1
|
Tokarev A, Machmach K, Creegan M, Kim D, Eller MA, Bolton DL. Single-Cell Profiling of Latently SIV-Infected CD4 + T Cells Directly Ex Vivo to Reveal Host Factors Supporting Reservoir Persistence. Microbiol Spectr 2022; 10:e0060422. [PMID: 35510859 PMCID: PMC9241701 DOI: 10.1128/spectrum.00604-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022] Open
Abstract
HIV-1 cure strategies aiming to eliminate persistent infected cell reservoirs are hampered by a poor understanding of cells harboring viral DNA in vivo. We describe a novel method to identify, enumerate, and characterize in detail individual cells infected in vivo using a combination of single-cell multiplexed assays for integrated proviral DNA, quantitative viral and host gene expression, and quantitative surface protein expression without any in vitro manipulation. Latently infected CD4+ T cells, defined as harboring integrated provirus in the absence of spliced viral mRNA, were identified from macaque lymph nodes during acute, chronic, and combination antiretroviral therapy (cART)-suppressed simian immunodeficiency virus (SIV) infection. Latently infected CD4+ T cells were most abundant during acute SIV (~8% of memory CD4+ T cells) and persisted in chronic and cART-suppressed infection. Productively infected cells actively transcribing viral mRNA, by contrast, were much more labile and declined substantially between acute and chronic or cART-suppressed infection. Expression of most surface proteins and host genes was similar between latently infected cells and uninfected cells. Elevated FLIP mRNA and surface CD3 expression among latently infected cells suggest increased survival potential and capacity to respond to T cell receptor stimulation. These findings point to a large pool of latently infected CD4+ T cells established very early in acute infection and upregulated host factors that may facilitate their persistence in vivo, both of which pose potential challenges to eliminating HIV-1 reservoirs. IMPORTANCE Effective combination antiretroviral therapy controls HIV-1 infection but fails to eliminate latent viral reservoirs that give rise to viremia upon treatment interruption. Strategies to eradicate latently infected cells require a better understanding of their biology and distinguishing features to promote their elimination. Tools for studying these cells from patients are currently limited. Here, we developed a single-cell method to identify cells latently infected in vivo and to characterize these cells for expression of surface proteins and host genes without in vitro manipulation, capturing their in vivo state from SIV-infected macaques. Host factors involved in cell survival and proliferation were upregulated in latently infected cells, which were abundant in the earliest stages of acute infection. These studies provide insight into the basic biology of latently infected cells as well as potential mechanisms underlying the persistence of HIV-1/SIV reservoirs to inform development of novel HIV-1 cure strategies.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kawthar Machmach
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Matthew Creegan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kharwade R, More S, Suresh E, Warokar A, Mahajan N, Mahajan U. Improvement in Bioavailability and Pharmacokinetic Characteristics of Efavirenz with Booster Dose of Ritonavir in PEGylated PAMAM G4 Dendrimers. AAPS PharmSciTech 2022; 23:177. [PMID: 35750994 DOI: 10.1208/s12249-022-02315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Efavirenz (EFV) with a booster dose of ritonavir (RTV) (EFV-RTV) inhibits the metabolism of EFV and improves its bioavailability. However, inadequate organ perfusion with surface permeability glycoprotein (P-gp) efflux sustains the viable HIV. Hence, the present investigations were aimed to evaluate the pharmacokinetics and tissue distribution efficiency of EFV by encapsulating it into PEGyalated PAMAM (polyamidoamine) G4 dendrimers with a booster dose of RTV (PPG4ER). The entrapment efficiency of PEGylated PAMAM G4 dendrimers was found to be 94% and 92.12% for EFV and RTV respectively with a zeta potential of 0.277 mV. The pharmacokinetics and tissue distribution behavior of EFV within PPG4ER was determined by developing and validating a simple, sensitive, and reliable bioanalytical method of RP-HPLC. The developed bioanalytical method was very sensitive with a quantification limit of 18.5 ng/ml and 139.2 ng/ml for EFV and RTV, respectively. The comparative noncompartmental pharmacokinetic parameters of EFV were determined by administrating a single intraperitoneal dose of EFV, EFV-RTV, and PPG4ER to Wistar rats. The PPG4ER produced prolonged release of EFV with a mean residential time (MRT) of 24 h with Cmax 7.68 µg/ml in plasma against EFV-RTV with MRT 11 h and Cmax 3.633 µg/ml. The PPG4ER was also detected in viral reservoir tissues (lymph node and spleen) for 3-4 days, whereas free EFV and EFV-RTV were cleared within 72 h. The pharmacokinetic data including Cmax, t1/2, AUCtot, and MRT were significantly improved in PPG4ER as compared with single EFV and EFV-RTV. This reveals that the PPG4ER has great potential to target the virus harbors tissues and improve bioavailability.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India.
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Elizabeth Suresh
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Ujwala Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| |
Collapse
|
3
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
4
|
CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR. Viruses 2020; 12:v12091040. [PMID: 32961937 PMCID: PMC7551090 DOI: 10.3390/v12091040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
The C-promoter binding factor-1 (CBF-1) is a potent and specific inhibitor of the human immunodeficiency virus (HIV)-1 LTR promoter. Here, we demonstrate that the knockdown of endogenous CBF-1 in latently infected primary CD4+ T cells, using specific small hairpin RNAs (shRNA), resulted in the reactivation of latent HIV proviruses. Chromatin immunoprecipitation (ChIP) assays using latently infected primary T cells and Jurkat T-cell lines demonstrated that CBF-1 induces the establishment and maintenance of HIV latency by recruiting polycomb group (PcG/PRC) corepressor complexes or polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Knockdown of CBF-1 resulted in the dissociation of PRCs corepressor complexes enhancing the recruitment of RNA polymerase II (RNAP II) at HIV LTR. Knockdown of certain components of PRC1 and PRC2 also led to the reactivation of latent proviruses. Similarly, the treatment of latently infected primary CD4+ T cells with the PRC2/EZH2 inhibitor, 3-deazaneplanocin A (DZNep), led to their reactivation.
Collapse
|
5
|
Abstract
: Human CD300a is known to promote the infection by dengue and other enveloped viruses and is overexpressed on CD4 T cells from HIV-1-infected patients. We found that infected CD4+RA- T cells from untreated HIV-1-infected patients were mostly CD300a+. Furthermore, CD300a expressing CD4+RA- T cells from healthy donors were significantly more infected by HIV-1 in vitro than CD300a- cells. CD300a might represent a biomarker of susceptibility to HIV-1 infection on memory CD4 T lymphocytes.
