1
|
Song HJ, Seol A, Park J, Kim JE, Kim TR, Park KH, Park ES, Lim SJ, Wang SH, Sung JE, Choi Y, Lee H, Hwang DY. Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones ( Pinus densiflora) in Sprague-Dawley Rats with Loperamide-Induced Constipation. Antioxidants (Basel) 2024; 14:37. [PMID: 39857371 PMCID: PMC11762744 DOI: 10.3390/antiox14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of Pinus densiflora). MPC contained several bioactive compounds, including diterpenoid compounds such as dehydroabietic acid, taxodone, and ferruginol. In addition, it exhibited high scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. These effects of MPC successfully reflected the improvement in nicotinamide adenine dinucleotide phosphate oxidase (NADP) H oxidase transcription, superoxide dismutase (SOD) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation levels in the mid colon of Lop+MPC-treated SD rats. Furthermore, significant improvements in the stool parameters, gastrointestinal (GI) transit, intestine length, and histopathological structure of the mid colon were detected in the Lop-induced constipation rats after MPC treatment. The other parameters, including the regulators for the adherens junction (AJ) and tight junction (TJ), and GI hormone secretion for laxative effects, were improved significantly in Lop+MPC-treated SD rats. These effects were also verified in Lop+MPC-treated primary rat intestine smooth muscle cells (pRISMCs) through analyses for antioxidant defense mechanisms. Overall, the finding of this study offers novel scientific evidence that MPC could be considered as a significant laxative for chronic constipation based on its antioxidant activity.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ayun Seol
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Jeong Lim
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Su-Ha Wang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Ji-Eun Sung
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Youngwoo Choi
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| | - Heeseob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea; (J.P.); (H.L.)
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (A.S.); (J.-E.K.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (S.-J.L.); (S.-H.W.); (J.-E.S.); (Y.C.)
| |
Collapse
|
2
|
Zhao Z, Li W, Tran TT, Loo SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens. BMC Microbiol 2024; 24:104. [PMID: 38539071 PMCID: PMC11312844 DOI: 10.1186/s12866-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.
Collapse
Affiliation(s)
- Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - The Thien Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Park J, Kim JE, Jin YJ, Roh YJ, Song HJ, Seol A, Park SH, Seo S, Lee H, Hwang DY. Anti-Atopic Dermatitis Effects of Abietic Acid Isolated from Rosin under Condition Optimized by Response Surface Methodology in DNCB-Spread BALB/c Mice. Pharmaceuticals (Basel) 2023; 16:ph16030407. [PMID: 36986507 PMCID: PMC10054120 DOI: 10.3390/ph16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Abietic acid (AA) is known to have beneficial effects on inflammation, photoaging, osteoporosis, cancer, and obesity; however, its efficacy on atopic dermatitis (AD) has not been reported. We investigated the anti-AD effects of AA, which was newly isolated from rosin, in an AD model. To achieve this, AA was isolated from rosin under conditions optimized by response surface methodology (RSM), and its effects on cell death, iNOS-induced COX-2 mediated pathway, inflammatory cytokine transcription, and the histopathological skin structure were analyzed in 2,4-dinitrochlorobenzene (DNCB)-treated BALB/c mice after treatment with AA for 4 weeks. AA was isolated and purified through isomerization and reaction-crystallization under the condition (HCl, 2.49 mL; reflux extraction time, 61.7 min; ethanolamine, 7.35 mL) established by RSM, resulting in AA with a purity and extraction yield of 99.33% and 58.61%, respectively. AA exhibited high scavenging activity against DPPH, ABTS, and NO radicals as well as hyaluronidase activity in a dose-dependent manner. The anti-inflammatory effects of AA were verified in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages through amelioration of the inflammatory response, including NO production, iNOS-induced COX-2 mediated pathway activation, and cytokine transcription. In the DNCB-treated AD model, the skin phenotypes, dermatitis score, immune organ weight, and IgE concentration were significantly ameliorated in the AA cream (AAC)-spread groups compared to the vehicle-spread group. In addition, AAC spread ameliorated DNCB-induced deterioration of skin histopathological structure through the recovery of the thickness of the dermis and epidermis and the number of mast cells. Furthermore, activation of the iNOS-induced COX-2 mediated pathway and increased inflammatory cytokine transcription were ameliorated in the skin of the DNCB+AAC-treated group. Taken together, these results indicate that AA, newly isolated from rosin, exhibits anti-AD effects in DNCB-treated AD models, and has the potential to be developed as a treatment option for AD-related diseases.
