1
|
Li Y, Yi J, Liu K, Liu X, Yangzom C, Pan J, Iqbal M, Hu L, Tang Z, Li Y, Zhang H. Mn 2O 3 NPs-induced liver injury is potentially associated with gut microbiota dysbiosis in broiler chicken. Food Chem Toxicol 2025:115487. [PMID: 40288515 DOI: 10.1016/j.fct.2025.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Mn2O3 nanometer particles(Mn2O3 NPs), a new material, is widely used in medicine, electrochemical sensing and energy storage fields. The widespread use of Mn2O3 NPs has caused health concerns, and it is necessary to clarify the toxic mechanism of Mn2O3 NPs exposure. Our findings showed that Mn2O3 NPs exposure could lead to liver histological abnormalities, mitochondrial dysfunction in liver, as well as mitochondrial-mediated apoptosis, autophagy and mitochondrial dynamics disorder, and eventually lead to liver injury. At the same time, the ileal epithelium suffered physiological damage and inflammation after Mn2O3 NPs exposure, and the expression levels of genes and proteins related to intestinal barrier function (MUC1 ZO-1 Claudin1 and Occludin) were significantly down-regulated. Meanwhile, 16s sequencing analysis of intestinal bacteria showed that Mn2O3 NPs exposure caused significant changes in intestinal flora abundance. The Firmicutes/Bacteroidetes ratio increased, and the abundance of probiotics (Bacteroides, Bifidobacterium, Faecalibacterium) decreased, while the abundance of harmful bacteria (Streptococcus, Enterococcus, Pseudomonas) increased. The changes in these microflorae may potentially impact the development of liver injury. Altogether, these results provide novel insights into the potential mechanism of Mn2O3 NPs related hepatotoxicity induced by gut microbiota via the gut-liver axis, and contribute to a better interpretation of the health impact of Mn2O3 NPs.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur-63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Rai AK, Yadav M, Duary RK, Shukla P. Gut Microbiota Modulation Through Dietary Approaches Targeting Better Health During Metabolic Disorders. Mol Nutr Food Res 2025:e70033. [PMID: 40195821 DOI: 10.1002/mnfr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
The impact of gut microbiota is known to play a significant role in an individual's metabolism and health. Many harmful food products or dietary imbalance adversely affect human health and changing lifestyle, environmental factors, and food habits may have their effect on gut microbiota. It has emerged that gut microbiota is regarded as an emerging metabolic organ, which is dependent on individual's diet and its composition. This review discusses the significance of lactic acid bacteria as a prominent inhabitant in the gut microbiota and the role of probiotics, prebiotics, and polyphenols to improve human health and metabolism. The role of fermented foods as an important source of probiotics and bioactive molecules is also discussed along with the role of gut microbiota in metabolic disorders like dyslipidemia, obesity, hypercholesterolemia, cancer, and hypertension. Finally, the review gives insights into the effective therapeutic prospects through gut microbiota alterations to tackle these metabolic disorders.
Collapse
Affiliation(s)
- Amit Kumar Rai
- BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI), SAS Nagar, Mohali, India
| | | | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Yincharoen P, Mordmuang A, Techarang T, Tangngamsakul P, Kaewubon P, Atipairin P, Janwanitchasthaporn S, Goodla L, Karnjana K. Microbiome and biofilm insights from normal vs tumor tissues in Thai colorectal cancer patients. NPJ Precis Oncol 2025; 9:98. [PMID: 40185839 PMCID: PMC11971325 DOI: 10.1038/s41698-025-00873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent global malignancy with complex etiologies, including microbiota alterations. This study investigates gut microbiota and biofilm-producing bacteria in 35 Thai CRC patients, analyzing paired normal and tumor biopsy samples. Bacterial DNA from the V3-V4 region of 16S rRNA was sequenced, and biofilms were visualized via scanning electron microscopy and fluorescence in situ hybridization (FISH). Results revealed Firmicutes as the dominant phylum, followed by Bacteroidota, Proteobacteria, and Fusobacteriota, with Fusobacteriota and Bacteroidota notably enriched in left-sided CRC. Key biofilm producers-Bacteroides fragilis, Fusobacterium nucleatum, and Pasteurella stomatis-showed significantly higher gene expression in tumor tissues. Dense biofilms and higher Fusobacterium abundance, localized within the crypts of Lieberkuhn, were observed in CRC tissues. These findings highlight CRC-associated microbiota alterations and pathogenic biofilm production, emphasizing a spatial relationship between tumor location and microbial distribution, with potential implications for understanding CRC pathogenesis and therapeutic targeting.
Collapse
Affiliation(s)
- Pirada Yincharoen
- Department of Clinical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Auemphon Mordmuang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Panus Tangngamsakul
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Paijit Atipairin
- Department of Surgery, Thasala Hospital, Nakhon Si Thammarat, Thailand
| | | | - Lavanya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA
| | - Kulwadee Karnjana
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
4
|
Zhou J, Zhang X, Wang C, Xu X, Zhang J, Ge Y, Li J, Yang F, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula combined with 5-Fluorouracil alleviates colitis-associated tumorigenesis via inhibition of EGFR/AKT/ERK signaling pathway and regulation of intestinal flora. Int J Biol Macromol 2025; 308:142655. [PMID: 40158564 DOI: 10.1016/j.ijbiomac.2025.142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Inulin-type fructan CP-A, the main component of Codonopsis pilosula polysaccharides, has been found to have therapeutic effects on ulcerative colitis (UC). Herein, we established a colitis-associated cancer (CAC) mouse model by azomethane (AOM) and dextran sulfate sodium (DSS) and selected mouse colon cancer cells CT-26 to explore the therapeutic effects of the combined administration of CP-A and 5-fluorouracil (5-FU) in vivo and in vitro. High-throughput transcriptomics sequencing technology was used to identify differentially expressed genes (DEGs) in the mouse colon and enrich related pathways. 16S rRNA gene sequencing technology was used for gut microbiota research to identify microbial changes in mouse feces. Short-chain fatty acid (SCFA) content was identified in the mouse colon using gas chromatography-mass spectroscopy (GC-MS). In vivo experiments showed that compared with untreated CAC mice, those treated with the combined administration of CP-A and 5-FU had significantly restored body weight, fewer tumors, smaller tumor volume, and reduced disease activity index (DAI) and histopathological scores. The combination of CP-A and 5-FU increased the anti-inflammatory cytokine interleukin 10 (IL-10) and inhibited the expression of pro-inflammatory cytokines interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-gamma (IFN-γ). In vitro experiments indicated that a combination of CP-A and 5-FU promoted the apoptosis of CT-26 cells. The results of transcriptomics studies suggested that the therapeutic effect of the combined administration of CP-A and 5-FU on CAC may be related to the EGFR/AKT/ERK pathway. Both in vivo and in vitro experiments verified the regulatory effect of the combined administration of CP-A and 5-FU on the EGFR/AKT/ERK pathway. Moreover, the intestinal flora experiment manifested that compared with untreated CAC mice, the combined CP-A and 5-FU group had a more stable intestinal microbiota composition, and the combined administration of CP-A and 5-FU increased the abundance of SCFAs. Our experimental findings have demonstrated that the combination of CP-A and 5-FU exhibits promising efficacy in the treatment of CAC, warranting further clinical investigation in the future.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China; Shanxi Engineering Research Center of Characteristic Drug Development, School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xuepeng Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Changjian Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiexin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jingwen Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yuhui Ge
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiankuan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China; Shanxi Engineering Research Center of Characteristic Drug Development, School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China; Shanxi Engineering Research Center of Characteristic Drug Development, School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| | - Jianping Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China; Shanxi Engineering Research Center of Characteristic Drug Development, School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Ahrend H, Buchholtz A, Stope MB. Microbiome and Mucosal Immunity in the Intestinal Tract. In Vivo 2025; 39:17-24. [PMID: 39740876 PMCID: PMC11705094 DOI: 10.21873/invivo.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 01/02/2025]
Abstract
The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance. Pathological changes in this system often cause chronic inflammatory bowel diseases including Crohn's disease and ulcerative colitis. This review article highlights the complex interaction between commensal microorganisms, the intestinal microbiome, and the intestinal epithelium-localized local immune system. The main functions of the human intestinal microbiome include (i) protection against pathogenic microbial colonization, (ii) maintenance of the barrier function of the intestinal epithelium, (iii) degradation and absorption of nutrients and (iv) active regulation of the intestinal immunity. The local intestinal immune system consists primarily of macrophages, antigen-presenting cells, and natural killer cells. These cells regulate the commensal intestinal microbiome and are in turn regulated by signaling factors of the epithelial cells and the microbiome. Deregulated immune responses play an important role and can lead to both reduced activity of the commensal microbiome and pathologically increased activity of harmful microorganisms. These aspects of chronic inflammatory bowel disease have become the focus of attention in recent years. It is therefore important to consider the immunological-microbial context in both the diagnosis and treatment of inflammatory bowel diseases. A promising holistic approach would include the most comprehensive possible diagnosis of the immune and microbiome status of the patient, both at the time of diagnostics and during therapy.
