1
|
Chebli AI, Zergui A, Amziane A, Zebbiche Y, Abdennour S. Metals in honey, cow's milk and eggs in North-East Algeria and health risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025; 18:55-64. [PMID: 39410796 DOI: 10.1080/19393210.2024.2414088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 02/21/2025]
Abstract
Metal contamination of foodstuffs is a major public health challenge of increasing concern. The present study aimed to determine lead, cadmium and mercury in honey, cow's milk and poultry eggs collected from the North-Eastern region of Algeria and to evaluate the health risks associated with their regular consumption. To this aim 30 samples of each foodstuff were analysed using ICP-MS. Among the quantified heavy metals, Pb was found at the highest level in both honey (0.752 ± 0.16 µg g-1) and poultry egg (0.988 ± 0.19 µg g-1) in the region of Skikda. The highest values of Cd (0.798 ± 0.12 µg g-1) and Hg (0.097 ± 0.02 µg g-1) were found in poultry eggs collected from the same region. For infants the Hazard Index was well above 1 in honey samples from all three locations, in cow's milk collected from Mila and Skikda and in poultry eggs collected from Skikda.
Collapse
Affiliation(s)
- A I Chebli
- Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| | - A Zergui
- Faculty of Medicine, University of Oran 1, Oran, Algeria
| | - A Amziane
- Faculty of Pharmacy, University of Algiers 1, Algeria
| | - Y Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algeria
| | - S Abdennour
- Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| |
Collapse
|
2
|
Sharma A, Gupta S, Shrivas K, Chakradhari S, Pervez S, Deb MK. Heavy metal contamination in cow and buffalo milk from industrial and residential areas of raipur, India: A health risk assessment. Food Chem Toxicol 2025; 196:115178. [PMID: 39645020 DOI: 10.1016/j.fct.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study investigated heavy metal contamination in cow and buffalo milk from industrial and residential areas of Raipur, India, assessing health risks and identifying contamination sources. Milk samples were collected from seven sites and analyzed for Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS). Results revealed higher contamination in industrial areas, with fodder being a primary source for Zn, Ni, Fe, and Cu, while water contributed to Mn, Cr, and As. Estimated daily intake (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) determination highlighted non-carcinogenic risks for Ni, Fe, and Pb, and significant carcinogenic risks for Pb and As. The concentrations of Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As in milk samples were ranged from 1.708 to 3.243, 0.078-0.295, 1.480-4.450, 0.119-0.472, 0.032-0.461, 0.007-0.040, 0.006-0.032, 0.040-0.204, and 0.006-0.023 mg/kg, respectively. The principal component analysis (PCA) identified fodder as a source of Zn, Ni, Fe, Cu, and Cd, while water contributed to Mn, Cr, and As. This study needed monitoring and regulation to mitigate health risks from contaminated milk in Raipur.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India
| | - Shashi Gupta
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| | - Suryakant Chakradhari
- Research and Development, The Waxpol Industries Ltd. Urla, Raipur, 492003, CG, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| |
Collapse
|
3
|
Fereja WM, Muda C, Labena AA. Assessment of heavy metal levels in cow's milk and associated health risks in the vicinity of the MIDROC Laga Dambi gold mine in Ethiopia. J Trace Elem Med Biol 2024; 86:127529. [PMID: 39303547 DOI: 10.1016/j.jtemb.2024.127529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION The possible health effects of consuming milk contaminated with heavy metals have been the subject of considerable concern worldwide. OBJECTIVE The aim of this study was to determine the level of heavy metals in cow's milk in the vicinity of MIDROC Laga Dambi gold mine and to assess their possible health risks for consumers. METHODS Nine composite samples were formed by aggregating 243 milk samples obtained in triplicates from 81 domestic milk-producing households. Inductively coupled plasma-optical emission spectroscopy was used to measure the amount of heavy metals after samples digestion under optimal conditions. RESULTS The heavy metals concentrations obtained were 13.913-7.843, 9.505-3.589, 5.972-3.147, 2.288-1.851, 0.403-0.143, 0.436-0.128, 0.26-0.153, 0.143-0.048, 0.160-ND (not detected), and 0.140-ND mgkg-1for Fe, Zn, Pb, Mn, Hg, Cr, Cd, As, Ni, and Co, respectively. Of the heavy metals identified, the levels of Pb, As, Cd, and Hg exceeded the recommended value. Based on the estimated daily intake (EDI), the total health quotient (THQ) is higher than unity even for Pb alone. It has been found that the consumption of cow milk increases the health index (HI) by 2.972. Ninety five percent of the HI in the study area was explained by the toxic heavy metals (Pb, Cd, As, and Hg) in the cow milk, which were found to be beyond the safe limit. CONCLUSION This demonstrates that there is a health risk to the population who consume cow's milk sourced from the vicinity of MIDROC Laga Dambi gold mine. To safeguard the public's health, we advised strict monitoring and legislative control for the safety of cow's milk originating from study area.
