giral P, Kurl S, Pirro M, de Faire U, Humphries SE, Hamsten A, Gonçalves I, Orho-Melander M, Franco-Cereceda A, Borén J, Eriksson P, Magné J, Parini P, Ehrenborg E. Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy. J Intern Med 2019; 286:660-675. [PMID: 31251843 PMCID: PMC6899829 DOI: 10.1111/joim.12951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin-2 reduces plasma triglycerides and may therefore be beneficial to reduce atherosclerosis development. OBJECTIVE We sought to delineate putative beneficial effects of the Pro251 variant of perlipin-2 on subclinical atherosclerosis and the mechanism by which it acts. METHODS A pan-European cohort of high-risk individuals where carotid intima-media thickness has been assessed was adopted. Human primary monocyte-derived macrophages were prepared from whole blood from individuals recruited by perilipin-2 genotype or from buffy coats from the Karolinska University hospital blood central. RESULTS The Pro251 variant of perilipin-2 is associated with decreased intima-media thickness at baseline and over 30 months of follow-up. Using human primary monocyte-derived macrophages from carriers of the beneficial Pro251 variant, we show that this variant increases autophagy activity, cholesterol efflux and a controlled inflammatory response. Through extensive mechanistic studies, we demonstrate that increase in autophagy activity is accompanied with an increase in liver-X-receptor (LXR) activity and that LXR and autophagy reciprocally activate each other in a feed-forward loop, regulated by CYP27A1 and 27OH-cholesterol. CONCLUSIONS For the first time, we show that perilipin-2 affects susceptibility to human atherosclerosis through activation of autophagy and stimulation of cholesterol efflux. We demonstrate that perilipin-2 modulates levels of the LXR ligand 27OH-cholesterol and initiates a feed-forward loop where LXR and autophagy reciprocally activate each other; the mechanism by which perilipin-2 exerts its beneficial effects on subclinical atherosclerosis.
Collapse
Affiliation(s)
- P Saliba-Gustafsson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - M Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Huddinge, Sweden
| | - K Gertow
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - O Werngren
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - V Janas
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - S Pourteymour
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - D Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | - F Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - R Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - A J Smit
- Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - P Giral
- Assistance Publique Hopitaux de Paris, Service Endocrinologie-Metabolisme, Groupe Hospitalier Pitie-Salpetriere, Unites de Prevention Cardiovasculaire, Paris, France
| | - S Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - M Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - U de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, UK
| | - A Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - I Gonçalves
- Experimental Cardiovascular Research Group and Cardiology Department, Clinical Research Center, Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - M Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - A Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital Solna, Solna, Sweden
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - J Magné
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,St Jude Children's Research Hospital, Department of Immunology, Memphis, Tennessee, USA
| | - P Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Huddinge, Sweden.,Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - E Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Cuban Sugar Cane Wax Acid and Policosanol Showed Similar Atheroprotective Effects with Inhibition of LDL Oxidation and Cholesteryl Ester Transfer via Enhancement of High-Density Lipoproteins Functionality. Cardiovasc Ther 2019; 2019:8496409. [PMID: 31772618 PMCID: PMC6739770 DOI: 10.1155/2019/8496409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
Background Cuban sugarcane wax acids (SCWA) and policosanol (PCO) are mixtures of higher aliphatic acids and alcohols, respectively, purified from sugarcane wax with different chief components. Although it has been known that they have antioxidant and anti-inflammatory activities, physiological properties on molecular mechanism of SCWA have been less studied than PCO. Methods In this study, we compared antiatherogenic activities of SCWA and PCO via encapsulation with reconstituted high-density lipoproteins (rHDL). Results After reconstitution, SCWA-rHDL showed smaller particle size than PCO-rHDL with increase of content. PCO-rHDL or SCWA-rHDL showed distinct inhibition of glycation with similar extent in the presence of fructose. PCO-rHDL or SCWA-rHDL showed strong antioxidant activity against cupric ion-mediated oxidation of low-density lipoproteins (LDL), and inhibition of oxLDL uptake into macrophages. Although PCO-rHDL showed 1.2-fold stronger inhibition against cholesteryl ester transfer protein (CETP) activity than SCWA-rHDL, SCWA-rHDL enhanced 15% more brain cell (BV-2) growth and 23% more regeneration of tail fin in zebrafish. Conclusion PCO and SCWA both enhance the beneficial functions of HDL to maximize its antioxidant, antiglycation, and antiatherosclerotic activities and the inhibition of CETP. These enhancements of HDL functionality by PCO and SCWA could exert antiaging and rejuvenation activity.
Collapse
|
24
|
Wu BJ, Li Y, Ong KL, Sun Y, Johns D, Barter PJ, Rye KA. The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits. Sci Rep 2019; 9:16183. [PMID: 31700015 PMCID: PMC6838195 DOI: 10.1038/s41598-019-52510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.