Collapse
Affiliation(s)
- Hannes Ahrend
- Department of Medicine, Israelite Hospital Hamburg, Hamburg, Germany
| | - Anja Buchholtz
- Department of Medicine, Israelite Hospital Hamburg, Hamburg, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
8
|
Yu J, Li L, Tao X, Chen Y, Dong D. Metabolic interactions of host-gut microbiota: New possibilities for the precise diagnosis and therapeutic discovery of gastrointestinal cancer in the future-A review. Crit Rev Oncol Hematol 2024; 203:104480. [PMID: 39154670 DOI: 10.1016/j.critrevonc.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Gastrointestinal (GI) cancer continues to pose a significant global health challenge. Recent advances in our understanding of the complex relationship between the host and gut microbiota have shed light on the critical role of metabolic interactions in the pathogenesis and progression of GI cancer. In this study, we examined how microbiota interact with the host to influence signalling pathways that impact the formation of GI tumours. Additionally, we investigated the potential therapeutic approach of manipulating GI microbiota for use in clinical settings. Revealing the complex molecular exchanges between the host and gut microbiota facilitates a deeper understanding of the underlying mechanisms that drive cancer development. Metabolic interactions hold promise for the identification of microbial signatures or metabolic pathways associated with specific stages of cancer. Hence, this study provides potential strategies for the diagnosis, treatment and management of GI cancers to improve patient outcomes.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
9
|
Shi Y, Liu L, Chen J, Wylie KM, Wylie TN, Stout MJ, Wang C, Zhang H, Shih YCT, Xu X, Zhang A, Park SH, Jiang H, Liu L. Simplified methods for variance estimation in microbiome abundance count data analysis. Front Genet 2024; 15:1458851. [PMID: 39498319 PMCID: PMC11532193 DOI: 10.3389/fgene.2024.1458851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
The complex nature of microbiome data has made the differential abundance analysis challenging. Microbiome abundance counts are often skewed to the right and heteroscedastic (also known as overdispersion), potentially leading to incorrect inferences if not properly addressed. In this paper, we propose a simple yet effective framework to tackle the challenges by integrating Poisson (log-linear) regression with standard error estimation through the Bootstrap method and Sandwich robust estimation. Such standard error estimates are accurate and yield satisfactory inference even if the distributional assumption or the variance structure is incorrect. Our approach is validated through extensive simulation studies, demonstrating its effectiveness in addressing overdispersion and improving inference accuracy. Additionally, we apply our approach to two real datasets collected from the human gut and vagina, respectively, demonstrating the wide applicability of our methods. The results highlight the efficacy of our covariance estimators in addressing the challenges of microbiome data analysis. The corresponding software implementation is publicly available at https://github.com/yimshi/robustestimates.
Collapse
Affiliation(s)
- Yiming Shi
- Institute for Informatics Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Lili Liu
- Institute for Informatics Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University, St. Louis, MO, United States
| | - Todd N. Wylie
- Department of Pediatrics, Washington University, St. Louis, MO, United States
| | - Molly J. Stout
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Chan Wang
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY, United States
| | - Haixiang Zhang
- Center for Applied Mathematics, Tianjin University, Tianjin, China
| | - Ya-Chen T. Shih
- Department of Radiation Oncology, Department of Health Policy and Management, School of Medicine, School of Public Health, University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Xiaoyi Xu
- Institute for Informatics Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Ai Zhang
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, and the Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sung Hee Park
- Institute for Informatics Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL, United States
| | - Lei Liu
- Institute for Informatics Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Liu G, Su L, Kong C, Huang L, Zhu X, Zhang X, Ma Y, Wang J. Improved diagnostic efficiency of CRC subgroups revealed using machine learning based on intestinal microbes. BMC Gastroenterol 2024; 24:315. [PMID: 39289618 PMCID: PMC11409688 DOI: 10.1186/s12876-024-03408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer that causes millions of deaths worldwide each year. At present, numerous studies have confirmed that intestinal microbes play a crucial role in the process of CRC. Additionally, studies have shown that CRC can be divided into several consensus molecular subtypes (CMS) based on tumor gene expression, and CRC microbiomes have been reported related to CMS. However, most previous studies on intestinal microbiome of CRC have only compared patients with healthy controls, without classifying of CRC patients based on intestinal microbial composition. RESULTS In this study, a CRC cohort including 339 CRC samples and 333 healthy controls was selected as the discovery set, and the CRC samples were divided into two subgroups (234 Subgroup1 and 105 Subgroup2) using PAM clustering algorithm based on the intestinal microbial composition. We found that not only the microbial diversity was significantly different (Shannon index, p-value < 0.05), but also 129 shared genera altered (p-value < 0.05) between the two CRC subgroups, including several marker genera in CRC, such as Fusobacterium and Bacteroides. A random forest algorithm was used to construct diagnostic models, which showed significantly higher efficiency when the CRC samples were divided into subgroups. Then an independent cohort including 187 CRC samples (divided into 153 Subgroup1 and 34 Subgroup2) and 123 healthy controls was chosen to validate the models, and confirmed the results. CONCLUSIONS These results indicate that the divided CRC subgroups can improve the efficiency of disease diagnosis, with various microbial composition in the subgroups.
Collapse
Affiliation(s)
- Guang Liu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Guangdong Hongyuan Pukang Medical Technology Co, Ltd, Guangzhou, 510000, China
| | - Lili Su
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Guangdong Hongyuan Pukang Medical Technology Co, Ltd, Guangzhou, 510000, China
| | - Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liang Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiayin Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
12
|
Liu G, Tang J, Zhou J, Dong M. Short-chain fatty acids play a positive role in colorectal cancer. Discov Oncol 2024; 15:425. [PMID: 39256239 PMCID: PMC11387572 DOI: 10.1007/s12672-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are produced by bacterial fermentation in the colon and are thought to be protective against gastrointestinal disease. SCFAs such as acetate, propionate and butyrate are important metabolites in the maintenance of intestinal homeostasis and have been shown to be beneficial in colorectal cancer (CRC). SCFAs are responsible for maintaining a normal intestinal barrier and exhibit numerous immunomodulatory functions. In this review article, we will discuss the metabolism and mechanism of action of SCFAs and their effects on the CRC, with particular emphasis on dietary fiber treatment and the clinical research progress.
Collapse
Affiliation(s)
- Gang Liu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China.