Collapse
Affiliation(s)
- Workineh Mengesha Fereja
- Department of Chemistry, College of Natural and Computational Sciences, Energy and Environment Research Center, Dilla University, 419, Dilla, Ethiopia.
| | - Chuluke Muda
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| | - Abraham Alemayehu Labena
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| |
Collapse
|
4
|
Fechete FI, Popescu M, Mârza SM, Olar LE, Papuc I, Beteg FI, Purdoiu RC, Codea AR, Lăcătuș CM, Matei IR, Lăcătuș R, Hoble A, Petrescu-Mag IV, Bora FD. Spatial and Bioaccumulation of Heavy Metals in a Sheep-Based Food System: Implications for Human Health. TOXICS 2024; 12:752. [PMID: 39453172 PMCID: PMC11511467 DOI: 10.3390/toxics12100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Heavy metal contamination in agricultural soils presents serious environmental and health risks. This study assessed the bioaccumulation and spatial distribution of nickel, cadmium, zinc, lead, and copper within a sheep-based food chain in the Baia Mare region, Romania, which includes soil, green grass, sheep serum, and dairy products. Using inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the concentrations of these metals and calculated bioconcentration factors (BCFs) to evaluate their transfer through trophic levels. Spatial analysis revealed that copper (up to 2528.20 mg/kg) and zinc (up to 1821.40 mg/kg) exceeded permissible limits, particularly near former mining sites. Elevated lead (807.59 mg/kg) and cadmium (2.94 mg/kg) were observed in industrial areas, while nickel and cobalt showed lower concentrations, but with localized peaks. Zinc was the most abundant metal in grass, while cadmium transferred efficiently to milk and cheese, raising potential health concerns. The results underscore the complex interplay between soil properties, contamination sources, and biological processes in heavy metal accumulation. These findings highlight the importance of continuous monitoring, risk assessment, and mitigation strategies to protect public health from potential exposure through contaminated dairy products.
Collapse
Affiliation(s)
- Florin-Ioan Fechete
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Maria Popescu
- Equine Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Sorin-Marian Mârza
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Loredana-Elena Olar
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Ionel Papuc
- Preclinic Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Florin-Ioan Beteg
- Clinical and Paraclinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Robert-Cristian Purdoiu
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Andrei Răzvan Codea
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Caroline-Maria Lăcătuș
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Ileana-Rodica Matei
- Plastic Surgery Department, University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Plastic Surgery Clinic, Spitalul Clinic de Recuperare, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Radu Lăcătuș
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Adela Hoble
- Research Laboratory Regarding Exploitation of Land Improvement, Land Reclamation Systems and Irrigation of Horticultural Crops, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Ioan Valentin Petrescu-Mag
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
- Bioflux SRL, 54 Ceahlău Street, Cluj-Napoca, 400488 Cluj-Napoca, Romania
- Doctoral School of Engineering, University of Oradea, 1 Universității Street, 410087 Oradea, Romania
| | - Florin-Dumitru Bora
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Benamirouche K, Ait Merzeg F, Baazize-Ammi D, Mahmoudi S, Belfadel O, Boudriche L. Concentrations, Sources, and Health Risk of Heavy Metals in Edible Parts of Broilers from Northeast of Algeria. Biol Trace Elem Res 2024; 202:4813-4822. [PMID: 38696082 DOI: 10.1007/s12011-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 08/22/2024]
Abstract
Heavy metals contamination of poultry products is a major concern for public health. This study aimed to determine the concentration of mercury (Hg), lead (Pb), and iron (Fe) in the edible parts of broilers, as well as in feed, drinking water, and litter as sources of contamination and to assess their possible human health risk in the province of Jijel (Northeast Algeria). The range of Hg, Pb, and Fe in edible parts were 0.004-0.007, 0.185-0.480, and 28.536-88.306 mg/kg, respectively, and the difference in content was only significant (p < 0.05) for lead. Breast and thigh samples had Pb concentrations above the maximum limit. Spearman coefficient analysis revealed that most correlations were positive between metals detected in feed, water, and litter and those in the edible parts of broilers. But most of them were insignificant (p > 0.05). The estimated daily intake (EDI) values of examined metal exceeded the tolerable daily intake (PTDI). The target hazard quotients (THQ) and hazard index (HI) of all metals were lower than 1, suggesting no significant carcinogenic risks. The calculated incremental lifetime cancer risk (ILCR) of Pb was higher than 10-4 for men, women, and children, indicating the presence of carcinogenic risk. Considering the wide consumption of broiler meat, regular national monitoring of heavy metals in the broiler production chain is recommended to protect population health.
