1
|
Shafiei G, Talaei SA, Enderami SE, Mahabady MK, Mahabadi JA. Pluripotent stem cell-derived gametes: A gap for infertility treatment and reproductive medicine in the future. Tissue Cell 2025; 95:102904. [PMID: 40203683 DOI: 10.1016/j.tice.2025.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Infertility affects 10-15 % of reproductive-age couples worldwide, with male infertility linked to sperm dysfunction and female infertility caused by ovulation disorders and reproductive abnormalities. Stem cell research presents a promising avenue for infertility treatment through germ cell differentiation. However, standardizing differentiation protocols and ensuring the functionality of in vitro-derived gametes remain significant challenges before clinical application becomes feasible.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.
| |
Collapse
|
2
|
Tao R, Yue C, Guo Z, Guo W, Yao Y, Yang X, Shao Z, Gao C, Ding J, Shen L, Chen S, Jing N. Subtype-specific neurons from patient iPSCs display distinct neuropathological features of Alzheimer's disease. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:21. [PMID: 39388038 PMCID: PMC11467140 DOI: 10.1186/s13619-024-00204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by massive neuronal loss in the brain. Both cortical glutamatergic neurons and basal forebrain cholinergic neurons (BFCNs) in the AD brain are selectively vulnerable. The degeneration and dysfunction of these two subtypes of neurons are closely associated with the cognitive decline of AD patients. The determination of cellular and molecular mechanisms involved in AD pathogenesis, especially in the early stage, will largely facilitate the understanding of this disease and the development of proper intervention strategies. However, due to the inaccessibility of living neurons in the brains of patients, it remains unclear how cortical glutamatergic neurons and BFCNs respond to pathological stress in the early stage of AD. In this study, we established in vitro differentiation systems that can efficiently differentiate patient-derived iPSCs into BFCNs. We found that AD-BFCNs secreted less Aβ peptide than cortical glutamatergic neurons did, even though the Aβ42/Aβ40 ratio was comparable to that of cortical glutamatergic neurons. To further mimic the neurotoxic niche in AD brain, we treated iPSC-derived neurons with Aβ42 oligomer (AβO). BFCNs are less sensitive to AβO induced tau phosphorylation and expression than cortical glutamatergic neurons. However, AβO could trigger apoptosis in both AD-cortical glutamatergic neurons and AD-BFCNs. In addition, AD iPSC-derived BFCNs and cortical glutamatergic neurons exhibited distinct electrophysiological firing patterns and elicited different responses to AβO treatment. These observations revealed that subtype-specific neurons display distinct neuropathological changes during the progression of AD, which might help to understand AD pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Ran Tao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China.
| | - Chunmei Yue
- Suzhou Yuanzhan Biotechs, Suzhou, 215000, China
| | - Zhijie Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Guo
- XellSmart Biomedical (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Yao Yao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, New Zealand Joint Laboratory On Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianfa Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Gao
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410028, China.
| | - Shengdi Chen
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 200031, China.
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China.
| |
Collapse
|
3
|
Chiew MY, Wang E, Lan KC, Lin YR, Hsueh YH, Tu YK, Liu CF, Chen PC, Lu HE, Chen WL. Improving iPSC Differentiation Using a Nanodot Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36030-36046. [PMID: 38951110 PMCID: PMC11261571 DOI: 10.1021/acsami.4c04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.
Collapse
Affiliation(s)
- Men Yee Chiew
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Erick Wang
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- College
of Biological Science and Technology Industrial Ph. D. Program, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kuan-Chun Lan
- Center
for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8397, Japan
| | - Yan-Ren Lin
- Department
of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, ROC
- Department
of Post Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan, ROC
- School
of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yu-Huan Hsueh
- College
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Department
of Orthopedic Surgery, E-Da Hospital, I-Shou
University, Kaohsiung 824, Taiwan
| | - Yuan-Kun Tu
- Department
of Orthopedic Surgery, E-Da Hospital, I-Shou
University, Kaohsiung 824, Taiwan
| | - Chu-Feng Liu
- Emergency Medicine Department, Kaohsiung
Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan,
ROC
- Ph. D. Degree Program of Biomedical Science
and Engineering, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan, ROC
| | - Po-Chun Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Huai-En Lu
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Institute of Biochemistry and Molecular
Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Bioresource
Collection and Research Center, Food Industry Research
and Development Institute, Hsinchu
City 300, Taiwan, ROC
| | - Wen Liang Chen
- Center
for Regenerative Medicine and Cellular Therapy, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- College
of Biological Science and Technology Industrial Ph. D. Program, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Bioresource
Collection and Research Center, Food Industry Research
and Development Institute, Hsinchu
City 300, Taiwan, ROC
| |
Collapse
|
4
|
García-López M, Jiménez-Vicente L, González-Jabardo R, Dorado H, Gómez-Manjón I, Martín MÁ, Ayuso C, Arenas J, Gallardo ME. Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the OPA1 Gene. Int J Mol Sci 2024; 25:7240. [PMID: 39000346 PMCID: PMC11242102 DOI: 10.3390/ijms25137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.
Collapse
Affiliation(s)
- Marta García-López
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Lydia Jiménez-Vicente
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Raquel González-Jabardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Helena Dorado
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Martín
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
5
|
Kanemura Y, Yamamoto A, Katsuma A, Fukusumi H, Shofuda T, Kanematsu D, Handa Y, Sumida M, Yoshioka E, Mine Y, Yamaguchi R, Okada M, Igarashi M, Sekino Y, Shirao T, Nakamura M, Okano H. Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Showed Neuronal Differentiation, Neurite Extension, and Formation of Synaptic Structures in Rodent Ischemic Stroke Brains. Cells 2024; 13:671. [PMID: 38667286 PMCID: PMC11048851 DOI: 10.3390/cells13080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.
Collapse
Affiliation(s)
- Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
- Department of Neurosurgery, NHO Osaka National Hospital, Osaka 540-0006, Japan
| | - Atsuyo Yamamoto
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Asako Katsuma
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Hayato Fukusumi
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Yukako Handa
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Miho Sumida
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka 540-0006, Japan; (A.Y.); (A.K.); (H.F.); (M.S.)
| | - Yutaka Mine
- Department of Neurosurgery, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masayasu Okada
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan;
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, Graduate School of Medical, Dental Sciences Niigata University, Niigata 951-8510, Japan;
| | - Yuko Sekino
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | | | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (R.Y.); (H.O.)