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, 110001, Liaoning, China
| |
Collapse
|
13
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
14
|
Cao L, Chen F, Xu L, Zeng J, Wang Y, Zhang S, Ba Y, Zhang H. Prognostic cellular senescence-related lncRNAs patterns to predict clinical outcome and immune response in colon cancer. Front Immunol 2024; 15:1450135. [PMID: 39355236 PMCID: PMC11443174 DOI: 10.3389/fimmu.2024.1450135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Background Cellular senescence (CS) is believed to be a major factor in the evolution of cancer. However, CS-related lncRNAs (CSRLs) involved in colon cancer regulation are not fully understood. Our goal was to create a novel CSRLs prognostic model for predicting prognosis and immunotherapy and exploring its potential molecular function in colon cancer. Methods The mRNA sequencing data and relevant clinical information of GDC TCGA Colon Cancer (TCGA-COAD) were obtained from UCSC Xena platform, and CS-associated genes was acquired from the CellAge website. Pearson correlation analysis was used to identify CSRLs. Then we used Kaplan-Meier survival curve analysis and univariate Cox analysis to acquire prognostic CSRL. Next, we created a CSRLs prognostic model using LASSO and multivariate Cox analysis, and evaluated its prognostic power by Kaplan-Meier and ROC curve analysis. Besides, we explored the difference in tumor microenvironment, somatic mutation, immunotherapy, and drug sensitivity between high-risk and low-risk groups. Finally, we verified the functions of MYOSLID in cell experiments. Results Three CSRLs (AC025165.1, LINC02257 and MYOSLID) were identified as prognostic CSRLs. The prognostic model exhibited a powerful predictive ability for overall survival and clinicopathological features in colon cancer. Moreover, there was a significant difference in the proportion of immune cells and the expression of immunosuppressive point biomarkers between the different groups. The high-risk group benefited from the chemotherapy drugs, such as Teniposide and Mitoxantrone. Finally, cell proliferation and CS were suppressed after MYOSLID knockdown. Conclusion CSRLs are promising biomarkers to forecast survival and therapeutic responses in colon cancer patients. Furthermore, MYOSLID, one of 3-CSRLs in the prognostic model, could dramatically regulate the proliferation and CS of colon cancer.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Fusco W, Bricca L, Kaitsas F, Tartaglia MF, Venturini I, Rugge M, Gasbarrini A, Cammarota G, Ianiro G. Gut microbiota in colorectal cancer: From pathogenesis to clinic. Best Pract Res Clin Gastroenterol 2024; 72:101941. [PMID: 39645279 DOI: 10.1016/j.bpg.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer is the third most common type of cancer, with a significant burden on healthcare and social systems. Its incidence is constantly rising, due to the spread of unhealthy lifestyle, i.e. Western diet. Increasing evidence suggests that westernization-driven microbiome alterations may play a critical role in colorectal tumorigenesis. The current screening strategies for this neoplasm, mainly fecal immunochemical tests, are burdened by unsatisfactory accuracy. Novel, non-invasive biomarkers are rising as the new frontier of colorectal cancer screening, and the microbiome-based ones are showing positive and optimistic results. This Review describes our current knowledge on the role of gut microbiota in colorectal cancer, from its pathogenetic action to its clinical potential as diagnostic biomarker.
Collapse
Affiliation(s)
- William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ludovica Bricca
- Department of Medicine - DIMED, Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Massimo Rugge
- Department of Medicine - DIMED, Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
16
|
Kamath HS, Shukla R, Shah U, Patel S, Das S, Chordia A, Satish P, Ghosh D. Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review. Indian J Microbiol 2024; 64:1-13. [PMID: 39282181 PMCID: PMC11399513 DOI: 10.1007/s12088-024-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
Globally, colorectal cancer (CRC) is a leading cause of cancer-related mortality. Dietary habits, inflammation, hereditary characteristics, and gut microbiota are some of its causes. The gut microbiota, a diverse population of bacteria living in the digestive system, has an impact on a variety of parameters, including inflammation, DNA damage, and immune response. The gut microbiome has a significant role in colon cancer susceptibility. Many studies have highlighted dysbiosis, an imbalance in the gut microbiota's makeup, as a major factor in colon cancer susceptibility. Dysbiosis has the potential to produce toxic metabolites and pro-inflammatory substances, which can hasten the growth of tumours. The ability of the gut microbiota to affect the host's immune system can also influence whether cancer develops or not. By better comprehending these complex interactions between colon cancer predisposition and gut flora, new preventive and therapeutic techniques might be developed. Targeting the gut microbiome with dietary modifications, probiotics, or faecal microbiota transplantation may offer cutting-edge approaches to reducing the risk of colon cancer and improving patient outcomes. The complex connection between the makeup of the gut microbiota and the emergence of colorectal cancer is explored in this narrative review.
Collapse
Affiliation(s)
- Hattiangadi Shruthi Kamath
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Rushikesh Shukla
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Urmil Shah
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Siddhi Patel
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Soumyajit Das
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Ayush Chordia
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Poorvikha Satish
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Dibyankita Ghosh
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| |
Collapse
|
17
|
Abedi Elkhichi P, Nazemalhosseini Mojarad E, Dabiri H, Rezasoltani S, Yadegar A, Azizmohamad looha M, Mojtahedi A, Nasiri MJ. Prevalence of Campylobacter Species, Helicobacter pylori, Human Papillomavirus, and JC Polyomavirus in Patients with Colorectal Cancer in Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2024; 19. [DOI: 10.5812/archcid-132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 01/03/2025]
Abstract
Background: Colorectal cancer (CRC) is a complex disease with diverse gene expression patterns, which can arise from common adenomas or serrated polyps. The role of intestinal microbiota in the development of CRC is still a subject of debate. Objectives: This study aimed to explore the prevalence of a selection of gastrointestinal microbiota in Iranian patients with CRC. Methods: A total of 86 biopsy specimens (17 samples from normal tissues and 69 samples from cancer tissues) were analyzed from normal controls and patients with CRC. The presence of Helicobacter pylori, Campylobacter species (including C. jejuni, C. coli, C. upsaliensis, C. bovis, and C. fetus), as well as human papillomavirus (HPV) and JC polyomavirus (JCV) in tissue specimens, was examined using PCR. Results: The prevalence of the targeted bacterial and viral agents in CRC patients exhibited significant variations compared to normal controls. Notably, there was a higher prevalence of the Helicobacter genus in patients with CRC compared to normal controls. Patients with CRC were found to be at an increased risk of Campylobacter infection, with various Campylobacter species identified. Additionally, HPV and JCV genomes were detected in cancer samples at a higher rate than in normal controls. Conclusions: Our findings demonstrated a higher prevalence of the Helicobacter genus, Campylobacter species, HPV, and JCV in patients with CRC compared to normal controls. However, further research is required to elucidate the potential role of these bacterial and viral agents in the development of CRC.
Collapse
|
18
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
19
|
Foppa C, Rizkala T, Repici A, Hassan C, Spinelli A. Microbiota and IBD: Current knowledge and future perspectives. Dig Liver Dis 2024; 56:911-922. [PMID: 38008696 DOI: 10.1016/j.dld.2023.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic relapsing-remitting disease with a remarkable increase in incidence worldwide and a substantial disease burden. Although the pathophysiology is not fully elucidated yet an aberrant immune reaction against the intestinal microbiota and the gut microbial dysbiosis have been identified to play a major role. The composition of gut microbiota in IBD patients is distinct from that of healthy individuals, with certain organisms predominating over others. Differences in the microbial dysbiosis have been also observed between Crohn Disease (CD) and Ulcerative Colitis (UC). A disruption of the microbiota's balance can lead to inflammation and intestinal damage. Microbiota composition in IBD can be affected both by endogenous (i.e., interaction with the immune system and intestinal epithelial cells) and exogenous (i.e., medications, surgery, diet) factors. The complex interplay between the gut microbiota and IBD is an area of great interest for understanding disease pathogenesis and developing new treatments. The purpose of this review is to summarize the latest evidence on the role of microbiota in IBD pathogenesis and to explore possible future areas of research.