Collapse
Affiliation(s)
- Karima Benamirouche
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384 Bou-Ismail, Tipaza, 42004, RP, Algeria.
| | - Farid Ait Merzeg
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384 Bou-Ismail, Tipaza, 42004, RP, Algeria
| | - Djamila Baazize-Ammi
- Institute of Veterinary Sciences, Blida 1 University, B.P. 270, route de Soumâa, Blida, Algeria
- Laboratory of Biotechnologies related to animal reproduction (LBRA), Blida 1 University, B.P. 270, route de Soumâa, Blida, Algeria
| | - Souhila Mahmoudi
- Institute of Applied Sciences and Techniques, University of Saad Dahlab, Blida 1, Algeria
| | - Ouahiba Belfadel
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384 Bou-Ismail, Tipaza, 42004, RP, Algeria
| | - Lilya Boudriche
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384 Bou-Ismail, Tipaza, 42004, RP, Algeria
| |
Collapse
|
6
|
Ncube N, Thatyana M, Tancu Y, Mketo N. Quantitative analysis and health risk assessment of selected heavy metals in pet food samples using ultrasound assisted hydrogen peroxide extraction followed by ICP-OES analysis. Food Chem Toxicol 2024; 192:114915. [PMID: 39127121 DOI: 10.1016/j.fct.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
There is a lack of information regarding the presence of heavy metals in feed ingredients for animals. Therefore, this study examines 10 feed samples collected from commercial pet food in South African market. The optimal working parameters for ultrasound assisted hydrogen peroxide extraction (UA-HPE) confirmed by multivariate optimization were sonication temperature at 80 °C for 60 min, sample mass of 0.1 g, and H2O2 concentration of 5 mol/L. The UA-HPE results demonstrated high accuracy of (>95%), reproducibility (≤1.9%), low method of detection limits (0.3498 and 0.49 μg/g), and strong linearity as confirmed by regression analysis. The environmental friendliness of the UA-HPE method was assessed using AGREEPrep metric tool that resulted with a score of 0.74. The concentration levels of Cd, Pb and As, ranged between 0.86 and 11.34, 4.50-11.45, and 2.61-12.5 μg/g, respectively greater than the standardized limits, whilst Cr, and Sn were below the limits of detection in all pet food. The health index calculations (HI > 1) revealed that the cat, dog, and horse feed pose health risk for animal consumption. Consequently, this study demonstrated a green, efficient, and cost-effective method for the analysis of animal feed with high accuracy.
Collapse
Affiliation(s)
- Nomatter Ncube
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Maxwell Thatyana
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Yolanda Tancu
- Water Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa.
| |
Collapse
|
7
|
Doğan E, Fazio F, Aragona F, Nava V, De Caro S, Zumbo A. Toxic element (As, Cd, Pb and Hg) biodistribution and blood biomarkers in Barbaresca sheep raised in Sicily: One Health preliminary study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43903-43912. [PMID: 38913265 DOI: 10.1007/s11356-024-34060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The health of humans, animals and the environment is interconnected. Adopting a One Health approach means intervening promptly to prevent the main diseases that affect animal health to guarantee the safety of livestock production. Exposure to toxic trace elements in sheep can lead to increased accumulation in different biological substrate, developing both acute and chronic diseases in humans and livestock. The aim of this study was to evaluate the bioaccumulation of arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) in Sicilian Barbaresca sheep using the following biological substrates: milk, blood and fleece. An inductively coupled plasma mass spectrometer (ICP-MS) was used for As, Cd and Pb, and a direct mercury analyser (DMA-80) was used for Hg determination. In addition, the role of the haematological parameters as possible indicators of different biodistribution was evaluated. A statistically significant value was observed from our analysed metals in the substrates: arsenic (p < 0.001), cadmium (p < 0.01), lead (p < 0.001) and mercury (p < 0.0001). The correlation analysis showed a relationship between milk and blood for arsenic (p < 0.0001) and lead (p < 0.0001), and no correlation for the metals was observed between milk/blood and the haematological parameters analysed for the low concentration observed in the present study comforting the final consumer.
Collapse
Affiliation(s)
- Elif Doğan
- Faculty of Veterinary Scince, Department of Surgery, Kastamonu University, Kastamonu, 37200, Turkey
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168, Messina, Italy.
