1
|
Mohammadi Z, Taherpour K, Ghasemi HA, Fakharzadeh S, Nooreh Z, Kalanaky S. Efficacy of advanced chelate technology-based 7-mineral supplementation in mitigating aflatoxin B1-induced impairments in broiler chicken performance and intestinal health. Microb Pathog 2025; 200:107350. [PMID: 39892032 DOI: 10.1016/j.micpath.2025.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Optimal levels and bioavailability of trace minerals (TM) in the broiler diet are important for improving performance and health status in the presence of dietary toxins. METHODS The study examines the effectiveness of advanced chelate technology-based 7-minerals (ACTM) in broilers fed aflatoxin B1 (AFB1)-contaminated diets, involving 768 chickens in eight treatments with six replicates, following a completely randomized design. Treatments contained (1) negative control (NC) group receiving a basal diet without AFB1 and containing recommended inorganic TM (ITM) levels (NC + ITM), (2) positive control (PC) group receiving a basal diet with 0.5 mg AFB1/kg and recommended ITM levels (PC + ITM), (3) PC diet + toxin binder (ITM + TB), (4 and 5) PC diet with 50 % and 100 % ACTM instead of ITM (ACTM50 and ACTM100), (6 and 7) PC diet with 12.5 % and 25 % extra ACTM (ITM + ACTM12.5 and ITM + ACTM25), and (8) PC diet with 125 % ITM levels (ITM125). RESULTS The results showed that the ACTM100 and ITM + ACTM25 treatments resulted in higher average weight gain and European production efficiency index compared to the PC + ITM treatment, but lower than the NC + ITM treatment. Key indicators of gut health, such as ileal digestibility of crude fat and phosphorus, AMEn value, duodenal villus height to crypt depth ratio, villus surface area, and gene expression of junctional adhesion molecule 2 were significantly improved in the ACTM100, ITM + BT, and NC + ITM groups compared to the PC + ITM group. Additionally, jejunal occludin expression increased in the ACTM100, ITM + ACTM25, ITM + TB treatments, and the jejunal zonula occludens-1 expression increased significantly in the ACTM100 and ITM + ACTM25 groups. CONCLUSION The results indicate that completely replacing ITM with ACTM or adding ACTM supplement to ITM diets at 25 % extra commercial levels can improve growth performance, gut health, and nutrient digestibility in the presence of AFB1 challenge. These effects are comparable to diets containing a commercial toxin binder.
Collapse
Affiliation(s)
- Zeynab Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Zahra Nooreh
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
2
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Mohammadi Z, Taherpour K, Ghasemi HA, Fakharzadeh S, Nooreh Z, Kalanaky S. Beneficial effects of advanced chelate technology-based 7-minerals in aflatoxin-B1 challenged broilers: toxin residue reduction, serum biochemical improvement and modulation of the mRNA expression of NF-kB and Nrf2, and genes within their pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9324-9335. [PMID: 39041368 DOI: 10.1002/jsfa.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Organic trace minerals (TM) offer superior nutritional benefits because of their stable structure, making their addition to broiler diets potentially beneficial during challenging periods such as aflatoxin B1 (AFB1) contamination. The present study evaluated the impacts of different replacement levels of inorganic TM (ITM) with advanced chelate technology-based TM (ACTM) on the growth performance, serum biochemical parameters, antioxidant indicators, and some inflammatory and immune parameters of broilers fed diets contaminated with AFB1. A 42-day experiment involved randomly assigning 1-day-old broiler chickens (n = 480) to one of five dietary treatments, each with six replicates. The treatments were as follows: (1) NC: basal diet without AFB1 and recommended ITM levels; (2) PC: basal diet with 0.5 mg kg-1 AFB1 and recommended ITM levels; (3) TB: PC diet +1 g kg-1 toxin binder; (4) ACTM50: replacement of ITM with 50% ACTM in the PC diet; and (5) ACTM100: replacement of ITM with 100% ACTM in the PC diet. RESULTS Compared with PC treatment, ACTM100 treatment resulted in increased (P < 0.05) body weight gain, serum zinc and glutathione concentrations, immunoglobulin Y level, antioxidant enzyme activities, and hepatic gene expression of nuclear factor erythroid 2-related factor 2, glutathione peroxidase-1, superoxide dismutase-1 and transforming growth factor beta 1. The ACTM100 group also exhibited decreased AFB1 residue in the liver and kidney, serum alanine transaminase activity and malondialdehyde concentration, and hepatic gene expression levels of nuclear factor-kappa B and interferon-gamma (P < 0.05). These values were comparable to those recorded in the TB and NC treatments. CONCLUSION In conclusion, completely replacing ITM with ACTM can benefit the metabolism and mitigate AFB1-induced immunotoxicity and oxidative damage in chickens by altering the mRNA expression of nuclear factor-kappa B and nuclear factor erythroid 2-related factor 2, and some genes downstream their signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeynab Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Zahra Nooreh
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
4
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MAM, Sayed Zaazouee M, Ahmed Elshanbary A, Sayed AA, Abdel-Daim MM. Effects of alfa lipoic acid and coenzyme Q10 treatment on AFB1-induced oxidative, inflammatory, and DNA damages in rats. Toxicon 2024; 249:108083. [PMID: 39222753 DOI: 10.1016/j.toxicon.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Food contamination with Aflatoxin B1 (AFB1) is a worldwide concern that adversely affects animal and human health. The study aimed to evaluate the protective effect of alpha lipoic acid (ALA) and/or co-enzyme Q10 (CQ10) against the harmful effects of AFB1 on the liver and kidneys. Fifty-six mature male Wistar Albino rats (180-200 g) were divided into seven groups, each with eight rats: (1) saline was given as a control, (2) ALA (100 mg/kg bw/day) was given by stomach gavage for fifteen days, and (3) CQ10 (10 mg/kg bw/day) was given by stomach gavage for fifteen days. Group (4) orally given AFB1 (2.5 mg/kg bw) on days 12th and 14th, (5) received AFB1 and ALA, (6) received AFB1 and CQ10, and (7) received AFB1, ALA, and CQ10, as previously described in the ALA, CQ10, and AFB1 groups. After the exposure to AFB1, a significant increase in liver markers (AST, ALT, ALP, and LDH) and renal function tests (BUN and creatinine) was observed compared with the control. ALA and/or CQ10 significantly reduced enzymes of liver and renal functions, as compared with AFB1. AFB1 exposure threw off the balance between oxidants and antioxidants. Still, ALA and/or CQ10 made oxidative stress (MDA, NO, and 8-OHdG) much lower and antioxidant activities (GSH, GSH-Px, SOD, and CAT) much higher. When we used the two together, the activities matched the control levels. Interestingly, this study shows that ALA and CQ10 significantly lowered IL-1β, IL-6, and TNF-α levels compared to the control values when used together after AFB1 exposure caused robust inflammation. Some CQ10 treatment parameters significantly outperformed those of ALA. ALA and CQ10 together worked better than either one alone to protect against AFB1-induced toxicity in the hepatic and renal parenchyma in terms of reducing inflammation, preventing DNA damage, and fighting free radicals.