Collapse
|
6
|
Pache L, Marsden MD, Teriete P, Portillo AJ, Heimann D, Kim JT, Soliman MS, Dimapasoc M, Carmona C, Celeridad M, Spivak AM, Planelles V, Cosford ND, Zack JA, Chanda SK. Pharmacological Activation of Non-canonical NF-κB Signaling Activates Latent HIV-1 Reservoirs In Vivo. Cell Rep Med 2020; 1:100037. [PMID: 33205060 PMCID: PMC7659604 DOI: 10.1016/j.xcrm.2020.100037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
"Shock and kill" strategies focus on purging the latent HIV-1 reservoir by treating infected individuals with therapeutics that activate the latent virus and subsequently eliminating infected cells. We have previously reported that induction of non-canonical nuclear factor κB (NF-κB) signaling through a class of small-molecule antagonists known as Smac mimetics can reverse HIV-1 latency. Here, we describe the development of Ciapavir (SBI-0953294), a molecule specifically optimized for HIV-1 latency reversal that was found to be more efficacious as a latency-reversing agent than other Smac mimetics under clinical development for cancer. Critically, this molecule induced activation of HIV-1 reservoirs in vivo in a bone marrow, liver, thymus (BLT) humanized mouse model without mediating systemic T cell activation. This study provides proof of concept for the in vivo efficacy and safety of Ciapavir and indicates that Smac mimetics can constitute a critical component of a safe and efficacious treatment strategy to eliminate the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew D. Marsden
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Teriete
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alex J. Portillo
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dominik Heimann
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jocelyn T. Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohamed S.A. Soliman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Celeridad
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Adam M. Spivak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nicholas D.P. Cosford
- Cell Metabolism and Signaling Networks Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jerome A. Zack
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Zicari S, Sharma AL, Sahu G, Dubrovsky L, Sun L, Yue H, Jada T, Ochem A, Simon G, Bukrinsky M, Tyagi M. DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR. Oncotarget 2020; 11:699-726. [PMID: 32133046 PMCID: PMC7041937 DOI: 10.18632/oncotarget.27487] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/29/2020] [Indexed: 01/24/2023] Open
Abstract
Despite reductions in mortality from the use of highly active antiretroviral therapy (HAART), the presence of latent or transcriptionally silent proviruses prevents HIV cure/eradication. We have previously reported that DNA-dependent protein kinase (DNA-PK) facilitates HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited at HIV LTR. In this study, using different cell lines and peripheral blood mononuclear cells (PBMCs) of HIV-infected patients, we found that DNA-PK stimulates HIV transcription at several stages, including initiation, pause-release and elongation. We are reporting for the first time that DNA-PK increases phosphorylation of RNAP II C-terminal domain (CTD) at serine 5 (Ser5) and serine 2 (Ser2) by directly catalyzing phosphorylation and by augmenting the recruitment of the positive transcription elongation factor (P-TEFb) at HIV LTR. Our findings suggest that DNA-PK expedites the establishment of euchromatin structure at HIV LTR. DNA-PK inhibition/knockdown leads to the severe impairment of HIV replication and reactivation of latent HIV provirus. DNA-PK promotes the recruitment of Tripartite motif-containing 28 (TRIM28) at LTR and assists the release of paused RNAP II through TRIM28 phosphorylation. These results provide the mechanisms through which DNA-PK controls the HIV gene expression and, likely, can be extended to cellular gene expression, including during cell malignancy, where the role of DNA-PK has been well-established.
Collapse
Affiliation(s)
- Sonia Zicari
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Section of Intercellular Interactions, Eunice-Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Department of Pediatric Medicine, The Bambino Gesù Children's Hospital, Rome, Italy.,These authors contributed equally to this work
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,These authors contributed equally to this work
| | - Geetaram Sahu
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA.,These authors contributed equally to this work
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| | - Lin Sun
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Han Yue
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Tejaswi Jada
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Observatory 7925, Cape Town, South Africa
| | - Gary Simon
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Division of Infectious Diseases, Department of Medicine, George Washington University, Washington DC 20037, USA.,Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037, USA
| |
Collapse
|
8
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
9
|
Qu D, Sun WW, Li L, Ma L, Sun L, Jin X, Li T, Hou W, Wang JH. Long noncoding RNA MALAT1 releases epigenetic silencing of HIV-1 replication by displacing the polycomb repressive complex 2 from binding to the LTR promoter. Nucleic Acids Res 2019; 47:3013-3027. [PMID: 30788509 PMCID: PMC6451131 DOI: 10.1093/nar/gkz117] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) may either repress or activate HIV-1 replication and latency; however, specific mechanisms for their action are not always clear. In HIV-1 infected CD4+ T cells, we performed RNA-Sequencing (RNA-Seq) analysis and discovered an up-regulation of MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), an lncRNA previously described in cancer cells that associate with cancer pathogenesis. Moreover, we found that MALAT1 promoted HIV-1 transcription and infection, as its knockdown by CRISPR/Cas9 markedly reduced the HIV-1 long terminal repeat (LTR)-driven gene transcription and viral replication. Mechanistically, through an association with chromatin modulator polycomb repressive complex 2 (PRC2), MALAT1 detached the core component enhancer of zeste homolog 2 (EZH2) from binding with HIV-1 LTR promoter, and thus removed PRC2 complex-mediated methylation of histone H3 on lysine 27 (H3K27me3) and relieved epigenetic silencing of HIV-1 transcription. Moreover, the reactivation of HIV-1 stimulated with latency reversal agents (LRAs) induced MALAT1 expression in latently infected cells. Successful combination antiretroviral therapy (cART) was accompanied by significantly diminished MALAT1 expression in patients, suggesting a positive correlation of MALAT1 expression with HIV-1 replication. Our data have identified MALAT1 as a promoter of HIV-1 transcription, and suggested that MALAT1 may be targeted for the development of new therapeutics.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Wei Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Li Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Li Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430070, China.,State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430070, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
10
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
11
|
Chougui G, Margottin-Goguet F. HUSH, a Link Between Intrinsic Immunity and HIV Latency. Front Microbiol 2019; 10:224. [PMID: 30809215 PMCID: PMC6379475 DOI: 10.3389/fmicb.2019.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
A prominent obstacle to HIV eradication in seropositive individuals is the viral persistence in latent reservoir cells, which constitute an HIV sanctuary out of reach of highly active antiretroviral therapies. Thus, the study of molecular mechanisms governing latency is a very active field that aims at providing solutions to face the reservoirs issue. Since the past 15 years, another major field in HIV biology focused on the discovery and study of restriction factors that shape intrinsic immunity, while engaging in a molecular battle against HIV. Some of these restrictions factors act at early stages of the virus life cycle, alike SAMHD1 antagonized by the viral protein Vpx, while others are late actors. Until recently, no such factor was identified in the nucleus and found active at the level of provirus expression, a crucial step where latency may take place. Today, two studies highlight Human Silencing Hub (HUSH) as a potential restriction factor that controls viral expression and is antagonized by Vpx. This Review discusses HUSH restriction in the light of the actual knowledge of intrinsic immunity and HIV latency.