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168, Messina, Italy
| | - Vincenzo Nava
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168, Messina, Italy
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C/da Di Dio (S. Agata), 98166, Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168, Messina, Italy
| |
Collapse
|
8
|
Adelusi OA, Oladeji OM, Gbashi S, Njobeh PB. Influence of geographical location on the distribution of heavy metals in dairy cattle feeds sourced from two South African provinces. Food Sci Nutr 2024; 12:4223-4232. [PMID: 38873466 PMCID: PMC11167146 DOI: 10.1002/fsn3.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 06/15/2024] Open
Abstract
The contamination of feed and food by heavy metals represents a significant concern for the health of both animals and humans. This study investigates the impact of geographical location on heavy metal distribution in dairy cattle feeds sourced from Free State and Limpopo, South Africa (SA). A total of 70 feed samples (40 from Free State and 30 from Limpopo) were collected from 2018 to 2019 and analyzed for heavy metals, including cadmium (Cd), arsenic (As), copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr), using inductively coupled plasma mass spectrometry (ICP-MS). Our findings revealed the presence of Cr, Cu, and Zn in the feeds, but at levels below the FAO/WHO permissible limits. Additionally, As, Cd, and Pb concentrations in the feeds were below the Limit of Detections (LODs). Generally, Cr concentrations (0.032-0.454 mg/kg) identified in the Free State samples were lower than those found in Limpopo (0.038-1.459 mg/kg), while the levels of Cu (0.092-4.898 mg/kg) and Zn (0.39-13.871 mg/kg) recorded in the Free State samples were higher than those from Limpopo [(0.126-3.467 mg/kg) and (0.244-13.767 mg/kg), respectively]. According to independent sample t-tests, Cu and Zn levels were substantially higher (p ≤ .05) in Free State feeds compared to Limpopo, while Limpopo feeds exhibited significantly higher (p ≤ .05) Cr concentrations than Free State feeds. Despite the low recorded heavy metal levels, regular monitoring of these elements in cow diets across all SA provinces is essential for ensuring the well-being of animals and humans.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, Faculty of ScienceSefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
9
|
Chirinos-Peinado D, Castro-Bedriñana J, Ríos-Ríos E, Castro-Chirinos G, Quispe-Poma Y. Lead, Cadmium, and Arsenic in Raw Milk Produced in the Vicinity of a Mini Mineral Concentrator in the Central Andes and Health Risk. Biol Trace Elem Res 2024; 202:2376-2390. [PMID: 37713056 PMCID: PMC10954997 DOI: 10.1007/s12011-023-03838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The bovine milk quality, safety, and security are of great concern mainly due to the dispersion of toxic substances from various anthropogenic activities and poor practices for organophosphates in agriculture use. This study evaluated the potential risk to human health from lead (Pb), cadmium (Cd), and arsenic (As) from the consumption of milk produced in an area of the Central Andes valley near a mini mineral concentrator by estimating the weekly intake (WI), dietary risk quotient (DRC), hazard quotient (THQ), and hazard index (HI) for the Peruvian population aged 2 to 85 years, in three scenarios of milk consumption by age (minimum, average, and maximum). Toxic element quantification was performed by flame atomic absorption spectrometry following standardized procedures. The mean amount ± standard deviation of Pb, Cd, and As in soils was 292±60.90, 3.54±1.58, and 5.60±2.20 mg/kg, the order of importance being Pb>As>Cd. The contents of Pb, Cd, and As in pastures were 23.17±10.02, 0.25±0.57, and 0.06±0.09 mg/kg, being from highest to lowest Pb>Cd>As. The means of Pb, Cd, and As content in 19 milk samples were 0.029±0.022, 0.007±0.006, and 0.010±0.004 mg/kg. Pb and Cd exceeded the maximum permissible limits (MPL), and the As was below the MPL. At all ages and milk consumption levels, the WI for Pb and Cd were below the estimated tolerable intake (TWI). The WI for As in < 19 years was higher than the TWI. The DRC for Pb and Cd at all three milk intake levels and all ages was < 1, and for As, it was > 1 in < 19 years, being the risk group. The TQH and HI for Pb and Cd were also > 1, signifying no health risk, and for As, the values were > 1 in < 11 years. Our results are valuable for preventing adverse health impacts from safe and innocuous milk consumption.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú.
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima, Perú
| | | | - Yubaly Quispe-Poma
- Zootechnical Faculty, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| |
Collapse
|
10
|
Chirinos-Peinado D, Castro-Bedriñana J, Barnes EPG, Ríos-Ríos E, García-Olarte E, Castro-Chirinos G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. TOXICS 2024; 12:308. [PMID: 38787087 PMCID: PMC11125971 DOI: 10.3390/toxics12050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
This study investigated lead (Pb) and cadmium (Cd) transfer in three dairy farming areas in the Mantaro river headwaters in the central Peruvian Andes and at varying distances from the mining complex at La Oroya. At each of these sites, the transfer of trace metals from the soil to raw milk was estimated, and a hazard assessment for lead and cadmium was carried out in scenarios of minimum, average, and maximum milk consumption in a Peruvian population aged 2-85. Pb and Cd were quantified by flame atomic absorption spectrometry. Significantly, the concentrations of lead and cadmium were found to exceed the maximum limits recommended by the World Health Organization, with a positive geospatial trend correlated with the distance from mining activity. Both Pb and Cd were found to be transferred through the soil-pasture-milk pathway, with the primary source of Cd being phosphate-based fertilizers used in pasture improvement. Pb was found to be the most significant contributor to the Hazard Index (HI) with those under 19 years of age and over 60 recording an HI of >1, with infants being the most vulnerable group due to their greater milk consumption in relation to their body weight. A marginal increase in contamination was observed in the dry season, indicating the need for studies to be expanded over several annual cycles.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Jorge Castro-Bedriñana