Collapse
Affiliation(s)
- Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Heeseob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
4
|
Lee SJ, Roh YJ, Kim JE, Jin YJ, Song HJ, Seol A, Park SH, Douangdeuane B, Souliya O, Choi SI, Hwang DY. Protective Effects of Dipterocarpus tuberculatus in Blue Light-Induced Macular Degeneration in A2E-Laden ARPE19 Cells and Retina of Balb/c Mice. Antioxidants (Basel) 2023; 12:antiox12020329. [PMID: 36829888 PMCID: PMC9952417 DOI: 10.3390/antiox12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against blue light (BL)-caused macular degeneration, alterations in the antioxidant activity, apoptosis pathway, neovascularization, inflammatory response, and retinal degeneration were analyzed in A2E-laden ARPE19 cells and Balb/c mice after exposure of BL. Seven bioactive components, including 2α-hydroxyursolic acid, ε-viniferin, asiatic acid, bergenin, ellagic acid, gallic acid and oleanolic acid, were detected in MED. MED exhibited high DPPH and ABTS free radical scavenging activity. BL-induced increases in intracellular reactive oxygen species (ROS) production and nitric oxide (NO) concentration were suppressed by MED treatment. A significant recovery of antioxidant capacity by an increase in superoxide dismutase enzyme (SOD) activity, SOD expression levels, and nuclear factor erythroid 2-related factor 2 (NRF2) expression were detected as results of MED treatment effects. The activation of the apoptosis pathway, the expression of neovascular proteins, cyclooxygenase-2 (COX-2)-induced inducible nitric oxide synthase (iNOS) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was remarkably inhibited in the MED treated group compared to the Vehicle-treated group in the AMD cell model. Furthermore, MED displayed protective effects in BL-induced retinal degeneration through improvement in the thickness of the whole retina, outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) in Balb/c mice. Taken together, these results indicate that MED exhibits protective effects in BL-induced retinal degeneration and has the potential in the future to be developed as a treatment option for dry AMD with atrophy of retinal pigment epithelial (RPE) cells.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane 0103, Laos
| | - Sun Il Choi
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| |
Collapse
|
5
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
6
|
Quach NT, Vu THN, Nguyen TTA, Ha H, Ho PH, Chu-Ky S, Nguyen LH, Van Nguyen H, Thanh TTT, Nguyen NA, Chu HH, Phi QT. Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56. World J Microbiol Biotechnol 2022; 38:173. [PMID: 35920928 DOI: 10.1007/s11274-022-03364-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Poly-γ‑glutamic acid (γ‑PGA) produced by Bacillus species is a natural biopolymer, which is widely used in various fields including food, pharmaceuticals, and cosmetics. In this study, the screening of 19 Bacillus isolates derived from traditionally fermented foods revealed that Bacillus velezensis VCN56 was the most potent γ‑PGA producer. The maximum concentration of crude γ‑PGA was 32.9 ± 1.5 g/L in the PGA-3 medium containing glycerol, citric acid, sodium glutamate, NH4Cl, and starch. The resulting γ-PGA was purified and then characterized by HPLC, FTIR, and 1H-NMR analyses. Molecular weight of purified γ‑PGA was estimated to be 98 kDa with a polydisperse index of 2.04. Notably, the pure γ‑PGA showed significant in vitro antioxidant scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (72.0 ± 1.5%), hydroxyl (81.0 ± 0.6%), and superoxide (43.9 ± 0.8%) radicals at the concentration of 4 mg/mL. Using whole-genome sequencing, the genetic organization of pgs operon responsible for γ‑PGA biosynthesis in B. velezensis VCN56 differs from those in other Bacillus genomes. Further genome analysis revealed metabolic pathways for γ-PGA production and degradation. For the first time, the present study provides a better understanding of γ-PGA with a promising antioxidant activity produced by B. velezensis at the phenotypic, biochemical, and genomic levels, which hold potential applications in the foods, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phu-Ha Ho
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Son Chu-Ky
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Lan-Huong Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Hai Van Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu Thuy Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Ngoc Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
7
|
Simultaneous production of poly-γ-glutamic acid and 2,3-butanediol by a newly isolated Bacillus subtilis CS13. Appl Microbiol Biotechnol 2020; 104:7005-7021. [PMID: 32642915 DOI: 10.1007/s00253-020-10755-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/26/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
Abstract
