1
|
Singh J, Kumar A, Trivedi S, Pandey SK. Advancements in estimating post-mortem interval in medico-legal practice: A comprehensive review. Leg Med (Tokyo) 2025; 75:102627. [PMID: 40273647 DOI: 10.1016/j.legalmed.2025.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/18/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Estimating the Post-Mortem Interval (PMI) is a crucial aspect of forensic investigations, aiding in the resolution of criminal cases, identifying missing persons, and understanding decomposition processes. This review provides an exhaustive analysis of recent advancements in PMI estimation techniques, encompassing both traditional and emerging methodologies. Included in the study is an exhaustive examination of well-established methodologies, including algor mortis, livor mortis, and rigor mortis, as well as their shortcomings and improvements. It also delves into innovative approaches, including forensic entomology, chemical and molecular biology, microbiology, artificial intelligence, etc. Furthermore, this article discusses the integration of multiple disciplines and the potential of interdisciplinary collaboration to enhance PMI accuracy and reliability. By synthesizing the latest research findings and technological innovations, this review aims to provide forensic practitioners, law enforcement agencies, and medico-legal professionals with a comprehensive understanding of the current state-of-the-art in PMI estimation, facilitating more effective crime scene investigations and judicial proceedings.
Collapse
Affiliation(s)
- Jyotsana Singh
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 U.P, India
| | - Ambrish Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 U.P, India
| | - Shruti Trivedi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 U.P, India.
| | - Surendra Kumar Pandey
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 U.P, India.
| |
Collapse
|
2
|
Ruiz López JL, Partido Navadijo M. Estimation of the post-mortem interval: a review. Forensic Sci Int 2025; 369:112412. [PMID: 40020504 DOI: 10.1016/j.forsciint.2025.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/13/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Determination of the time of death and post-mortem interval (PMI) is a major task for Legal and Forensic Medicine, given the implications it entails. In this respect, depending on the proximity to the moment of death, this PMI estimation will be simpler or more complex. Traditionally, the estimation of the PMI has centred upon the analysis of corporeal rigidity, body temperature and the concentration of potassium within the vitreous humour. However, in recent years, innovative methodologies that facilitate an increasingly precise prediction of the PMI have been developed. Therefore, this article aims to compile and present a comprehensive overview of these PMI estimation techniques, in order to serve as a basic guide and reference point to understand the latest advances in this area, as well as to identify their limitations and to explore the potential future directions of this discipline.
Collapse
Affiliation(s)
- Juan Luis Ruiz López
- Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Medicina Legal y Forense, Universidad de Sevilla, Avda. Dr. Fedriani, s/n, Sevilla 41009, Spain
| | - Manuel Partido Navadijo
- Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Medicina Legal y Forense, Universidad de Sevilla, Avda. Dr. Fedriani, s/n, Sevilla 41009, Spain.
| |
Collapse
|
3
|
Cianci V, Mondello C, Sapienza D, Guerrera MC, Cianci A, Cracò A, Luppino F, Gioffrè V, Gualniera P, Asmundo A, Germanà A. microRNAs as New Biomolecular Markers to Estimate Time since Death: A Systematic Review. Int J Mol Sci 2024; 25:9207. [PMID: 39273155 PMCID: PMC11394707 DOI: 10.3390/ijms25179207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Estimating the post-mortem interval is still one of the most complex challenges in forensics. In fact, the main tools currently used are burdened by numerous limitations, which sometimes allow the time of death to be placed only within too large time intervals. In recent years, researchers have tried to identify new tools to try to narrow down the interval within which to place the time of death; among these, the analysis of microRNAs seems to be promising. An evidence-based systematic review of the literature has been conducted to evaluate the state of the art of knowledge, focusing on the potential correlation between miRNA degradation and PMI estimation. The research has been performed using the electronic databases PubMed, Scopus, and WOS. The results allowed us to highlight the usefulness of miRNAs both as markers for PMI estimation and for normalization, especially due to their stability. In fact, some miRNAs remain particularly stable for long periods and in different tissues, while others degrade faster. Furthermore, there are numerous factors capable of influencing the behavior of these molecules, among which the type of tissue, the cause of death, and the circadian rhythm appear to be the most relevant. Despite the promising results of the few articles present in the literature, because of the numerous limitations they are burdened by, further research is still necessary to achieve more solid and shareable results.