Collapse
Affiliation(s)
- Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah, 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia
| | - Mohie A M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, P.O. Box 6622, Buraidah, 51452, Saudi Arabia; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | | | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
5
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MAM, Zaazouee MS, Elshanbary AA, Sayed AA, Abdel-Daim MM. Antioxidant, anti-inflammatory, and anti-DNA damage effects of carnosic acid against aflatoxin B1-induced hepatic, renal, and cardiac toxicities in rats. Toxicol Res (Camb) 2024; 13:tfae083. [PMID: 38939725 PMCID: PMC11200098 DOI: 10.1093/toxres/tfae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Background Aflatoxin B1 (AFB1) food contamination is a global health hazard that has detrimental effects on both human and animal health. The objective of the current study is to assess the protective impact of carnosic acid against AFB1-induced toxicities in the liver, kidneys, and heart. Methods Forty male Wistar Albino rats (weighting 180 ~ 200 g) were allocated into 5 groups (8 rats each); the 1st group received saline as served as a control, the 2nd group received carnosic acid (CA100) at a dose of 100 mg/kg bw/day by gavage for 14 days, the 3rd group received AFB1 at a dose of 2.5 mg/kg bw, orally twice on days 12 and 14, the 4th group (AFB1-CA50) received AFB1 as in the 3rd group and CA at a dose of 50 mg/kg bw/day, and the 5th group (AFB1-CA100) received AFB1 as in the 3rd group and CA as in the 2nd group. Results CA significantly decreased the liver enzymes (ALT, AST. ALP), renal function products (LDH, BUN, creatinine), and cardiac enzymes (CK and CK-MB) to control levels after the high increment by AFB1 exposure. Moreover, CA significantly decreased the oxidative stress (MDA, NO, 8-OHdG) and increased the antioxidant enzyme activities (CAT, GSH, GSH-Px, and SOD) after severe disruption of oxidant/antioxidant balance by AFB1 exposure. Interestingly, CA significantly decreased the proinflammatory mediators (IL-6, IL-1β, and TNF-α) to the control levels after severe inflammation induced by AFB1 exposure. Conclusions Conclusively, CA had antioxidant, anti-inflammatory, and anti-DNA damage effects against hepatic, renal, and cardiac AFB1-induced toxicities.
Collapse
Affiliation(s)
- Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohie A M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, PO Box 6622, Buraydah 51452, Saudi Arabia
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | | | | | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Zhu FH, Chen XY, Hou LL, Dong JH, Liu HW, Zhu LQ, Chen F. Limosilactobacillus reuteri peptidoglycan alleviates aflatoxin B 1-induced toxicity through adsorbing toxins and improving growth, antioxidant status, immunity and liver pathological changes in chicks. Br Poult Sci 2024; 65:352-360. [PMID: 38466183 DOI: 10.1080/00071668.2024.2316228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/08/2023] [Indexed: 03/12/2024]
Abstract
1. The objective of this study was to investigate the protective effects of a peptidoglycan produced by Limosilactobacillus reuteri against aflatoxin B1 (AFB1) induced toxicity in vitro and in vivo in broiler chicks.2. Toxin adsorption experiments were carried out firstly in vitro. These experiments indicated that the absorption efficiency of the peptidoglycan for AFB1 was 64.3-75.9%.3. In the in vivo experiments, Hy-Line Brown chicks were fed a diet containing AFB1 at 71.43 µg/kg with and without peptidoglycan supplementation at concentrations of 100, 200, or 300 g/kg feed from 0-42 d of age.4. The peptidoglycan supplementation in AFB1-contaminated diets resulted in significant improvements in terms of average daily gain, feed intake, feed conversion ratio, white blood cell count, haemoglobin content, glutathione peroxidase activity, immunoglobulin (Ig) A, IgG, IgM and Newcastle disease virus antibody titres (p < 0.05) and diminished liver steatosis.5. In conclusion, peptidoglycan supplementation alleviated AFB1-induced toxicity through adsorbing toxins and improving growth performance, antioxidant ability, immunity and liver pathological changes in chicks. The optimal supplemental dose was 200 mg/kg in feed.