Collapse
Affiliation(s)
- Ben J Wu
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| | - Yue Li
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Yidan Sun
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Abstract
The cholesterol ester transfer protein (CETP) inhibitor dalcetrapib has been under evaluation for its potential to prevent cardiovascular (CV) events for almost two decades. The current clinical development program, representing new advances in precision medicine and focused on a genetically defined population with acute coronary syndrome (ACS), is supported by a large body of pharmacokinetic and pharmacodynamic data as well as substantial clinical experience in over 13,000 patients and volunteers. Dalcetrapib treatment of 600 mg/day produces significant inhibition of CETP activity, and has been utilized in phase II and III studies, including CV endpoint trials. Numerous studies have investigated the interactions between dalcetrapib and most drugs commonly prescribed to CV patients and have not demonstrated any clinically significant effects. Evaluations in patients with renal and hepatic impairment demonstrate a greater exposure to dalcetrapib than in the non-impaired population, but long-term clinical studies including patients with mild to moderate hepatic and renal dysfunction demonstrate no increase in adverse events. Safety pharmacology and toxicology studies as well as the clinical safety experience support the continuing development of dalcetrapib as an adjunct to ‘standard of care’ for the ACS population. This article provides a full review of the pharmacokinetics, as well as pharmacodynamics and pharmacology, of dalcetrapib in the context of a large clinical program.
Collapse
|
26
|
Xiao J, Deng YM, Liu XR, Cao JP, Zhou M, Tang YL, Xiong WH, Jiang ZS, Tang ZH, Liu LS. PCSK9: A new participant in lipophagy in regulating atherosclerosis? Clin Chim Acta 2019; 495:358-364. [PMID: 31075236 DOI: 10.1016/j.cca.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) regulates lipid metabolism by degrading low-density lipoprotein receptor on the surface of hepatocytes. PCSK9-mediated lipid degradation is associated with lipophagy. Lipophagy is a process by which autophagosomes selectively sequester lipid-droplet-stored lipids and are delivered to lysosomes for degradation. Lipophagy was first discovered in hepatocytes, and its occurrence provides important fundamental insights into how lipid metabolism regulates cellular physiology and pathophysiology. Furthermore, PCSK9 may regulate lipid levels by affecting lipophagy. This review will discuss recent advances by which PCSK9 mediates lipid degradation via the lipophagy pathway and present lipophagy as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Jun Xiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Yi-Min Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiang-Rui Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Jian-Ping Cao
- Hunan Environmental Biology Vocational and Technical College, Hengyang, Hunan 421001, PR China
| | - Min Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Ya-Ling Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
27
|
Ferreira C, Meyer R, Meyer Zu Schwabedissen HE. The nuclear receptors PXR and LXR are regulators of the scaffold protein PDZK1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:447-456. [PMID: 30831268 DOI: 10.1016/j.bbagrm.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/02/2023]
Abstract
PDZK1 (NHERF3) interacts with membrane proteins whereby modulating their spatial arrangement, membrane stability, and function. One of the membrane proteins shown to be stabilized by interaction with PDZK1 is the HDL-receptor SR-BI (SCARB1). Testing the influence of TO 901317, a known activator of liver X receptor alpha (LXRα, NR1H3) which is a central regulator of the lipid homeostasis, Grefhorst et al. reported in 2012 that administration of TO 901317 did not affect PDZK1 expression and reduced the amount of SR-BI protein in mouse liver. Considering that TO 901317 also activates the xenosensor pregnane X receptor (PXR, NR1I2), it was aim of this study to further investigate the influence of LXRα and PXR activation on transcription of PDZK1. First, we tested the transactivation of PDZK1 by LXRα or PXR in cell-based reporter gene assays comparing the effect of prototypical ligands to that of TO 901317. Ligand mediated activation of LXRα increased, while that of PXR lowered luciferase activity. Further, we located the most likely binding site for LXRα and PXR on the PDZK1 promoter between -85 bp and -54 bp. The transcriptional regulation by LXRα was further supported showing enhanced mRNA expression of PDZK1 in HepG2 cells treated with the selective LXRα-agonist GW3965, while treatment with TO 901317 reduced the protein amount of PDZK1. Taken together, we provide evidence that both LXRα and PXR are transcriptional regulators of PDZK1 supporting the previous notion that the scaffold protein is part of cholesterol homeostasis and drug metabolism.