Collapse
Affiliation(s)
- Ghina Chougui
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Ma L, Sun L, Jin X, Xiong SD, Wang JH. Scaffold attachment factor B suppresses HIV-1 infection of CD4 + T cells by preventing binding of RNA polymerase II to HIV-1's long terminal repeat. J Biol Chem 2018; 293:12177-12185. [PMID: 29887524 DOI: 10.1074/jbc.ra118.002018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
The 5' end of the HIV, type 1 (HIV-1) long terminal repeat (LTR) promoter plays an essential role in driving viral transcription and productive infection. Multiple host and viral factors regulate LTR activity and modulate HIV-1 latency. Manipulation of the HIV-1 LTR provides a potential therapeutic strategy for combating HIV-1 persistence. In this study, we identified an RNA/DNA-binding protein, scaffold attachment factor B (SAFB1), as a host cell factor that represses HIV-1 transcription. We found that SAFB1 bound to the HIV-1 5' LTR and significantly repressed 5' LTR-driven viral transcription and HIV-1 infection of CD4+ T cells. Mechanistically, SAFB1-mediated repression of HIV-1 transcription and infection was independent of its RNA- and DNA-binding capacities. Instead, by binding to phosphorylated RNA polymerase II, SAFB1 blocked its recruitment to the HIV-1 LTR. Of note, SAFB1-mediated repression of HIV-1 transcription from proviral DNA maintained HIV-1 latency in CD4+ T cells. In summary, our findings reveal that SAFB1 binds to the HIV-1 LTR and physically interacts with phosphorylated RNA polymerase II, repressing HIV-1 transcription initiation and elongation. Our findings improve our understanding of host modulation of HIV-1 transcription and latency and provide a new host cell target for improved anti-HIV-1 therapies.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China; Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Sun
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Si-Dong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Jian-Hua Wang
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
13
|
Lim SY, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM, Barnes TL, Sanisetty S, Seaman MS, Lewis MG, Geleziunas R, Miller MD, Cihlar T, Lee WA, Hill AL, Whitney JB. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci Transl Med 2018; 10:eaao4521. [PMID: 29720451 PMCID: PMC5973480 DOI: 10.1126/scitranslmed.aao4521] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Antiretroviral therapy (ART) can halt HIV-1 replication but fails to target the long-lived latent viral reservoir. Several pharmacological compounds have been evaluated for their ability to reverse HIV-1 latency, but none has demonstrably reduced the latent HIV-1 reservoir or affected viral rebound after the interruption of ART. We evaluated orally administered selective Toll-like receptor 7 (TLR7) agonists GS-986 and GS-9620 for their ability to induce transient viremia in rhesus macaques infected with simian immunodeficiency virus (SIV) and treated with suppressive ART. In an initial dose-escalation study, and a subsequent dose-optimization study, we found that TLR7 agonists activated multiple innate and adaptive immune cell populations in addition to inducing expression of SIV RNA. We also observed TLR7 agonist-induced reductions in SIV DNA and measured inducible virus from treated animals in ex vivo cell cultures. In a second study, after stopping ART, two of nine treated animals remained aviremic for more than 2 years, even after in vivo CD8+ T cell depletion. Moreover, adoptive transfer of cells from aviremic animals could not induce de novo infection in naïve recipient macaques. These findings suggest that TLR7 agonists may facilitate reduction of the viral reservoir in a subset of SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Jeffrey M Gerold
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | | | - Srisowmya Sanisetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, CA 94404, USA
| | | | - Alison L Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. mBio 2018; 9:mBio.02408-17. [PMID: 29717016 PMCID: PMC5930302 DOI: 10.1128/mbio.02408-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host’s modulation of HIV-1 transcription and latency. Here we revealed that “Sad1 and UNC84 domain containing 2” (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5′-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5′-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new therapeutic strategies. It has been known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription and maintains viral latency, but how the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. In this study, we performed in-depth virological and cell biological studies and discovered that an inner nuclear membrane protein, SUN2, is a novel chromatin reassembly factor that maintains repressive chromatin and thus modulates HIV-1 transcription and latency: therefore, targeting SUN2 may lead to new strategies for HIV cure.
Collapse
|
15
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Naf1 Regulates HIV-1 Latency by Suppressing Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells. J Virol 2016; 91:JVI.01830-16. [PMID: 27795436 DOI: 10.1128/jvi.01830-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
HIV-1 latency is characterized by reversible silencing of viral transcription driven by the long terminal repeat (LTR) promoter of HIV-1. Cellular and viral factors regulating LTR activity contribute to HIV-1 latency, and certain repressive cellular factors modulate viral transcription silencing. Nef-associated factor 1 (Naf1) is a host nucleocytoplasmic shuttling protein that regulates multiple cellular signaling pathways and HIV-1 production. We recently reported that nuclear Naf1 promoted nuclear export of unspliced HIV-1 gag mRNA, leading to increased Gag production. Here we demonstrate new functions of Naf1 in regulating HIV-1 persistence. We found that Naf1 contributes to the maintenance of HIV-1 latency by inhibiting LTR-driven HIV-1 gene transcription in a nuclear factor kappa B-dependent manner. Interestingly, Naf1 knockdown significantly enhanced viral reactivation in both latently HIV-1-infected Jurkat T cells and primary central memory CD4+ T cells. Furthermore, Naf1 knockdown in resting CD4+ T cells from HIV-1-infected individuals treated with antiretroviral therapy significantly increased viral reactivation upon T-cell activation, suggesting an important role of Naf1 in modulating HIV-1 latency in vivo Our findings provide new insights for a better understanding of HIV-1 latency and suggest that inhibition of Naf1 activity to activate latently HIV-1-infected cells may be a potential therapeutic strategy. IMPORTANCE HIV-1 latency is characterized mainly by a reversible silencing of LTR promoter-driven transcription of an integrated provirus. Cellular and viral proteins regulating LTR activity contribute to the modulation of HIV-1 latency. In this study, we found that the host protein Naf1 inhibited HIV-1 LTR-driven transcription of HIV genes and contributed to the maintenance of HIV-1 latency. Our findings provide new insights into the effects of host modulation on HIV-1 latency, which may lead to a potential therapeutic strategy for HIV persistence by targeting the Naf1 protein.