Collapse
Affiliation(s)
- F H Zhu
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - X Y Chen
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - L L Hou
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - J H Dong
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - H W Liu
- College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - L Q Zhu
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - F Chen
- Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Yu A, Wang H, Cheng Q, Rajput SA, Qi D. The Effects of Aflatoxin B 1 on Liver Cholestasis and Its Nutritional Regulation in Ducks. Toxins (Basel) 2024; 16:239. [PMID: 38922135 PMCID: PMC11209606 DOI: 10.3390/toxins16060239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 μg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis.
Collapse
Affiliation(s)
- Aimei Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Qianhui Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| |
Collapse
|
8
|
Dong J, Qiu H, Gao S, Hou L, Liu H, Zhu L, Chen F. A combination of selenium and Bacillus subtilis improves the quality and flavor of meat and slaughter performance of broilers. Front Vet Sci 2023; 10:1259760. [PMID: 38026674 PMCID: PMC10663308 DOI: 10.3389/fvets.2023.1259760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to investigate the effects of the combination of selenium and Bacillus subtilis (Se-BS) on the quality and flavor of meat and slaughter performance of broilers. A total of 240 one-day-old Arbor Acres broilers were randomly allotted to four treatments of a basal diet supplemented with no selenium (control), sodium selenite (SS), BS, or Se-BS and raised for 42 days. Compared with the control group, Se-BS significantly increased the carcass weight, the half-eviscerated weight, the completely eviscerated weight, the carcass rate, and redness in broiler muscles; improved the antioxidant state by increasing glutathione peroxidase (GPx) and glutathione S-transferase activities, the total antioxidant capacity, and GPx-1 and thioredoxin reductase 1 messenger RNA (mRNA) levels; promoted biological activity by increasing the contents of glutamate, phenylalanine, lysine, and tyrosine; and increased Se and five types of nitrogenous volatile substances in muscles. On the other hand, Se-BS treatment decreased the shear force, drip loss, and the malondialdehyde, glutathione, and lead contents in muscles. Se-BS exerted a better effect on slaughter performance, the physicochemical quality of meat, the redox status, the amino acid contents, the trace element contents, and volatile substances compared with SS and BS. In conclusion, Se-BS had a positive effect on the quality and flavor of meat and slaughter performance of broilers, suggesting that Se-BS may be a beneficial feed additive.
Collapse
Affiliation(s)
- Jihong Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiling Qiu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- Haidu College, Qingdao Agricultural University, Laiyang, Shandong, China
| | - Shansong Gao
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lele Hou
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huawei Liu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lianqin Zhu
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Fu Chen
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Altyar AE, Kensara OA, Sayed AA, Aleya L, Almutairi MH, Zaazouee MS, Elshanbary AA, El-Demerdash FM, Abdel-Daim MM. Acute aflatoxin B1-induced hepatic and cardiac oxidative damage in rats: Ameliorative effects of morin. Heliyon 2023; 9:e21837. [PMID: 38027731 PMCID: PMC10663918 DOI: 10.1016/j.heliyon.2023.e21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by the fungus Aspergillus flavus, of which Aflatoxin-B1 (AFB1) appears to be the most cancerogenic and of the highest toxicity. AFB1 causes serious effects on several organs including the liver. Morin is a flavonol that exists in many fruits and plants and has diverse biological properties including anticancer, anti-atherosclerotic, antioxidant, anti-inflammatory, immunomodulatory, and multi-organ protective activities. The present study aims to evaluate the potential protective effects of morin against acute AFB1-induced hepatic and cardiac toxicity in rats. Forty rats were divided into five groups (n = 8) as follows: control received the vehicle, morin was orally administered 30/mg/kg body weight (MRN30), the AFB1 was administered orally at a dose of 2.5 mg/kg, twice on days 12 and 14 of the experiment for the 3rd, 4th, and 5th groups., AFB1-MRN15 was orally given morin at a dose of 15 mg/kg body weight, and AFB1-MRN30 orally received morin at 30 mg/kg body weight. The results indicated a significant decrease in serum AST, ALP, LDH, GGT, CK, CK-MB, 8-OHdG, IL-1β, IL-6, TNF-a levels in MRN30 compared to AFB1, and AFB1-MRN15 groups. However, the results indicated non-significant differences in the serum levels between MRN30, control, and AFB1-MRN30 groups. Meanwhile, regarding the hepatic and cardiac parameters, there were significant differences in the levels of MDA, NO, GSH, GSH-Px, SOD, and CAT in MRN30 compared to AFB1, and AFB1-MRN15 groups, overall implying the protective effects of morin. To conclude, morin at a dose of 30 mg/kg b. wt. showed significant enhancements in acute AFB1-induced hepatic and cardiac toxicity in rats, which could play a role in limiting the public health hazards of AFs.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR, CNRS 6249, Franche-Comté University, CEDEX, F-25030, Besançon, Bourgogne, France
| | - Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | | | | | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
10
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
11
|
Demirkapi EN, Ince S, Demirel HH, Arslan-Acaroz D, Acaroz U. Polydatin reduces aflatoxin-B1 induced oxidative stress, DNA damage, and inflammatory cytokine levels in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:70842-70853. [PMID: 37155108 DOI: 10.1007/s11356-023-27361-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
This study showed the protective effect of polydatin (PD), which has an antioxidant activity against oxidative stress in mice caused by aflatoxin B1 (AFB1). In this study, 36 male Swiss albino mice were divided equally into 6 groups: 0.2 mL of FTS was administered to the control group, 0.2 mL of olive oil to the second group, and 0.75 mg/kg AFB1 to the third group by intragastric gavage every day for 28 days. The fourth, fifth, and sixth groups were administered 50, 100, and 200 mg/kg PD and 0.75 mg/kg AFB1 intragastrically for 28 days, respectively. AFB1 administration increased plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, and malondialdehyde levels in blood and tissue samples but decreased the level of glutathione and the activities of superoxide dismutase and catalase. On the other hand, it was determined that PD applications depending on the increasing doses brought these levels closer to normal. In addition, AFB1 administration increased the amount of ssDNA and liver COX-2, TNF-α, IL-6, NFκB, and Cyp3a11 mRNA expression levels; on the other hand, it decreased the IL-2 mRNA expression level. In contrast, increasing doses of PD application regulated the amount of ssDNA and these mRNA expression levels. Additionally, histopathological damage was observed in the liver and kidney tissues of the AFB1 group, while PD applications in a dose-dependent manner improved these damages. As a result, it was determined that PD reduced AFB1-induced oxidative stress, DNA damage, and inflammation and exhibited a protective effect on tissues in mice.