Bacillus subtilis naturally produces large amounts of 2,3-butanediol (2,3-BD) as a main by-product during poly-γ-glutamic acid (γ-PGA) production. 2,3-BD is a promising platform chemical in various industries, and co-production of the two chemicals has great economic benefits. Co-production of γ-PGA and 2,3-BD by a newly isolated B. subtilis CS13 was investigated here. The fermentation medium and culture parameters of the process were optimized using statistical methods. It was observed that sucrose, L-glutamic acid, ammonium citrate, and MgSO4·7H2O were favorable for γ-PGA and 2,3-BD co-production at culture pH of 6.5 and 37 °C. An optimal medium composed of 119.8 g/L sucrose, 48.8 g/L L-glutamic acid, 21.1 g/L ammonium citrate, and 3.2 g/L MgSO4·7H2O was obtained by response surface methodology (RSM). The results show that the titers of γ-PGA and 2,3-BD reached 27.8 ± 0.9 g/L at 24 h and 57.1 ± 1.3 g/L at 84 h with the optimized medium, respectively. γ-PGA and 2,3-BD production by B. subtilis CS13 was significantly enhanced in fed-batch fermentations. γ-PGA (36.5 ± 1.1 g/L, productivity of 1.22 ± 0.04 g/L/h) and 2,3-BD concentrations (119.6 ± 2.8 g/L, productivity of 2.49 ± 0.66 g/L/h) were obtained in the optimized medium with feeding sucrose. The co-production of 2,3-BD and γ-PGA provides a new perspective for industrial production of γ-PGA and 2,3-BD. Key points • A strategy for co-production of γ-PGA and 2,3-BD was developed. • The culture parameters for the co-production of γ-PGA and 2,3-BD were studied. • RSM was used to optimize the medium for γ-PGA and 2,3-BD co-production. • 36.5 g/L γ-PGA and 119.6 g/L 2,3-BD were obtained from the optimum medium in fed-batch fermentation.
Collapse
|
8
|
Fang J, Huan C, Liu Y, Xu L, Yan Z. Bioconversion of agricultural waste into poly-γ-glutamic acid in solid-state bioreactors at different scales. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:939-948. [PMID: 31855694 DOI: 10.1016/j.wasman.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
With the purpose of developing a novel approach of agricultural waste treatment and overcoming bottlenecks for upscaling solid-state fermentation processes, the type of aerated, continuously stirred solid-state bioreactors were used for the production of γ-PGA by Bacillus amyloliquefaciens JX-6. Using corn stalk and soybean meal, the most common agricultural waste in China, as solid substrates, the maximum production of γ-PGA was 116.88 ± 5.05 g/kg and 102.48 ± 3.30 g/kg in 50 L and 150 L bioreactors, respectively. Production of γ-PGA in 50 L bioreactor was higher than in 150 L bioreactor, demonstrating that a reduction in γ-PGA production occurred as the fermentation system enlarged. An analysis of the interactions among fermentation parameters (temperature, moisture, and pH), γ-PGA production, solid substrates and bacterial communities indicated that different bioreactor capacities caused changes in fermentation parameters and bacterial communities, which in turn affected substrate utilization and γ-PGA production. Overall, obtaining considerable amounts of γ-PGA under non-sterilized fermentation expressed that JX-6 has excellent abilities to adapt to these substrates and conditions. Bioconversion of agricultural waste into γ-PGA in scale-up fermentation was successfully conducted by creating a more stable and suitable fermentation environment in bioreactors.
Collapse
Affiliation(s)
- Junnan Fang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - ChenChen Huan
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lishang Xu
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Ajayeoba TA, Dula S, Ijabadeniyi OA. Properties of Poly-γ-Glutamic Acid Producing- Bacillus Species Isolated From Ogi Liquor and Lemon- Ogi Liquor. Front Microbiol 2019; 10:771. [PMID: 31057503 PMCID: PMC6481274 DOI: 10.3389/fmicb.2019.00771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Poly-γ-glutamic acid (γPGA) is a natural and promising biopolymer synthesized by Bacillus spp. during fermentation. This study isolated Bacillus spp. from ogi steep liquor (OSL) and lemon-ogi steep liquor (LOSL) using standard methods and determined the γPGA-producing ability. The antimicrobial and angiotensin-converting enzyme (ACE) inhibitory activities of γPGA polymer were evaluated and isolates were sequenced. Four isolates (TA004, TA006, TA011, TA012) selected based on phenotypic characterization and stickiness (<15 cm) showed antibacterial activity against different pathogens with the highest activity found in TA004 (22.5 mm) and least in TA011 (16.6 mm). Furthermore, time-kill assay showed that the combined γPGA polymer was more effective and demonstrated bactericidal activity over individual γPGA which are bacteriostatic in nature. All γPGA polymer exhibited ACE properties except TA011. The highest IC50 was observed in TA006 (0.11 mg/ml) and least in TA004 (0.35 mg/ml). TA004 had the highest molecular weight (261 kDa) while TA011 had the least (194.97 kDa). In addition, all γPGA exhibited characteristic peaks at 3413-3268 cm-1 and 1722-1664 cm-1 that corresponded to amine N-H stretching intensities and C = O stretching in COOH. Bacillus isolates were identified as TA004 (B. subtilis-GenBank: MH782061), TA006 (B. amyloliquefaciens- GenBank: MH782075), TA011 (B. subtilis- GenBank: MH782088), TA012 (B. subtilis- GenBank: MH782083). OSL and LOSL have the potential for developing functional foods with a valuable effect on health.
