1
|
Zhang B, Liu Q, Li L, Ye Y, Guo X, Xu W, Chen L, Mo X, Nian S, Yuan Q. Therapeutic effect of fully human anti-Nrp-1 antibody on non-small cell lung cancer in vivo and in vitro. Cancer Immunol Immunother 2025; 74:50. [PMID: 39751948 PMCID: PMC11699024 DOI: 10.1007/s00262-024-03893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Although immune checkpoint inhibitors have changed the treatment paradigm for non-small cell lung cancer (NSCLC), not all patients benefit from them. Therefore, there is an urgent need to explore novel immune checkpoint inhibitors. Neuropilin-1 (Nrp-1) is a unique immune checkpoint capable of exerting antitumor effects through CD8+ T cells. It is also a T-cell memory checkpoint that regulates long-term antitumor immunity. However, its role in NSCLC remains unclear. The aim of this study was to develop a fully human anti-Nrp-1 antibody with therapeutic effects against NSCLC in vitro and in vivo. We screened and constructed of a high-affinity anti-Nrp-1 IgG antibody from a constructed high-capacity fully human single-chain fragment variable (scFv) phage library. This novel anti-Nrp-1 IgG antibody partially restored the killing function of exhausted CD8+ T cells in malignant pleural fluid in vitro. Co-culture of peripheral blood mononuclear cells (PBMC) with A549 and the addition of anti-Nrp1-IgG enhanced the killing of A549 target cells, leading to an increase in late-stage apoptosis of target cells. Importantly, anti-Nrp1-IgG treatment significantly reduced tumor volume in a mouse model of lung cancer with humanized immune system. These findings suggest that 53-IgG has a promising application as a potent Nrp-1-targeting agent in NSCLC immunotherapy.
Collapse
Grants
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
Collapse
Affiliation(s)
- Bo Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Clinical Laboratory, Female and Child Health Care and Family Planning Service Center, Binhai New Area, Tianjin, 300450, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lin Li
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wenfeng Xu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Neurosurgery, Luzhou, 646000, Sichuan Province, China
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Institute of Nuclear Medicine, Southwest Medical University, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
2
|
Li L, Nian S, Liu Q, Zhang B, Jimu W, Li C, Huang Z, Hu Q, Huang Y, Yuan Q. Fully human anti-B7-H3 recombinant antibodies inhibited tumor growth by increasing T cell infiltration. Int Immunopharmacol 2024; 132:111926. [PMID: 38552297 DOI: 10.1016/j.intimp.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.
Collapse
Affiliation(s)
- Lin Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Siji Nian
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Qin Liu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Bo Zhang
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Wulemo Jimu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Chengwen Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Zhanwen Huang
- Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China
| | - Qiaosen Hu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Yuanshuai Huang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China; Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China.
| |
Collapse
|
3
|
Yang Y, Nian S, Li L, Wen X, Liu Q, Zhang B, Lan Y, Yuan Q, Ye Y. Fully human recombinant antibodies against EphA2 from a multi-tumor patient immune library suitable for tumor-targeted therapy. Bioengineered 2021; 12:10379-10400. [PMID: 34709992 PMCID: PMC8810047 DOI: 10.1080/21655979.2021.1996807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhanced EphA2 expression is observed in a variety of epithelial-derived malignancies and is an important target for anti-tumor therapy. Currently, Therapeutic monoclonal antibodies against immune checkpoints have shown good efficacy for tumor treatment. In this study, we constructed an immune single-chain fragment variable (scFv) library using peripheral blood mononuclear cells (PBMCs) from 200 patients with a variety of malignant tumors. High affinity scFvs against EphA2 can be easily screened from the immune library using phage display technology. Anti-EphA2 scFvs can be modified into any form of recombinant antibody, including scFv-Fc and full-length IgG1 antibodies, and the recombinant antibody affinity was improved following modification. Among the modified anti-EphA2 antibodies the affinity of 77-IgG1 was significantly increased, reaching a pmol affinity level (10−12). We further demonstrated the binding activity of recombinant antibodies to the EphA2 protein, tumor cells, and tumor tissues using macromolecular interaction techniques, flow cytometry and immunohistochemistry. Most importantly, both the constructed scFvs-Fc, as well as the IgG1 antibodies against EphA2 were able to inhibit the growth of tumor cells to some extent. These results suggest that the immune libraries from patients with malignant tumors are more likely to screen for antibodies with high affinity and therapeutic effect. The constructed fully human scFv immune library has broad application prospects for specific antibody screening. The screened scFv-Fc and IgG1 antibodies against EphA2 can be used for the further study of tumor immunotherapy.
Collapse
Affiliation(s)
- Yaqi Yang
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Siji Nian
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Lin Li
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Xue Wen
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China.,Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, P.R. China
| | - Qin Liu
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Bo Zhang
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Yu Lan
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Qing Yuan
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
4
|
Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2021; 10:571194. [PMID: 33392074 PMCID: PMC7775505 DOI: 10.3389/fonc.2020.571194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.