Collapse
Affiliation(s)
- Ezgi Nur Demirkapi
- Veterinary Faculty, Department of Physiology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
| | - Sinan Ince
- Veterinary Faculty, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan-Acaroz
- Veterinary Faculty, Department of Biochemistry, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Afyon Kocatepe University, Veterinary Faculty, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Sanei S, Kasgari MB, Abedinzadeh F, Sasan AP, Hassani S, Karimi E, Oskoueian E, Jahromi MF. Microcapsules loaded with date seed extract and its inhibitory potential to modulate the toxic effects of mycotoxins in mice received mold-contaminated diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58654-58662. [PMID: 36991200 DOI: 10.1007/s11356-023-26640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Mycotoxins are the secondary fungal metabolites generally produced by wide range of fungi including aflatoxins (AF), ochratoxin A (OTA), fumonisins (FB), zearalenone (ZEN), and deoxynivalenol (DON). Nowadays, they are main concern to food and agricultural commodities due to undesirable health and socio-economic effect. This investigation was designed to synthesized microcapsules loaded the bioactive compounds of date seed and evaluated its inhibitory activities in mice received mold-contaminated diet. The finding revealed that the developed microcapsule is homogenous and mostly spherical with size of 2.58 μm with acceptable PDI of 0.21. The main phytochemical has been confirmed by HPLC analysis were xylose, fructose, mannose, glucose, and galactose with the respective values of 41.95%, 2.24%, 5.27%, and 0.169%. The in vivo analyses manifested that the mice received date seed microcapsules significantly (p < 0.05) improved the average daily weight gain, feed intake, liver enzymes (ALT, ALP, and AST), and lipid peroxidation values compare to mice group received mycotoxin-contaminated diet. Furthermore, encapsulation date seed bioactive compounds notably up-regulated the expression of GPx, SOD, IFN-γ, and IL-2 genes while down-regulated the iNOS gene. Consequently, the novel microcapsules loaded date seed is suggested to be considered as a promising mycotoxin inhibitor.
Collapse
Affiliation(s)
- Sogand Sanei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Fatemeh Abedinzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Atena Poor Sasan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeid Hassani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| | | |
Collapse
|
13
|
Qin S, She F, Zhao F, Li L, Chen F. Selenium-chitosan alleviates the toxic effects of Zearalenone on antioxidant and immune function in mice. Front Vet Sci 2022; 9:1036104. [PMID: 36277059 PMCID: PMC9582340 DOI: 10.3389/fvets.2022.1036104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study assessed the protective effects of selenium-chitosan (SC) against antioxidant and immune function-related damage induced by zearalenone (ZEN) in mice. In total, 150 female mice were allotted to five groups for a 30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with same dose of ZEN (2 mg/kg) and different doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity, total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) content in plasma and liver, as well as Con A-induced splenocyte proliferation, plasma interleukins concentrations and liver interleukin mRNA expression levels were determined. The plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and mRNA expression levels in the ZEN group were significantly lower than in the control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN group were significantly higher than in the control group (P < 0.01 or P < 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents, IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the plasma MDA content in the ZEN+Se1 group was also significantly lower than in the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related damage and immunosuppression induced by ZEN in mice.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fanghong Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Fu Chen
| |
Collapse
|
14
|
Liu C, Li Y, Li H, Wang Y, Zhao K. Nano-Selenium and Macleaya cordata Extracts Improved Immune Functions of Intrauterine Growth Retardation Piglets under Maternal Oxidation Stress. Biol Trace Elem Res 2022; 200:3975-3982. [PMID: 34739675 DOI: 10.1007/s12011-021-03009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Intrauterine growth retardation (IUGR) is the main death cause of newborn piglets in large-scale farms. To investigate the effects of maternal nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune functions of IUGR piglets in large scale farms, a 2 × 2 factorial design was adopted in this test, and two factors were nano-Se (0, 0.50 mg/kg) and MCE (0, 500 mg/kg). A total of 32 ternary hybrid sows (Landrace × Yorkshire × Duroc, parity 2) were used in this 25-day trial from day 90 of pregnancy to delivery. The dietary treatments were as follows: (1) CON group, basic diet (0.0 mg/kg Se); (2) Nano-Se group, basic diet + 0.50 mg/kg added Se (nano-Se); (3) MCE group, basic diet + 500 mg/kg added MCE; (4) Combined group, basic diet + 0.50 mg/kg added nano-Se and 500 mg/kg added MCE. Maternal nano-Se or combination of nano-Se and MCE diets extremely increased the superoxide dismutase (SOD), catalase (CAT), superoxide dismutase (GSH-Px) contents in the serum and liver of IUGR offspring (P < 0.05), and MCE supplementation in sow diets remarkably increased the serum superoxide dismutase (SOD), catalase (CAT), and superoxide dismutase (GSH-Px) contents of IUGR piglets (P < 0.05). Adding nano-Se, MCE, or nano-Se and MCE to sow diets decreased the malondialdehyde (MDA) content in the serum and liver of IUGR piglets (P < 0.05). The supplementation of nano-Se and combined diets extremely increased the activities of immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum and liver of IUGR offspring (P < 0.05). Maternal nano-Se, MCE, and combined diets greatly decreased the levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-1β (IL-1β) in the serum and liver of IUGR piglets (P < 0.05). Together, the application of nano-Se and/or MCE to sow diets improved antioxidant capacities and immune functions of IUGR offspring, and alleviated oxidative stress.