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Eustace P. G. Barnes
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Elva Ríos-Ríos
- Science Faculty, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | - Edgar García-Olarte
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | | |
Collapse
|
11
|
Jadoon S, Ali Q, Sami A, Haider MZ, Ashfaq M, Javed MA, Khan MA. DNA damage in inhabitants exposed to heavy metals near Hudiara drain, Lahore, Pakistan. Sci Rep 2024; 14:8408. [PMID: 38600156 PMCID: PMC11006874 DOI: 10.1038/s41598-024-58655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The current study was conducted on the inhabitants living in the area adjacent to the Hudiara drain using bore water and vegetables adjacent to the Hudiara drain. Toxic heavy metals badly affect human health because of industrial environmental contamination. Particularly hundreds of millions of individuals globally have faced the consequences of consuming water and food tainted with pollutants. Concentrations of heavy metals in human blood were elevated in Hudiara drainings in Lahore city, Pakistan, due to highly polluted industrial effluents. The study determined the health effects of high levels of heavy metals (Cd, Cu, Zn, Fe, Pb, Ni, Hg, Cr) on residents of the Hudiara draining area, including serum MDA, 8-Isoprostane, 8-hydroxyguanosine, and creatinine levels. An absorption spectrophotometer was used to determine heavy metals in wate water, drinking water, soil, plants and human beings blood sampleas and ELISA kits were used to assess the level of 8-hydroxyguanosine, MDA, 8-Isoprostane in plasma serum creatinine level. Waste water samples, irrigation water samples, drinking water samples, Soil samples, Plants samples and blood specimens of adult of different weights and ages were collected from the polluted area of the Hudiara drain (Laloo and Mohanwal), and control samples were obtained from the unpolluted site Sheiikhpura, 60 km away from the site. Toxic heavy metals in blood damage the cell membrane and DNA structures, increasing the 8-hydroxyguanosine, MDA, creatinine, and 8-Isoprostane. Toxic metals contaminated bore water and vegetables, resulting in increased levels of creatinine, MDA, Isoprostane, and 8-hydroxy-2-guanosine in the blood of inhabitants from the adjacent area Hudiara drain compared to the control group. In addition,. This study also investigated heavy metal concentrations in meat and milk samples from buffaloes, cows, and goats. In meat, cow samples showed the highest Cd, Cu, Fe and Mn concentrations. In milk also, cows exhibited elevated Cu and Fe levels compared to goats. The results highlight species-specific variations in heavy metal accumulation, emphasizing the need for targeted monitoring to address potential health risks. The significant difference between the two groups i.e., the control group and the affected group, in all traits of the respondents (weight, age, heavy metal values MDA, 8-Isoprostane, 8-hydroxyguaniosine, and serum creatinine level). Pearson's correlation coefficient was calculated. The study has shown that the level of serum MDA, 8-Isoprostane, 8-hydroxyguaniosine, or creatinine has not significantly correlated with age, so it is independent of age. This study has proved that in Pakistan, the selected area of Lahore in the villages of Laloo and Mohanwal, excess of heavy metals in the human body damages the DNA and increases the level of 8-Isoprostane, MDA, creatinine, and 8-hydroxyguaniosine. As a result, National and international cooperation must take major steps to control exposure to heavy metals.
Collapse
Affiliation(s)
- Saima Jadoon
- Directorate of Curriculum and Teaching Education, Abbottabad, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Zeeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Ashfaq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Mudassar Ali Khan
- Department of Physiology, Rashid Latif Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
12
|
Gueroui Y, Bousbia A, Boudalia S, Touati H, Benaissa M, Maoui A. Groundwater quality and hydrochemical characteristics in the upper Seybouse sub-basin, Northeast Algeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26628-26645. [PMID: 38453758 DOI: 10.1007/s11356-024-32716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The present study aims to evaluate the groundwater quality in an area characterized by significant human anthropic activities within the upper Seybouse. In order to assess the quality, a total of 20 samples were analyzed to identify the chemical and bacteriological composition of the water, its variations, and their potential impacts on the environment and human health. The results revealed concentrations of the chemical and bacteriological elements exceeding the WHO standards, with high levels of electrical conductivity (EC) (peak = 4210 μS/cm), Ca2+ (peak = 340.68 mg/L), Na+ (peak = 360 mg/L), HCO3- (peak = 287 mg/L), Cl- (peak = 542 mg/L), SO42- (peak = 687 mg/L), NO3- (pek = 65.91 mg/L), fecal coliforms (FC) (peak = 160 UFC/mL), fecal Streptococcus (FS) (peak = 43 UFC/mL), and Clostridium perfringens (CP) (peak = 29 UFC/mL). Within the basin, two different facies have been identified: Cl-SO4-Na type and Cl-SO4-Ca type. The calculated Water Quality Index (WQI) indicates that none of the groundwater samples are suitable for drinking or human consumption. The detection of pathogenic microorganisms through diverse molecular methods has revealed the existence of eight distinct species, encompassing pathogenic strains that can affect human health. Moreover, the dissolution of geologic formations can influence the water's chemistry. In this region, groundwater pollution seems to be influenced by anthropogenic and agricultural factors such as fertilizer application, irrigation practices, and the release of domestic sewage.
Collapse
Affiliation(s)
- Yassine Gueroui
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria.