Collapse
Affiliation(s)
- Titilayo A. Ajayeoba
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | | | |
Collapse
|
10
|
Chukeatirote E, Phongtang W, Kim J, Jo A, Jung LS, Ahn J. Significance of bacteriophages in fermented soybeans: A review. Biomol Concepts 2018; 9:131-142. [PMID: 30481150 DOI: 10.1515/bmc-2018-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are ubiquitous and have been reported to have been found in many food products. Their presence is important as they have the ability to interact with their bacterial host in food matrices. Fermented soybean products, one of the most widely consumed ethnic foods among Asian people, are prepared naturally and include Japanese Natto, Indian Kinema, Korean Chongkukjang and Thai Thua Nao. This review highlights bacteriophages which have been isolated from fermented soybean products and also includes an overview of their diversity, occurrence as well as their significance.
Collapse
Affiliation(s)
| | | | - Jeongjin Kim
- Department of Medical Biomaterials Engineering, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ara Jo
- Department of Medical Biomaterials Engineering, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Lae-Seung Jung
- Department of Medical Biomaterials Engineering, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
11
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
12
|
Lee DH, Kim MJ, Park SH, Song EJ, Nam YD, Ahn J, Jang YJ, Ha TY, Jung CH. Bioavailability of Isoflavone Metabolites After Korean Fermented Soybean Paste (Doenjang) Ingestion in Estrogen-Deficient Rats. J Food Sci 2018; 83:2212-2221. [PMID: 30035387 DOI: 10.1111/1750-3841.14214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
Abstract
Doenjang (DJ), a fermented soybean product used in soups, stews, and sauces, contains high quality proteins, fats, vitamins, minerals, and other functional ingredients, including isoflavones and saponins. This study investigated whether DJ improves the bioavailability of isoflavones compared to boiled soybean (BS) in sham-operated or ovariectomized (OVX) rats. We also examined the effects of ovariectomy on the differences in bioavailability of isoflavones. BS and DJ were administered in sham-operated and OVX rats, and blood samples were collected. Twenty-six isoflavone-derived metabolites were identified. Pharmacokinetic analysis revealed that T1/2 values of the individual isoflavone metabolites were most different in sham and OVX rats, even after the same sample treatment; however, Tmax values were significant different in a few metabolites such as daidzein 4'-glucuronide, daidzein 4'-sulfate, 2-(4-hydroxyphenyl)propionic acid, and benzoic acid. For most of the individual metabolites, Cmax was higher in both sham and OVX rats administered BS than those administered DJ. The AUC was generally lower in OVX rats than in sham rats. The AUC of daidzein and genistein in BS-fed sham rats was approximately 1.7-fold higher than those administered DJ, whereas glycitein was detected only in the DJ group. No significant differences in AUC of daidzein and genistein were observed between BS and DJ administration in OVX rats, although the total isoflavone content of DJ was lower; thus, DJ-mediated isoflavone bioavailability was more effective in OVX rats. Similar tendencies were observed for phase II and gut-mediated metabolites. These results suggested that DJ enhanced isoflavone bioavailability under estrogen deficiency, even when the total isoflavone content was decreased by fermentation.