Collapse
Affiliation(s)
- Changlin Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Haiyan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| |
Collapse
|
15
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
16
|
Zhang Y, Zhou P, Shen X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang. Biol Trace Elem Res 2022; 200:3621-3629. [PMID: 34636021 DOI: 10.1007/s12011-021-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We have found that the Reclamation merino sheep in Southern Xinjiang, China, showed emaciation, stiff limbs, instability, and sudden death, which is related to the impairment of immune function and antioxidant capacity caused by selenium (Se) deficiency. The experiments were to study the effects of Se-enriched malt on the immune and antioxidant function in Se-deprived Reclamation merino sheep in Southern Xinjiang, China. The samples of soil and forage had been collected from tested pastures, and animal tissues were also collected in tested animals. The mineral content of soil, forage, and animal tissues was measured in the collected samples. Hematological indexes and biochemical values were also examined. The findings showed that the Se contents were extremely lower in affected soil and forage than those from healthy soil and forage (P < 0.01). The Se contents in affected blood and wool were also extremely lower than those from healthy blood and wool (P < 0.01). The values in glutathione peroxidase and total antioxidant capacity in affected serum samples were also extremely lower than those from healthy serum samples, and levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were extremely higher in affected serum samples than those from healthy serum samples (P < 0.01). Meanwhile, the values of hemoglobin, packed cell volume, and platelet count from affected blood were extremely lower than those from healthy blood (P < 0.01). The levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A, and immunoglobulin G in serum were extremely decreased in the affected Reclamation merino sheep (P < 0.01). The levels of IL-6 and immunoglobulin M in serum were extremely reduced in the affected Reclamation merino sheep compared to healthy animals (P < 0.01). The animals in affected pastures were orally treated with Se-enriched malt, and the Se contents in blood were extremely increased (P < 0.01). The immune function and antioxidant indicator returned to within the healthy range. Consequently, our findings were indicated that the disorder of the Reclamation merino sheep was mainly caused by the Se deficiency in soil and forage. The Se-enriched malt could not only markedly increase the Se content in blood but also much improve the immune function and the antioxidant capacity in the Se-deprived Reclamation merino sheep.
Collapse
Affiliation(s)
- Yunzhuo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
| | - Ping Zhou
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
17
|
Min X, Yang Q, Zhou P. Effects of Nano-copper Oxide on Antioxidant Function of Copper-Deficient Kazakh Sheep. Biol Trace Elem Res 2022; 200:3630-3637. [PMID: 34741244 DOI: 10.1007/s12011-021-02975-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023]
Abstract
Kazakh sheep are vital to the production system of the Barkol prairie. The purpose of this study was to determine the effect of nano-copper oxide (Nano-Cu2O) on the antioxidant system of Cu-deficient Kazakh sheep in the Barkol prairie in Xinjiang, China. We analyzed mineral contents in soil, forage, and animal tissues. Blood parameters were also measured at the same time. The results showed that compared with healthy grassland, the Cu content in the soil and forage in Cu-deficient pastures was significantly lower than that in healthy grassland (P < 0.01). The Cu content in the blood, wool, and liver of Cu-deficient Kazakh sheep was significantly lower than that of healthy animals (P < 0.01). After Kazakh sheep were supplemented with Nano-Cu2O or CuSO4, the blood Cu concentration increased significantly (P < 0.01). From the 5th day, the Cu content of the Nano-Cu2O group was significantly higher than that of the CuSO4 group. The levels of hemoglobin (Hb), erythrocyte count (RBC), and packed cell volume (PCV) in the two experimental groups were significantly higher than those in Cu-deficient Kazakh sheep (P < 0.01). Compared with Cu-deficient Kazakh sheep, the serum ceruloplasmin (Cp) level of the two experimental groups increased significantly (P < 0.01), while the serum lactate dehydrogenase (LDH), alkaline phosphatase (AKP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) decreased significantly (P < 0.01). Compared with Cu-deficient Kazakh sheep, the activities of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) in Nano-Cu2O and CuSO4 groups increased significantly (P < 0.01), while the level of serum malondialdehyde (MDA) decreased significantly (P < 0.01). Therefore, Nano-Cu2O could not only significantly increase the Cu content in the blood of Cu-deficient Kazakh sheep, but also greatly improve the antioxidant capacity.