Collapse
Affiliation(s)
- Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy; (M.C.G.); (A.G.)
| | - Alessio Cianci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Annalisa Cracò
- Department of Biomedical Sciences and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, 98125 Messina, Italy;
| | - Francesco Luppino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Vittorio Gioffrè
- Department of Otorhinolaryngology-Head and Neck Surgery, IRCCS San Raffaele, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy;
| | - Patrizia Gualniera
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (C.M.); (P.G.); (A.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy; (M.C.G.); (A.G.)
| |
Collapse
|
4
|
Gao H, Yang S, Gao J, Zhang S, Qin L, Huang M, Wu H, Tang Q. An experimental study to estimate the early postmortem interval based on the degradation of lncRNAs in rat brain tissue. Sci Rep 2024; 14:19586. [PMID: 39179611 PMCID: PMC11343772 DOI: 10.1038/s41598-024-70678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
To study the degradation of lncRNAs in EPMI in rat brain tissue, this study provides a new direction for the estimation of EPMI. LncRNA high-throughput sequencing was performed on the brain tissues of hemorrhagic shock model rats at 0 h and 24 h, and the target lncRNAs were screened. Samples at 0, 1, 3, 6, 12, 18 and 24 h after death were collected, and miRNA-9 and miRNA-125b were used as reference genes. The relative expression levels of lncRNAs at each PMI were detected by RT-qPCR, and a functional model involving lncRNAs and EPMI was established. Samples were collected at 6, 9, 15, and 21 h after death for functional model verification. The expression of several lncRNAs decreased with the prolongation of EPMI, and the mathematical model established by several lncRNA indices exhibited good fit. The verification results of the multi-index joint function model are significantly better than those of the single-index function model, and the established model is more practical. There is a linear relationship between lncRNAs and EPMI, and the multi-index function model is significantly better than the single-index function model, which is important for EPMI inference in forensic pathology practice.
Collapse
Affiliation(s)
- Haibo Gao
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Siyu Yang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Jie Gao
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Siqi Zhang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Li Qin
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Meng Huang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Hua Wu
- The Second People's Hospital of Hunan Province, Furong District, Changsha City, 410007, Hunan Province, China.
| | - Qun Tang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China.
| |
Collapse
|
5
|
Li S, Liu J, Zhao M, Su Y, Cong B, Wang Z. RNA quality score evaluation: A preliminary study of RNA integrity number (RIN) and RNA integrity and quality number (RNA IQ). Forensic Sci Int 2024; 357:111976. [PMID: 38447345 DOI: 10.1016/j.forsciint.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
In the past several years, with the in-depth development of RNA-related research, exploring the application of transcriptome and corresponding RNA biomarkers has become one of the research hotspots in the field of forensic science. High-quality RNA is essential for successful downstream workflows, especially in the steps of screening biomarkers by microarray or RNA sequencing (RNA-seq). Thus, accurately evaluating the quality of RNA samples is a critical step in obtaining meaningful expression data. The RNA integrity number (RIN) generated from the Agilent Bioanalyzer system has been widely used for RNA quality control in the past two decades. Recently, Thermo Fisher Scientific launched a ratiometric fluorescence-based method to quickly check whether an RNA sample has degraded, and the results are presented as RNA integrity and quality number (RNA IQ). Both quality score systems determine RNA quality using a numerical system based on a scale of 1-10, with 1 denoting significantly degraded specimens and 10 representing high-quality, intact RNA samples. In this preliminary study, we evaluated the consistency, reproducibility and linearity of two quality scores in RNA quality determination by analyzing heat- and RNase- artificially degraded samples. Meanwhile, the expression levels of three microRNAs (hsa-let-7 g-5p, hsa-miR-93-5p and hsa-miR-191-5p) in intact and severely degraded RNA samples were estimated by TaqMan-qPCR and droplet digital PCR. Overall, both quality scores showed good repeatability and reproducibility in their respective tests. In the samples subjected to thermal degradation, RIN showed a trend corresponding to heating time, while RNA IQ value showed almost no change on the time gradient. However, in RNase A mediated degradation, RNA IQ value observed better linearity. Furthermore, the expression levels of three microRNAs in the severely degraded samples did not show significant changes compared to the intact RNA samples. RNA degradation is a very complex and highly variable process, which is difficult to comprehensively evaluate through any one index and cannot directly compare these two parameters. Nevertheless, combined with previous research results and the expression levels of three microRNAs in this study, analyzing RNA biomarkers with stable regions or small sizes in challenged samples may be a conservative and reliable approach.