Collapse
Affiliation(s)
- Caterina Foppa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Gastroenterology and Digestive Endoscopy Unit, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, Division of Colon and Rectal Surgery, via Manzoni 56, Rozzano, 20089, Milan, Italy.
| |
Collapse
|
20
|
Huang Z, Huang X, Huang Y, Liang K, Chen L, Zhong C, Chen Y, Chen C, Wang Z, He F, Qin M, Long C, Tang B, Huang Y, Wu Y, Mo X, Weizhong T, Liu J. Identification of KRAS mutation-associated gut microbiota in colorectal cancer and construction of predictive machine learning model. Microbiol Spectr 2024; 12:e0272023. [PMID: 38572984 PMCID: PMC11064510 DOI: 10.1128/spectrum.02720-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.
Collapse
Affiliation(s)
- Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yili Huang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Kunmei Liang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Lei Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuzhuo Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Yingxin Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqi Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongzhi Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tang Weizhong
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
21
|
Zhu C, Li S. Role of CRH in colitis and colitis-associated cancer: a combinative result of central and peripheral effects? Front Endocrinol (Lausanne) 2024; 15:1363748. [PMID: 38616821 PMCID: PMC11010637 DOI: 10.3389/fendo.2024.1363748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Corticotropin-releasing factor family peptides (CRF peptides) comprise corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3. CRH is first isolated in the brain and later with UCNs found in many peripheral cells/tissues including the colon. CRH and UCNs function via the two types of receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1 &CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in inflammation and cancers via both indirect central effects related to stress response and direct peripheral influence. CRH, as a stress-response mediator, plays a significant central role in promoting the development of colitis involving colon motility, immunity and gut flora, while a few anti-colitis results of central CRH are also reported. Moreover, CRH is found to directly influence the motility and immune/inflammatory cells in the colon. Likewise, CRH is believed to be greatly related to tumorigenesis of many kinds of cancers including colon cancer via the central action during chronic stress while the peripheral effects on colitis-associated-colon cancer (CAC) are also proved. We and others observe that CRH/CRF1 plays a significant peripheral role in the development of colitis and CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and CAC. However, up to date, there still exist not many relevant experimental data on this topic, and there seems to be no absolute clearcut between the central and direct peripheral effects of CRH in colitis and colon cancer. Taken together, CRH, as a critical factor in stress and immunity, may participate in colitis and CAC as a centrally active molecule; meanwhile, CRH has direct peripheral effects regulating the development of colitis and CAC, both of which will be summarized in this review.
Collapse
Affiliation(s)
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Qingbo L, Jing Z, Zhanbo Q, Jian C, Yifei S, Yinhang W, Shuwen H. Identification of enterotype and its predictive value for patients with colorectal cancer. Gut Pathog 2024; 16:12. [PMID: 38414077 PMCID: PMC10897996 DOI: 10.1186/s13099-024-00606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Gut microbiota dysbiosis involved in the pathogenesis of colorectal cancer (CRC). The characteristics of enterotypes in CRC development have not been determined. OBJECTIVE To characterize the gut microbiota of healthy, adenoma, and CRC subjects based on enterotype. METHODS The 16 S rRNA sequencing data from 315 newly sequenced individuals and three previously published datasets were collected, providing total data for 367 healthy, 320 adenomas, and 415 CRC subjects. Enterotypes were analyzed for all samples, and differences in microbiota composition across subjects with different disease states in each enterotype were determined. The predictive values of a random forest classifier based on enterotype in distinguishing healthy, adenoma, and CRC subjects were evaluated and validated. RESULTS Subjects were classified into one of three enterotypes, namely, Bacteroide- (BA_E), Blautia- (BL_E), and Streptococcus- (S_E) dominated clusters. The taxonomic profiles of these three enterotypes differed among the healthy, adenoma, and CRC cohorts. BA_E group was enriched with Bacteroides and Blautia; BL_E group was enriched by Blautia and Coprococcus; S_E was enriched by Streptococcus and Ruminococcus. Relative abundances of these genera varying among the three human cohorts. In training and validation sets, the S_E cluster showed better performance in distinguishing among CRC patients, adenoma patients, and healthy controls, as well as between CRC and non-CRC individuals, than the other two clusters. CONCLUSION This study provides the first evidence to indicate that changes in the microbial composition of enterotypes are associated with disease status, thereby highlighting the diagnostic potential of enterotypes in the treatment of adenoma and CRC.
Collapse
Affiliation(s)
- Li Qingbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, People's Republic of China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang Province, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, People's Republic of China.
| |
Collapse
|
23
|
Confessor MVA, Agreles MAA, Campos LADA, Silva Neto AF, Borges JC, Martins RM, Scavuzzi AML, Lopes ACS, Kretzschmar EADM, Cavalcanti IMF. Olive oil nanoemulsion containing curcumin: antimicrobial agent against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2024; 108:241. [PMID: 38413482 PMCID: PMC10899360 DOI: 10.1007/s00253-024-13057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.
Collapse
Affiliation(s)
- Maine Virgínia Alves Confessor
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil.
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil.
| | - Maria Anndressa Alves Agreles
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Azael Francisco Silva Neto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Joyce Cordeiro Borges
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Rodrigo Molina Martins
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil
| | | | - Ana Catarina Souza Lopes
- Department of Tropical Medicine, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
24
|
Khan M, Shah S, Shah W, Khan I, Ali H, Ali I, Ullah R, Wang X, Mehmood A, Wang Y. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol 2024; 43:229-247. [PMID: 38343353 DOI: 10.1080/08830185.2024.2312294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The gut microbiome plays a role in the development and progression of colorectal cancer (CRC). AIM AND OBJECTIVE This review focuses on whether the gut microbiome is involved in the development and regulation of the host immune system. METHODS The gut microbiome can influence the production and activity of immune cells and molecules that help to maintain the integrity of the intestinal barrier and prevent inflammation. Gut microbiota modulates the anti-cancer immune response. The gut microbiota can influence the function of immune cells, like T cells, that recognize and eliminate cancer cells. Gut microbiota can affect various aspects of cancer progression and the efficacy of various anti-cancer treatments. RESULTS Gut microbiota provide promise as a potential biomarker to identify the effect of immunotherapy and as a target for modulation to improve the efficacy of immunotherapy in CRC treatment. CONCLUSION The potential synergistic effect between the gut microbiome and anti-cancer treatment modalities provides an interest in developing strategies to modulate the gut microbiome to improve the efficacy of anti-cancer treatment.