- Keio Regenerative Medicine Research Center, Keio University, Kawasaki 210-0821, Japan
| |
Collapse
|
6
|
Chen Y, Kuang J, Niu Y, Zhu H, Chen X, So KF, Xu A, Shi L. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons. Neural Regen Res 2024; 19:908-914. [PMID: 37843228 PMCID: PMC10664128 DOI: 10.4103/1673-5374.378203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 10/17/2023] Open
Abstract
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases. They also represent a potential source of transplanted cells for therapeutic applications. In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development. Emerging evidence and impressive advances in human induced pluripotent stem cells, with tuned neural induction and differentiation protocols, makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible. Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol, we obtained multiple subtypes of neurons, including 20% tyrosine hydroxylase-positive dopaminergic neurons. To obtain more dopaminergic neurons, we next added sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) on day 8 of induction. This increased the proportion of dopaminergic neurons, up to 75% tyrosine hydroxylase-positive neurons, with 15% tyrosine hydroxylase and forkhead box protein A2 (FOXA2) co-expressing neurons. We further optimized the induction protocol by applying the small molecule inhibitor, CHIR99021 (CHIR).This helped facilitate the generation of midbrain dopaminergic neurons, and we obtained 31-74% midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining. Thus, we have established three induction protocols for dopaminergic neurons. Based on tyrosine hydroxylase and FOXA2 immunostaining analysis, the CHIR, SHH, and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons, which could be an ideal resource for tackling midbrain-related diseases.
Collapse
Affiliation(s)
- Yalan Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yimei Niu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Zhu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaoxia Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Lingling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Zhang PP, Benske TM, Ahn LY, Schaffer AE, Paton JC, Paton AW, Mu TW, Wang YJ. Adapting the endoplasmic reticulum proteostasis rescues epilepsy-associated NMDA receptor variants. Acta Pharmacol Sin 2024; 45:282-297. [PMID: 37803141 PMCID: PMC10789767 DOI: 10.1038/s41401-023-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 μM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Taylor M Benske
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Acharya P, Choi NY, Shrestha S, Jeong S, Lee MY. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024; 121:489-506. [PMID: 38013504 PMCID: PMC10842775 DOI: 10.1002/bit.28606] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
9
|
Wong NK, Yip SP, Huang CL. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int J Mol Sci 2023; 24:13652. [PMID: 37686457 PMCID: PMC10487913 DOI: 10.3390/ijms241713652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The human eye plays a critical role in vision perception, but various retinal degenerative diseases such as retinitis pigmentosa (RP), glaucoma, and age-related macular degeneration (AMD) can lead to vision loss or blindness. Although progress has been made in understanding retinal development and in clinical research, current treatments remain inadequate for curing or reversing these degenerative conditions. Animal models have limited relevance to humans, and obtaining human eye tissue samples is challenging due to ethical and legal considerations. Consequently, researchers have turned to stem cell-based approaches, specifically induced pluripotent stem cells (iPSCs), to generate distinct retinal cell populations and develop cell replacement therapies. iPSCs offer a novel platform for studying the key stages of human retinogenesis and disease-specific mechanisms. Stem cell technology has facilitated the production of diverse retinal cell types, including retinal ganglion cells (RGCs) and photoreceptors, and the development of retinal organoids has emerged as a valuable in vitro tool for investigating retinal neuron differentiation and modeling retinal diseases. This review focuses on the protocols, culture conditions, and techniques employed in differentiating retinal neurons from iPSCs. Furthermore, it emphasizes the significance of molecular and functional validation of the differentiated cells.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China;
- Centre for Eye and Vision Research (CEVR), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
10
|
Cherianidou A, Kappenberg F, Seidel F, Acharya A, Papazoglou P, Srinivasan SP, Hescheler J, Peng L, Leist M, Hengstler JG, Rahnenführer J, Sachinidis A. Transcriptome-based prediction of drugs, inhibiting cardiomyogenesis in human induced pluripotent stem cells. Cell Death Discov 2023; 9:321. [PMID: 37644023 PMCID: PMC10465524 DOI: 10.1038/s41420-023-01616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Animal studies for embryotoxicity evaluation of potential therapeutics and environmental factors are complex, costly, and time-consuming. Often, studies are not of human relevance because of species differences. In the present study, we recapitulated the process of cardiomyogenesis in human induced pluripotent stem cells (hiPSCs) by modulation of the Wnt signaling pathway to identify a key cardiomyogenesis gene signature that can be applied to identify compounds and/or stress factors compromising the cardiomyogenesis process. Among the 23 tested teratogens and 16 non-teratogens, we identified three retinoids including 13-cis-retinoic acid that completely block the process of cardiomyogenesis in hiPSCs. Moreover, we have identified an early gene signature consisting of 31 genes and associated biological processes that are severely affected by the retinoids. To predict the inhibitory potential of teratogens and non-teratogens in the process of cardiomyogenesis we established the "Developmental Cardiotoxicity Index" (CDI31g) that accurately differentiates teratogens and non-teratogens to do or do not affect the differentiation of hiPSCs to functional cardiomyocytes.
Collapse
Affiliation(s)
- Anna Cherianidou
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Aviseka Acharya
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Panagiota Papazoglou
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Sureshkumar Perumal Srinivasan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Luying Peng
- Heart Health Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai and Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO, Box M657, 78457, Constance, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Agapios Sachinidis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, 50931 Cologne, Germany Robert-Koch-Str. 39, 50931, Cologne, Germany.
| |
Collapse
|
11
|
Toh HSY, Choo XY, Sun AX. Midbrain organoids-development and applications in Parkinson's disease. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad009. [PMID: 38596240 PMCID: PMC10913847 DOI: 10.1093/oons/kvad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Indexed: 04/11/2024]
Abstract
Human brain development is spatially and temporally complex. Insufficient access to human brain tissue and inadequacy of animal models has limited the study of brain development and neurodegenerative diseases. Recent advancements of brain organoid technology have created novel opportunities to model human-specific neurodevelopment and brain diseases. In this review, we discuss the use of brain organoids to model the midbrain and Parkinson's disease. We critically evaluate the extent of recapitulation of PD pathology by organoids and discuss areas of future development that may lead to the model to become a next-generation, personalized therapeutic strategy for PD and beyond.
Collapse
Affiliation(s)
- Hilary S Y Toh
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Xin Yi Choo
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Alfred Xuyang Sun
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
- National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore
| |
Collapse
|
12
|
Valerio LSA, Carrick FR, Bedoya L, Sreerama S, Sugaya K. Neural Differentiation of Induced Pluripotent Stem Cells for a Xenogeneic Material-Free 3D Neurological Disease Model Neurulation from Pluripotent Cells Using a Human Hydrogel. Curr Issues Mol Biol 2023; 45:4574-4588. [PMID: 37367039 DOI: 10.3390/cimb45060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by synapse and neuronal loss and the accumulation of neurofibrillary tangles and Amyloid β plaques. Despite significant research efforts to understand the late stages of the disease, its etiology remains largely unknown. This is in part because of the imprecise AD models in current use. In addition, little attention has been paid to neural stem cells (NSC), which are the cells responsible for the development and maintenance of brain tissue during an individual's lifespan. Thus, an in vitro 3D human brain tissue model using induced pluripotent stem (iPS) cell-derived neural cells in human physiological conditions may be an excellent alternative to standard models to investigate AD pathology. Following the differentiation process mimicking development, iPS cells can be turned into NSCs and, ultimately, neural cells. During differentiation, the traditionally used xenogeneic products may alter the cells' physiology and prevent accurate disease pathology modeling. Hence, establishing a xenogeneic material-free cell culture and differentiation protocol is essential. This study investigated the differentiation of iPS cells to neural cells using a novel extracellular matrix derived from human platelet lysates (PL Matrix). We compared the stemness properties and differentiation efficacies of iPS cells in a PL matrix against those in a conventional 3D scaffold made of an oncogenic murine-matrix. Using well-defined conditions without xenogeneic material, we successfully expanded and differentiated iPS cells into NSCs via dual-SMAD inhibition, which regulates the BMP and TGF signaling cascades in a manner closer to human conditions. This in vitro, 3D, xenogeneic-free scaffold will enhance the quality of disease modeling for neurodegenerative disease research, and the knowledge produced could be used in developing more effective translational medicine.