Collapse
Affiliation(s)
- Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Worrapitirungsi W, Sathirapatya T, Sukawutthiya P, Vongpaisarnsin K, Varrathyarom P. Assessing the feasibility of free DNA for disaster victim identification and forensic applications. Sci Rep 2024; 14:5411. [PMID: 38443390 PMCID: PMC10914783 DOI: 10.1038/s41598-024-53040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
In tropical disaster victim identification (DVI) scenarios, challenging environmental conditions lead to accelerated DNA degradation in remains. To further enhance the utilization of leached DNA from tissue in the preservative solution (termed "free DNA") as an alternative source, we incorporated new results by assessing its integrity in postmortem and decomposing cadavers preserved in DNA/RNA Shield™ and modified TENT, with silica-based purification (QIAquick®) for faster processing. The psoas muscle tissues of one decomposed and ten cadavers were preserved in each solution at 25 °C and 35 °C for 3 months. Free DNA efficiency was compared with individual reference samples for reliable results in quantity, quality, and STR profiles. The findings revealed that DNA/RNA Shield™ effectively preserves free DNA integrity for extended storage, while modified TENT is more suitable for short-term storage due to higher degradation levels. Moreover, the use of free DNA samples with massive parallel sequencing displays potential for forensic DNA analysis. Successful amplification of the mtDNA control region enables variant calling and heteroplasmy analysis while also serving as quality control using ACTB and enabling differentiation within the 16S rRNA region for microbiome analysis. The simplicity of handling free DNA for PCR-based forensic analysis adds to its potential for various applications, including DVI and field-based analysis of biological evidence.
Collapse
Affiliation(s)
- Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| | - Pagparpat Varrathyarom
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
7
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Wang J, Fu G, Wang Q, Ma G, Wang Z, Lu C, Fu L, Zhang X, Cong B, Li S. Differences of circular RNA expression profiles between monozygotic twins' blood, with the forensic application in bloodstain and saliva. Forensic Sci Int Genet 2024; 69:103001. [PMID: 38150775 DOI: 10.1016/j.fsigen.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Monozygotic twins (MZTs) possess identical genomic DNA sequences and are usually indistinguishable through routine forensic DNA typing methods, which can be relevant in criminal and paternity cases. Recently, novel epigenetic methods involving DNA methylation and microRNA analysis have been introduced to differentiate MZTs. In this study, we explore the potential of using epigenetic markers, specifically circular RNAs (circRNAs), a type of non-coding RNA (ncRNA), to identify MZTs, and investigate the unique expression patterns of circRNAs within pairs of MZTs, enabling effective differentiation. Epigenetics regulates gene expression at the post-transcriptional level and plays a crucial role in cell growth and aging. CircRNAs, a recently characterized subclass of ncRNA, have a distinct covalent loop structure without the typical 5' cap or 3' tail. They have been reported to modulate various cellular processes and play roles in embryogenesis and eukaryotic development. To achieve this, we conducted a comprehensive circRNA sequencing analysis (circRNA-seq) using total RNA extracted from the blood samples of five pairs of MZTs. We identified a total of 15,257 circRNAs in all MZTs using circRNA-seq. Among them, 3, 21, 338, and 2967 differentially expressed circRNAs (DEcircRNAs) were shared among five, four, three, and two pairs of MZTs, respectively. Subsequently, we validated twelve selected DEcircRNAs using real-time quantitative polymerase chain reaction (RT-qPCR) assays, which included