Collapse
|
17
|
Wang X, Sun B, Mbondji C, Biswas S, Zhao J, Hewlett I. Differences in Activation of HIV-1 Replication by Superinfection With HIV-1 and HIV-2 in U1 Cells. J Cell Physiol 2016; 232:1746-1753. [PMID: 27662631 DOI: 10.1002/jcp.25614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Abstract
Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir that serve as a viral source for the infection of CD4 T cells. The relationship between HIV-1 latent infection and superinfection in macrophages has not been well studied. Using susceptible U1 cells chronically infected with HIV-1, we studied the effects of HIV superinfection on latency and differences in superinfection with HIV-1 and HIV-2 in macrophages. We found that HIV-1 (MN) superinfection displayed increased HIV-1 replication in a time-dependent manner; while cells infected with HIV-2 (Rod) initially showed increased HIV-1 replication, followed by a decrease in HIV-1 RNA production. HIV-1 superinfection upregulated/activated NF-ĸB, NFAT, AP-1, SP-1, and MAPK Erk through expression/activation of molecules, CD4, CD3, TCRβ, Zap-70, PLCγ1, and PKCΘ in T cell receptor-related signaling pathways; while HIV-2 superinfection initially increased expression/activation of these molecules followed by decreased protein expression/activation. HIV superinfection initially downregulated HDAC1 and upregulated acetyl-histone H3 and histone H3 (K4), while HIV-2 superinfection demonstrated an increase in HDAC1 and a decrease in acetyl-histone H3 and histone H3 (K4) relative to HIV-1 superinfection. U1 cells superinfected with HIV-1 or HIV-2 showed differential expression of proteins, IL-2, PARP-1, YB-1, and LysRS. These findings indicate that superinfection with HIV-1 or HIV-2 has different effects on reactivation of HIV-1 replication. HIV-1 superinfection with high load of viral replication may result in high levels of cytotoxicity relative to HIV-2 superinfection. Cells infected with HIV-2 showed lower level of HIV-1 replication, suggesting that co-infection with HIV-2 may result in slower progression toward AIDS. J. Cell. Physiol. 232: 1746-1753, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Bing Sun
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christelle Mbondji
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
18
|
|
19
|
BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency. Cell Host Microbe 2016; 18:345-53. [PMID: 26355217 DOI: 10.1016/j.chom.2015.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/22/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022]
Abstract
Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.
Collapse
|
20
|
Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 2016; 475:161-8. [PMID: 27181351 DOI: 10.1016/j.bbrc.2016.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.
Collapse
|
21
|
Yang FC, Kuang WD, Li C, Sun WW, Qu D, Wang JH. Toll-Interacting Protein Suppresses HIV-1 Long-Terminal-Repeat-Driven Gene Expression and Silences the Post-Integrational Transcription of Viral Proviral DNA. PLoS One 2015; 10:e0125563. [PMID: 25915421 PMCID: PMC4411168 DOI: 10.1371/journal.pone.0125563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-interacting protein (Tollip) is a host adaptor protein for negatively regulating Toll-like receptor 2-, 4-, and IL-1R (interleukin-1 receptor)-mediated signaling. We found that Tollip expression could be induced in MDDCs (monocyte-derived dendritic cells) by HIV-1 particles and recombinant gp120 glycoprotein. Hence, we investigated the role of Tollip in modulating HIV-1 infection. We found that Tollip expression suppressed NF-κB-dependent HIV-1 long terminal repeat (LTR)-driven transcription and thus inhibited HIV-1 infection. Our protein truncation experiments proved that the intact C-terminus of Tollip was required for inhibition of both NF-κB activity and HIV-1 LTR-driven gene expression. Intriguingly, Tollip silenced the post-integrational transcription of HIV-1 proviral DNA, indicating the potential role of Tollip in maintaining viral persistence. Our results reveal the novel role of host factor Tollip in modulating HIV-1 infection, and may suggest the hijacking of Tollip as the negative regulator of the TLR pathway and even the downstream signaling, by HIV-1 for maintaining persistent infection. Further elucidation of the mechanisms by which HIV-1 induces Tollip expression and identification of the role of Tollip in modulating HIV-1 latency will facilitate the understanding of host regulation in viral replication and benefit the exploration of novel strategies for combating HIV-1 infection.
Collapse
Affiliation(s)
- Fu-Chun Yang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Dong Kuang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Wei Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Di Qu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses 2015; 7:1578-98. [PMID: 25835530 PMCID: PMC4411666 DOI: 10.3390/v7041578] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes latency in resting memory CD4+ T cells and cells of myeloid lineage. In contrast to the T cells, cells of myeloid lineage are resistant to the HIV-1 induced cytopathic effect. Cells of myeloid lineage including macrophages are present in anatomical sanctuaries making them a difficult drug target. In addition, the long life span of macrophages as compared to the CD4+ T cells make them important viral reservoirs in infected individuals especially in the late stage of viral infection where CD4+ T cells are largely depleted. In the past decade, HIV-1 persistence in resting CD4+ T cells has gained considerable attention. It is currently believed that rebound viremia following cessation of combination anti-retroviral therapy (cART) originates from this source. However, the clinical relevance of this reservoir has been questioned. It is suggested that the resting CD4+ T cells are only one source of residual viremia and other viral reservoirs such as tissue macrophages should be seriously considered. In the present review we will discuss how macrophages contribute to the development of long-lived latent reservoirs and how macrophages can be used as a therapeutic target in eradicating latent reservoir.
Collapse
|
23
|
Abstract
Antiretroviral therapy (ART) potently suppresses HIV-1 replication, but the virus persists in quiescent infected CD4(+)T cells as a latent integrated provirus, and patients must indefinitely remain on therapy. If ART is terminated, these integrated proviruses can reactivate, driving new rounds of infection. A functional cure for HIV requires eliminating low-level ongoing viral replication that persists in certain tissue sanctuaries and preventing viral reactivation. The HIV Tat protein plays an essential role in HIV transcription by recruiting the kinase activity of the P-TEFb complex to the viral mRNA's stem-bulge-loop structure, TAR, activating transcriptional elongation. Because the Tat-mediated transactivation cascade is critical for robust HIV replication, the Tat/TAR/P-TEFb complex is one of the most attractive targets for drug development. Importantly, compounds that interfere with transcription could impair viral reactivation, low-level ongoing replication, and replenishment of the latent reservoir, thereby reducing the size of the latent reservoir pool. Here, we discuss the potential importance of transcriptional inhibitors in the treatment of latent HIV-1 disease and review recent findings on targeting Tat, TAR, and P-TEFb individually or as part of a complex. Finally, we discuss the impact of extracellular Tat in HIV-associated neurocognitive disorders and cancers.
Collapse
|
24
|
HIV Latency and the noncoding RNA therapeutic landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:169-89. [PMID: 25757621 DOI: 10.1007/978-1-4939-2432-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Human Immunodeficiency Virus (HIV) belongs to the subfamily of lentiviruses that are characterized by long incubation periods and chronic, persistent infection. The virus integrates into the genome of infected CD4+ cells and, in a subpopulation of cells, adopts a transcriptionally silent state, a process referred to a viral latency. This property makes it exceedingly difficult to therapeutically target the virus and eradicate infection. If left untreated, the inexorable demise of the infected individual's immune system ensues, a causal result of Acquired Immunodeficiency Syndrome (AIDS). Latently infected cells provide a reservoir that maintains viral infection indefinitely. In this chapter we explore the role of noncoding RNAs in HIV infection and in the establishment and maintenance of viral latency. Both short and long noncoding RNAs are endogenous modulators of epigenetic regulation in human cells and play an active role in gene expression. Lastly, we explore therapeutic modalities based on expressed RNAs that are capable of countering infection, transcriptionally regulating the virus, and suppressing or activating the latent state.