Collapse
Affiliation(s)
- Celio Ferreira
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Ramona Meyer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
28
|
Wang Y, Ding WX, Li T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:726-733. [PMID: 29653253 PMCID: PMC6037329 DOI: 10.1016/j.bbalip.2018.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022]
Abstract
Liver is the major organ that regulates whole body cholesterol metabolism. Disrupted hepatic cholesterol homeostasis contributes to the pathogenesis of nonalcoholic steatohepatitis, dyslipidemia, atherosclerosis, and cardiovascular diseases. Hepatic bile acid synthesis is the major catabolic mechanism for cholesterol elimination from the body. Furthermore, bile acids are signaling molecules that regulate liver metabolism and inflammation. Autophagy is a highly-conserved lysosomal degradation mechanism, which plays an essential role in maintaining cellular integrity and energy homeostasis. In this review, we discuss emerging evidence linking hepatic cholesterol and bile acid metabolism to cellular autophagy activity in hepatocytes and macrophages, and how these interactions may be implicated in the pathogenesis and treatment of fatty liver disease and atherosclerosis.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
29
|
Krishna SM, Moxon JV, Jose RJ, Li J, Sahebkar A, Jaafari MR, Hatamipour M, Liu D, Golledge J. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. J Cell Physiol 2018; 233:6951-6964. [PMID: 29741759 DOI: 10.1002/jcp.26610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a systemic disease characterized by the deposition of cholesterol and inflammatory cells within the arterial wall. Removal of cholesterol from the vessel wall may have an impact on the size and composition of atherosclerotic lesions. Anionic phospholipids or liposome vesicles composed of a lipid bilayer such as nanoliposomes have been suggested as treatments for dyslipidemia. In this study, we investigated the effect of anionic nanoliposomes on atherosclerosis in a mouse model. Low-density lipoprotein receptor knockout mice (Ldlr-/- ) were fed with an atherosclerosis promoting high fat and cholesterol (HFC) diet for 12 weeks. Anionic nanoliposomes including hydrogenated soy phosphatidylcholine (HSPC) and distearoyl phosphatidylglycerol (DSPG) (molar ratio: 1:3) were injected intravenously into HFC-fed Ldlr-/- mice once a week for 4 weeks. Mice receiving nanoliposomes had significantly reduced atherosclerosis within the aortic arch as assessed by Sudan IV staining area (p = 0.007), and reduced intima/media ratio (p = 0.030) and greater collagen deposition within atherosclerosis plaques within the brachiocephalic artery (p = 0.007), compared to control mice. Administration of nanoliposomes enhanced markers of reverse cholesterol transport (RCT) and increased markers of plaque stability in HFC-fed Ldlr-/- mice. Reduced cholesterol accumulation was observed in the liver along with the up-regulation of the major genes involved in the efflux of cholesterol such as hepatic ATP-binding cassette transporters (ABC) including Abc-a1, Abc-g1, Abc-g5, and Abc-g8, Scavenger receptor class B, member 1 (Scarb1), and Liver X receptor alpha (Lxr)-α. Lecithin Cholesterol Acyltransferase activity within the plasma was also increased in mice receiving nanoliposomes. Anionic nanoliposome administration reduced atherosclerosis in HFC-fed Ldlr-/- mice by promoting RCT and upregulating the ABC-A1/ABC-G1 pathway.
Collapse
Affiliation(s)
- Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Roby J Jose
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dawie Liu
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
30
|
Ong KL, Waters DD, Fayyad R, Vogt L, Melamed S, DeMicco DA, Rye KA, Barter PJ. Relationship of High-Density Lipoprotein Cholesterol With Renal Function in Patients Treated With Atorvastatin. J Am Heart Assoc 2018; 7:JAHA.117.007387. [PMID: 29358194 PMCID: PMC5850159 DOI: 10.1161/jaha.117.007387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background It is not known whether the concentration of high‐density lipoprotein (HDL) cholesterol is related to renal function in statin‐treated patients. We therefore investigated whether HDL cholesterol levels predicted renal function in atorvastatin‐treated patients in the TNT (Treating to New Targets) trial. Methods and Results A total of 9542 participants were included in this analysis. Renal function was assessed by estimated glomerular filtration rate (eGFR). HDL cholesterol levels at month 3 were used as this is the time point at which on‐treatment HDL cholesterol levels became stable. Among 6319 participants with a normal eGFR (≥60 mL/min per 1.73 m2) at baseline, higher HDL cholesterol levels at month 3 were significantly associated with lower risk of decline in eGFR (ie, having eGFR <60 mL/min per 1.73 m2) during follow‐up (HR of 1.04, 0.88, 0.85, and 0.77 for HDL cholesterol quintiles 2, 3, 4, and 5, respectively, relative to quintile 1, P for trend=0.006). Among 3223 participants with an eGFR (<60 mL/min per 1.73 m2) at baseline, higher HDL cholesterol levels at month 3 had less impact on eGFR during follow‐up, with statistical significance observed only when analyzing HDL cholesterol levels as a continuous variable (P=0.043), but not as a categorical quintile variable (P for trend=0.27). Conclusions In patients treated with atorvastatin, higher HDL cholesterol levels were associated with lower risk of eGFR decline in patients with normal eGFR at baseline. However, further study is needed to establish whether there is any causal relationship between HDLs and renal function. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00327691.