hsa_circ_0004724, hsa_circ_0054196, hsa_circ_004964, hsa_circ_0000591, hsa_circ_0005077, hsa_circ_0054853, hsa_circ_0054716, hsa_circ_0002302, hsa_circ_0004482, hsa_circ_0001103, novel_circ_0030288 and novel_circ_0056831. Among them, hsa_circ_0005077 and hsa_circ_0004482 exhibited the best performance, showing differences in 7 out of 10 pairs of MZTs. These twelve differentially expressed circRNAs also demonstrated strong discriminative power when tested on saliva samples from 10 pairs of MZTs. Notably, hsa_circ_0004724 displayed differential expression in 8 out of 10 pairs of MZTs in their saliva. Additionally, we evaluated the detection sensitivity, longitudinal temporal stability, and suitability for aged bloodstains of these twelve DEcircRNAs in forensic scenarios. Our findings highlight the potential of circRNAs as molecular markers for distinguishing MZTs, emphasizing their suitability for forensic application.
Collapse
Affiliation(s)
- Junyan Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Guangping Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Zhonghua Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
9
|
Suo L, Cheng J, Yuan H, Jiang Z, Tash D, Wang L, Cheng H, Zhang Z, Zhang F, Zhang M, Cao Z, Zhao R, Guan D. miR-26a/30d/152 are reliable reference genes for miRNA quantification in skin wound age estimation. Forensic Sci Res 2023; 8:230-240. [PMID: 38221964 PMCID: PMC10785593 DOI: 10.1093/fsr/owad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/23/2023] [Indexed: 01/16/2024] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of small non-coding RNAs that exert their biological functions as negative regulators of gene expression. They are involved in the skin wound healing process with a dynamic expression pattern and can therefore potentially serve as biomarkers for skin wound age estimation. However, no reports have described any miRNAs as suitable reference genes (RGs) for miRNA quantification in wounded skin or samples with post-mortem changes. Here, we aimed to identify specific miRNAs as RGs for miRNA quantification to support further studies of skin wound age estimation. Overall, nine miRNAs stably expressed in mouse skin at certain posttraumatic intervals (PTIs) were preselected by next-generation sequencing as candidate RGs. These nine miRNAs and the commonly used reference genes (comRGs: U6, GAPDH, ACTB, 18S, 5S, LC-Ogdh) were quantitatively examined using quantitative real-time reverse-transcription polymerase chain reaction at different PTIs during skin wound healing in mice. The stabilities of these genes were evaluated using four independent algorithms: GeNorm, NormFinder, BestKeeper, and comparative Delta Ct. Stability was further evaluated in mice with different post-mortem intervals (PMIs). Overall, mmu-miR-26a-5p, mmu-miR-30d-5p, and mmu-miR-152-3p were identified as the most stable genes at both different PTIs and PMIs. These three miRNA RGs were additionally validated and compared with the comRGs in human samples. After assessing using one, two, or three miRNAs in combination for stability at different PTIs, PMIs, or in human samples, the set of miR-26a/30d/152 was approved as the best normalizer. In conclusion, our data suggest that the combination of miR-26a/30d/152 is recommended as the normalization strategy for miRNA qRT-PCR quantification in skin wound age estimation. KEY POINTS The small size of miRNAs makes them less susceptible to post-mortem autolysis or putrefaction, leading to their potential use in wound age estimation.Studying miRNAs as biological indicators of skin wound age estimation requires the selection and validation of stable reference genes because commonly used reference genes, such as U6, ACTB, GAPDH, 5S, 18S, and LC-Ogdh, are not stable.miR-26a/30d/152 are stable and reliable as reference genes and their use in combination is a recommended normalization strategy for miRNA quantitative analysis in wounded skin.