Collapse
Affiliation(s)
- Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Qingxiong Yang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
18
|
Qiu J, Zhou P, Shen X. Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep. Biol Trace Elem Res 2022; 200:2741-2749. [PMID: 34432270 DOI: 10.1007/s12011-021-02896-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023]
Abstract
The experiments were to study the effects of Se-yeast on immune and antioxidant in Selenium(Se)-deprived Pishan red sheep in Southern Xinjiang, China. The samples of soil, forage, and animal tissues were collected, and used for measuring mineral content, physiological parameter, and biochemical values. These findings showed that the Se contents in affected soil and forage were markedly lower than those from unaffected soil and forage (P < 0.01). Se in affected blood and wool were also extremely lower than those from healthy Pishan red sheep (P < 0.01). The hemoglobin, packed cell volume, platelet count, Glutathione peroxidase, and total antioxidant capacity in the affected Pishan red sheep were markedly lower than those from healthy ones too (P < 0.01). The levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide in Pishan red sheep from affected pastures were extremely higher than those from healthy ones (P < 0.01). The levels of interleukin (IL)-1β, Interleukin-2, tumor necrosis factor-α and interleukin-6 from serum were markedly decreased in affected Pishan red sheep(P < 0.01). The Pishan red sheep in Se-deprived pasture were treated by orally with Se-yeast, the amount of Se in the blood markedly increased in treated animals. Meanwhile, the immune and antioxidant indicator was returned to the healthy values. Consequently, our findings were indicated that Se-deprived forage caused oxidative damage, and a serious threat to the immune function in animals. The Se-yeast is more effective in the Se-deficient Pishan red sheep including blood Se content, immune function and the antioxidant capacity.
Collapse
Affiliation(s)
- Jie Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
19
|
Li Y, Liu H, He J, Shen X, Zhao K, Wang Y. The Effects of Oral Administration of Molybdenum Fertilizers on Immune Function of Nanjiang Brown Goat Grazing on Natural Pastures Contaminated by Mixed Heavy Metal. Biol Trace Elem Res 2022; 200:2750-2757. [PMID: 34482497 DOI: 10.1007/s12011-021-02901-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Mineral development and metal smelting seriously polluted the surrounding groundwater and soil, threatening human health through the food chain. To investigate the effects of different sources of molybdenum (Mo) fertilizers on immune function of Nanjiang brown goats grazing on natural pastures under compound pollutions, fertilizing experiment was carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, China. Eighteen square hectometers of polluted meadows were fenced and were randomly divided into three groups (3 replications/group and 2 hm2/replication). A total of 54 healthy Nanjiang brown goats with an average BW of 31.6 ± 1.5 kg (1 year old) were used to this 30-day test (18 goats per group). The goats from CON group, AM group, and PM group were orally supplemented with deionized water, 15 mg Mo/BW·d (ammonium molybdate tetrahydrate), and 15 mg Mo/BW·d (potassium molybdate), respectively. Compared to CON group, the serum Fe content of grazing animals from AM group and PM group was 10.05% and 3.45% higher (P < 0.05), and the serum Cu content of grazing animals from AM group and PM group was 69.05% and 67.86% lower, respectively (P < 0.05). Mo fertilization significantly increased the levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, CAT, and Cp of grazing goats (P < 0.05), and also extremely decreased the MDA content of experimental goats fed Mo compared to the control goats (P < 0.05). Compared to CON group, the activities of serum IgG, IgA, IgM, IL-2, and TNF-α of grazing animals from AM group and PM group were significantly increased (P < 0.05), and the levels of serum IL-6 and IL-1β of grazing goats from AM group and PM group were extremely decreased (P < 0.05). In summary, oral Mo fertilizers can alter the contents of serum mineral elements, reduce oxidative stress, improve immune function, and relieve the toxic damage of goats grazing on contaminated natural grasslands.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Hongwei Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
20
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Li Y, He J, Shen X. Effects of Nano-selenium Poisoning on Immune Function in the Wumeng Semi-fine Wool Sheep. Biol Trace Elem Res 2021; 199:2919-2924. [PMID: 32974846 DOI: 10.1007/s12011-020-02408-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
The Wumeng semi-fine wool sheep is vital to the production system in Southwest China. To study the effects of nano-selenium (Nano-Se) poisoning in the Wumeng semi-fine wool sheep, poisoning model was established. A total of 20 animals with an average initial body weight (BW) of 35.57 ± 3.31 kg were used in this study. After 1-week-long acclimatization period, all animals were randomly divided into two groups: (1) control, with no any treatment; (2) Nano-Se group, orally administered 5 mg Nano-Se (BW/kg/day). There were 10 replications/group and one sheep/replication. The experiment lasted for 30 days. Compared with the control, hemoglobin, erythrocyte count, and packed cell volume in Nano-Se group markedly decreased (P < 0.01), and the activities of serum lactate dehydrogenase, glutamic oxaloacetic transaminase, cereal third transaminase, and alkaline phosphatase in Nano-Se group significantly increased (P < 0.01). T3 and FT3 in serum in Nano-Se group were greatly lower than those in the control (P < 0.01). Contents of T4, FT4, and TSH in serum in Nano-Se group were extremely higher than those in the control (P < 0.01). Levels of IgG, IgM, IgA, interleukin 2 (IL-2), and tumor necrosis factor-alpha (TNF-α) in Nano-Se group were much lower than those of the control (P < 0.01), but levels of interleukin 6 (IL-6) and interleukin-1β (IL-1β) were greatly higher than those in the control (P < 0.01). Compared with the control, serum superoxide dismutase, glutathione peroxide, total antioxidant capacity, and catalase from Nano-Se group extremely decreased (P < 0.01), and content of serum malondialdehyde in Nano-Se group markedly increased (P < 0.01). The current results indicated that the blood parameters in the Wumeng semi-fine wool sheep were affected by Nano-Se poisoning, and the immune function and antioxidant capacity were greatly reduced too.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