Collapse
Affiliation(s)
- Murad Khan
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ikram Khan
- School of Basic Medical Sciences, Department of Genetics, Lanzhou University, Lanzhou, Gansu, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, P.R. China
| | - Yanli Wang
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
25
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
27
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
28
|
Elahi Z, Shariati A, Bostanghadiri N, Dadgar-Zankbar L, Razavi S, Norzaee S, Vazirbani Arasi S, Darban-Sarokhalil D. Association of Lactobacillus, Firmicutes, Bifidobacterium, Clostridium, and Enterococcus with colorectal cancer in Iranian patients. Heliyon 2023; 9:e22602. [PMID: 38089982 PMCID: PMC10711133 DOI: 10.1016/j.heliyon.2023.e22602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the primary causes of cancer-associated deaths worldwide, and growing evidence shows that alteration in the gut microbiota may be a contributing factor to the development and progression of the disease. This study investigates the correlation between CRC and specific intestinal microbiota abundance, including Firmicutes, Lactobacillus, Enterococcus, Clostridium, and Bifidobacterium. MATERIAL AND METHODS In this study, 100 CRC samples and adjacent normal tissues were obtained from Iranian patients. Afterward, we assessed the abundance of the mentioned bacteria in matched tumor and normal tissue samples from 100 CRC patients, by TaqMan quantitative real-time polymerase chain reaction (qPCR). RESULTS Most of the patients (55 %) had grade II cancer (moderately differentiated), followed by grade III (poorly Differentiated) in 19 %, and the distribution of the tumor location was 65 % in the colon and 35 % in the rectum. Our research showed a substantial difference in the relative abundance of specific bacteria in tumors and healthy tissues. To this end, four genera of bacteria, including Bifidobacterium, Lactobacillus, Clostridium, and Firmicutes, exhibited statistically significant reductions in tumor tissues compared to adjacent normal tissue (p < 0.05). Conversely, Enterococcus demonstrated a statistically significant increase in tumor tissue samples (p < 0.05). Noteworthy, statistical analysis revealed a significant relationship between Enterococcus and prior cancer (p < 0.05). CONCLUSIONS These findings provide significant insight into the complex association between the gut microbiota and CRC and may pave the way for future research on novel screening methods, preventive measures, and therapeutic strategies targeting the gut microbiota in CRC patients.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Centre, Khomein University of Medical Sciences, Khomein, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Le D, Chambers MM, Mercado K, Gutowski CJ. Characterization of the gut microbiome in an osteosarcoma mouse model. J Orthop Res 2023; 41:2730-2739. [PMID: 37246455 DOI: 10.1002/jor.25635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Compelling evidence has mounted surrounding the relationship between the gut microbiome and many intestinal and extraintestinal cancers. Few studies exist investigating the relationship between the gut microbiome and sarcoma. We hypothesize that the presence of distant osteosarcoma induces change to the profile of flora within the mouse. Twelve mice were used for this experiment: six were sedated and received an injection of human osteosarcoma cells into the flank, while six served as controls. Baseline stool and weight were collected. Tumor size and mouse weight were recorded weekly, and stool samples were collected and stored. Fecal microbiomes of the mice were profiled by 16S rRNA gene sequencing and analyzed for alpha diversity, relative abundances of microbial taxa, and abundance of specific bacteria at different time points. Alpha diversity was increased in the osteosarcoma group compared with the control group. The family Lachnospiraceae had the second strongest negative net average change in relative abundance over time in the osteosarcoma group whereas it had a positive net average change in the control group. An increased Firmicutes/Bacteroidota (F/B) ratio was observed in the osteosarcoma group relative to the control mice. These differences suggest that there may be an interplay between the gut microbiome and osteosarcoma. Clinical significance: Due to the paucity of literature available, our work can support novel research on this relationship and the development of new, personalized treatments for osteosarcoma.
Collapse
Affiliation(s)
- David Le
- Department of Orthopaedic Surgery, Inspira Medical Center, Vineland, New Jersey, USA
| | | | - Kayla Mercado
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| | - Christina J Gutowski
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Department of Orthopaedic Surgery, Cooper University Healthcare, Camden, New Jersey, USA
| |
Collapse
|
30
|
He M, Cao ZF, Huang L, Zhong WJ, Xu XM, Zeng XL, Wang J. Correlation between the expressions of metastasis-associated factor-1 in colon cancer and vacuolar ATP synthase. World J Gastrointest Surg 2023; 15:2463-2469. [PMID: 38111774 PMCID: PMC10725535 DOI: 10.4240/wjgs.v15.i11.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer. The examination of high-risk recurrence factors post-surgery provides critical insights for disease evaluation and treatment planning. AIM To explore the relationship between metastasis-associated factor-1 in colon cancer (MACC1) and vacuolar ATP synthase (V-ATPase) expression in colon cancer tissues, and recurrence rate in patients undergoing radical colon cancer surgery. METHODS We selected 104 patients treated with radical colon cancer surgery at our hospital from January 2018 to June 2021. Immunohistochemical staining was utilized to assess the expression levels of MACC1 and V-ATPase in these patients. RESULTS The rates of MACC1 and V-ATPase positivity were 64.42% and 67.31%, respectively, in colon cancer tissues, which were significantly higher than in paracancerous tissues (P < 0.05). Among patients with TNM stage III, medium to low differentiation, and lymph node metastasis, the positive rates of MACC1 and V-ATPase were significantly elevated in comparison to patients with TNM stage I-II, high differentiation, and no lymph node metastasis (P < 0.05). The rate of MACC1 positivity was 76.67% in patients with tumor diameters > 5 cm, notably higher than in patients with tumor diameters ≤ 5 cm (P < 0.05). We observed a positive correlation between MACC1 and V-ATPase expression (rs = 0.797, P < 0.05). The positive rates of MACC1 and V-ATPase were significantly higher in patients with recurrence compared to those without (P < 0.05). Logistic regression analysis revealed TNM stage, lymph node metastasis, MACC1 expression, and V-ATPase expression as risk factors for postoperative colon cancer recurrence (OR = 6.322, 3.435, 2.683, and 2.421; P < 0.05). CONCLUSION The upregulated expression of MACC1 and V-ATPase in colon cancer patients appears to correlate with clinicopathological features and post-radical surgery recurrence.
Collapse
Affiliation(s)
- Miao He
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Zuo-Feng Cao
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Wen-Juan Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Xue-Ming Xu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Li Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
31
|
Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol 2023; 13:1294082. [PMID: 38035341 PMCID: PMC10684967 DOI: 10.3389/fcimb.2023.1294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Microbiota colonize exposed body tissues (e.g., gastrointestinal tract, skin, lungs, female genital tract, and urogenital tracts) and unexposed sites (e.g., breast). Persistent bacterial infection in the host lead to the development of multiple disease. They are implicated in the pathogenesis of various complex diseases, including diabetes, atherosclerosis, autoimmune diseases, Alzheimer's disease, and malignant diseases. Amounting studies have demonstrated the role of bacterial infection in carcinogenesis. The study of microbiota in tumorigenesis is primarily focused on lung cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and gynecologic tumors, and so on. Infection of Helicobacter pylori in gastric cancer carcinogenesis is recognized as class I carcinogen by the World Health Organization (WHO) decades ago. The role of Fusobacterium nucleatum in the development of colorectal cancer is extensively investigated. Variable bacteria have been cultured from the tumor tissues. The identification of microbiota in multiple tumor tissues reveal that bacterial infection and microbiota are associated with tumor development. The microbiota affects multiple aspects of carcinogenesis and tumor development, including favoring epithelial cells proliferation, establishing inflammatory microenvironment, promoting metastasis, and causing resistance to therapy. On the other hand, microbiota can shape a tumor surveillance environment by enhancing cell activity, and sensitize the tumor cells to immune therapy. In the present review, the roles of microbiota in multiple malignancies are summarized, and unraveling the mechanisms of host-microbiota interactions can contribute to a better understanding of the interaction between microbiota and host cells, also the development of potential anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Alrushaid N, Khan FA, Al-Suhaimi E, Elaissari A. Progress and Perspectives in Colon Cancer Pathology, Diagnosis, and Treatments. Diseases 2023; 11:148. [PMID: 37987259 PMCID: PMC10660546 DOI: 10.3390/diseases11040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Worldwide, colon cancer is the third most frequent malignancy and the second most common cause of death. Although it can strike anybody at any age, colon cancer mostly affects the elderly. Small, non-cancerous cell clusters inside the colon, commonly known as polyps, are typically where colon cancer growth starts. But over time, if left untreated, these benign polyps may develop into malignant tissues and develop into colon cancer. For the diagnosis of colon cancer, with routine inspection of the colon region for polyps, several techniques, including colonoscopy and cancer scanning, are used. In the case identifying the polyps in the colon area, efforts are being taken to surgically remove the polyps as quickly as possible before they become malignant. If the polyps become malignant, then colon cancer treatment strategies, such as surgery, chemotherapy, targeted therapy, and immunotherapy, are applied to the patients. Despite the recent improvements in diagnosis and prognosis, the treatment of colorectal cancer (CRC) remains a challenging task. The objective of this review was to discuss how CRC is initiated, and its various developmental stages, pathophysiology, and risk factors, and also to explore the current state of colorectal cancer diagnosis and treatment, as well as recent advancements in the field, such as new screening methods and targeted therapies. We examined the limitations of current methods and discussed the ongoing need for research and development in this area. While this topic may be serious and complex, we hope to engage and inform our audience on this important issue.