Collapse
Affiliation(s)
- Kwok Leung Ong
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - David D Waters
- Division of Cardiology, San Francisco General Hospital, University of California at San Francisco, CA
| | | | - Liffert Vogt
- Section of Nephrology, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances In reverse Cholesterol Transport. Ann Hepatol 2017; 16:s27-s42. [PMID: 29080338 DOI: 10.5604/01.3001.0010.5495] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
32
|
Wu BJ, Li Y, Ong KL, Sun Y, Shrestha S, Hou L, Johns D, Barter PJ, Rye KA. Reduction of In-Stent Restenosis by Cholesteryl Ester Transfer Protein Inhibition. Arterioscler Thromb Vasc Biol 2017; 37:2333-2341. [PMID: 29025709 DOI: 10.1161/atvbaha.117.310051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Angioplasty and stent implantation, the most common treatment for atherosclerotic lesions, have a significant failure rate because of restenosis. This study asks whether increasing plasma high-density lipoprotein (HDL) levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, prevents stent-induced neointimal hyperplasia. APPROACH AND RESULTS New Zealand White rabbits received normal chow or chow supplemented with 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Iliac artery endothelial denudation and bare metal steel stent deployment were performed after 2 weeks of des-fluoro-anacetrapib treatment. The animals were euthanized 4 weeks poststent deployment. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma cholesteryl ester transfer protein activity and increased plasma apolipoprotein A-I and HDL cholesterol levels by 53±6.3% and 120±19%, respectively. Non-HDL cholesterol levels were unaffected. Des-fluoro-anacetrapib treatment reduced the intimal area of the stented arteries by 43±5.6% (P<0.001), the media area was unchanged, and the arterial lumen area increased by 12±2.4% (P<0.05). Des-fluoro-anacetrapib treatment inhibited vascular smooth muscle cell proliferation by 41±4.5% (P<0.001). Incubation of isolated HDLs from des-fluoro-anacetrapib-treated animals with human aortic smooth muscle cells at apolipoprotein A-I concentrations comparable to their plasma levels inhibited cell proliferation and migration. These effects were dependent on scavenger receptor-B1, the adaptor protein PDZ domain-containing protein 1, and phosphatidylinositol-3-kinase/Akt activation. HDLs from des-fluoro-anacetrapib-treated animals also inhibited proinflammatory cytokine-induced human aortic smooth muscle cell proliferation and stent-induced vascular inflammation. CONCLUSIONS Inhibiting cholesteryl ester transfer protein activity in New Zealand White rabbits with iliac artery balloon injury and stent deployment increases HDL levels, inhibits vascular smooth muscle cell proliferation, and reduces neointimal hyperplasia in an scavenger receptor-B1, PDZ domain-containing protein 1- and phosphatidylinositol-3-kinase/Akt-dependent manner.
Collapse
Affiliation(s)
- Ben J Wu
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.).
| | - Yue Li
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Kwok L Ong
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Yidan Sun
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Sudichhya Shrestha
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Liming Hou
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Douglas Johns
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Philip J Barter
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Kerry-Anne Rye
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.).
| |
Collapse
|
33
|
Cingolani F, Czaja MJ. Regulation and Functions of Autophagic Lipolysis. Trends Endocrinol Metab 2016; 27:696-705. [PMID: 27365163 PMCID: PMC5035575 DOI: 10.1016/j.tem.2016.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases. The physiological importance of lipophagy has been demonstrated in multiple mammalian cell types, as well as in lower organisms, and this pathway has many functions in addition to supplying free fatty acids to maintain cellular energy stores. Recent studies have begun to delineate the molecular mechanisms of the selective recognition of LDs by the autophagic machinery, as well as the intricate crosstalk between the different forms of autophagy and neutral lipases. These studies have led to increased interest in the role of lipophagy in both human disease pathogenesis and therapy.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine. 615 Michael Street, Suite 201, Atlanta, GA 30322, USA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine. 615 Michael Street, Suite 201, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Vinaya Simha
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Yogish C Kudva
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Zurkinden L, Mansour YT, Rohrbach B, Vogt B, Mistry HD, Escher G. Hepatic caveolin-1 is enhanced in Cyp27a1/ApoE double knockout mice. FEBS Open Bio 2016; 6:1025-1035. [PMID: 28149711 PMCID: PMC5275772 DOI: 10.1002/2211-5463.12123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023] Open
Abstract
Sterol 27‐hydroxylase (CYP27A1) is involved in bile acid synthesis and cholesterol homoeostasis. Cyp27a1(−/−)/Apolipoprotein E(−/−) double knockout mice (DKO) fed a western diet failed to develop atherosclerosis. Caveolin‐1 (CAV‐1), the main component of caveolae, is associated with lipid homoeostasis and has regulatory roles in vascular diseases. We hypothesized that liver CAV‐1 would contribute to the athero‐protective mechanism in DKO mice. Cyp27a1(+/+)/ApoE(−/−) (ApoE KO), Cyp27a1(+/−)/ApoE(−/−) (het), and DKO mice were fed a western diet for 2 months. Atherosclerotic plaque and CAV‐1 protein were quantified in aortas. Hepatic Cav‐1 mRNA was assessed using qPCR, CAV‐1 protein by immunohistochemistry and western blotting. Total hepatic and plasma cholesterol was measured using chemiluminescence. Cholesterol efflux was performed in RAW264.7 cells, using mice plasma as acceptor. CAV‐1 protein expression in aortas was increased in endothelial cells of DKO mice and negatively correlated with plaque surface (P < 0.05). In the liver, both CAV‐1 protein and mRNA expression doubled in DKO, compared to ApoE KO and het mice (P < 0.001 for both) and was negatively correlated with total hepatic cholesterol (P < 0.05). Plasma from DKO, ApoE KO and het mice had the same efflux capacity. In the absence of CYP27A1, CAV‐1 overexpression might have an additional athero‐protective role by partly overcoming the defect in CYP27A1‐mediated cholesterol efflux.