Collapse
Affiliation(s)
- Da-Hye Lee
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Min Jung Kim
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - So-Hyun Park
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Yong-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Jiyun Ahn
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Young-Jin Jang
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Tae-Youl Ha
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Chang Hwa Jung
- Research Group of Metabolic Mechanism, Korea Food Research Inst., Wanju-gun, Jeonbuk 55365, Republic of Korea
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Wanju-gun, Jeonbuk 55365, Republic of Korea
| |
Collapse
|
13
|
Lee JM, Kim JH, Kim KW, Lee BJ, Kim DG, Kim YO, Lee JH, Kong IS. Physicochemical properties, production, and biological functionality of poly-γ-d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. Int J Biol Macromol 2018; 108:598-607. [DOI: 10.1016/j.ijbiomac.2017.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/25/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
14
|
Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation. Int J Mol Sci 2017; 18:E2644. [PMID: 29215550 PMCID: PMC5751247 DOI: 10.3390/ijms18122644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu city 300, Taiwan.
| | - Sikhumbuzo Charles Kunene
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| |
Collapse
|
15
|
Microbial production of poly-γ-glutamic acid. World J Microbiol Biotechnol 2017; 33:173. [DOI: 10.1007/s11274-017-2338-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
16
|
Guo Z, Yang N, Zhu C, Gan L. Exogenously applied poly-γ-glutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6592-6598. [PMID: 28078521 DOI: 10.1007/s11356-016-8295-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/19/2016] [Indexed: 05/22/2023]
Abstract
Salt stress is a main abiotic stress that limits agricultural productivity in many parts of the world. To investigate whether poly-γ-glutamic acid (γ-PGA) can alleviate the negative effects of salt stress on wheat, a foliar application of 400 mg/L γ-PGA was applied to wheat seedlings, which were then subjected to 150 mM NaCl. Our results showed that after application of γ-PGA, the plant height, the plant weight, and the antioxidant enzymes including superoxide dismutase, peroxidase, and catalase were significantly increased compared with the treatment of 150 mM NaCl alone. Meanwhile, γ-PGA application also resulted in high accumulation of K+ and decreased storage of Na+ in wheat leaves. These results suggest that γ-PGA treatment may improve salt tolerance of wheat by diminishing ionic imbalances and enhancing antioxidant capacity. Our results indicate that exogenous γ-PGA could alleviate the damage caused by salt stress.
Collapse
Affiliation(s)
- Zhengfei Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Eom JS, Lee SY, Choi HS. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes. J Food Sci 2014; 79:M2279-87. [PMID: 25359543 DOI: 10.1111/1750-3841.12569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus.
Collapse
Affiliation(s)
- Jeong Seon Eom
- Dept. of Agro-food Resources, Natl. Academy of Agricultural Science, RDA, Suwon, Gyeonggi-do 441-853, Korea
| | | | | |
Collapse
|
18
|
Lee NR, Go TH, Lee SM, Jeong SY, Park GT, Hong CO, Son HJ. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7. Saudi J Biol Sci 2014; 21:153-8. [PMID: 24600308 PMCID: PMC3942858 DOI: 10.1016/j.sjbs.2013.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022] Open
Abstract
We investigated the functionality of poly-γ-glutamic acid (γ-PGA), which is produced by Bacillus subtilis D7, for its potential applications in medicine and cosmetics. The γ-PGA had angiotensin-converting enzyme (ACE) inhibition activity. ACE inhibition activity was dependent on the γ-PGA concentration; the highest ACE inhibition activity was observed at 1.25 mg/l of γ-PGA. IC50 (0.108 mg/ml) of the γ-PGA was lower than that of standard ACE inhibitory drug, N-[(S)-mercapto-2-methylpropionyl]-L-proline (0.247 mg/ml). The γ-PGA also had water-holding capacity and hygroscopicity. Furthermore, the γ-PGA inhibited growth of some pathogenic bacteria, including Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Klebsiella pneumonia and Esherichia coli. The γ-PGA exhibited a good metal adsorption capacity; Cr (VI) adsorption capacity of γ-PGA increased with decreasing pH, and the maximal adsorption was observed at pH 2. Our results suggest that γ-PGA may be expected to be widely applied in cosmetics, biomedical and environmental industries with the feature of being less harmful to humans and the environment.
Collapse
Affiliation(s)
- Na-Ri Lee
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Tae-Hun Go
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Sang-Mee Lee
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Seong-Yun Jeong
- Department of Medical Life Science, Catholic University of Daegu, Daegu 712-784, Republic of Korea
| | - Geun-Tae Park
- Research and University-Industry Cooperation, Pusan National University, Busan 609-735, Republic of Korea
| | - Chang-Oh Hong
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University, Miryang 627-706, Republic of Korea
| |
Collapse
|