Collapse
Affiliation(s)
- Noor Alrushaid
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdelhamid Elaissari
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
| |
Collapse
|
33
|
Deng X, Yang J, Zhang Y, Chen X, Wang C, Suo H, Song J. An Update on the Pivotal Roles of Probiotics, Their Components, and Metabolites in Preventing Colon Cancer. Foods 2023; 12:3706. [PMID: 37835359 PMCID: PMC10572180 DOI: 10.3390/foods12193706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Diet, lifestyle, and gut microbiota composition are key risk factors for the progression of colon cancer. Probiotics are living microorganisms that can offer health benefits to the parasitifer when ingested in competent quantities. Several in vivo, in vitro, and clinical studies have demonstrated that probiotics can prevent and mitigate the development of colon cancer. The anti-colon cancer mechanisms of probiotics include the suppression of cell proliferation and the promotion of cancer cell apoptosis, immunomodulation, the modulation of intestinal microorganisms and their metabolism, strengthening the intestinal barrier, and antioxidant effects. This article describes the pathogenesis of colon cancer and the available therapeutic options. In addition, this paper reviews the mechanisms by which probiotics mitigate colon cancer as well as the mitigating effects of probiotic components and metabolites on colon cancer.
Collapse
Affiliation(s)
- Xue Deng
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; (X.D.); (Y.Z.); (X.C.); (C.W.); (H.S.)
| |
Collapse
|
34
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
35
|
He Q, Niu M, Bi J, Du N, Liu S, Yang K, Li H, Yao J, Du Y, Duan Y. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Sci Rep 2023; 13:15842. [PMID: 37740010 PMCID: PMC10517118 DOI: 10.1038/s41598-023-42481-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Bacteroides fragilis, one of the potential next-generation probiotics, but its protective mechanism is not yet known. We aimed to characterize the anti-inflammatory effect of B. fragilisATCC25285 and to elucidate its mechanism through in vivo and in vitro experiments. An in vitro model of inflammation by induction of colonic cells with TNF-a, and co-cultured with B. fragilis to detect cell viability, apoptosis and invasive capacity. Furthermore, critical proteins of the TLR/NF-κB pathway and the inflammatory cytokines were measured. For animal trials, C57BL/6 J male mice were orally administered B. fragilis or PBS once daily for 21 days. Colitis was induced by drinking 2.5% DSS from days 0 to 7. The mice were weighed daily and rectal bleeding, stool condition and blood in the stool were recorded. We found that B. fragilis treatment alone was harmless and had no effect on cell viability or apoptosis. While predictably TNF-α decreased cell viability and increased apoptosis, B. fragilis attenuated this deterioration. The NF-κB pathway and inflammatory cytokines IL-6 and IL-1β activated by TNF-α were also blocked by B. fragilis. Notably, the metabolic supernatant of B. fragilis also has an anti-inflammatory effect. Animal studies showed that live B. fragilis rather than dead strain ameliorated DSS-induced colitis, as evidenced by weight loss, shortened colon length and enhanced barrier function. The colonic tissue levels of inflammatory cytokines (TNF-α, IL-1β, IL-6) were decreased and IL-10 was increased as a result of B. fragilis administration. In conclusion, B. fragilis ATCC25285 exhibited anti-inflammatory effects whether in vivo or in vitro, and it may be a potential probiotic agent for improving colitis.
Collapse
Affiliation(s)
- Qiuyue He
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Min Niu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Jiandie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Department of Blood Transfusion, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650032, China
| | - Na Du
- Department of Clinical Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650032, China
| | - Shumin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Kai Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Huanqin Li
- Department of Clinical Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650032, China
| | - Jing Yao
- Department of Clinical Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650032, China
| | - Yan Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China.
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China.
| | - Yong Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China.
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China.
| |
Collapse
|
36
|
Cao Q, Guo J, Chang S, Huang Z, Luo Q. Gut microbiota and acne: A Mendelian randomization study. Skin Res Technol 2023; 29:e13473. [PMID: 37753688 PMCID: PMC10507220 DOI: 10.1111/srt.13473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Prior observational studies have identified a relationship between the composition of gut microbiota and the onset of acne. To ascertain the causal relationship underlying this association, we adopted the Mendelian randomization (MR) method, which offers a powerful approach to causal inference. METHODS Summary statistics on gut microbiota and acne were obtained from the MiBioGen and FinnGen consortium, respectively. The causal relationship was assessed using multiple methods in a two-sample framework, including MR Egger, weighted median, inverse variance weighted (IVW), and weighted mode. Furthermore, the heterogeneity and horizontal pleiotropy analyses were conducted, along with the leave-one-out method. RESULTS The IVW estimation indicated that Allisonella (odds ratio [OR] = 1.42, 95% confidence interval [CI] = 1.18-1.70, p = 0.0002) and Bacteroides (OR = 2.25, 95% CI = 1.48-3.42, p = 0.0001) have adverse effects on acne. By contrast, Ruminococcus torques group (OR = 0.41, 95% CI = 0.25-0.65, p = 0.0002) showed a beneficial effect on acne. In addition, Candidatus soleaferrea (OR = 0.75, 95% CI = 0.60-0.95, p = 0.0149), Eubacterium coprostanoligenes group (OR = 0.67, 95% CI = 0.47-0.95, p = 0.0230), Fusicatenibacter (OR = 0.71, 95% CI = 0.52-0.97, p = 0.02897), and Lactobacillus (OR = 0.72, 95% CI = 0.58-0.90, p = 0.0046) showed suggestive associations with acne. CONCLUSION The present investigation suggests a causal effect of gut microbiota on acne.
Collapse
Affiliation(s)
- Qiurui Cao
- Department of Anorectal SurgeryJiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenChina
| | - Jinyan Guo
- Department of Anorectal SurgeryJiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenChina
| | - Shuangqing Chang
- Department of Anorectal SurgeryJiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenChina
| | - Zhifang Huang
- Department of Anorectal SurgeryJiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenChina
| | - Qinghua Luo
- Clinical Medical CollegeJiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
37
|
Thompson N, Gatenby G, Waddell O, Purcell R, Keenan J, Pearson JF, Frizelle F, Glyn T. Early onset colorectal cancer in Canterbury, New Zealand. ANZ J Surg 2023; 93:2148-2154. [PMID: 36852900 DOI: 10.1111/ans.18357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND The overall incidence of colorectal cancer is decreasing in much of the world, yet the incidence in those under 50 years of age is increasing (early onset colorectal cancer (EOCRC)). The reasons for this are unclear. This study was undertaken to describe the clinical, pathological and familial characteristics of patients with EOCRC and their oncological outcomes and compare this with previously published data on late onset colorectal cancer (LOCRC). METHODS A retrospective review of all patients diagnosed with EOCRC in Canterbury between 2010 and 2017 was conducted. Data was collected on demographics, family history, treatment, and oncologic outcomes. Kaplan-Meier survival curves were calculated to assess overall survival based on disease stage. RESULTS During the study period (2010-2017) there were 3340 colorectal cancers diagnosed in Canterbury, of which 201 (6%) were in patients under 50 years (range: 17-49). Of these, 87 (43.3%) were female and 125 (62.2%) were aged between 40 and 49 years. 28 (13.9%) were associated with hereditary conditions. Of the 201 patients, 139 (69.2%) had rectal or left-sided cancers. 142 (70.6%) patients presented with either stage 3 or 4 disease and the 5-year overall survival by stage was 79.1% and 14.4%, respectively. CONCLUSION EOCRC is increasing and usually presents as distal left sided cancers, and often at an advanced stage. They do not appear to have the common risk factors of family history or inherited pre-disposition for colorectal cancer. Planning by healthcare providers for this epidemiological change is imperative in investigating symptomatic patients under 50 and optimizing early detection and prevention.