Collapse
Affiliation(s)
- Luis Sebastian Alexis Valerio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| | - Frederick Robert Carrick
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- MGH Institute of Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA
| | - Lina Bedoya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Institute for Scientific Research and Technology Services (INDICASAT), City of Knowledge 0801, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
| |
Collapse
|
13
|
Young JE, Goldstein LSB. Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods Mol Biol 2023; 2561:105-133. [PMID: 36399267 DOI: 10.1007/978-1-0716-2655-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder and a mechanistically complex disease. For the last decade, human models of AD using induced pluripotent stem cells (iPSCs) have emerged as a powerful way to understand disease pathogenesis in relevant human cell types. In this review, we summarize the state of the field and how this technology can apply to studies of both familial and sporadic studies of AD. We discuss patient-derived iPSCs, genome editing, differentiation of neural cell types, and three-dimensional organoids, and speculate on the future of this type of work for increasing our understanding of, and improving therapeutic development for, this devastating disease.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, Department of Neurosciences, UC San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Kim DH, Cho HJ, Park CY, Cho MS, Kim DW. Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury. Tissue Eng Regen Med 2022; 19:1349-1358. [PMID: 36036887 PMCID: PMC9679075 DOI: 10.1007/s13770-022-00483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in permanent impairment of motor and sensory functions at and below the lesion site. There is no therapeutic option to the functional recovery of SCI involving diverse injury responses of different cell types in the lesion that limit endogenous nerve regeneration. In this regard, cell replacement therapy utilizing stem cells or their derivatives has become a highly promising approach to promote locomotor recovery. For this reason, the demand for a safe and efficient multipotent cell source that can differentiate into various neural cells is increasing. In this study, we evaluated the efficacy and safety of human polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (hNPCsPSA-NCAM+) as a treatment for SCI. METHODS One hundred thousand hNPCsPSA-NCAM+ isolated from human embryonic stem cell-derived NPCs were transplanted into the lesion site by microinjection 7 days after contusive SCI at the thoracic level. We examined the histological characteristics of the graft and behavioral improvement in the SCI rats 10 weeks after transplantation. RESULTS Locomotor activity improvement was estimated by the Basso-Beattie-Bresnahan locomotor rating scale. Behavioral tests revealed that the transplantation of the hNPCsPSA-NCAM+ into the injured spinal cords of rats significantly improved locomotor function. Histological examination showed that hNPCsPSA-NCAM+ had differentiated into neural cells and successfully integrated into the host tissue with no evidence of tumor formation. We investigated cytokine expressions, which led to the early therapeutic effect of hNPCsPSA-NCAM+, and found that some undifferentiated NPCs still expressed midkine, a well-known neurotrophic factor involved in neural development and inflammatory responses, 10 weeks after transplantation. CONCLUSION Our results demonstrate that hNPCsPSA-NCAM+ serve as a safe and efficient cell source which has the potential to improve impaired motor function following SCI.
Collapse
Affiliation(s)
- Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Hyun-Ju Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Myung Soo Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| |
Collapse
|
15
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
16
|
Hur HJ, Lee JY, Kim DH, Cho MS, Lee S, Kim HS, Kim DW. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int J Mol Sci 2022; 23:7787. [PMID: 35887140 PMCID: PMC9319001 DOI: 10.3390/ijms23147787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that early therapeutic events of neural precursor cells (NPCs) transplantation to animals with acute ischemic stroke readily protected neuronal cell damage and improved behavioral recovery through paracrine mechanisms. In this study, we tested the hypothesis that administration of conditioned medium from NPCs (NPC-CMs) could recapitulate the beneficial effects of cell transplantation. Rats with permanent middle cerebral artery occlusion (pMCAO) were randomly assigned to one of the following groups: PBS control, Vehicle (medium) controls, single (NPC-CM(S)) or multiple injections of NPC-CM(NPC-CM(M)) groups. A single intravenous injection of NPC-CM exhibited strong neuroregenerative potential to induce behavioral recovery, and multiple injections enhanced this activity further by suppressing inflammatory damage and inducing endogenous neurogenesis leading to histopathological and functional recovery. Proteome analysis of NPC-CM identified a number of proteins that are known to be associated with nervous system development, neurogenesis, and angiogenesis. In addition, transcriptome analysis revealed the importance of the inflammatory response during stroke recovery and some of the key hub genes in the interaction network were validated. Thus, our findings demonstrated that NPC-CM promoted functional recovery and reduced cerebral infarct and inflammation with enhanced endogenous neurogenesis, and the results highlighted the potency of NPC-CM in stroke therapy.
Collapse
Affiliation(s)
- Hye-Jin Hur
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Yong Lee
- Research Institute of Hyperbaric Medicine and Science, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea;
| | - Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- S. Biomedics Co., Ltd., Seoul 04979, Korea;
| | | | - Sangsik Lee
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea;
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
17
|
Liang T, Bai J, Zhou W, Lin H, Ma S, Zhu X, Tao Q, Xi Q. HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs. Cell Rep 2022; 40:111038. [PMID: 35830803 DOI: 10.1016/j.celrep.2022.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/20/2022] [Accepted: 06/11/2022] [Indexed: 12/01/2022] Open
Abstract
Despite the fundamental roles of TGF-β family signaling in cell fate determination in all metazoans, the mechanism by which these signals are spatially and temporally interpreted remains elusive. The cell-context-dependent function of TGF-β signaling largely relies on transcriptional regulation by SMAD proteins. Here, we discover that the DNA repair-related protein, HMCES, contributes to early development by maintaining nodal/activin- or BMP-signaling-regulated transcriptional network. HMCES binds with R-SMAD proteins, co-localizing at active histone marks. However, HMCES chromatin occupancy is independent on nodal/activin or BMP signaling. Mechanistically, HMCES competitively binds chromatin to limit binding by R-SMAD proteins, thereby forcing their dissociation and resulting in repression of their regulatory effects. In Xenopus laevis embryo, hmces KD causes dramatic development defects with abnormal left-right axis asymmetry along with increasing expression of lefty1. These findings reveal HMCES transcriptional regulatory function in the context of TGF-β family signaling.
Collapse
Affiliation(s)
- Tao Liang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbo Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing 100084, China
| | - Wei Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Shixin Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechen Zhu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qinghua Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Rathore RS, R Ayyannan S, Mahto SK. Emerging three-dimensional neuronal culture assays for neurotherapeutics drug discovery. Expert Opin Drug Discov 2022; 17:619-628. [DOI: 10.1080/17460441.2022.2061458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul S Rathore
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| | - Sanjeev K Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, UP, India
| |
Collapse
|
19
|
Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, Liu S, Nam LL, Damaraju S, Church GM, Lewis JA. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng 2022; 6:449-462. [PMID: 35332307 DOI: 10.1038/s41551-022-00856-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.