Collapse
Affiliation(s)
- Guang-Quan Liang
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Xin Zhou
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Xiong Lin
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Blocking of the IL-33/ST2 Signaling Axis by a Single-Chain Antibody Variable Fragment (scFv) Specific to IL-33 with a Defined Epitope. Int J Mol Sci 2020; 21:ijms21186953. [PMID: 32971846 PMCID: PMC7554688 DOI: 10.3390/ijms21186953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/03/2022] Open
Abstract
Interleukin 33 (IL-33) is an IL-1 family cytokine that plays a central role in immune system by regulating and initiating inflammatory responses. The binding of IL-33 to the suppressor of tumorigenicity 2 (ST2) receptor induces mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) pathways, thereby leading to inflammatory cytokines production in type 2 helper T cells and type 2 innate lymphoid cells. To develop an antibody specific to IL-33 with a defined epitope, we characterized a single-chain antibody variable fragments (scFvs) clone specific to IL-33, C2_2E12, which was selected from a human synthetic library of scFvs using phage display. Affinity (Kd) of C2_2E12 was determined to be 38 nM using enzyme-linked immunosorbent assay. C2_2E12 did not show cross-reactivity toward other interleukin cytokines, including closely related IL-1 family cytokines and unrelated proteins. Mutational scanning analysis revealed that the epitope of IL-33 consisted of residues 149–158 with key residues being L150 and K151 of IL-33. Structural modeling suggested that L150 and K151 residues are important for the interaction of IL-33 with C2_2E12, implicating that C2_2E12 could block the binding of ST2 to IL-33. Pull-down and in-cell assays supported that C2_2E12 can inhibit the IL-33/ST2 signaling axis. These results suggest that the scFv clone characterized here can function as a neutralizing antibody.
Collapse
|
6
|
Affinity improvement of the fully human anti‑TSLP recombinant antibody. Mol Med Rep 2019; 21:759-767. [PMID: 31974622 PMCID: PMC6947841 DOI: 10.3892/mmr.2019.10880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a potentially important target for the treatment of asthma and malignancies. However, a fully human antibody reactive with TSLP is currently unavailable for clinical use. In a previous study, a human anti-TSLP-single-chain antibody variable fragment (anti-TSLP-scFv) 84 was selected by phage display from a constructed human scFv library. In the present study, a computer simulation method was developed using Discovery Studio 4.5 software, to increase the affinity of anti-TSLP-scFv-84. Specific primers were designed and mutated DNA sequences of anti-TSLP-scFvs were obtained by overlap extension PCR. The mutant scFvs were expressed in pLZ16 and affinity-enhanced anti-TSLP-scFv-M4 was screened using ELISA. However, in general the scFvs have low stability and short half-lives in vivo. Therefore, scFv-84 and scFv-M4 were inserted into eukaryotic expression vectors (pcDNA3.1-sp-Fc and PMH3EN-sp-Fc) and then transfected into 293F cells to express anti-TSLP-scFv-Fc. ELISA and western blotting results indicated the size of the anti-TSLP-scFv-Fc to be ~50 kDa. Binding of anti-TSLP-scFv-Fc-M4 to TSLP was enhanced compared with the pre-mutated scFv-Fc-84. The affinity of the mutated recombinant antibody was determined using the BIAcore technique and found to be ~10-fold greater than the pre-mutated antibody.
Collapse
|
7
|
Thanongsaksrikul J, Srimanote P, Tongtawe P, Glab-Ampai K, Malik AA, Supasorn O, Chiawwit P, Poovorawan Y, Chaicumpa W. Identification and production of mouse scFv to specific epitope of enterovirus-71 virion protein-2 (VP2). Arch Virol 2018; 163:1141-1152. [PMID: 29356992 DOI: 10.1007/s00705-018-3731-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/01/2022]
Abstract
Enterovirus-71 (EV71) and coxsackievirus-A16 (CA16) frequently cause hand-foot-mouth disease (HFMD) epidemics among infants and young children. CA16 infections are usually mild, while EV71 disease may be fatal due to neurologic complications. As such, the ability to rapidly and specifically recognize EV71 is needed to facilitate proper case management and epidemic control. Accordingly, the aim of this study was to generate antibodies to EV71-virion protein-2 (VP2) by phage display technology for further use in specific detection of EV71. A recombinant peptide sequence of EV71-VP2, carrying a predicted conserved B cell epitope fused to glutathione-S-transferase (GST) (designated GST-EV71-VP2/131-160), was produced. The fusion protein was used as bait in in-solution biopanning to separate protein-bound phages from a murine scFv (MuscFv) phage display library constructed from an immunoglobulin gene repertoire from naïve ICR mice. Three phage-transformed E. coli clones (clones 63, 82, and 83) produced MuscFvs that bound to the GST-EV71-VP2/131-160 peptide. The MuscFv of clone 83 (MuscFv83), which produced the highest ELISA signal to the target antigen, was further tested. MuscFv83 also bound to full-length EV71-VP2 and EV71 particles, but did not bind to GST, full-length EV71-VP1, or the antigenically related CA16. MuscFv83 could be a suitable reagent for rapid antigen-based immunoassay, such as immunochromatography (ICT), for the specific detection and/or diagnosis of EV71 infection as well as epidemic surveillance.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/diagnosis
- Enterovirus Infections/virology
- Epitopes/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Escherichia coli/genetics
- Hand, Foot and Mouth Disease/diagnosis
- Hand, Foot and Mouth Disease/virology
- Humans
- Mice
- Mice, Inbred ICR
- Peptide Library
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- Jeeraphong Thanongsaksrikul
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand.