Collapse
|
25
|
Aguilera LU, Rodríguez-González J. Studying HIV latency by modeling the interaction between HIV proteins and the innate immune response. J Theor Biol 2014; 360:67-77. [DOI: 10.1016/j.jtbi.2014.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/30/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
26
|
Abstract
UNLABELLED Latently infected cells are considered a major barrier to the cure of HIV infection, since they are long-lived under antiretroviral therapy (ART) and cause viral replication to restart soon after stopping ART. In the last decade, different types of antilatency drugs have been explored with the aim of reactivating and purging this latent reservoir and the hope of achieving a cure. Because of toxicity and safety considerations, antilatency drugs can only be given for a short time to patients on long-term ART, with little effect. We recently investigated the turnover of latently infected cells during active infection and have found that it was strongly correlated with viral load. This implies that although latently infected cells had long life spans in a setting of a low viral load (such as during ART), they turned over quickly under a high viral load. Possible reasons for this could be that an increased viral load causes increased activation or death of CD4(+) T cells, including those that are latently infected. Taking these results into account, we developed a mathematical model to study the most appropriate timing of antilatency drugs in relationship to the initiation of ART. We found that the best timing of a short-term antilatency drug would be the start of ART, when viral load, CD4(+) T cell activation, and latent cell turnover are all high. These results have important implications for the design of HIV cure-related clinical trials. IMPORTANCE The antiretroviral therapy (ART) of HIV-infected patients currently needs to be lifelong, because the cells latently infected with HIV start new rounds of infection as soon as the treatment is stopped. In the last decade, a number of different types of antilatency drugs have been explored with the aim of "reactivating" and "purging" this latent reservoir and thus achieving a cure. These drugs have thus far been tested on patients only after long-term ART and have demonstrated little or no effect. We use mathematical modeling to show that the most efficacious timing of a short-term antilatency treatment may be the start of ART because of possible interactions of antilatency drugs with natural activation pathways.
Collapse
|
27
|
The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J Virol 2014; 88:10803-12. [PMID: 25008921 DOI: 10.1128/jvi.00320-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. IMPORTANCE HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the susceptibility of uninfected CD4(+) T cells to infection with HIV, raising clinical concerns that vorinostat may reseed the viral reservoirs it is meant to purge, particularly under conditions of suboptimal drug exposure. We demonstrate that vorinostat acts following viral fusion and enhances the kinetics and efficiency of reverse transcription, nuclear import, and integration. The effect of vorinostat was recapitulated using the cytoplasmic histone deacetylase 6 (HDAC6) inhibitor tubacin, revealing a novel and previously unknown cytoplasmic mechanism of HDAC inhibitors on HIV replication that is distinct from their well-characterized effects of long-terminal-repeat (LTR)-driven gene expression. Moreover, our results suggest that treatment of patients with class I-specific HDAC inhibitors could induce latent viruses without increasing the susceptibility of uninfected cells to HIV.
Collapse
|
28
|
Treatment of chronically FIV-infected cats with suberoylanilide hydroxamic acid. Antiviral Res 2014; 108:74-8. [PMID: 24954265 DOI: 10.1016/j.antiviral.2014.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring, large animal model of lentiviral-induced immunodeficiency syndrome, and has been used as a model of HIV pathogenesis and therapeutic interventions. HIV reservoirs in the form of latent virus remain the primary roadblock to viral eradication and cure, and FIV has been previously established an animal model of lentiviral latency. The goal of this study was to determine whether administration of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) to aviremic, chronically FIV-infected cats would induce latent viral reactivation in vivo. A proof-of-concept experiment in a Transwell co-culture system demonstrated the ability of SAHA to reactivate latent virus which was replication competent and able to infect naïve cells. Oral SAHA (250mg/m(2)) was administered with food to four asymptomatic, experimentally FIV-infected cats and one uninfected control cat, and a limited pharmacokinetic and pharmacodynamic analysis was performed. A statistically significant increase in cell-associated FIV RNA was detected in the cat with the greatest serum SAHA exposure, and cell-free viral RNA was detected at one time point in the three cats that achieved the highest levels of SAHA in serum. Interestingly, there was a significant decrease in viral DNA burden at 2h post drug administration in the same three cats. Though the sample size is small and the drug response was modest, this study provides evidence that in vivo treatment of FIV-infected cats with the HDACi SAHA can induce viral transcriptional reactivation, which may be dependent upon the concentration of SAHA achieved in blood. Importantly, alternative putative antilatency therapy drugs, and multimodal drug combinations, could be studied in this in vivo system. The FIV/cat model provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus in vivo.
Collapse
|
29
|
Klase Z, Yedavalli VSRK, Houzet L, Perkins M, Maldarelli F, Brenchley J, Strebel K, Liu P, Jeang KT. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA. PLoS Pathog 2014; 10:e1003997. [PMID: 24651404 PMCID: PMC3961356 DOI: 10.1371/journal.ppat.1003997] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/29/2014] [Indexed: 01/24/2023] Open
Abstract
A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.
Collapse
Affiliation(s)
- Zachary Klase
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Venkat S. R. K. Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laurent Houzet
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Molly Perkins
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank Maldarelli
- Host Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Liu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, Dahl NP, Kearney MF, Anderson EM, Coffin JM, Strain MC, Richman DD, Robertson KR, Kashuba AD, Bosch RJ, Hazuda DJ, Kuruc JD, Eron JJ, Margolis DM. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis 2014; 210:728-35. [PMID: 24620025 DOI: 10.1093/infdis/jiu155] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A single dose of the histone deacetylase inhibitor vorinostat (VOR) up-regulates HIV RNA expression within resting CD4(+) T cells of treated, aviremic human immunodeficiency virus (HIV)-positive participants. The ability of multiple exposures to VOR to repeatedly disrupt latency has not been directly measured, to our knowledge. METHODS Five participants in whom resting CD4(+) T-cell-associated HIV RNA (rc-RNA) increased after a single dose of VOR agreed to receive daily VOR Monday through Wednesday for 8 weekly cycles. VOR serum levels, peripheral blood mononuclear cell histone acetylation, plasma HIV RNA single-copy assays, rc-RNA, total cellular HIV DNA, and quantitative viral outgrowth assays from resting CD4(+) T cells were assayed. RESULTS VOR was well tolerated, with exposures within expected parameters. However, rc-RNA measured after dose 11 (second dose of cycle 4) or dose 22 (second dose of cycle 8) increased significantly in only 3 of the 5 participants, and the magnitude of the rc-RNA increase was much reduced compared with that after a single dose. Changes in histone acetylation were blunted. Results of quantitative viral outgrowth and other assays were unchanged. CONCLUSIONS Although HIV latency is disrupted by an initial VOR dose, the effect of subsequent doses in this protocol was much reduced. We hypothesize that the global effect of VOR results in a refractory period of ≥ 24 hours. The optimal schedule for VOR administration is still to be defined.