Collapse
Affiliation(s)
- Mark A Skylar-Scott
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Basic Science and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA.
| | - Jeremy Y Huang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Biological Engineering Division, Draper Laboratory, Cambridge, MA, USA
| | - Alex H M Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoya Duenki
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Songlei Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lucy L Nam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Sarita Damaraju
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
20
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
21
|
Ren J, Li C, Zhang M, Wang H, Xie Y, Tang Y. A Step-by-Step Refined Strategy for Highly Efficient Generation of Neural Progenitors and Motor Neurons from Human Pluripotent Stem Cells. Cells 2021; 10:3087. [PMID: 34831309 PMCID: PMC8625124 DOI: 10.3390/cells10113087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023] Open
Abstract
Limited access to human neurons, especially motor neurons (MNs), was a major challenge for studying neurobiology and neurological diseases. Human pluripotent stem cells (hPSCs) could be induced as neural progenitor cells (NPCs) and further multiple neural subtypes, which provide excellent cellular sources for studying neural development, cell therapy, disease modeling and drug screening. It is thus important to establish robust and highly efficient methods of neural differentiation. Enormous efforts have been dedicated to dissecting key signalings during neural commitment and accordingly establishing reliable differentiation protocols. In this study, we refined a step-by-step strategy for rapid differentiation of hPSCs towards NPCs within merely 18 days, combining the adherent and neurosphere-floating methods, as well as highly efficient generation (~90%) of MNs from NPCs by introducing refined sets of transcription factors for around 21 days. This strategy made use of, and compared, retinoic acid (RA) induction and dual-SMAD pathway inhibition, respectively, for neural induction. Both methods could give rise to highly efficient and complete generation of preservable NPCs, but with different regional identities. Given that the generated NPCs can be differentiated into the majority of excitatory and inhibitory neurons, but hardly MNs, we thus further differentiate NPCs towards MNs by overexpressing refined sets of transcription factors, especially by adding human SOX11, whilst improving a series of differentiation conditions to yield mature MNs for good modeling of motor neuron diseases. We thus refined a detailed step-by-step strategy for inducing hPSCs towards long-term preservable NPCs, and further specified MNs based on the NPC platform.
Collapse
Affiliation(s)
- Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Yali Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Lestrell E, O'Brien CM, Elnathan R, Voelcker NH. Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Carmel M. O'Brien
- CSIRO Manufacturing Clayton Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| |
Collapse
|
23
|
Kim H, Noh HB, Lee S, Lee K, Chang B, Cheong E, Lee CJ, Hwang D. Fine-tuning of dual-SMAD inhibition to differentiate human pluripotent stem cells into neural crest stem cells. Cell Prolif 2021; 54:e13103. [PMID: 34323338 PMCID: PMC8450125 DOI: 10.1111/cpr.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES The derivation of neural crest stem cells (NCSCs) from human pluripotent stem cells (hPSCs) has been commonly induced by WNT activation in combination with dual-SMAD inhibition. In this study, by fine-tuning BMP signalling in the conventional dual-SMAD inhibition, we sought to generate large numbers of NCSCs without WNT activation. MATERIALS AND METHODS In the absence of WNT activation, we modulated the level of BMP signalling in the dual-SMAD inhibition system to identify conditions that efficiently drove the differentiation of hPSCs into NCSCs. We isolated two NCSC populations separately and characterized them in terms of global gene expression profiles and differentiation ability. RESULTS Our modified dual-SMAD inhibition containing a lower dose of BMP inhibitor than that of the conventional dual-SMAD inhibition drove hPSCs into mainly NCSCs, which consisted of HNK+ p75high and HNK+ p75low cell populations. We showed that the p75high population formed spherical cell clumps, while the p75low cell population generated a 2D monolayer. We detected substantial differences in gene expression profiles between the two cell groups and showed that both p75high and p75low cells differentiated into mesenchymal stem cells (MSCs), while only p75high cells had the ability to become peripheral neurons. CONCLUSIONS This study will provide a framework for the generation and isolation of NCSC populations for effective cell therapy for peripheral neuropathies and MSC-based cell therapy.
Collapse
Affiliation(s)
- Hyun‐Mun Kim
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Hye Bin Noh
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Sang‐Hyuk Lee
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Kun‐Gu Lee
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
| | - Bomi Chang
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
- Brain Science InstituteKorea Institute of Science and TechnologySeoulKorea
- Department of Biotechnology, College of Life Science and Biotechnology, Translational Research Center for Protein Function ControlYonsei UniversitySeoulKorea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Translational Research Center for Protein Function ControlYonsei UniversitySeoulKorea
| | - C. Justin Lee
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
| | - Dong‐Youn Hwang
- Department of Biomedical ScienceGraduate School of CHA UniversitySungnamKorea
- Department of Microbiology, School of MedicineCHA UniversitySungnamKorea
| |
Collapse
|
24
|
Yoo JE, Lee DR, Park S, Shin HR, Lee KG, Kim DS, Jo MY, Eom JH, Cho MS, Hwang DY, Kim DW. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ PARKINSONS DISEASE 2021; 7:61. [PMID: 34282148 PMCID: PMC8289854 DOI: 10.1038/s41531-021-00204-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Successful cell therapy for Parkinson’s disease (PD) requires large numbers of homogeneous ventral mesencephalic dopaminergic (vmDA) precursors. Enrichment of vmDA precursors via cell sorting is required to ensure high safety and efficacy of the cell therapy. Here, using LMX1A-eGFP knock-in reporter human embryonic stem cells, we discovered a novel surface antigen, trophoblast glycoprotein (TPBG), which was preferentially expressed in vmDA precursors. TPBG-targeted cell sorting enriched FOXA2+LMX1A+ vmDA precursors and helped attain efficient behavioral recovery of rodent PD models with increased numbers of TH+, NURR1+, and PITX3+ vmDA neurons in the grafts. Additionally, fewer proliferating cells were detected in TPBG+ cell-derived grafts than in TPBG− cell-derived grafts. Our approach is an efficient way to obtain enriched bona fide vmDA precursors, which could open a new avenue for effective PD treatment.