| | - Potjanee Srimanote
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Kittirat Glab-Ampai
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Nakhon Pathom, Thailand
| | - Oratai Supasorn
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Phatcharaporn Chiawwit
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Yong Poovorawan
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Nian S, Wu T, Ye Y, Wang X, Xu W, Yuan Q. Development and identification of fully human scFv-Fcs against Staphylococcus aureus. BMC Immunol 2016; 17:8. [PMID: 27129873 PMCID: PMC4850644 DOI: 10.1186/s12865-016-0146-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/19/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Staphylococcus aureus, a gram-positive pathogen, causes many human infections. Methicillin-resistant S. aureus (MRSA) is the most common drug-resistance bacteria. Nearly all MRSA bacteria are resistant to several drugs. Specific antibodies are the main components of the host's humoral immunity, and play a significant role in the process of the host's resistance to bacterial infection. RESULTS A single-chain variable fragment (scFv) library was constructed using mRNA from the peripheral blood mononuclear cells of S. aureus infected volunteers. After the scFv library DNA was transformed into Escherichia coli TG1, ~1.7 × 10(7) independent clones with full-length scFv inserts. The scFv library was screened by phage display for three rounds using S. aureus as an antigen. The single clones were chosen at random and the scFvs were expressed for enzyme-linked immunosorbent assay (ELISA) assessment. Approximately 50 % of the clones were positive with good binding activity to S. aureus. To improve the stability of scFvs, scFv-fragment crystallizable regions (-Fcs) were constructed and expressed in E. coli DH5α. The expressed scFv-Fcs were purified and identified by western blot. These antibodies were further characterized and analyzed for bioactivity. The results showed that the expression level and folding of scFv-Fcs induced at 25 °C without isopropyl β-D-1-thiogalactopyranoside (IPTG) were higher than that induced at 32 °C with 1.0 mmol/L IPTG. scFv-Fcs had good bioactivity and could specifically bind with S. aureus. CONCLUSION scFv-Fcs against S. aureus were successfully constructed and are good candidates for the development of future adjunctive therapy for severe S. aureus infections.
Collapse
Affiliation(s)
- Siji Nian
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China
| | - Tong Wu
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China
| | - Yingchun Ye
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China
| | - Xu Wang
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Sichuan medical university, Room 218, Hanguang building, No 319, Zhongshan road, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
9
|
Ye Y, Nian S, Xu W, Wu T, Wang X, Gao Y, Yuan Q. Construction and expression of human scFv-Fc against interleukin-33. Protein Expr Purif 2015; 114:58-63. [PMID: 26112138 DOI: 10.1016/j.pep.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/05/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family and the ligand of orphan ST2 molecules. IL-33 is widely expressed in multiple tissues and cells, and mainly involved in regulating Th2 immune and inflammatory responses. Inhibiting IL-33 signaling pathways relieves the symptoms of allergic inflammation, indicating that IL-33 is a potential target for the treatment of allergic diseases. In this study, the recombinant vectors SP-scFv-Fc/pcDNA3.1 and SP-scFv-Fc/PMH3(EN) were constructed to express a human scFv-Fcs against IL-33. The size of the inserted SP-scFv-Fc was approximately 1540bp. The RT-PCR results showed that SP-scFv-Fcs were successfully transfected into CHO K1 cells. Western blot analysis indicated specific binding of the expressed scFv-Fcs fusion protein (approximately 60kDa under reduced condition) with a goat anti-human IgG1 Fc antibody. The expression level of the scFv-Fcs from SP-scFv-Fc/PMH3(EN) was higher than that from SP-scFv-Fc/pcDNA3.1. A single high-expressing cell line was selected after three rounds of screening and the fusion protein was expressed in a suspension culture in serum-free medium. The level of expression products reached 20mg/L and the expressed and purified scFvs was further characterized and analyzed for bioactivity and functionality. The recombinant vectors for eukaryotic expression of scFv-Fcs against IL-33 were successfully constructed and the expressed scFv-Fcs was shown to be a suitable candidate for the development of a new therapy for allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Yingchun Ye
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Siji Nian
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Wenfeng Xu
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Tong Wu
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Xu Wang
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Yan Gao
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Department of Basic Medicine, Luzhou Medical College, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|