Collapse
Affiliation(s)
- Line Zurkinden
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Yosef T Mansour
- Division of Women's Health King's College London Women's Health Academic Centre UK
| | - Beatrice Rohrbach
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Bruno Vogt
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| | - Hiten D Mistry
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland; Division of Child Health, Obstetrics & Gynaecology School of Medicine University of Nottingham UK
| | - Geneviève Escher
- Department of Nephrology, Hypertension, Clinical Pharmacology and Clinical Research University of Bern Switzerland
| |
Collapse
|
36
|
Kopecky C, Ebtehaj S, Genser B, Drechsler C, Krane V, Antlanger M, Kovarik JJ, Kaltenecker CC, Parvizi M, Wanner C, Weichhart T, Säemann MD, Tietge UJF. HDL Cholesterol Efflux Does Not Predict Cardiovascular Risk in Hemodialysis Patients. J Am Soc Nephrol 2016; 28:769-775. [PMID: 27612996 DOI: 10.1681/asn.2016030262] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/17/2016] [Indexed: 01/09/2023] Open
Abstract
The cardioprotective effect of HDL is thought to be largely determined by its cholesterol efflux capacity, which was shown to inversely correlate with atherosclerotic cardiovascular disease in populations with normal kidney function. Patients with ESRD suffer an exceptionally high cardiovascular risk not fully explained by traditional risk factors. Here, in a post hoc analysis in 1147 patients with type 2 diabetes mellitus on hemodialysis who participated in the German Diabetes Dialysis Study (4D Study), we investigated whether the HDL cholesterol efflux capacity is predictive for cardiovascular risk. Efflux capacity was quantified by incubating human macrophage foam cells with apoB-depleted serum. During a median follow-up of 4.1 years, 423 patients reached the combined primary end point (composite of cardiac death, nonfatal myocardial infarction, and stroke), 410 patients experienced cardiac events, and 561 patients died. Notably, in Cox regression analyses, we found no association of efflux capacity with the combined primary end point (hazard ratio [HR], 0.96; 95% confidence interval [95% CI], 0.88 to 1.06; P=0.42), cardiac events (HR, 0.92; 95% CI, 0.83 to 1.02; P=0.11), or all-cause mortality (HR, 0.96; 95% CI, 0.88 to 1.05; P=0.39). In conclusion, HDL cholesterol efflux capacity is not a prognostic cardiovascular risk marker in this cohort of patients with diabetes on hemodialysis.
Collapse
Affiliation(s)
- Chantal Kopecky
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Sanam Ebtehaj
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases and
| | - Bernd Genser
- BGStats Consulting, Vienna, Austria.,Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute of Public Health, Federal University of Bahia, Salvador, Brazil; and
| | - Christiane Drechsler
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Vera Krane
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Marlies Antlanger
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Johannes J Kovarik
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | | | - Mojtaba Parvizi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Marcus D Säemann
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases and
| |
Collapse
|
37
|
Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res 2016; 57:848-57. [PMID: 26989082 DOI: 10.1194/jlr.m065797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
ABCA1 exports excess cholesterol from cells to apoA-I and is essential for HDL synthesis. Genetic studies have shown that ABCA1 protects against cardiovascular disease. We have previously shown that the interaction of apoA-I with ABCA1 activates signaling molecule Janus kinase 2 (JAK2), which optimizes the cholesterol efflux activity of ABCA1. ABCA1-mediated activation of JAK2 also activates signal transducer and activator of transcription 3 (STAT3), which significantly attenuates proinflammatory cytokine expression in macrophages. To determine the mechanisms of the anti-inflammatory effects of apoA-I/ABCA1 interaction, we identified two special ABCA1 mutants, one with normal STAT3-activating capacity but lacking cholesterol efflux ability and the other with normal cholesterol efflux ability but lacking STAT3-activating capacity. We showed that activation of STAT3 by the interaction of apoA-I/ABCA1 without cholesterol efflux could significantly decrease proinflammatory cytokine expression in macrophages. Mechanistic studies showed that the anti-inflammatory effect of the apoA-I/ABCA1/STAT3 pathway is suppressor of cytokine signaling 3 dependent. Moreover, we showed that apoA-I/ABCA1-mediated cholesterol efflux without STAT3 activation can also reduce proinflammatory cytokine expression in macrophages. These findings suggest that the interaction of apoA-I/ABCA1 activates cholesterol efflux and STAT3 branch pathways to synergistically suppress inflammation in macrophages.
Collapse
Affiliation(s)
- Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Barbara A Houston
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Carl Storey
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Renee C LeBoeuf
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| |
Collapse
|
38
|
The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016; 37:150-6. [PMID: 26750103 DOI: 10.1038/aps.2015.87] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Although various types of drugs and therapies are available to treat atherosclerosis, it remains a major cause of mortality throughout the world. Macrophages are the major source of foam cells, which are hallmarks of atherosclerotic lesions. Consequently, the roles of macrophages in the pathophysiology of atherosclerosis are increasingly investigated. Autophagy is a self-protecting cellular catabolic pathway. Since its discovery, autophagy has been found to be associated with a variety of diseases, including cardiovascular diseases, malignant tumors, neurodegenerative diseases, and immune system disorders. Accumulating evidence demonstrates that autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis and cholesterol efflux. These facts suggest the induction of autophagy may be exploited as a potential strategy for the treatment of atherosclerosis. In this review we mainly discuss the relationship between macrophage autophagy and atherosclerosis and the molecular mechanisms, as well as the recent advances in targeting the process of autophagy to treat atherosclerosis.