Collapse
Affiliation(s)
- Jeong-Eun Yoo
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kun Gu Lee
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea. .,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea. .,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
26
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 PMCID: PMC11811916 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F. Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R. Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J. Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
27
|
Jang SE, Qiu L, Cai X, Lee JWL, Zhang W, Tan EK, Liu B, Zeng L. Aggregation-induced emission (AIE) nanoparticles labeled human embryonic stem cells (hESCs)-derived neurons for transplantation. Biomaterials 2021; 271:120747. [PMID: 33740615 DOI: 10.1016/j.biomaterials.2021.120747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022]
Abstract
Transplantation of differentiated neurons derived from either human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) is an emerging therapeutic strategy for various neurodegenerative diseases. One important aspect of transplantation is the accessibility to track and control the activity of the stem cells-derived neurons post-transplantation. Recently, the characteristics of organic nanoparticles (NPs) with aggregation-induced emission (AIE) have emerged as efficient cell labeling reagents, where positive outcomes were observed in long-term cancer cell tracing in vivo. In the current study, we designed, synthesized, and analyzed the biocompatibility of AIE-NPs in cultured neurons such as in mouse neuronal progenitor cells (NPCs) and hESC-derived neurons. Our data demonstrated that AIE-NPs show high degree of penetration into cells and presented intracellular long-term retention in vitro without altering the neuronal proliferation, differentiation, and viability. Furthermore, we have tracked AIE-NPs labeled neuronal grafts in mouse brain striatum in various time points post-transplantation. We demonstrated prolonged cellular retention of AIE-NPs labeled neuronal grafts 1 month post-transplantation in mouse brain striatum. Lastly, we have shown activation of brain microglia in response to AIE-NPs labeled grafts. Together, these findings highlight the potential application of AIE-NPs in neuronal transplantation.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jolene Wei Ling Lee
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore; Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore; Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore; Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore; Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
28
|
Zink A, Lisowski P, Prigione A. Generation of Human iPSC-derived Neural Progenitor Cells (NPCs) as Drug Discovery Model for Neurological and Mitochondrial Disorders. Bio Protoc 2021; 11:e3939. [PMID: 33796613 DOI: 10.21769/bioprotoc.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
The high attrition rate in drug development processes calls for additional human-based model systems. However, in the context of brain disorders, sampling live neuronal cells for compound testing is not applicable. The use of human induced pluripotent stem cells (iPSCs) has revolutionized the field of neuronal disease modeling and drug discovery. Thanks to the development of iPSC-based neuronal differentiation protocols, including tridimensional cerebral organoids, it is now possible to molecularly dissect human neuronal development and human brain disease pathogenesis in a dish. These approaches may allow dissecting patient-specific treatment efficacy in a disease-relevant cellular context. For drug discovery approaches, however, a highly reproducible and cost-effective cell model is desirable. Here, we describe a step-by-step process for generating robust and expandable neural progenitor cells (NPCs) from human iPSCs. NPCs generated with this protocol are homogeneous and highly proliferative. These features make NPCs suitable for the development of high-throughput compound screenings for drug discovery. Human iPSC-derived NPCs show a metabolism dependent on mitochondrial activity and can therefore be used also to investigate neurological disorders in which mitochondrial function is affected. The protocol covers all steps necessary for the preparation, culture, and characterization of human iPSC-derived NPCs. Graphic abstract: Schematic of the protocol for the generation of human iPSC-derived NPCs.
Collapse
Affiliation(s)
- Annika Zink
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Duesseldorf, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Pawel Lisowski
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Duesseldorf, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Warsaw, Poland
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Duesseldorf, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
29
|
Abstract
Brain organoids closely recapitulate many features and characteristics of in vivo brain tissue. This technology in turn allows unprecedented possibilities to investigate brain development and function in the dish. Several brain organoid protocols have been established, and the studies have focused on validating the architecture, cellular composition, and function of the organoids. In future, the improved and advanced organoid models will enable us to understand cellular and molecular features of the developing brain. However, several obstacles, such as the quality of the organoids, 3D structural analysis, and measurement of the neural connectivity need to be improved. In this perspective, we will provide an overview of the current state of the art of the brain organoid field, with a focus on protocols and organoid characterization. Additionally, we will address the current limitations of this evolving field and provide an understanding of the current brain organoid landscape and insight toward the next steps.
Collapse
|
30
|
Kamata Y, Isoda M, Sanosaka T, Shibata R, Ito S, Okubo T, Shinozaki M, Inoue M, Koya I, Shibata S, Shindo T, Matsumoto M, Nakamura M, Okano H, Nagoshi N, Kohyama J. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Transl Med 2020; 10:398-413. [PMID: 33226180 PMCID: PMC7900588 DOI: 10.1002/sctm.20-0269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapy targeting spinal cord injury (SCI) is an attractive approach to promote functional recovery by replacing damaged tissue. We and other groups have reported the effectiveness of transplanting neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) in SCI animal models for neuronal replacement. Glial replacement is an additional approach for tissue repair; however, the lack of robust procedures to drive iPSCs into NS/PCs which can produce glial cells has hindered the development of glial cell transplantation for the restoration of neuronal functions after SCI. Here, we established a method to generate NS/PCs with gliogenic competence (gNS/PCs) optimized for clinical relevance and utilized them as a source of therapeutic NS/PCs for SCI. We could successfully generate gNS/PCs from clinically relevant hiPSCs, which efficiently produced astrocytes and oligodendrocytes in vitro. We also performed comparison between gNS/PCs and neurogenic NS/PCs based on single cell RNA-seq analysis and found that gNS/PCs were distinguished by expression of several transcription factors including HEY2 and NFIB. After gNS/PC transplantation, the graft did not exhibit tumor-like tissue formation, indicating the safety of them as a source of cell therapy. Importantly, the gNS/PCs triggered functional recovery in an SCI animal model, with remyelination of demyelinated axons and improved motor function. Given the inherent safety of gNS/PCs and favorable outcomes observed after their transplantation, cell-based medicine using the gNS/PCs-induction procedure described here together with clinically relevant iPSCs is realistic and would be beneficial for SCI patients.
Collapse
Affiliation(s)
- Yasuhiro Kamata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Reo Shibata
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Ito
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Okubo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Inoue
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Regenerative & Cellular Medicine Kobe Center, Sumitomo Dainippon Pharma Co., Ltd, Kobe, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Shindo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Tao R, Lu R, Wang J, Zeng S, Zhang T, Guo W, Zhang X, Cheng Q, Yue C, Wang Y, Jing N. Probing the therapeutic potential of TRPC6 for Alzheimer's disease in live neurons from patient-specific iPSCs. J Mol Cell Biol 2020; 12:807-816. [PMID: 32492143 PMCID: PMC7816687 DOI: 10.1093/jmcb/mjaa027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
The induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to model and study Alzheimer's disease (AD) under patient-specific genetic background. The lower expression of transient receptor potential canonical 6 (TRPC6) was associated with AD patients, which might be involved in AD pathogenesis. However, the role of TRPC6 that played in AD process still needs more investigation in patient-relevant neurons. In this study, the iPSCs were generated from peripheral blood cells of sporadic AD patients and efficiently differentiated into mature cortical neurons. These sporadic AD-bearing neurons displayed higher levels of AD pathological markers Aβ and phospho-tau, but lower levels of TRPC6, than those of control neurons. Treatment of AD neurons with TRPC6 protein fragment or agonist inhibited the elevation of Aβ and phospho-tau. Our results in live AD neurons manifest that the compromised expression of TRPC6 substantially contributed to Aβ pathology of sporadic AD, suggesting that targeting TRPC6 could help to develop novel therapeutic strategies for the treatments of AD.