- Laboratoire de Génie Civil et d'Hydraulique (LGCH), Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria.
| | - Aissam Bousbia
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Sofiane Boudalia
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Hassen Touati
- Département d'Ecologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Mahdid Benaissa
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Ammar Maoui
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Génie Civil et d'Hydraulique (LGCH), Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| |
Collapse
|
13
|
Martínez-Morcillo S, Barrales I, Pérez-López M, Rodríguez FS, Peinado JS, Míguez-Santiyán MP. Mineral and potentially toxic element profiles in the soil-feed-animal continuum: Implications for public, environmental, and livestock health in three pasture-based sheep farming systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170860. [PMID: 38346655 DOI: 10.1016/j.scitotenv.2024.170860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Grazing livestock derive most of their mineral requirements from foraging. The presence of toxic elements in soils has become a significant concern for food safety and ecosystem services. Understanding the mineral content profiles in soil and forage is crucial for assessing animal health, predicting potential transfers of minerals or heavy metals into the food-chain, and assessing threats to the environment and human health. In this study, Na, Mg, P, K, Ca, Mn, Fe, Co, Cu, Zn, Se, As, Cd, Hg, and Pb were measured to determine the mineral status of three different pasture-based farming systems (with grazing sheep livestock) in a Spanish region of significant economic importance. A risk assessment evaluation of animal, environmental, and human health was performed on soil, forage, feed, serum, milk, and wool. Notably, traces of Pb, and As were identified in pastures in all farms. Our calculation of pollution indices revealed moderate levels of contamination by various elements, including Co, Cu, Zn, Se, As, Cd, Hg, and Pb. The two farms with more intense agrosystem practices showed a significant potential ecological risk, characterized by high soil levels of Hg and Cd. Animals from these farms also had high concentrations of these metals in wool. Although the target Hazard Quotient derived from milk consumption suggests that dairy products from this area are safe for consumption for adults, only milk from a dehesa farm (mix of woodland and pastureland) was free of potential health concerns related to Pb exposure. Our assessment of mineral profiles reveals a cohesive relationship between soil quality and derived animal products, particularly of the Merino sheep breeding and farming system. The results reveal the importance of adopting and reinforcing strategies to preserve dehesas as a sustainable and environmentally friendly agrosystem in the western Mediterranean region.
Collapse
Affiliation(s)
| | - Ignacio Barrales
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Joaquín Sánchez Peinado
- Department of Animal Medicine, Faculty of Veterinary Medicine, University of Extremadura Caceres, Spain
| | | |
Collapse
|
14
|
Afzal A, Mahreen N. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Front Pharmacol 2024; 15:1375137. [PMID: 38567355 PMCID: PMC10985271 DOI: 10.3389/fphar.2024.1375137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metals, common environmental pollutants with widespread distribution hazards and several health problems linked to them are distinguished from other toxic compounds by their bioaccumulation in living organisms. They pollute the food chain and threaten the health of animals. Biologically, heavy metals exhibit both beneficial and harmful effects. Certain essential heavy metals such as Co, Mn, Se, Zn, and Mg play crucial roles in vital physiological processes in trace amounts, while others like As, Pb, Hg, Cd, and Cu are widely recognized for their toxic properties. Regardless of their physiological functions, an excess intake of all heavy metals beyond the tolerance limit can lead to toxicity. Animals face exposure to heavy metals through contaminated feed and water, primarily as a result of anthropogenic environmental pollution. After ingestion heavy metals persist in the body for an extended duration and the nature of exposure dictates whether they induce acute or chronic, clinical or subclinical, or subtle toxicities. The toxic effects of metals lead to disruption of cellular homeostasis through the generation of free radicals that develop oxidative stress. In cases of acute heavy metal poisoning, characteristic clinical symptoms may arise, potentially culminating in the death of animals with corresponding necropsy findings. Chronic toxicities manifest as a decline in overall body condition scoring and a decrease in the production potential of animals. Elevated heavy metal levels in consumable animal products raise public health concerns. Timely diagnosis, targeted antidotes, and management strategies can significantly mitigate heavy metal impact on livestock health, productivity, and reproductive performance.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| | - Naima Mahreen
- National Institute for Biotechnology and Genetics Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
15
|
Ham S, Hamadi K, Zergui A, Djouad ME. Multi-element analysis of food dyes and assessment of consumer's health. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:28-34. [PMID: 37982364 DOI: 10.1080/19393210.2023.2278807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The present study assessed metallic contaminants levels in food colourings using an inductively coupled plasma mass spectrometry (ICP-MS) in 51 samples of food dyes marketed in Algeria. The analysed samples were contaminated with lead (0.77 ± 0.034), arsenic (0.008 ± 0.006), cadmium (0.102 ± 0.047), cobalt (0.017 ± 0.008), copper (0.025 ± 0.011), chromium (0.820 ± 0.051), and nickel (0.022 ± 0.009) µg g-1. Mercury constituted a minor contaminant (<0.001 to 0.002 µg g-1). Turmeric and saffron were the most contaminated with Pb, As, Cd, Co, Cu, Cr, and Ni (p < 0.05). Health risk assessment revealed that infant population presents adverse non-carcinogenic effects (THQ = 4.25) and carcinogenic risk (HI = 4.65) linked to the consumption of food dyes contaminated with Cr.