Collapse
Affiliation(s)
- Nancy M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Rosalie Bateson
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Manoj K Tripathy
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Amanda M Crooks
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Kuo-Hsiung Yang
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Noelle P Dahl
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Mary F Kearney
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Elizabeth M Anderson
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - John M Coffin
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland Departments of Genetics and Molecular Biology, Tufts University School of Medicine, School of Public Health, Boston, Massachusetts
| | - Matthew C Strain
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | - Douglas D Richman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | | | - Angela D Kashuba
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Ronald J Bosch
- Department of Biostatistics, School of Public Health, Boston, Massachusetts
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, Pennsylvania
| | - Joann D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Sivro A, Su RC, Plummer FA, Ball TB. HIV and interferon regulatory factor 1: a story of manipulation and control. AIDS Res Hum Retroviruses 2013; 29:1428-33. [PMID: 23984938 DOI: 10.1089/aid.2013.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the interferon regulatory factor (IRF) family control the expression of numerous proteins, many of which are central to regulating host immune responses. IRF1 is one of the central mediators of the innate and adaptive immune responses required for antigen processing and presentation, Th1/Th2 differentiation, and natural killer (NK) cell and macrophage function. Many viruses have evolved mechanisms to target the IRF1 pathway in order to promote viral pathogenesis. During early HIV infection, IRF1 acts as a double-edged sword, critical for driving viral replication as well as eliciting antiviral responses. In this review, we describe the strategies that HIV-1 has evolved to modulate IRF1 in order to enhance viral replication and to disarm the host immune system. IRF1 has been shown to be an important factor in natural protection against HIV in highly exposed seronegative (HESN) individuals and is crucial in regulating the initial stages of HIV replication and HIV disease progression, as well as the establishment of latency. An understanding of how the protective effects of IRF1 responses are controlled in HESN individuals, naturally resistant to HIV infection, may provide important clues on how to regain control of HIV and tip the balance of immunity in favor of the host, or provide new opportunities to eliminate HIV in its host altogether.
Collapse
Affiliation(s)
- Aida Sivro
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
32
|
Graf EH, Pace MJ, Peterson BA, Lynch LJ, Chukwulebe SB, Mexas AM, Shaheen F, Martin JN, Deeks SG, Connors M, Migueles SA, O’Doherty U. Gag-positive reservoir cells are susceptible to HIV-specific cytotoxic T lymphocyte mediated clearance in vitro and can be detected in vivo [corrected]. PLoS One 2013; 8:e71879. [PMID: 23951263 PMCID: PMC3737195 DOI: 10.1371/journal.pone.0071879] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Resting CD4+ T cells infected with HIV persist in the presence of suppressive anti-viral therapy (ART) and are barriers to a cure. One potential curative approach, therapeutic vaccination, is fueled by recognition of the ability of a subset of elite controllers (EC) to control virus without therapy due to robust anti-HIV immune responses. Controllers have low levels of integrated HIV DNA and low levels of replication competent virus, suggesting a small reservoir. As our recent data indicates some reservoir cells can produce HIV proteins (termed GPR cells for Gag-positive reservoir cells), we hypothesized that a fraction of HIV-expressing resting CD4+ T cells could be efficiently targeted and cleared in individuals who control HIV via anti-HIV cytotoxic T lymphocytes (CTL). To test this we examined if superinfected resting CD4+ T cells from EC express HIV Gag without producing infectious virus and the susceptibility of these cells to CTL. We found that resting CD4+ T cells expressed HIV Gag and were cleared by autologous CD8+ T cells from EC. Importantly, we found the extent of CTL clearance in our in vitro assay correlates with in vivo reservoir size and that a population of Gag expressing resting CD4+ T cells exists in vivo in patients well controlled on therapy.
Collapse
Affiliation(s)
- Erin H. Graf
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew J. Pace
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bennett A. Peterson
- Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lindsay J. Lynch
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Steve B. Chukwulebe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela M. Mexas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Farida Shaheen
- The Center for Aids Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen A. Migueles
- Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
McDonnel SJ, Sparger EE, Murphy BG. Feline immunodeficiency virus latency. Retrovirology 2013; 10:69. [PMID: 23829177 PMCID: PMC3707804 DOI: 10.1186/1742-4690-10-69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022] Open
Abstract
Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication.
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | |
Collapse
|
34
|
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2013; 2:a006916. [PMID: 22355797 DOI: 10.1101/cshperspect.a006916] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.
Collapse
Affiliation(s)
- Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
35
|
Mbonye UR, Gokulrangan G, Datt M, Dobrowolski C, Cooper M, Chance MR, Karn J. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. PLoS Pathog 2013; 9:e1003338. [PMID: 23658523 PMCID: PMC3642088 DOI: 10.1371/journal.ppat.1003338] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/20/2013] [Indexed: 11/26/2022] Open
Abstract
The HIV transactivator protein, Tat, enhances HIV transcription by recruiting P-TEFb from the inactive 7SK snRNP complex and directing it to proviral elongation complexes. To test the hypothesis that T-cell receptor (TCR) signaling induces critical post-translational modifications leading to enhanced interactions between P-TEFb and Tat, we employed affinity purification–tandem mass spectrometry to analyze P-TEFb. TCR or phorbal ester (PMA) signaling strongly induced phosphorylation of the CDK9 kinase at Ser175. Molecular modeling studies based on the Tat/P-TEFb X-ray structure suggested that pSer175 strengthens the intermolecular interactions between CDK9 and Tat. Mutations in Ser175 confirm that this residue could mediate critical interactions with Tat and with the bromodomain protein BRD4. The S175A mutation reduced CDK9 interactions with Tat by an average of 1.7-fold, but also completely blocked CDK9 association with BRD4. The phosphomimetic S175D mutation modestly enhanced Tat association with CDK9 while causing a 2-fold disruption in BRD4 association with CDK9. Since BRD4 is unable to compete for binding to CDK9 carrying S175A, expression of CDK9 carrying the S175A mutation in latently infected cells resulted in a robust Tat-dependent reactivation of the provirus. Similarly, the stable knockdown of BRD4 led to a strong enhancement of proviral expression. Immunoprecipitation experiments show that CDK9 phosphorylated at Ser175 is excluded from the 7SK RNP complex. Immunofluorescence and flow cytometry studies carried out using a phospho-Ser175-specific antibody demonstrated that Ser175 phosphorylation occurs during TCR activation of primary resting memory CD4+ T cells together with upregulation of the Cyclin T1 regulatory subunit of P-TEFb, and Thr186 phosphorylation of CDK9. We conclude that the phosphorylation of CDK9 at Ser175 plays a critical role in altering the competitive binding of Tat and BRD4 to P-TEFb and provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb. The release of the transcription elongation factor P-TEFb from the 7SK RNP complex and its binding to the HIV Tat transactivator protein enables the efficient transcription of HIV proviruses. In resting memory T-cells, which carry the bulk of the latent HIV viral pool, limiting the cellular levels of P-TEFb ensures that the provirus remains silenced unless the host cell is activated. Here we demonstrate that T-cell receptor (TCR) activation induces phosphorylation of Ser175, a residue which is located at the interface between CycT1, CDK9 and Tat. Phosphorylation of Ser175 occurs on free or 7SK-dissociated P-TEFb and genetic experiments indicate that this modification enhances P-TEFb interaction with Tat resulting in Tat-dependent reactivation of HIV proviral transcription. Modification of Ser175 appears critical for controlling the competitive binding of Tat and the bromodomain protein BRD4 to P-TEFb. Activation of P-TEFb in resting T-cells thus involves both the initial assembly of the 7SK snRNP complex and the subsequent mobilization of P-TEFb by cellular signaling and Tat. Therefore, pSer175 provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb that can be used to monitor the extent of T-cell activation during therapeutic interventions aimed at virus eradication.