Collapse
Affiliation(s)
- Ran Tao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Lu
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junfeng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shujun Zeng
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenke Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaobing Zhang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, CA 92350, USA
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yizheng Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Jeon BM, Yeon GB, Goo HG, Lee KE, Kim DS. PVDF Nanofiber Scaffold Coated with a Vitronectin Peptide Facilitates the Neural Differentiation of Human Embryonic Stem Cells. Dev Reprod 2020; 24:135-147. [PMID: 32734130 PMCID: PMC7375977 DOI: 10.12717/dr.2020.24.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022]
Abstract
Polyvinylidene fluoride (PVDF) is a stable and biocompatible material that has been broadly used in biomedical applications. Due to its piezoelectric property, the electrospun nanofiber of PVDF has been used to culture electroactive cells, such as osteocytes and cardiomyocytes. Here, taking advantage of the piezoelectric property of PVDF, we have fabricated a PVDF nanofiber scaffolds using an electrospinning technique for differentiating human embryonic stem cells (hESCs) into neural precursors (NPs). Surface coating with a peptide derived from vitronectin enables hESCs to firmly adhere onto the nanofiber scaffolds and differentiate into NPs under dual-SMAD inhibition. Our nanofiber scaffolds supported the differentiation of hESCs into SOX1-positive NPs more significantly than Matrigel. The NPs generated on the nanofiber scaffolds could give rise to neurons, astrocytes, and oligodendrocyte precursors. Furthermore, comparative transcriptome analysis revealed the variable expressions of 27 genes in the nanofiber scaffold groups, several of which are highly related to the biological processes required for neural differentiation. These results suggest that a PVDF nanofiber scaffold coated with a vitronectin peptide can serve as a highly efficient and defined culture platform for the neural differentiation of hESCs.
Collapse
Affiliation(s)
- Byeong-Min Jeon
- Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Gyu-Bum Yeon
- Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | | | - Kyung Eun Lee
- Advance Analysis Center, Korean Institute of Science and Technology, Seoul 02792, Korea
| | - Dae-Sung Kim
- Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea.,Dept. of Pediatrics, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
34
|
Optimized Protocol to Generate Spinal Motor Neuron Cells from Induced Pluripotent Stem Cells from Charcot Marie Tooth Patients. Brain Sci 2020; 10:brainsci10070407. [PMID: 32605002 PMCID: PMC7408498 DOI: 10.3390/brainsci10070407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Modelling rare neurogenetic diseases to develop new therapeutic strategies is highly challenging. The use of human-induced pluripotent stem cells (hiPSCs) is a powerful approach to obtain specialized cells from patients. For hereditary peripheral neuropathies, such as Charcot–Marie–Tooth disease (CMT) Type II, spinal motor neurons (MNs) are impaired but are very difficult to study. Although several protocols are available to differentiate hiPSCs into neurons, their efficiency is still poor for CMT patients. Thus, our goal was to develop a robust, easy, and reproducible protocol to obtain MNs from CMT patient hiPSCs. The presented protocol generates MNs within 20 days, with a success rate of 80%, using specifically chosen molecules, such as Sonic Hedgehog or retinoic acid. The timing and concentrations of the factors used to induce differentiation are crucial and are given hereby. We then assessed the MNs by optic microscopy, immunocytochemistry (Islet1/2, HB9, Tuj1, and PGP9.5), and electrophysiological recordings. This method of generating MNs from CMT patients in vitro shows promise for the further development of assays to understand the pathological mechanisms of CMT and for drug screening.
Collapse
|
35
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
36
|
Ju Y, Park JS, Kim D, Kim B, Lee JH, Nam Y, Yoo HW, Lee BH, Han YM. SHP2 mutations induce precocious gliogenesis of Noonan syndrome-derived iPSCs during neural development in vitro. Stem Cell Res Ther 2020; 11:209. [PMID: 32493428 PMCID: PMC7268229 DOI: 10.1186/s13287-020-01709-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Background Noonan syndrome (NS) is a developmental disorder caused by mutations of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2). Although NS patients have diverse neurological manifestations, the mechanisms underlying the involvement of SHP2 mutations in neurological dysfunction remain elusive. Methods Induced pluripotent stem cells generated from dermal fibroblasts of three NS-patients (NS-iPSCs) differentiated to the neural cells by using two different culture systems, 2D- and 3D-cultured systems in vitro. Results Here we represent that SHP2 mutations cause aberrant neural development. The NS-iPSCs exhibited impaired development of EBs in which BMP and TGF-β signalings were activated. Defective early neuroectodermal development of NS-iPSCs recovered by inhibition of both signalings and further differentiated into NPCs. Intriguingly, neural cells developed from NS-NPCs exhibited abundancy of the glial cells, neurites of neuronal cells, and low electrophysiological property. Those aberrant phenotypes were also detected in NS-cerebral organoids. SHP2 inhibition in the NS-NPCs and NS-cerebral organoids ameliorated those anomalies such as biased glial differentiation and low neural activity. Conclusion Our findings demonstrate that SHP2 mutations contribute to precocious gliogenesis in NS-iPSCs during neural development in vitro.
Collapse
Affiliation(s)
- Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Sung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Daejeong Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Bumsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
37
|
Hepburn AC, Sims CHC, Buskin A, Heer R. Engineering Prostate Cancer from Induced Pluripotent Stem Cells-New Opportunities to Develop Preclinical Tools in Prostate and Prostate Cancer Studies. Int J Mol Sci 2020; 21:E905. [PMID: 32019175 PMCID: PMC7036761 DOI: 10.3390/ijms21030905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
One of the key issues hampering the development of effective treatments for prostate cancer is the lack of suitable, tractable, and patient-specific in vitro models that accurately recapitulate this disease. In this review, we address the challenges of using primary cultures and patient-derived xenografts to study prostate cancer. We describe emerging approaches using primary prostate epithelial cells and prostate organoids and their genetic manipulation for disease modelling. Furthermore, the use of human prostate-derived induced pluripotent stem cells (iPSCs) is highlighted as a promising complimentary approach. Finally, we discuss the manipulation of iPSCs to generate 'avatars' for drug disease testing. Specifically, we describe how a conceptual advance through the creation of living biobanks of "genetically engineered cancers" that contain patient-specific driver mutations hold promise for personalised medicine.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (C.H.C.S.); (A.B.)
| | - C. H. Cole Sims
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (C.H.C.S.); (A.B.)
| | - Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (C.H.C.S.); (A.B.)
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (C.H.C.S.); (A.B.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
38
|
Pisal RV, Mokry J. BMP Inhibition in the Presence of LIF Differentiates Murine Embryonic Stem Cells to Early Neural Stem Cells. Folia Biol (Praha) 2020; 66:155-160. [PMID: 34087971 DOI: 10.14712/fb2020066050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Early mouse neural stem cells (NSCs) first appear in embryonic day E5.5 and express pluripotency markers Oct4, Sox2, Nanog and early neural marker Sox1. Early NSCs are a good model for understanding the role of various pathways that control initial neural commitment. However, a protocol for differentiation of mouse embryonic stem cells (ESCs) into early NSCs by adherent monolayer culture has not yet been established. Hence, in this study, we identified the combination of growth factors and small molecules that differentiated mouse ESCs into early NSCs and supported their proliferation. Leukaemia inhibitory factor (LIF) was the first factor to be tested and it was found that ESCs can differentiate into early neurogenic lineage in the presence of LIF. However, we found that the induction is weaker in the presence of LIF as compared to cells differentiated in its absence. GSK-3 inhibitor, along with BMP and TGF-β pathway inhibitor (dual SMAD inhibition), are commonly used to sequentially direct ESCs towards NSCs. However, when we used this combination, mouse ESCs failed to differentiate into early NSCs. We observed that by adding Wnt inhibitor to the combination of GSK-3 inhibitor, BMP inhibitor, TGF-β inhibitor and LIF, it was possible to differentiate ESCs into early NSCs. qRT-PCR analysis of early NSCs illustrated that they expressed key pluripotency genes Oct4 and Nanog, albeit at levels lower than non-differentiated ESCs, along with early neural markers Sox1 and Pax6.