Collapse
|
39
|
Lokhov PG, Maslov DL, Balashova EE, Trifonova OP, Medvedeva NV, Torkhovskaya TI, Ipatova OM, Archakov AI, Malyshev PP, Kukharchuk VV, Shestakova EA, Shestakova MV, Dedov II. Mass spectrometry analysis of blood plasma lipidome as the method of disease diagnostics, evalution of effectiveness and optimization of drug therapy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815020109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wu BJ, Shrestha S, Ong KL, Johns D, Hou L, Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibition enhances endothelial repair and improves endothelial function in the rabbit. Arterioscler Thromb Vasc Biol 2015; 35:628-36. [PMID: 25633313 DOI: 10.1161/atvbaha.114.304747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoproteins (HDLs) can potentially protect against atherosclerosis by multiple mechanisms, including enhancement of endothelial repair and improvement of endothelial function. This study asks if increasing HDL levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, enhances endothelial repair and improves endothelial function in New Zealand White rabbits with balloon injury of the abdominal aorta. APPROACH AND RESULTS New Zealand White rabbits received chow or chow supplemented with 0.07% or 0.14% (wt/wt) des-fluoro-anacetrapib for 8 weeks. Endothelial denudation of the abdominal aorta was carried out after 2 weeks. The animals were euthanized 6 weeks postinjury. Treatment with 0.07% and 0.14% des-fluoro-anacetrapib reduced cholesteryl ester transfer protein activity by 81±4.9% and 92±12%, increased plasma apolipoprotein A-I levels by 1.4±0.1-fold and 1.5±0.1-fold, increased plasma HDL-cholesterol levels by 1.8±0.2-fold and 1.9±0.1-fold, reduced intimal hyperplasia by 37±11% and 51±10%, and inhibited vascular cell proliferation by 25±6.1% and 35±6.7%, respectively. Re-endothelialization of the injured aorta increased from 43±6.7% (control) to 69±6.6% and 76±7.7% in the 0.07% and 0.14% des-fluoro-anacetrapib-treated animals, respectively. Aortic ring relaxation and guanosine 3',5'-cyclic monophosphate production in response to acetylcholine were also improved. Incubation of HDLs from the des-fluoro-anacetrapib-treated animals with human coronary artery endothelial cells increased cell proliferation and migration relative to control. These effects were abolished by knockdown of scavenger receptor-B1 and PDZ domain-containing protein 1 and by pharmacological inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt. CONCLUSIONS Increasing HDL levels by inhibiting cholesteryl ester transfer protein reduces intimal thickening and regenerates functional endothelium in damaged New Zealand White rabbit aortas in an scavenger receptor-B1-dependent and phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt-dependent manner.
Collapse
Affiliation(s)
- Ben J Wu
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.).
| | - Sudichhya Shrestha
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Kwok L Ong
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Douglas Johns
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Liming Hou
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Philip J Barter
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.)
| | - Kerry-Anne Rye
- From the Centre for Vascular Research, The University of New South Wales, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.); Merck & Co, Inc, Kenilworth, NJ (D.J.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (B.J.W., K.L.O., P.J.B., K.-A.R.); and Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (B.J.W., S.S., K.L.O., L.H., P.J.B., K.-A.R.).
| |
Collapse
|
41
|
Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ, Van Eck M, Curtiss LK, Burnett JR, Cartland SP, Quinn CM, Kockx M, Kontush A, Rye KA, Kritharides L, Jessup W. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015; 116:1133-42. [PMID: 25589556 DOI: 10.1161/circresaha.116.305485] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-density lipoprotein (HDL) is a heterogeneous population of particles. Differences in the capacities of HDL subfractions to remove cellular cholesterol may explain variable correlations between HDL-cholesterol and cardiovascular risk and inform future targets for HDL-related therapies. The ATP binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux to lipid-free apolipoprotein A-I, but the majority of apolipoprotein A-I in the circulation is transported in a lipidated state and ABCA1-dependent efflux to individual HDL subfractions has not been systematically studied. OBJECTIVE Our aims were to determine which HDL particle subfractions are most efficient in mediating cellular cholesterol efflux from foam cell macrophages and to identify the cellular cholesterol transporters involved in this process. METHODS AND RESULTS We used reconstituted HDL particles of defined size and composition, isolated subfractions of human plasma HDL, cell lines stably expressing ABCA1 or ABCG1, and both mouse and human macrophages in which ABCA1 or ABCG1 expression was deleted. We show that ABCA1 is the major mediator of macrophage cholesterol efflux to HDL, demonstrating most marked efficiency with small, dense HDL subfractions (HDL3b and HDL3c). ABCG1 has a lesser role in cholesterol efflux and a negligible role in efflux to HDL3b and HDL3c subfractions. CONCLUSIONS Small, dense HDL subfractions are the most efficient mediators of cholesterol efflux, and ABCA1 mediates cholesterol efflux to small dense HDL and to lipid-free apolipoprotein A-I. HDL-directed therapies should target increasing the concentrations or the cholesterol efflux capacity of small, dense HDL species in vivo.