Collapse
Affiliation(s)
- Sanaa Ham
- Department of Biology, Faculty of Natural and Life Sciences, University of Chlef, Ouled Fares, Algeria
| | - Karima Hamadi
- Department of Biology, Faculty of Natural and Life Sciences, University of Chlef, Ouled Fares, Algeria
| | | | - Mokhtar Eddine Djouad
- Department of Biology, Faculty of Natural and Life Sciences, University of Chlef, Ouled Fares, Algeria
| |
Collapse
|
16
|
Archundia D, Prado-Pano B, Molina-Freaner F. Potentially toxic elements in soil-plant-water-animal continuum in a mining area from Northwestern Mexico: animal exposure pathways and health risks for children. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:99. [PMID: 38403801 DOI: 10.1007/s10653-024-01902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Mining increases environmental concentrations of potentially toxic elements (PTEs) accumulating in organisms and spreading in the human food chain-their presence in milk is of great human health concern. Pathways were identified by which these elements reach raw milk from farms within a mining area in Northwestern Mexico; health risks for dairy cattle and children were also evaluated. Water from river and cattle waterers, as well as, soils showed that PTE concentrations generally below the Mexican and international limits; cattle forage concentrations were above the World Health Organization limits. Al, Mg, Mo, Ni and Zn were recorded in raw milk samples from the mining area, showing that Cd, Co, Cr, Cu, Pb and V are transferred from soil to plants but not accumulated in raw milk. Zn concentrations in raw milk exceeded the permissible limit; milk from farms without mining operations (comparison site) showed the presence of Al, Cr and Cu. In cattle tail hair, PTE did not correlate with raw milk concentrations. Metal accumulation in milk was higher through water consumption than that accumulated through forage consumption. Daily intakes (DI) of Al, Mg and Zn in cows could represent a risk for their health. The observed biotransference was higher than in other parts of Mexico, and the calculated DI and hazard quotients indicate no adverse health effects for children. However, the hazard Index values indicate that exposure to multiple PTE represents a risk for children. Management measures should be performed to control the cumulative risks to protect young children's health.
Collapse
Affiliation(s)
- Denisse Archundia
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), 03940, Mexico City, CDMX, Mexico.
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Coyoacán, CDMX, Mexico.
| | - Blanca Prado-Pano
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Coyoacán, CDMX, Mexico
| | - Francisco Molina-Freaner
- Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, 83250, Hermosillo, Sonora, Mexico
| |
Collapse
|
17
|
Anissa Z, Sofiane B, Adda A, Marlie-Landy J. Evaluation of trace metallic element levels in coffee by icp-ms: a comparative study among different origins, forms, and packaging types and consumer risk assessment. Biol Trace Elem Res 2023; 201:5455-5467. [PMID: 36701086 DOI: 10.1007/s12011-023-03582-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Trace elements (TE) contamination of foods and beverages constitutes a public health issue. In this context, the main objective of this study was to determine metals and metalloids content in coffee and to assess the health risks associated with contaminated coffee consumption. To this end, 44 samples of coffee from different origins, forms, and packaging types were analyzed. TE analysis was performed by ICP-MS after digestion. The data analysis was based on principal components analysis (PCA) and analysis of variance (ANOVA). Health risk assessment was determined by the estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI). The findings showed that TE levels in coffee varied widely. The highest levels were related to aluminum (Al) (59.88 ± 54.86 mg/kg), manganese (Mn) (16.26 ± 24.59 mg/kg), copper (Cu) (11.60 ± 11.55 mg/kg), and cadmium (Cd) (9.92 ± 10.32 mg/kg). In terms of coffee form and packaging type, a significant difference (P < 0.0001) was observed in nickel (Ni), chromium (Cr), zinc (Zn), cobalt (Co), Cu, Mn, and Al content. The highest EDI was found in Al (0.0109 mg/kg BW/day) in ground coffee packaged in capsules. In terms of chronic daily intake (CDI), Cd and Al were above the reference dose (RfD). THQ of these elements were greater than 1.0, and HI was above the value of 1.0 in different forms of coffee. More interdisciplinary research on the relationships between the metal concentrations in coffee samples and those in feed, water, and soil would be quite interesting.
Collapse
Affiliation(s)
- Zergui Anissa
- Institute of Public Health, Epidemiology and Development, University of Bordeaux, 33076, Bordeaux, France.