Collapse
Affiliation(s)
- Longlong Suo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jian Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Haomiao Yuan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Road Traffic Accident Investigation, Academy of Forensic Science, Shanghai, China
| | - Dilichati Tash
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Autonomous Prefecture Public Security Bureau, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhongduo Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhipeng Cao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| |
Collapse
|
10
|
Pasaribu RS, Auerkari EI, Suhartono AW, Auerkari P. A small RNA, microRNA as a potential biomolecular marker to estimate post mortem interval in forensic science: a systematic review. Int J Legal Med 2023; 137:1313-1325. [PMID: 37253884 PMCID: PMC10421780 DOI: 10.1007/s00414-023-03015-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Post-mortem interval (PMI) is the cornerstone of the forensic field to investigate. The examination technique by seeing the changes in the body such as algor mortis, rigor mortis, and livor mortis is a traditional technique in which accuracy is influenced by many factors. A biomolecular technique that uses microRNA (miRNA) biomarkers is developing because miRNA has good stability than other RNA, so it meets the requirements to be used for PMI estimation. METHOD Following the PRISMA guidelines, journals were taken from 5 databases: Scopus, Science Direct, PubMed, Embase, and Springer. The review was carried out by two people. Inclusion criteria in this review are original research, published in the last 10 years, discussing miRNA as a biomarker for PMI estimation, and free full access. While exclusion criteria are not original research and not using English. RESULT Eighteen journals were reviewed in this study. The study was conducted using test animals (rats) and human samples with tissue sources taken from the liver, skeletal muscle, blood, bone, heart, skin, saliva, semen, brain, lung, vitreous humor, spleen, and kidney. miRNA expression levels after death showed different results based on miRNA target, tissue source, and others. DISCUSSION The results of each study are different due to the use of different types of miRNA targets and tissue sources. miRNA has great potential to estimate PMI in forensic science, but it is necessary to control the influencing factors to obtain an accurate conclusion.
Collapse
Affiliation(s)
- Roben Suhadi Pasaribu
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Elza Ibrahim Auerkari
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia.
| | - Antonius Winoto Suhartono
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia
| | - Pertti Auerkari
- Department of Mechanical Engineering, School of Engineering, Aalto University, Helsinki, Finland.
| |
Collapse
|
11
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
12
|
Centrón-Broco A, Rossi F, Grelloni C, Garraffo R, Dattilo D, Giuliani A, Di Timoteo G, Colantoni A, Bozzoni I, Beltran Nebot M. CircAFF1 Is a Circular RNA with a Role in Alveolar Rhabdomyosarcoma Cell Migration. Biomedicines 2023; 11:1893. [PMID: 37509532 PMCID: PMC10376778 DOI: 10.3390/biomedicines11071893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed RNAs that originate from back-splicing events, participate in the control of several processes, including those that occur in the development of pathological conditions such as cancer. Hereby, we describe circAFF1, a circular RNA overexpressed in alveolar rhabdomyosarcoma. Using RH4 and RH30 cell lines, a classical cell line models for alveolar rhabdomyosarcoma, we demonstrated that circAFF1 is a cytoplasmatic circRNA and its depletion impacts cell homeostasis favouring cell migration through the downregulation of genes involved in cell adhesion pathways. The presented data underline the importance of this circular RNA as a new partial suppressor of the alveolar rhabdomyosarcoma tumour progression and as a putative future therapeutic target.