Collapse
Affiliation(s)
- Xian-Ming Du
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Mi-Jurng Kim
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Liming Hou
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Wilfried Le Goff
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - M John Chapman
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Miranda Van Eck
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Linda K Curtiss
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - John R Burnett
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Sian P Cartland
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Carmel M Quinn
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Maaike Kockx
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Anatol Kontush
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Kerry-Anne Rye
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Leonard Kritharides
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.)
| | - Wendy Jessup
- From the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia (X.-M.D., M.-J.K., L.H., S.P.C., C.M.Q., K.-A.R); INSERM, UMR_1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, Pitié-Salpétrière University Hospital, Paris, France (W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie-Paris 6, Paris, France (W.L.G., M.J.C., A.K.); Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (M.V.E.); Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA (L.K.C.); Department of Clinical Biochemistry, Royal Perth Hospital, Perth, Western Australia, Australia (J.R.B.); School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia (J.R.B.); Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia (M.K., L.K., W.J.); and Department of Cardiology, Concord Hospital, Sydney, New South Wales, Australia (L.K.).
| |
Collapse
|
42
|
Anantharamaiah GM, Goldberg D. Novel method for reducing plasma cholesterol: a ligand replacement therapy. CLINICAL LIPIDOLOGY 2015; 10:83-90. [PMID: 25937835 PMCID: PMC4415983 DOI: 10.2217/clp.14.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite wide use of statins, significant cardiovascular disease risk persists. High-density lipoprotein based therapy has not yielded any positive results in combating this disease. Newer methods to rapidly decrease plasma cholesterol are much needed. While apolipoprotein B is a ligand for low-density lipoprotein receptor, which clears low-density lipoprotein cholesterol in a highly regulated pathway, apolipoprotein E (apoE) is a ligand for clearing other apolipoprotein B containing atherogenic lipoproteins via an alternate receptor pathway, especially the heparin sulfate proteoglycans on the liver cell surface. We describe here a novel method that replaces apoE as a ligand to clear all of the atherogenic lipoproteins via the heparin sulfate proteoglycans pathway. This ligand replacement apoE mimetic peptide therapy, having been designated as an orphan drug by the US FDA, is in clinical trials.
Collapse
Affiliation(s)
- GM Anantharamaiah
- Department of Medicine, Biochemistry & Molecular Genetics; University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
43
|
Lokhov P, Maslov D, Balashova E, Trifonova O, Medvedeva N, Torkhovskaya T, Ipatova O, Archakov A, Malyshev P, Kukharchuk V, Shestakova E, Shestakova M, Dedov I. Mass spectrometry analysis of blood plasma lipidome as method of disease diagnostics, evuation of effectiveness and optimization of drug therapy. ACTA ACUST UNITED AC 2015; 61:7-18. [DOI: 10.18097/pbmc20156101007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new method for the analysis of blood lipid based on direct mass spectrometry of lipophilic low molecular weight fraction of blood plasma has been considered. Such technique allows quantification of hundreds of various types of lipids and this changes existing concepts on diagnostics of lipid disorders and related diseases. The versatility and quickness of the method significantly simplify its wide use. This method is applicable for diagnostics of atherosclerosis, diabetes, cancer and other diseases. Detalization of plasma lipid composition at the molecular level by means of mass spectrometry allows to assess the effectiveness of therapy and to optimize the drug treatment of cardiovascular diseases by phospholipid preparations.
Collapse
Affiliation(s)
- P.G. Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D.L. Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | - O.M. Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - P.P. Malyshev
- Russian Cardiology Research and Production Complex, Moscow, Russia
| | - V.V. Kukharchuk
- Russian Cardiology Research and Production Complex, Moscow, Russia
| | | | | | - I.I. Dedov
- Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
44
|
Chen JJ, Li YM, Zou WY, Fu JL. Relationships Between CETP Genetic Polymorphisms and Alzheimer's Disease Risk: A Meta-Analysis. DNA Cell Biol 2014; 33:807-15. [PMID: 25105518 DOI: 10.1089/dna.2013.2265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jing-Jiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yu-Mei Li
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Wen-Ying Zou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jian-Liang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Allen RM, Vickers KC. Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler Thromb Vasc Biol 2014; 34:1795-7. [PMID: 25142877 PMCID: PMC4142520 DOI: 10.1161/atvbaha.114.303741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers have identified a novel microRNA (miRNA) regulatory module that connects a popular vitamin-like supplement, Coenzyme Q10 (CoQ10), to ATP-cassette transport G1 (ABCG1)-mediated macrophage cholesterol efflux. CoQ10 was found to inhibit the expression of c-Jun, and thus the activity of the AP-1 complex, which was determined to be a transcriptional activator of miR-378. miR-378 directly targets ABCG1 and loss of miR-378 suppression resulted in increased cholesterol efflux and atheroprotection in mice. Here we discuss the merits of a recent study by Wang, D et al. , and place their acute observations in the current landscape of miRNA regulation of cholesterol efflux and atherosclerosis.