Collapse
Affiliation(s)
- Nasya Thompson
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Grace Gatenby
- Department of Surgery, Te Whatu Ora Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Oliver Waddell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Jacqui Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago Christchurch, Christchurch, New Zealand
| | - Francis Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
- Department of Surgery, Te Whatu Ora Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Tamara Glyn
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
- Department of Surgery, Te Whatu Ora Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| |
Collapse
|
38
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
39
|
Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D, Tang D. Potential Ability of Probiotics in the Prevention and Treatment of Colorectal Cancer. Clin Med Insights Oncol 2023; 17:11795549231188225. [PMID: 37601319 PMCID: PMC10437046 DOI: 10.1177/11795549231188225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, and its incidence rate and mortality are on the rise in many countries. In recent years, with the improvement of economic conditions, people's living habits have changed, including lack of physical activity, poor diet patterns and circadian rhythm disorder. These risk factors can change the colon environment and the composition of intestinal microbiota. This state is called intestinal imbalance, which increases the risk of cancer. Probiotics, a class of microorganisms that help maintain gut microbial homeostasis and alleviate dysbiosis, may help prevent inflammation and colorectal cancer. These probiotics inhibit or ameliorate the effects of dysbiosis through the production of short-chain fatty acids (SCFAs), modulation of immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other mechanisms. This review aims to explain the interaction between probiotics, the gut microenvironment and the gut microbiota, and summarize reports on the possibility of probiotics in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiahao Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yichao Ma
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Hao Ji
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Wang YX, Zhang JY, Cao YM, Liu T, Zhang ZK, Zhang BX, Feng WS, Li K, Zheng XK, Zhou N. Coptis chinensis-Induced Changes in Metabolomics and Gut Microbiota in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1547-1576. [PMID: 37530506 DOI: 10.1142/s0192415x23500702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Rhizoma coptidis (CR) is traditionally used for treating gastrointestinal diseases. Wine-processed CR (wCR), zingiber-processed CR (zCR), and evodia-processed CR (eCR) are its major processed products. However, the related study of their specific mechanisms is very limited, and they need to be further clarified. The aim of this study is to compare the intervening mechanism of wCR/zCR/eCR on rats via faecal metabolomics and 16S rDNA gene sequencing analysis. First, faecal samples were collected from the control and CR/wCR/zCR/eCR groups. Then, a metabolomics analysis was performed using UHPLC-Q/TOF-MS to obtain the metabolic profile and significantly altered metabolites. The 16S rDNA gene sequencing analysis was carried out to analyze the composition of gut microbiota and screen out the significantly altered microbiota at the genus level. Finally, a pathway enrichment analysis of the significantly altered metabolites via the KEGG database and a functional prediction of relevant gut microbes based on PICRUSt2 software were performed in combination. Together with the correlation analysis between metabolites and gut microbiota, the potential intervening mechanism of wCR/zCR/eCR was explored. The results suggested that wCR played a good role in maintaining immune homeostasis, promoting glycolysis, and reducing cholesterol; zCR had a better effect on protecting the integrity of the intestinal mucus barrier, preventing gastric ulcers, and reducing body cholesterol; eCR was good at protecting the integrity of the intestinal mucus barrier and promoting glycolysis. This study scientifically elucidated the intervening mechanism of wCR/zCR/eCR from the perspective of faecal metabolites and gut microbiota, providing a new insight into the processing mechanism research of Chinese herbs.
Collapse
Affiliation(s)
- Yong-Xiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Jin-Ying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Min Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Zhen-Kai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Bing-Xian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan Province 450018, P. R. China
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan Province 450018, P. R. China
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|
41
|
Shao-Hua Z, Lin-Lin R, Shen S, Yun-He T, Zi-Bin T, Yi L, Tao M. Atrophic gastritis rather than Helicobacter pylori infection can be an independent risk factor of colorectal polyps: a retrospective study in China. BMC Gastroenterol 2023; 23:213. [PMID: 37337163 DOI: 10.1186/s12876-023-02764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Colonoscopy is considered the most effective screening method for colorectal polyps. However, the longevity and complexity of the procedure makes it less desirable to screen for colorectal polyps in the general population. Therefore, it is essential to identify other independent risk factors. In this study, we explored the link between Hp infection, atrophic gastritis, and colorectal polyps to identify a new potential risk factors of colorectal polyps. METHODS In this study, atrophic gastritis and intestinal polyps were diagnosed by endoscopy and pathology. All the 792 patients in this retrospective study were divided into sub-groups based on the presence of colorectal polyps. The correlation between polyps and atrophic gastritis was analyzed using the chi-square test and Kruskal-Wallis test. The receiver operating characteristic (ROC) curve was used to compare the predictive value for colorectal polyps between Hp infection and atrophic gastritis. Binary logistic regression was utilized to identify independent risk factors for colorectal polyps. RESULTS Patients with colorectal polyps were primarily male with advanced age, and the number of patients with colorectal polyps had a higher association with smoking, alcohol drinking, and Hp infection than the control group. A positive correlation between the number of colorectal polyps and the severity of atrophic gastritis was observed. ROC analysis showed that atrophic gastritis was a better risk factors for colorectal polyps. Multivariate analysis identified atrophic gastritis as an independent risk factor for colorectal polyps (OR 2.294; 95% CI 1.597-3.296). CONCLUSIONS Atrophic gastritis confirmed could be an independent risk factors for colorectal polyps.
Collapse
Affiliation(s)
- Zhang Shao-Hua
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Ren Lin-Lin
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Su Shen
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Tang Yun-He
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Tian Zi-Bin
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Liu Yi
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Mao Tao
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
42
|
Li W, Zhou X, Yuan S, Wang L, Yu L, Sun J, Chen J, Xiao Q, Wan Z, Zheng JS, Zhang CX, Larsson SC, Farrington SM, Law P, Houlston RS, Tomlinson I, Ding KF, Dunlop MG, Theodoratou E, Li X. Exploring the Complex Relationship between Gut Microbiota and Risk of Colorectal Neoplasia Using Bidirectional Mendelian Randomization Analysis. Cancer Epidemiol Biomarkers Prev 2023; 32:809-817. [PMID: 37012201 PMCID: PMC10233354 DOI: 10.1158/1055-9965.epi-22-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human gut microbiome has complex relationships with the host, contributing to metabolism, immunity, and carcinogenesis. METHODS Summary-level data for gut microbiota and metabolites were obtained from MiBioGen, FINRISK and human metabolome consortia. Summary-level data for colorectal cancer were derived from a genome-wide association study meta-analysis. In forward Mendelian randomization (MR), we employed genetic instrumental variables (IV) for 24 gut microbiota taxa and six bacterial metabolites to examine their causal relationship with colorectal cancer. We also used a lenient threshold for nine apriori gut microbiota taxa as secondary analyses. In reverse MR, we explored association between genetic liability to colorectal neoplasia and abundance of microbiota studied above using 95, 19, and 7 IVs for colorectal cancer, adenoma, and polyps, respectively. RESULTS Forward MR did not find evidence indicating causal relationship between any of the gut microbiota taxa or six bacterial metabolites tested and colorectal cancer risk. However, reverse MR supported genetic liability to colorectal adenomas was causally related with increased abundance of two taxa: Gammaproteobacteria (β = 0.027, which represents a 0.027 increase in log-transformed relative abundance values of Gammaproteobacteria for per one-unit increase in log OR of adenoma risk; P = 7.06×10-8), Enterobacteriaceae (β = 0.023, P = 1.29×10-5). CONCLUSIONS We find genetic liability to colorectal neoplasia may be associated with abundance of certain microbiota taxa. It is more likely that subset of colorectal cancer genetic liability variants changes gut biology by influencing both gut microbiota and colorectal cancer risk. IMPACT This study highlights the need of future complementary studies to explore causal mechanisms linking both host genetic variation with gut microbiome and colorectal cancer susceptibility.