22
|
Shen X, Song C, Wu T. Effects of Nano-copper on Antioxidant Function in Copper-Deprived Guizhou Black Goats. Biol Trace Elem Res 2021; 199:2201-2207. [PMID: 32812170 DOI: 10.1007/s12011-020-02342-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Guizhou black goats are essential to the production system in the Wumeng prairie in the Western China. This study aimed to determine the influence of nano-copper on antioxidant system in copper-deprived Guizhou black goats. We analyzed mineral contents in soil, forage, and goats' tissues. Blood parameters were also determined. The results showed that copper concentrations in soil and forage were significantly lower, and the iron content was significantly higher in affected compared with healthy area (P < 0.01). Copper concentrations in animal tissues (blood, liver, and hair) were significantly lower and iron content was significantly higher in affected compared with healthy goats (P < 0.01). After supplementation of nano-copper or copper sulfate, copper concentration in blood was significantly increased and iron content was significantly lower (P < 0.01). Compared with nano-copper group, the effect of copper sulfate was slower. Hemoglobin levels, erythrocyte count, and packed cell volume from nano-copper and copper sulfate groups were significantly higher than those in copper-deprived goats (P < 0.01). Compared with the copper-deprived Guizhou black goats, serum ceruloplasmin levels in nano-copper and copper sulfate groups were significantly increased, while serum lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and creatinine were significantly decreased (P < 0.01). Compared with the copper-deprived animals, serum superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity in nano-copper and copper sulfate groups were significantly higher, while serum malondialdehyde content was significantly lower (P < 0.01). The effect of copper sulfate group was significantly lower than that in nano-copper group (P < 0.01). Consequently, nano-copper could not only markedly increase the copper content in blood in copper-deprived Guizhou black goats but also much improves the antioxidant capacity.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ting Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
23
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
24
|
Fan T, Xie Y, Ma W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B 1-Induced liver toxicity. Toxicon 2021; 195:58-68. [PMID: 33716068 DOI: 10.1016/j.toxicon.2021.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic toxin, which can cause hepatitis, cirrhosis, and liver immunological damage. It has been involved in the etiology of human hepatocellular carcinoma. AFB1 can cause oxidative stress in the body's metabolism process, and then cause cytotoxicity, such as apoptosis and DNA damage. Scientific research has discovered that phytochemicals can induce the detoxification pathway of AFB1 through its biotransformation, thereby reducing the damage of AFB1 to the human body. In clinical treatment, certain phytochemicals have been effectively used in the treatment of liver injury due to the advantages of multiple targets, multiple pathways, low toxicity and side effects. Therefore, the article summarizes the toxic mechanism of AFB1-induced hepatoxicity, and the related research progress of phytochemicals for preventing and treating its cytotoxicity and genotoxicity. We also look forward to the existing problems and application prospects of phytochemicals in the pharmaceutical industry, in order to provide theoretical reference for the prevention and treatment of AFB1 poisoning in future research work.
Collapse
Affiliation(s)
- Tingting Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
25
|
Shen X, Song C. Responses of Chinese Merino Sheep (Junken Type) on Copper-Deprived Natural Pasture. Biol Trace Elem Res 2021; 199:989-995. [PMID: 32578136 DOI: 10.1007/s12011-020-02214-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
To research responses of Chinese Merino Sheep (Junken type) to copper-deprived natural pasture, we analyzed mineral contents in soil, forage, and sheep tissues. Physiological and biochemical parameters were also determined. Results showed that copper concentrations in soil and forage from affected pastures were significantly lower than those in healthy ranges (P < 0.01). Copper contents in animal tissues (blood, liver, and wool) from affected Chinese Merino Sheep were also significantly lower than those in healthy sheep (P < 0.01). Hemoglobin levels, packed cell volume, mean corpuscular volume, and mean corpuscular hemoglobin from affected Chinese Merino Sheep were significantly lower than those in healthy animals (P < 0.01). Serum ceruloplasmin was significantly lower in affected Chinese Merino Sheep than that in healthy animals, while activities of lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase in serum were significantly higher in affected compared with healthy animals (P < 0.01). The levels of superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and catalase in serum were significantly lower, and the malondialdehyde content was significantly higher in affected compared with healthy sheep (P < 0.01). The levels of interleukin-2, interleukin 6, interleukin-1β, immunoglobulin A, immunoglobulin M, and immunoglobulin G in copper-deprived sheep were significantly lower than those in healthy animals (P < 0.01). Copper deprivation in forage not only influenced the mineral content in blood but also severely disrupted blood parameters (physiology, biochemistry, immunity, and antioxidant) in Chinese Merino Sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
26
|