Collapse
Affiliation(s)
- Ryan M Allen
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Kasey C Vickers
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
46
|
Kopecky C, Haidinger M, Birner-Grünberger R, Darnhofer B, Kaltenecker CC, Marsche G, Holzer M, Weichhart T, Antlanger M, Kovarik JJ, Werzowa J, Hecking M, Säemann MD. Restoration of renal function does not correct impairment of uremic HDL properties. J Am Soc Nephrol 2014; 26:565-75. [PMID: 25071090 DOI: 10.1681/asn.2013111219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including α-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population.
Collapse
Affiliation(s)
- Chantal Kopecky
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Michael Haidinger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | | | | | | | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; and
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; and
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Marlies Antlanger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Johannes J Kovarik
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Johannes Werzowa
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| | - Marcus D Säemann
- Division of Nephrology and Dialysis, Department of Internal Medicine III, and
| |
Collapse
|
47
|
Sergin I, Razani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014; 25:225-34. [PMID: 24746519 PMCID: PMC4061377 DOI: 10.1016/j.tem.2014.03.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
Autophagy (or 'self-eating') is the process by which cellular contents are recycled to support downstream metabolism. An explosion in research in the past decade has implicated its role in both health and disease and established the importance of the autophagic response during periods of stress and nutrient deprivation. Atherosclerosis is a state where chronic exposure to cellular stressors promotes disease progression, and alterations in autophagy are predicted to be consequential. Recent reports linking macrophage autophagy to lipid metabolism, blunted inflammatory signaling, and an overall suppression of proatherogenic processes support this notion. We review these data and provide a framework for understanding the role of macrophage autophagy in the pathogenesis of atherosclerosis, one of the most formidable diseases of our time.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
48
|
High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 2014; 96:48-56. [PMID: 24713591 DOI: 10.1038/clpt.2014.79] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 01/04/2023]
Abstract
High-density-lipoprotein cholesterol (HDL-C) has been identified in population studies as an independent inverse predictor of cardiovascular events. Although the causal nature of this association has been questioned, HDL and its major protein, apolipoprotein (apo)A1, have been shown to prevent and reverse atherosclerosis in animal models. In addition, HDL and apoA1 have several putatively atheroprotective functions, such as the ability to promote efflux of cholesterol from macrophages in the artery wall, inhibit vascular inflammation, and enhance endothelial function. Therefore, HDL-C and apoA1 have been investigated as therapeutic targets for coronary heart disease. However, recent clinical trials with drugs that raise HDL-C, such as niacin and inhibitors of cholesteryl ester transfer protein, have been disappointing. Here, we review the current state of the science regarding HDL as a therapeutic target.
Collapse
|
49
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
50
|
Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, Xia M. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab 2014; 99:561-9. [PMID: 24285687 DOI: 10.1210/jc.2013-2845] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT AND OBJECTIVE Paraoxonase 1 (PON1), an enzyme associated with high-density lipoprotein (HDL-PON1), is reported to have antioxidant and cardioprotective properties. The aim of the present study was to investigate the effects of anthocyanins on the HDL-PON1 activity and cholesterol efflux capacity in hypercholesterolemic subjects. DESIGN AND PARTICIPANTS A total of 122 hypercholesterolemic subjects were given 160 mg of anthocyanins twice daily or placebo (n = 61 of each group) for 24 weeks in a double-blind, randomized, placebo-controlled trial. Participants and investigators were masked to treatment allocation. RESULTS Anthocyanin consumption significantly increased HDL cholesterol and decreased low -density lipoprotein cholesterol concentrations compared with placebo (P < .018 and P < .001, respectively). Anthocyanin supplementation also increased the activity of HDL-PON1 compared with placebo (P < .001). Furthermore, cholesterol efflux capacity was increased more in the anthocyanin group (20.0% increase) than in the placebo group (0.2% increase) (P < .001). The negative correlations established between HDL-PON1 activity and the levels of lipid hydroperoxides associated with HDL confirm the relationship between PON1 activity and lipid peroxidation of lipoproteins. Furthermore, a strong positive correlation was noted between increased HDL-PON1 activity and improved cholesterol efflux capacity both before and after adjustment for HDL cholesterol and apolipoprotein AI in anthocyanin-treated subjects (both P < .001). Inhibition of HDL-PON1 activity strongly prevented the antioxidant ability of HDL and attenuated the cholesterol efflux capacity of subjects from anthocyanin group. CONCLUSIONS Our observations suggest that the alterations of PON1 activity by anthocyanin observed in hypercholesterolemic HDL reflect a shift to an improvement of cholesterol efflux capacity of HDL and may provide a link between anthocyanin and cardioprotective effects.
Collapse
Affiliation(s)
- Yanna Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|