Collapse
Affiliation(s)
- R V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - J Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
39
|
Li Q, Huang Q. Single-cell qPCR demonstrates that Repsox treatment changes cell fate from endoderm to neuroectoderm and disrupts epithelial-mesenchymal transition. PLoS One 2019; 14:e0223724. [PMID: 31600351 PMCID: PMC6786562 DOI: 10.1371/journal.pone.0223724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023] Open
Abstract
A definitive endodermal cell lineage is a prerequisite for the efficient generation of mature endoderm derivatives that give rise to organs, such as the pancreas and liver. We previously reported that the induction of mesenchymal definitive endoderm cells depends on autocrine TGF-β signaling and that pharmacological blockage of TGF-β signaling by Repsox disrupts endoderm specification. The definitive endoderm arises from a primitive streak, which depends largely on TGF-β signaling. If the TGF-β pathway is blocked by Repsox, cell fate after the primitive streak induction is so-far unknown. We report here, that an induced primitive streak cell-population contained many T/SOX2 co-expressing cells, and subsequent inhibition of TGF-β signaling by Repsox promoted neuroectodermal cell fate, which was characterized using single-cell qPCR analysis and immunostaining. The process of epithelial-to-mesenchymal transition, which is inherent to the process of definitive endoderm differentiation, was also disrupted upon Repsox treatment. Our findings may provide a new approach to produce neural progenitors.
Collapse
Affiliation(s)
- Qiuhong Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Qingsong Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Advances in Human Induced Pluripotent Stem Cell-Derived Hepatocytes for Use in Toxicity Testing. Ann Biomed Eng 2019; 48:1045-1057. [PMID: 31372857 DOI: 10.1007/s10439-019-02331-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into multiple cell types in the body while maintaining proliferative capabilities. The generation of hepatocyte-like cells (HLCs) from iPSCs has resulted in a new source for liver cells. Since healthy primary human hepatocytes and hepatic cells are difficult to obtain, HLCs are gaining attention. HLCs can be obtained from a continuous, stable source while maintaining their original donor genotype, which opens new avenues into patient-specific testing and therapeutics. Studies have utilized HLCs for toxicity testing to further understand their drug metabolizing capabilities. This review focuses on advances being made to achieve hepatic functions from HLCs, their current use in hepatotoxicity testing, and their potential for future liver-related toxicity evaluations.
Collapse
|
41
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
42
|
Perez Y, Menascu S, Cohen I, Kadir R, Basha O, Shorer Z, Romi H, Meiri G, Rabinski T, Ofir R, Yeger-Lotem E, Birk OS. RSRC1 mutation affects intellect and behaviour through aberrant splicing and transcription, downregulating IGFBP3. Brain 2019. [PMID: 29522154 DOI: 10.1093/brain/awy045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RSRC1, whose polymorphism is associated with altered brain function in schizophrenia, is a member of the serine and arginine rich-related protein family. Through homozygosity mapping and whole exome sequencing we show that RSRC1 mutation causes an autosomal recessive syndrome of intellectual disability, aberrant behaviour, hypotonia and mild facial dysmorphism with normal brain MRI. Further, we show that RSRC1 is ubiquitously expressed, and that the RSRC1 mutation triggers nonsense-mediated mRNA decay of the RSRC1 transcript in patients' fibroblasts. Short hairpin RNA (shRNA)-mediated lentiviral silencing and overexpression of RSRC1 in SH-SY5Y cells demonstrated that RSRC1 has a role in alternative splicing and transcription regulation. Transcriptome profiling of RSRC1-silenced cells unravelled specific differentially expressed genes previously associated with intellectual disability, hypotonia and schizophrenia, relevant to the disease phenotype. Protein-protein interaction network modelling suggested possible intermediate interactions by which RSRC1 affects gene-specific differential expression. Patient-derived induced pluripotent stem cells, differentiated into neural progenitor cells, showed expression dynamics similar to the RSRC1-silenced SH-SY5Y model. Notably, patient neural progenitor cells had 9.6-fold downregulated expression of IGFBP3, whose brain expression is affected by MECP2, aberrant in Rett syndrome. Interestingly, Igfbp3-null mice have behavioural impairment, abnormal synaptic function and monoaminergic neurotransmission, likely correlating with the disease phenotype.
Collapse
Affiliation(s)
- Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idan Cohen
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.,Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Basha
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.,Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zamir Shorer
- Pediatric Neurology unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84101, Israel
| | - Hila Romi
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.,Genetics Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva 84101, Israel
| | - Gal Meiri
- Pre-School Psychiatry Unit, Soroka University Medical Center, Beer Sheva 84101, Israel
| | - Tatiana Rabinski
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rivka Ofir
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.,Genetics Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva 84101, Israel
| |
Collapse
|
43
|
Porterfield V. Neural Progenitor Cell Derivation Methodologies for Drug Discovery Applications. Assay Drug Dev Technol 2019; 18:89-95. [PMID: 31090435 DOI: 10.1089/adt.2019.921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inducible pluripotent stem cells (iPSCs) are being used to model brain disorders across the continuum of neurodevelopment, neurodegenerative, and neuropsychiatric disease allowing for the mechanistic unraveling of the neurological disease state. Subsequently, there is a diverse array of cell model systems that can be used for target validation, pharmacodynamic endpoint development, and high-throughput/content assay development and screening. However, to successfully model neurological disorders with iPSCs, the disease-relevant neuron must be first identified, and it is critical to have the appropriate neuronal progenitor cell derivation and neuron differentiation protocols available to produce desired neuronal phenotypes. Moreover, special considerations are necessary if adaptation to high-throughput/content assay systems is anticipated. Discussed here are the three-dimensional embryoid body-neural rosette and two-dimensional monolayer methodologies to derive iPS neural progenitor cells and neurons with a specific focus on cortical neurons. Outlined are some of the commonalities, advantages, and disadvantages associated with both methodologies.
Collapse
Affiliation(s)
- Veronica Porterfield
- Stem Cell Core Facility, University of Virginia, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
44
|
Hu J, Wang J. From embryonic stem cells to induced pluripotent stem cells-Ready for clinical therapy? Clin Transplant 2019; 33:e13573. [PMID: 31013374 DOI: 10.1111/ctr.13573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells and induced pluripotent stem cells have increasingly important roles in many different fields of research and medicine. Major areas of impact include improved in vitro disease models, drug screening, and the development of cell-based clinical therapies. Here, we review the generation and uses of embryonic stem cells compared to induced pluripotent stem cells and discuss their advantages and limitations. We also evaluate the feasibility of clinical therapies and the future prospects for induced pluripotent cell-based treatments.