Collapse
Affiliation(s)
- Wanxin Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ke-Feng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Evropi Theodoratou
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
43
|
Celebi O, Taghizadehghalehjoughi A, Celebi D, Mesnage R, Golokhvast KS, Arsene AL, Spandidos DA, Tsatsakis A. Effect of the combination of Lactobacillus acidophilus (probiotic) with vitamin K3 and vitamin E on Escherichia coli and Staphylococcus aureus: An in vitro pathogen model. Mol Med Rep 2023; 27:119. [PMID: 37144488 PMCID: PMC10196883 DOI: 10.3892/mmr.2023.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
The gut microbiota plays a key role in maintaining health and regulating the host's immune response. The use of probiotics and concomitant vitamins can increase mucus secretion by improving the intestinal microbial population and prevent the breakdown of tight junction proteins by reducing lipopolysaccharide concentration. Changes in the intestinal microbiome mass affect multiple metabolic and physiological functions. Studies on how this microbiome mass and the regulation in the gastrointestinal tract are affected by probiotic supplements and vitamin combinations have attracted attention. The current study evaluated vitamins K and E and probiotic combinations effects on Escherichia coli and Staphylococcus aureus. Minimal inhibition concentrations of vitamins and probiotics were determined. In addition, inhibition zone diameters, antioxidant activities and immunohistochemical evaluation of the cell for DNA damage were performed to evaluate the effects of vitamins and probiotics. At the specified dose intervals, L. acidophilus and vitamin combinations inhibit the growth of Escherichia coli and Staphylococcus aureus. It could thus contribute positively to biological functions by exerting immune system‑strengthening activities.
Collapse
Affiliation(s)
- Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | | | - Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
- Vaccine Application and Development Center, Ataturk University, 25240 Erzurum, Turkey
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | | | - Andreea Letitia Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
44
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
45
|
Heng D, Zhang M, Yuan Y, Qiu X. Alteration of Colonic Bacterial and Fungal Composition and Their Inter- and Intra-Kingdom Interaction in Patients with Adenomas with Low-Grade Dysplasia. Microorganisms 2023; 11:1327. [PMID: 37317301 PMCID: PMC10223777 DOI: 10.3390/microorganisms11051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium and mainly originates from specific types of colonic adenomas with dysplasia. However, gut microbiota signatures among sampling sites in patients with colorectal adenomas with low-grade dysplasia (ALGD) and normal control (NC) remain uncharacterized. To characterize gut microbial and fungal profiles in ALGD and normal colorectal mucosa tissues. We used 16S and ITS1-2 rRNA gene sequencing and bioinformatics analysis on the microbiota of ALGD and normal colorectal mucosa from 40 subjects. Bacterial sequences in the ALGD group showed an increase in Rhodobacterales, Thermales, Thermaceae, Rhodobacteraceae, and several genera, including Thermus, Paracoccus, Sphingobium, and Pseudomonas, compared to the NC group. Fungal sequences in the ALGD group showed an increase in Helotiales, Leotiomycetes, and Basidiomycota, while several orders, families, and genera, including Verrucariales, Russulales, and Trichosporonales, were decreased. The study found various interactions between intestinal bacteria and fungi. The bacterial functional analysis showed increased glycogen and vanillin degradation pathways in the ALGD group. Meanwhile, the fungal functional analysis showed a decrease in pathways related to the biosynthesis of gondoate and stearate, as well as degradation of glucose, starch, glycogen, sucrose, L-tryptophan, and pantothenate, and an increase in the octane oxidation pathway in the ALGD group. The mucosal microbiota in ALGD exhibits altered fungal and microbial composition compared to the NC mucosa, potentially contributing to the development of intestinal cancer by regulating specific metabolic pathways. Therefore, these changes in microbiota and metabolic pathways may be potential markers for diagnosing and treating colorectal adenoma and carcinoma.
Collapse
Affiliation(s)
- Ding Heng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China; (D.H.); (M.Z.)
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China; (D.H.); (M.Z.)
| | - Yuhan Yuan
- Department of Endoscopic Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China;
| | - Xinyun Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China; (D.H.); (M.Z.)
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
46
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
47
|
Sun R, Chen H, Yao S, Yu Z, Lai C, Huang J. Ecological and dynamic analysis of gut microbiota in the early stage of azomethane-dextran sodium sulfate model in mice. Front Cell Infect Microbiol 2023; 13:1178714. [PMID: 37153156 PMCID: PMC10157258 DOI: 10.3389/fcimb.2023.1178714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The success rate of azomethane-dextran sodium sulfate (AOM-DSS) model in mice has been a long-standing problem. Treatment of AOM and the first round DSS induces acute colitis and is of great significance for the success of AOM-DSS model. In this study, we focused on the role of gut microbiota in the early stage of AOM-DSS model. Few mice with obvious weight loss and high disease-activity score survived from double strike of AOM and the first round DSS. Different ecological dynamics of gut microbiota were observed in AOM-DSS treated mice. Pseudescherichia, Turicibacter, and Clostridium_XVIII were of significance in the model, uncontrolled proliferation of which accompanied with rapid deterioration and death of mice. Akkermansia and Ruthenibacterium were significantly enriched in the alive AOM-DSS treated mice. Decrease of Ligilactobacillus, Lactobacillus, and Limosilactobacillus were observed in AOM-DSS model, but significant drop of these genera could be lethal. Millionella was the only hub genus of gut microbiota network in dead mice, which indicated dysbiosis of the intestinal flora and fragility of microbial network. Our results will provide a better understanding for the role of gut microbiota in the early stage of AOM-DSS model and help improve the success rate of model construction.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Melnyk K, Weimann K, Conrad TOF. Understanding microbiome dynamics via interpretable graph representation learning. Sci Rep 2023; 13:2058. [PMID: 36739319 PMCID: PMC9899240 DOI: 10.1038/s41598-023-29098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
Large-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver or a consequence, with the health and functioning of human physiology. However, understanding the difference in the microbiome profiles of healthy and ill individuals can be complicated due to the large number of complex interactions among microbes. We propose to model these interactions as a time-evolving graph where nodes represent microbes and edges are interactions among them. Motivated by the need to analyse such complex interactions, we develop a method that can learn a low-dimensional representation of the time-evolving graph while maintaining the dynamics occurring in the high-dimensional space. Through our experiments, we show that we can extract graph features such as clusters of nodes or edges that have the highest impact on the model to learn the low-dimensional representation. This information is crucial for identifying microbes and interactions among them that are strongly correlated with clinical diseases. We conduct our experiments on both synthetic and real-world microbiome datasets.
Collapse
Affiliation(s)
- Kateryna Melnyk
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Kuba Weimann
- Zuse Institute Berlin, Takustraße 7, 14195, Berlin, Germany
| | - Tim O F Conrad
- Zuse Institute Berlin, Takustraße 7, 14195, Berlin, Germany
| |
Collapse
|
49
|
Bosák J, Kohoutová D, Hrala M, Křenová J, Morávková P, Rejchrt S, Bureš J, Šmajs D. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front Microbiol 2023; 14:1141619. [PMID: 37125208 PMCID: PMC10133476 DOI: 10.3389/fmicb.2023.1141619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Pathogenic strains of Escherichia coli have been clearly identified as the causative agents of extraintestinal and diarrheal infections; however, the etiopathogenic role of E. coli in other conditions, including colorectal cancer, remains unclear. Methods This study aimed to characterize mucosal E. coli isolates (n = 246) from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic determinants encoding known virulence factors. Results Virulence determinants encoding invasin (ibeA), siderophore receptor (iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli isolated from patients with neoplasia compared to the control group (p < 0.05). In addition, the prevalence of these virulence determinants was increased in more advanced neoplasia stages (p adj < 0.0125). Compared to patients with advanced colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control group and among patients with non-advanced adenoma (p < 0.05), indicating its potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently had E. coli strains with at least one of the abovementioned virulence factors, whereby specific combinations of these virulence factors were found. Discussion These findings suggest that E. coli strains isolated from patients with colorectal neoplasia possess several virulence factors, which could contribute to the development of neoplastic processes in the large intestine.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Kohoutová
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jitka Křenová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Paula Morávková
- Second Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Stanislav Rejchrt
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - Jan Bureš
- Center of Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: David Šmajs,
| |
Collapse
|
50
|
Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:805-813. [PMID: 36050385 DOI: 10.1038/s41575-022-00673-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.
Collapse
Affiliation(s)
- Christoph Hoegenauer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heinz F Hammer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|