Collapse
Affiliation(s)
- Uri R. Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Giridharan Gokulrangan
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Manish Datt
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Maxwell Cooper
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Interaction between endogenous bacterial flora and latent HIV infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:773-9. [PMID: 23616411 DOI: 10.1128/cvi.00766-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human commensal bacteria do not normally cause any diseases. However, in certain pathological conditions, they exhibit a number of curious behaviors. In HIV infection, these bacteria exhibit bidirectional relationships: whereas they cause opportunistic infections based on immunological deterioration, they also augment HIV replication, in particular, viral replication from latently infected cells, which is attributable to the effect of butyric acid produced by certain anaerobic bacteria by modifying the state of chromatin. Here, we review recent evidence supporting the contributory role of such endogenous microbes in disrupting HIV latency and its potential link to the clinical progression of AIDS.
Collapse
|
37
|
Abstract
Recent advances in fluorescence microscopy provided tools for the investigation and the analysis of the viral replication steps in the cellular context. In the HIV field, the current visualization systems successfully achieve the fluorescent labeling of the viral envelope and proteins, but not the genome. Here, we developed a system able to visualize the proviral DNA of HIV-1 through immunofluorescence detection of repair foci for DNA double-strand breaks specifically induced in the viral genome by the heterologous expression of the I-SceI endonuclease. The system for Single-Cell Imaging of HIV-1 Provirus, named SCIP, provides the possibility to individually track integrated-viral DNA within the nuclei of infected cells. In particular, SCIP allowed us to perform a topological analysis of integrated viral DNA revealing that HIV-1 preferentially integrates in the chromatin localized at the periphery of the nuclei.
Collapse
|
38
|
Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ, Kristie TM. Snapshots: chromatin control of viral infection. Virology 2013; 435:141-56. [PMID: 23217624 DOI: 10.1016/j.virol.2012.09.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/11/2022]
Abstract
Like their cellular host counterparts, many invading viral pathogens must contend with, modulate, and utilize the host cell's chromatin machinery to promote efficient lytic infection or control persistent-latent states. While not intended to be comprehensive, this review represents a compilation of conceptual snapshots of the dynamic interplay of viruses with the chromatin environment. Contributions focus on chromatin dynamics during infection, viral circumvention of cellular chromatin repression, chromatin organization of large DNA viruses, tethering and persistence, viral interactions with cellular chromatin modulation machinery, and control of viral latency-reactivation cycles.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Donahue DA, Wainberg MA. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013; 10:11. [PMID: 23375003 PMCID: PMC3571915 DOI: 10.1186/1742-4690-10-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023] Open
Abstract
Latently infected cells represent the major barrier to either a sterilizing or a functional HIV-1 cure. Multiple approaches to reactivation and depletion of the latent reservoir have been attempted clinically, but full depletion of this compartment remains a long-term goal. Compared to the mechanisms involved in the maintenance of HIV-1 latency and the pathways leading to viral reactivation, less is known about the establishment of latent infection. This review focuses on how HIV-1 latency is established at the cellular and molecular levels. We first discuss how latent infection can be established following infection of an activated CD4 T-cell that undergoes a transition to a resting memory state and also how direct infection of a resting CD4 T-cell can lead to latency. Various animal, primary cell, and cell line models also provide insights into this process and are discussed with respect to the routes of infection that result in latency. A number of molecular mechanisms that are active at both transcriptional and post-transcriptional levels have been associated with HIV-1 latency. Many, but not all of these, help to drive the establishment of latent infection, and we review the evidence in favor of or against each mechanism specifically with regard to the establishment of latency. We also discuss the role of immediate silent integration of viral DNA versus silencing of initially active infections. Finally, we discuss potential approaches aimed at limiting the establishment of latent infection.
Collapse
Affiliation(s)
- Daniel A Donahue
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada.
| | | |
Collapse
|
40
|
Zhu J, Gaiha GD, John SP, Pertel T, Chin CR, Gao G, Qu H, Walker BD, Elledge SJ, Brass AL. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2012; 2:807-16. [PMID: 23041316 DOI: 10.1016/j.celrep.2012.09.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
Abstract
HIV-1 depends on many host factors for propagation. Other host factors, however, antagonize HIV-1 and may have profound effects on viral activation. Curing HIV-1 requires the reduction of latent viral reservoirs that remain in the face of antiretroviral therapy. Using orthologous genetic screens, we identified bromodomain containing 4 (BRD4) as a negative regulator of HIV-1 replication. Antagonism of BRD4, via RNA interference or with a small molecule inhibitor, JQ1, both increased proviral transcriptional elongation and alleviated HIV-1 latency in cell-line models. In multiple instances, JQ1, when used in combination with the NF-κB activators Prostratin or PHA, enhanced the in vitro reactivation of latent HIV-1 in primary T cells. These data are consistent with a model wherein BRD4 competes with the virus for HIV-1 dependency factors (HDFs) and suggests that combinatorial therapies that activate HDFs and antagonize HIV-1 competitive factors may be useful for curing HIV-1 infection.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Williams JP, Frater J. Current understanding in HIV immunopathology and treatment. QJM 2012; 105:725-8. [PMID: 22294649 DOI: 10.1093/qjmed/hcs019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J P Williams
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | | |
Collapse
|
42
|
Directly infected resting CD4+T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLoS Pathog 2012; 8:e1002818. [PMID: 22911005 PMCID: PMC3406090 DOI: 10.1371/journal.ppat.1002818] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/10/2012] [Indexed: 12/19/2022] Open
Abstract
Despite the effectiveness of highly active antiretroviral therapy (HAART) in treating individuals infected with HIV, HAART is not a cure. A latent reservoir, composed mainly of resting CD4+T cells, drives viral rebound once therapy is stopped. Understanding the formation and maintenance of latently infected cells could provide clues to eradicating this reservoir. However, there have been discrepancies regarding the susceptibility of resting cells to HIV infection in vitro and in vivo. As we have previously shown that resting CD4+T cells are susceptible to HIV integration, we asked whether these cells were capable of producing viral proteins and if so, why resting cells were incapable of supporting productive infection. To answer this question, we spinoculated resting CD4+T cells with or without prior stimulation, and measured integration, transcription, and translation of viral proteins. We found that resting cells were capable of producing HIV Gag without supporting spreading infection. This block corresponded with low HIV envelope levels both at the level of protein and RNA and was not an artifact of spinoculation. The defect was reversed upon stimulation with IL-7 or CD3/28 beads. Thus, a population of latent cells can produce viral proteins without resulting in spreading infection. These results have implications for therapies targeting the latent reservoir and suggest that some latent cells could be cleared by a robust immune response. While HIV is a treatable disease due to effective antiviral therapies, these drugs do not cure HIV. When therapy is stopped, a pool of infected, long-lived, treatment resistant cells re-establishes infection. These latently infected cells, mainly resting CD4+T cells, are barriers to a cure. Studying and understanding the properties of these cells is therefore important to eradicating HIV. It is believed that these latent cells do not produce viral proteins and thus are invisible to the immune system. Here, we show using an in vitro HIV model that a population of latently infected cells can produce HIV Gag. Interestingly, this protein production does not result in the release of detectable infectious virus and so the latent cells are unaffected by antiviral therapy. We therefore examined why some latent cells can produce viral proteins without viral spread. We found that resting cells have the ability to make some of the components required for spreading infection but not all are in sufficient quantity. These results have important implications for treating the latent reservoir, as our work suggests that latent cells might be recognized by a boosted immune response.