| | - Boudalia Sofiane
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, 24000, Guelma, BP 401, Algeria
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, 24000, Guelma, BP 401, Algeria
| | - Ababou Adda
- Department of Biology, Faculty of Nature and Life Sciences, University Hassiba Ben Bouali, 02000, Chlef, Algeria
| | - Joseph Marlie-Landy
- Institute of Public Health, Epidemiology and Development, University of Bordeaux, 33076, Bordeaux, France
| |
Collapse
|
18
|
Castro-Bedriñana J, Chirinos-Peinado D, Ríos-Ríos E, Castro-Chirinos G, Chagua-Rodríguez P, De La Cruz-Calderón G. Lead, Cadmium, and Arsenic in Raw Cow's Milk in a Central Andean Area and Risks for the Peruvian Populations. TOXICS 2023; 11:809. [PMID: 37888660 PMCID: PMC10611204 DOI: 10.3390/toxics11100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Milk and its derivatives are basic foods in Peru, especially for children. The Junín region, in the central Andes, is one of the leading dairy basins. However, the safety of milk is affected by mining-metallurgical activities, wastewater dumping, organic residues, and inappropriate use of organophosphate fertilizers in agriculture whose contaminants reach the food chain, putting human health at risk. The purpose of this study was to evaluate the bioaccumulation of lead (Pb), cadmium (Cd), and arsenic (As) in milk produced on a representative farm in central Peru, which uses phosphorous agrochemicals and is adjacent to a small mineral concentrator and a municipal solid waste dump, and to evaluate the potential risk for the Peruvian population of 2-85 years considering three levels of daily intake by age, which constitutes the innovative contribution of the study. These three elements were quantified by flame atomic absorption spectrometry following standardized procedures. The mean contents of Pb (0.062 mg/kg), Cd (0.014 mg/kg), and As (0.030 mg/kg) in milk exceeded the maximum limits allowed by international standards. At all ages, the target quotient hazard followed a descending order of As > Pb > Cd, being > 1 in the case of As. The hazard index was >1 for children under 7, 9, and 11 years of age in the scenarios of low, medium, and high milk intake. The information is valid for formulating policies to prevent adverse health effects and develop standards and awareness programs, monitoring, and control of heavy metals in milk in Peru.
Collapse
Affiliation(s)
- Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima 14024, Peru;
| | | | - Perfecto Chagua-Rodríguez
- Faculty of Agroindustrial Engineering, Universidad Nacional Autónoma Altoandina de Tarma, Tarma 12701, Peru;
| | | |
Collapse
|
19
|
de Oliveira Filho EF, López-Alonso M, Vieira Marcolino G, Castro Soares P, Herrero-Latorre C, Lopes de Mendonça C, de Azevedo Costa N, Miranda M. Factors Affecting Toxic and Essential Trace Element Concentrations in Cow's Milk Produced in the State of Pernambuco, Brazil. Animals (Basel) 2023; 13:2465. [PMID: 37570274 PMCID: PMC10417244 DOI: 10.3390/ani13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to provide information on the levels of toxic (Cd and Pb) and essential (Cu, Fe, and Zn) elements in cow's milk produced in the State of Pernambuco (Brazil). A total of 142 samples of raw milk were collected, and the concentrations of essential and toxic elements were determined using inductively coupled plasma-optical emission spectrometry. In almost 30% of the samples analyzed, the Pb content exceeded the maximum level established in the Brazilian legislation (0.05 mg/L). By contrast, in all the samples, the Cd content was below the maximum allowable level (0.02 mg/L). The essential trace elements Cu, Fe, and Zn were generally present at lower concentrations than reported in other studies and can be considered within the deficient range for cow's milk. Statistical and chemometric procedures were used to evaluate the main factors influencing the metal concentrations (proximity to major roads, presence of effluents, and milking method). The study findings demonstrate that the proximity of the farms to major roads influences the concentrations of Cd, Pb, and Cu and that this is the main factor explaining the Pb content of milk. In addition, the presence of effluents influenced the concentrations of Cu, while no relationship between the metal content and the milking method was observed. Thus, in accordance with the study findings, the consumption of cow's milk produced in the region can be considered a risk to public health due to the high concentrations of Pb and the low concentrations of other essential minerals such as Cu, Zn, and Fe in some of the milk samples.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | | | - Pierre Castro Soares
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Carla Lopes de Mendonça
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Nivaldo de Azevedo Costa
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
20
|
Yan M, Niu C, Li X, Wang F, Jiang S, Li K, Yao Z. Heavy metal levels in milk and dairy products and health risk assessment: A systematic review of studies in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158161. [PMID: 35988597 DOI: 10.1016/j.scitotenv.2022.158161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have indicated that heavy metal levels in milk vary partly depending on environmental metal concentrations. Given the increasing consumption of milk in China, it is essential to pay attention to milk safety. We performed a systematic review of relevant published studies to evaluate the heavy metal levels in milk and dairy products and the associated health risks, discuss environmental sources of heavy metals, and propose future research directions. A literature search was implemented in the Web of Science Core Collection and PubMed using multiple keywords such as "metal," "milk," "dairy products," and "China". A total of 16 published studies that analyzed metal levels in milk and dairy products in 20 provincial administrative regions were included. Most studies detected toxic heavy metals in milk and dairy products samples, including mercury, lead, cadmium, chromium, and arsenic. The lead concentration in milk from these studies did not exceed the Chinese standard for milk. However, three studies detected relatively high lead levels in both commercial and raw milk, exceeding the European Commission standard. The polluted environment surrounding the farm, feed, and packaging materials are likely sources of metals in milk and dairy products. The hazard index for the 11 analyzed metal elements in milk and dairy products was lower than 1, indicating negligible non-carcinogenic health risks from exposure to these metals. Children are at a higher risk than adults. This review illustrates that research in this field is limited to China. More research should be conducted in the future, such as evaluating the contribution of each environmental source of metal in milk and dairy products.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|