Collapse
Affiliation(s)
- Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Singh P, Ali W, Sandhu S, Mishra S, Singh US, Verma AK, Singh M, Kaleem Ahmad M, Kumari S. Post-mortem interval estimation using miRNAs of road traffic accident cases: A forensic molecular approach. Sci Justice 2023; 63:485-492. [PMID: 37453780 DOI: 10.1016/j.scijus.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
In forensic examination accurate estimation of post-mortem interval (PMI) is a challenging task, particularly in the advanced stages of decomposition. The existing methods (algor mortis, livor mortis, rigor mortis, putrefaction etc) used for estimating PMI rely on analyzing the physical, biochemical, and metabolic changes that occur in the corpse after death. While these methods have shown some level of effectiveness in estimating PMI during the early stages of decomposition, accurate estimation becomes increasingly challenging during the later stages of putrefaction when the body undergoes significant changes. Recently, microRNA (miRNA) profiling due to its relatively small size and stability has emerged as a promising tool in several areas of forensics. This study demonstrates the potential of miRNA for PMI estimation in advanced stages of death. In this study, miRNA-195, miRNA-206, and miRNA-378 were selected as target miRNAs and miRNA-1 as reference miRNA. Left ventricle tissue (5 g) of the heart from 20 forensic autopsies of traffic accident victims (18-32 years) were collected and processed. The samples were held at room temperature for eight different time intervals (12, 24, 48, 72, 96, 120, 168 and 196 h), and RNA was extracted from all the samples using Trizol-based RNA isolation protocol, followed by cDNA synthesis and amplification with commercially available specific miRNA probes in Real-Time PCR (RT-PCR), Ct was calculated. The result showed that miRNAs were associated with PMI. Over time, there were substantial changes in the Ct values of all three miRNAs, with significant reductions observed at 196 h compared to 12 h. miRNA-206 demonstrated significant changes at multiple time intervals, while miRNA-1 remained stable for up to 196 h and thus holds caas an endogenous marker. In conclusion, miRNA has the potential to serve as a valuable tool for estimating PMI, especially during the advanced stages of decomposition, when used in conjunction with established techniques. However, further validation of the study is required to obtain more accurate estimates of PMI.
Collapse
Affiliation(s)
- Paurabhi Singh
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Wahid Ali
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Sangram Sandhu
- Department of Prosthodontics, King George's Medical University, Lucknow, India.
| | - Sridhar Mishra
- Department of Pathology, Dr. Ram Manohar Lohiya Institute of Medical Sciences, Lucknow, India
| | - Uma Shankar Singh
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Anoop K Verma
- Department of Forensic Medicine and Toxicology, King George's Medical University, Lucknow, India.
| | - Mousami Singh
- Department of Forensic Medicine and Toxicology, King George's Medical University, Lucknow, India.
| | - M Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, India.
| | - Sangeeta Kumari
- Department of Forensic Medicine and Toxicology, King George's Medical University, Lucknow, India.
| |
Collapse
|
14
|
Guardado-Estrada M, Cárdenas-Monroy CA, Martínez-Rivera V, Cortez F, Pedraza-Lara C, Millan-Catalan O, Pérez-Plasencia C. A miRNome analysis at the early postmortem interval. PeerJ 2023; 11:e15409. [PMID: 37304870 PMCID: PMC10257396 DOI: 10.7717/peerj.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2023] [Indexed: 06/13/2023] Open
Abstract
The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.
Collapse
Affiliation(s)
- Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christian A. Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Cortez
- Computational Genomics Division, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Li Y, Wang Z, Ishmael D, Lvy Y. The potential of using non-coding RNAs in forensic science applications. Forensic Sci Res 2023; 8:98-106. [PMID: 37621455 PMCID: PMC10445561 DOI: 10.1093/fsr/owad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 01/29/2023] [Indexed: 08/26/2023] Open
Abstract
With the continuous development and integration of molecular biology and forensic science, non-coding RNAs (ncRNAs), especially ncRNAs with regulatory functions such as microRNA, long non-coding RNA, and circular RNA, have recently been actively explored by forensic scholars. In this study, we review the literature on these ncRNAs in various fields of forensic science, including postmortem interval determination, wound age estimation, forensic age assessment, cause of death analysis, and body fluid identification, aiming to evaluate the current research and provide a perspective for future applications.