Collapse
|
43
|
Abstract
In the past few years, major advances have been achieved in understanding the nature and the maintenance mechanisms of the HIV reservoir. Although antiretroviral therapy works well in a majority of patients, it faces problems of compliance, resistance, toxicity, and cost. In most cases, the remaining HIV reservoir precluding antiretroviral cessation consists of a tiny cell pool that is long-lived and inaccessible to current therapies. New strategies are therefore needed to either purge or control this residual reservoir and finally stop antiretroviral drugs. Both ways leading to a functional or a sterilizing cure are currently pursued. Several molecules have been identified to achieve these goals and some of them have already entered clinical testing in humans. In this article, we review recent findings on the biology of HIV persistence and detail how HIV eradication trials should be designed in the near future.
Collapse
|
44
|
Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes. Viruses 2012; 4:878-88. [PMID: 22754653 PMCID: PMC3386631 DOI: 10.3390/v4050878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 12/23/2022] Open
Abstract
Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 103 CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.
Collapse
|
45
|
Latently Infected Cell Activation: A Way to Reduce the Size of the HIV Reservoir? Bull Math Biol 2012; 74:1651-72. [DOI: 10.1007/s11538-012-9729-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
46
|
Le Douce V, Janossy A, Hallay H, Ali S, Riclet R, Rohr O, Schwartz C. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother 2012; 67:1063-74. [PMID: 22294645 PMCID: PMC3324423 DOI: 10.1093/jac/dkr599] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Andrea Janossy
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Houda Hallay
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Sultan Ali
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Raphael Riclet
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Olivier Rohr
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
- Institut Universitaire de France, 103 Bd Saint Michel, Paris, France
| | - Christian Schwartz
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
| |
Collapse
|
47
|
Abstract
Acquired immune deficiency syndrome (AIDS) was first described 30 years ago in a report from the US Centers for Disease Control. Two years later the causative virus was identified and afterwards named the human immunodeficiency virus (HIV). This article reviews the progress made in the three decades since the recognition of AIDS and the discovery of HIV, with respect to the virus, the infected cell, and the host, as well as directions for future studies.
Collapse
Affiliation(s)
- M Scott Killian
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143-1270, USA
| | | |
Collapse
|
48
|
Routy JP, Tremblay CL, Angel JB, Trottier B, Rouleau D, Baril JG, Harris M, Trottier S, Singer J, Chomont N, Sékaly RP, Boulassel MR. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med 2012; 13:291-6. [PMID: 22276680 DOI: 10.1111/j.1468-1293.2011.00975.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Conflicting results have been reported regarding the ability of valproic acid (VPA) to reduce the size of HIV reservoirs in patients receiving suppressive highly active antiretroviral therapy (HAART). In a randomized multicentre, cross-over study, we assessed whether adding VPA to stable HAART could potentially reduce the size of the latent viral reservoir in CD4 T cells of chronically infected patients. METHODS A total of 56 virologically suppressed patients were randomly assigned either to receive VPA plus HAART for 16 weeks followed by HAART alone for 32 weeks (arm 1; n = 27) or to receive HAART alone for 16 weeks and then VPA plus HAART for 32 weeks (arm 2; n = 29). VPA was administered at a dose of 500 mg twice a day (bid) and was adjusted to the therapeutic range. A quantitative culture assay was used to assess HIV reservoirs in CD4 T cells at baseline and at weeks 16 and 48. RESULTS No significant reductions in the frequency of CD4 T cells harbouring replication-competent HIV after 16 and 32 weeks of VPA therapy were observed. In arm 1, median (range) values of IU per log(10) billion (IUPB) cells were 2.55 (range 1.20-4.20), 1.80 (range 1.0-4.70) and 2.70 (range 1.0-3.90; P = 0.87) for baseline, week 16 and week 48, respectively. In arm 2, median values of IUPB were 2.55 (range 1.20-4.65), 1.64 (range 1.0-3.94) and 2.51 (range 1.0-4.48; P = 0.50) for baseline, week 16 and week 48, respectively. CONCLUSIONS Our study demonstrates that adding VPA to stable HAART does not reduce the latent HIV reservoir in virally suppressed patients.
Collapse
Affiliation(s)
- J P Routy
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Mbonye U, Karn J. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Curr HIV Res 2011; 9:554-67. [PMID: 22211660 PMCID: PMC3319922 DOI: 10.2174/157016211798998736] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 12/17/2022]
Abstract
Intensive antiretroviral therapy successfully suppresses viral replication but is unable to eradicate the virus. HIV persists in a small number of resting memory T cells where HIV has been transcriptionally silenced. This review will focus on recent insights into the HIV transcriptional control mechanisms that provide the biochemical basis for understanding latency. There are no specific repressors of HIV transcription encoded by the virus, instead latency arises when the regulatory feedback mechanism driven by HIV Tat expression is disrupted. Small changes in transcriptional initiation, induced by epigenetic silencing, lead to profound restrictions in Tat levels and force the entry of proviruses into latency. In resting memory T cells, which carry the bulk of the latent viral pool, additional restrictions, especially the limiting cellular levels of the essential Tat cofactor P-TEFb and the transcription initiation factors NF-κB and NFAT ensure that the provirus remains silenced unless the host cell is activated. The detailed understanding of HIV transcription is providing a framework for devising new therapeutic strategies designed to purge the latent viral pool. Importantly, the recognition that there are multiple restrictions imposed on latent proviruses suggest that proviral reactivation will not be achieved when only a single reactivation step is targeted and that any optimal activation strategy will require both removal of epigenetic blocks and the activation of P-TEFb.
Collapse
Affiliation(s)
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|