Collapse
Affiliation(s)
- Jing Hu
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
45
|
Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry 2019; 24:613-624. [PMID: 30135510 PMCID: PMC6894932 DOI: 10.1038/s41380-018-0207-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/19/2018] [Accepted: 06/08/2018] [Indexed: 01/07/2023]
Abstract
Biological characterization of genetic variants identified in genome-wide association studies (GWAS) remains a substantial challenge. Here we used human-induced pluripotent stem cells (iPSC) and their neural derivatives to characterize common variants on chromosome 3p22 that have been associated by GWAS with major mental illnesses. IPSC-derived neural progenitor cells carrying the risk allele of the single nucleotide polymorphism (SNP), rs9834970, displayed lower baseline TRANK1 expression that was rescued by chronic treatment with therapeutic dosages of valproic acid (VPA). VPA had the greatest effects on TRANK1 expression in iPSC, NPC, and astrocytes. Although rs9834970 has no known function, we demonstrated that a nearby SNP, rs906482, strongly affects binding by the transcription factor, CTCF, and that the high-affinity allele usually occurs on haplotypes carrying the rs9834970 risk allele. Decreased expression of TRANK1 perturbed expression of many genes involved in neural development and differentiation. These findings have important implications for the pathophysiology of major mental illnesses and the development of novel therapeutics.
Collapse
|
46
|
Lee J, Choi SH, Kim YB, Jun I, Sung JJ, Lee DR, Kim YI, Cho MS, Byeon SH, Kim DS, Kim DW. Defined Conditions for Differentiation of Functional Retinal Ganglion Cells From Human Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2019; 59:3531-3542. [PMID: 30025074 DOI: 10.1167/iovs.17-23439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to establish an efficient method for retinal ganglion cell (RGC) differentiation from human pluripotent stem cells (hPSCs) using defined factors. Methods To define the contribution of specific signal pathways to RGC development and optimize the differentiation of hPSCs toward RGCs, we examined RGC differentiation in three stages: (1) eye field progenitors expressing the eye field transcription factors (EFTFs), (2) RGC progenitors expressing MATH5, and (3) RGCs expressing BRN3B and ISLET1. By monitoring the condition that elicited the highest yield of cells expressing stage-specific markers, we determined the optimal concentrations and combinations of signaling pathways required for efficient generation of RGCs from hPSCs. Results Precise modulation of signaling pathways, including Wnt, insulin growth factor-1, and fibroblast growth factor, in combination with mechanical isolation of neural rosette cell clusters significantly enriched RX and PAX6 double-positive eye field progenitors from hPSCs by day 12. Furthermore, Notch signal inhibition facilitated differentiation into MATH5-positive progenitors at 90% efficiency by day 20, and these cells further differentiated to BRN3B and ISLET1 double-positive RGCs at 45% efficiency by day 40. RGCs differentiated via this method were functional as exemplified by their ability to generate action potentials, express microfilament components on neuronal processes, and exhibit axonal transportation of mitochondria. Conclusions This protocol offers highly defined culture conditions for RGC differentiation from hPSCs and in vitro disease model and cell source for transplantation for diseases related to RGCs.
Collapse
Affiliation(s)
- Junwon Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Hwi Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Ikhyun Jun
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Jea Sung
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | | | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Brain Korea 21 Plus Project for Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Vershkov D, Fainstein N, Suissa S, Golan-Lev T, Ben-Hur T, Benvenisty N. FMR1 Reactivating Treatments in Fragile X iPSC-Derived Neural Progenitors In Vitro and In Vivo. Cell Rep 2019; 26:2531-2539.e4. [DOI: 10.1016/j.celrep.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/18/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
|
48
|
Nishihara K, Shiga T, Nakamura E, Akiyama T, Sasaki T, Suzuki S, Ko MSH, Tada N, Okano H, Akamatsu W. Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports 2019; 12:305-318. [PMID: 30713040 PMCID: PMC6373546 DOI: 10.1016/j.stemcr.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 02/06/2023] Open
Abstract
Although pluripotent stem cells can generate various types of differentiated cells, it is unclear why lineage-committed stem/progenitor cells derived from pluripotent stem cells are decelerated and why the differentiation-resistant propensity of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived cells is predominant compared with the in vivo equivalents derived from embryonic/adult tissues. In this study, we demonstrated that iPSCs reprogrammed and maintained with three chemical inhibitors of the fibroblast growth factor 4-mitogen-activated protein kinase cascade and GSK3β (3i) could be differentiated into all three germ layers more efficiently than the iPSCs reprogrammed without the 3i chemicals, even though they were maintained with 3i chemicals once they were reprogrammed. Although the iPSCs reprogrammed with 3i had increased numbers of Zscan4-positive cells, the Zscan4-positive cells among iPSCs that were reprogrammed without 3i did not have an accelerated differentiation ability. These observations suggest that 3i exposure during the reprogramming period determines the accelerated differentiation/maturation potentials of iPSCs that are stably maintained at the distinct state.
Collapse
Affiliation(s)
- Koji Nishihara
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
49
|
Kashpur O, Smith A, Gerami-Naini B, Maione AG, Calabrese R, Tellechea A, Theocharidis G, Liang L, Pastar I, Tomic-Canic M, Mooney D, Veves A, Garlick JA. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 2019; 33:1262-1277. [PMID: 30088952 PMCID: PMC6355091 DOI: 10.1096/fj.201801059] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Avi Smith
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Behzad Gerami-Naini
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Anna G. Maione
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Rossella Calabrese
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Ana Tellechea
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Georgios Theocharidis
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Liang Liang
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Aristidis Veves
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Jonathan A. Garlick
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Chen S. Screening-Based Chemical Approaches to Unravel Stem Cell Biology. Stem Cell Reports 2018; 11:1312-1323. [PMID: 30540959 PMCID: PMC6294285 DOI: 10.1016/j.stemcr.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Cell-permeable compounds provide a convenient and efficient approach to manipulate biological processes. A number of compounds controlling stem cell self-renewal, survival, differentiation, and reprogramming have been identified through high-throughput/content screens. Using these powerful chemical tools, strategies have been developed to direct human pluripotent stem cell (hPSC) differentiation to functional cells. Recently, hPSC-derived cells and organoids are used to model human diseases, which can be adapted to a high-throughput/content platform for chemical screens. The identified compounds provide novel tools for decoding the signaling pathways regulating disease progression and candidates for facilitating future drug discovery. Moreover, humanized mouse models carrying hPSC-derived cells enable an innovative system to evaluate the long-term in vivo efficacy of drug candidates on human cells. In summary, screening-based chemical approaches not only expedite strategy development of controlling stem cell fates, but also provide powerful tools for dissecting the molecular mechanisms regulating disease progression.
Collapse
Affiliation(s)
- Shuibing Chen
- Department of Surgery and Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|