Collapse
Affiliation(s)
- Yawen Li
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhuoqun Wang
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dikeledi Ishmael
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lvy
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Wenzlow N, Mills D, Byrd J, Warren M, Long MT. Review of the current and potential use of biological and molecular methods for the estimation of the postmortem interval in animals and humans. J Vet Diagn Invest 2023; 35:97-108. [PMID: 36744749 PMCID: PMC9999395 DOI: 10.1177/10406387231153930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We provide here an overview of the state of applied techniques in the estimation of the early period of the postmortem interval (PMI). The biological methods included consist of body cooling, CSF potassium, body cooling combined with CSF potassium, and tissue autolysis. For each method, we present its application in human and veterinary medicine and provide current methodology, strengths, and weaknesses, as well as target areas for improvement. We examine current and future molecular methods as they pertain to DNA and primarily to messenger RNA degradation for the estimation of the PMI, as well as the use of RNA in aging wounds, aging blood stains, and the identification of body fluids. Various types of RNA have different lengths, structures, and functions in cells. These differences in RNAs determine various intrinsic properties, such as their half-lives in cells, and, hence, their decay rate as well as their unique use for specific forensic tests. Future applications and refinements of RNA-based techniques provide opportunities for the use of molecular methods in the estimation of PMI and other general forensic applications.
Collapse
Affiliation(s)
- Nanny Wenzlow
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - DeEtta Mills
- Department of Biological Sciences and International Forensic Research Institute, Florida International University, Miami, FL, USA
| | - Jason Byrd
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Mike Warren
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Wang S, Chen W, Shang Y, Ren L, Zhang X, Guo Y, Zhang C. High-throughput sequencing to evaluate the effects of methamphetamine on the succession of the bacterial community to estimate the postmortem interval. Forensic Sci Res 2023; 7:736-747. [PMID: 36817241 PMCID: PMC9930777 DOI: 10.1080/20961790.2022.2046368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In forensic medical examinations, estimating the postmortem interval (PMI) is an important factor. Methamphetamine (MA) is a synthetic stimulant that is commonly abused, and estimation of the PMI after MA abuse has become one of the main tasks in forensic investigation. Microorganisms play a vital role in carrion decomposition. Analysing the bacterial succession patterns can be used as a forensic tool to estimate the PMI. The present study aimed to analyse bacterial succession changes during the decomposition of MA to estimate the PMI. We analysed bacterial communities in rabbits treated with three different concentrations of MA (0, 22.5, and 90 mg/kg) under the natural conditions of 20 °C and 70% humidity by sequencing 16S rRNA gene amplicons using the Illumina MiSeq system. We obtained 2 374 209 high-quality sequences and 2 937 operational taxonomic units (OTUs). The relative abundances of the bacterial communities varied markedly in response to different MA concentrations. Interestingly, in response to the different concentrations of MA, Bacteroidetes became disparate in the rectum in the late PMI. Increased numbers of bacterial taxa were identified in the rectum and buccal cavity samples, except at the highest concentration of MA in the rectum samples when PMI was 0-h, than were present in live rabbits. Meanwhile, the PMI correlated significantly with bacterial succession at different taxonomic levels. Our results suggested that bacterial community succession could be used as a "microbial clock" to estimate the PMI in cases of MA-related death; however, further study is required to gain a deeper understanding of this concept.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China,CONTACT Changquan Zhang
| |
Collapse
|
18
|
Shchegolev AI, Tumanova UN, Savva OV. [Characteristics of histochemical, molecular genetic and radiation-induced liver changes depending on the postmortem interval]. Sud Med Ekspert 2023; 66:59-63. [PMID: 37192462 DOI: 10.17116/sudmed20236603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this study is to analyze literature data on postmortem changes in the liver and their use in determination of postmortem interval. Biological death expectedly causes the development of postmortem disorders not only in the liver structure, but also changes in its biochemical and histochemical parameters. Literature data about changes of histochemical, immunohistochemical and biomolecular characteristics of liver tissue, as well as bacterial migration to the liver depending on the duration of postmortem period, are presented. The effectiveness of radiology for visualization of postmortem changes and, accordingly, for determining the postmortem interval is noted.