Song C, Gan S, He J, Shen X. Effects of Nano-Zinc on Immune Function in Qianbei-Pockmarked Goats. Biol Trace Elem Res 2021; 199:578-584. [PMID: 32394354 DOI: 10.1007/s12011-020-02182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Qianbei-pockmarked goats are vital to the production system of western China. This study aimed to determine the influence of nano-zinc on immune function in zinc-deprived goats. We analyzed the mineral concentrations in soil, forage, and animal tissue. Blood parameters and immune indexes were also determined. Results showed that the zinc concentrations in soil and forage from affected area were significantly lower than those in control area (P < 0.01). Zinc contents in tissues (blood and hair) from affected Qianbei-pockmarked goats were also significantly lower than those in healthy animals (P < 0.01). Levels of hemoglobin, erythrocyte count, and packed cell volume from affected animals were markedly lower than those in healthy animals (P < 0.01). Levels of lactate dehydrogenase, alkaline phosphatase, superoxide dismutase, glutathione peroxide, catalase, and total antioxidant capacity in serum in affected animals were significantly lower, and aspartate aminotransferase, alanine transaminase, malondialdehyde in serum were significantly higher than those in healthy goats (P < 0.01). The contents of immunoglobulin A, immunoglobulin M, immunoglobulin G, interleukin-2, interleukin 6, and interleukin-1β from affected animals were significantly lower than those in healthy animals (P < 0.01). The affected Qianbei-pockmarked goats were treated orally with nano-zinc, the concentration of zinc in blood significantly increased, and serum immune indexes greatly returned to that within the healthy range. It was concluded that nano-zinc could not only markedly increase the zinc content in blood of zinc-deprived goats but also much improve the immune function.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
27
|
Song C, Jiang Q, Shen X. Responses of Przewalski's Gazelle (Procapra przewalskii) to Zinc Nutrition in Physical Habitat. Biol Trace Elem Res 2021; 199:142-147. [PMID: 32236846 DOI: 10.1007/s12011-020-02137-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 11/25/2022]
Abstract
To study responses of Procapra przewalskii to zinc (Zn) nutrition in physical habitat, we analyzed the content of mineral elements in soil, forage, and animal tissues. Physiological and biochemical indexes were also determined. The results showed that Zn contents in the soil and forage from affected pasture were significantly lower (P < 0.01) than those in unaffected areas. Zn concentrations in the blood, liver, and hair from affected P. przewalskii were also significantly lower (P < 0.01) than those in healthy animals. The levels of hemoglobin, erythrocyte count, and packed cell volume from affected P. przewalskii were significantly lower (P < 0.01) than those in healthy animals. Serum aspartate aminotransferase and alanine transaminase activities were significantly lower (P < 0.01) in affected P. przewalskii than in healthy animals, while serum lactate dehydrogenase and alkaline phosphatase levels were significantly higher (P < 0.01) in affected compared with healthy animals. The activities of superoxide dismutase, glutathione peroxidase, and catalase in serum were significantly lower and the malondialdehyde content was significantly higher (all P < 0.01) in affected compared with healthy animals. Affected P. przewalskii were treated orally with ZnSO4. The Zn content in the blood increased gradually and serum antioxidant indexes gradually returned to within the healthy range. Zn deprivation in forage thus not only influenced the blood mineral content but also severely disrupted blood parameters and antioxidant function in P. przewalskii.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qing Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
28
|
Song C, Gan S, Shen X. Effects of Nano-Copper Poisoning on Immune and Antioxidant Function in the Wumeng Semi-Fine Wool Sheep. Biol Trace Elem Res 2020; 198:515-520. [PMID: 32130623 DOI: 10.1007/s12011-020-02085-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
The Wumeng semi-fine wool sheep is vital to the production system of the Wumeng mountainous area in Southwest China. To study the effect of nano-copper poisoning in the Wumeng semi-fine wool sheep, nano-copper poisoning model was established in sheep. We determined blood physiological and biochemical parameters, immune indexes, and antioxidant indicators. The results showed that Hb, RBC, and PCV levels in blood from the nano-copper group were markedly lower (P < 0.01) than those in the control group. Serum LDH, AST, ALT, CPK, and Cp from the nano-copper group were significantly higher (P < 0.01) than those in control animals. Serum SOD, GSH-Px, CAT, and T-AOC from the nano-copper group were significantly lower (P < 0.01) than those in control sheep, and MDA content in serum from the nano-copper group were markedly higher (P < 0.01) than those in control sheep. The levels of IL-2, IL-6, IL-1β, IgA, IgM, and IgG from the nano-copper group were significantly lower (P < 0.01) than those in the control group. It was concluded that nano-copper poisoning could not only affect the immune function of Wumeng semi-fine wool sheep but also reduce the antioxidant capacity.
Collapse
Affiliation(s)
- ChunJie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
29
|
Huo B, He J, Shen X. Effects of Selenium-Deprived Habitat on the Immune Index and Antioxidant Capacity of Przewalski's Gazelle. Biol Trace Elem Res 2020; 198:149-156. [PMID: 32040847 DOI: 10.1007/s12011-020-02070-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Przewalski's gazelle (Procapra przewalskii) is an endangered ungulate in the Qinghai-Tibet Plateau of China. This study aimed to determine the influence of selenium (Se) deprivation in the natural habitat on the immune index and antioxidant capacity of P. przewalskii. Samples of soil and forage were collected from affected and healthy areas, and animal tissues were collected from affected and healthy P. przewalskii. The samples were used for measuring mineral content and for hematological and biochemical analyses. The results showed that Se concentrations were significantly lower in the soil and mixed forage samples from the affected area than in those from the healthy area. The Se concentrations were significantly lower in blood and hair samples from affected P. przewalskii than in those from healthy P. przewalskii. Meanwhile, hemoglobin, packed cell volume, and platelet count of affected P. przewalskii were significantly lower than those of healthy P. przewalskii. The serum level of glutathione peroxidase and total antioxidant capacity were significantly lower and the serum levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were significantly higher in affected P. przewalskii. The serum levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A (IgA), and IgG significantly decreased and the serum levels of IL-6 and IgM significantly reduced in affected P. przewalskii compared with healthy P. przewalskii. Therefore, the findings indicated that Se deprivation in soil and forage caused oxidative stress damage and posed a serious threat to the immune function of P. przewalskii.
Collapse
Affiliation(s)
- Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|