Collapse
Affiliation(s)
- A I Shchegolev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Moscow, Russia
| | - U N Tumanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Moscow, Russia
| | - O V Savva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Moscow, Russia
- Bureau of Forensic Medicine named after D.I. Mastbaum, Ryazan, Russia
| |
Collapse
|
19
|
Tarín JJ, García-Pérez MA, Cano A. It Is Premature to Use Postmortem Sperm for Reproductive Purposes: a Data-Driven Opinion. Reprod Sci 2022; 29:3387-3393. [PMID: 35146695 PMCID: PMC9734227 DOI: 10.1007/s43032-022-00874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Postmortem sperm retrieval for reproductive purposes is an assisted reproduction procedure that offers women an opportunity to have a child using sperm retrieved from their deceased partners. The ethical issues of this procedure have been discussed in previous works. However, an assessment of the procedure using a scientific perspective is still lacking. Here, we aim to ascertain, using a biological standpoint, whether postmortem sperm should be rescued for reproductive purposes. Data suggest that it is premature to use postmortem sperm for reproductive purposes. This procedure should not be clinically applied until appropriate and comprehensive analyses have been completed. Such analyses should be focused not only on fertilization, embryo development, and pregnancy outcomes, but also on potential postmortem alterations of sperm DNA, RNAs, and proteins. In addition, genetic and epigenetic analyses of sperm, pre-implantation embryos, and newborns, as well as mental and physical health follow-up of the resulting offspring during a whole life cycle, using appropriate non-human mammalian models, are warranted.
Collapse
Affiliation(s)
- Juan J Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
- Institute of Health Research INCLIVA, Valencia, Spain.
| | - Miguel A García-Pérez
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Antonio Cano
- Institute of Health Research INCLIVA, Valencia, Spain
- Service of Obstetrics and Gynecology, University Clinic Hospital, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain
| |
Collapse
|
20
|
Umehara T, Mori R, Murase T, Tanaka T, Kasai K, Ikematsu K, Sato H. rno-miR-203a-3p and Mex3B contribute to cell survival of iliopsoas muscle via the Socs3-Casp3 axis under severe hypothermia in rats. Leg Med (Tokyo) 2022; 59:102150. [PMID: 36198254 DOI: 10.1016/j.legalmed.2022.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because no specific findings, such as molecular markers, have been identified. Therefore, determining the molecular mechanism in hypothermia and identifying novel molecular markers to assist in diagnosing fatal hypothermia are important. This study aimed to investigate microRNA (miRNA) and mRNA expression in iliopsoas muscle, which plays a role in homeostasis in mammals, to resolve the molecular mechanism in hypothermia. We generated rat models of mild, moderate, and severe hypothermia, then performed body temperature-dependent miRNA and mRNA expression analysis of the iliopsoas muscle using microarray and next-generation sequencing. Analysis showed that rno-miR-203a-3p expression was lower with decreasing body temperature, while Socs3 expression was significantly increased only by severe hypothermia. Luciferase reporter assays suggested that Socs3 expression is regulated by rno-miR-203a-3p. Socs3 and Mex3B small interfering RNA-mediated knockdown showed that suppressing Mex3B could induce the activation of Socs3, followed by a change in caspase 3/7 activity and adenosine triphosphate levels in iliopsoas muscle cells. These findings indicate that rno-miR-203a-3p and Mex3B are deactivated by a decrease in body temperature, whereby it contributes to suppressing apoptosis by accelerating Socs3. Accordingly, the rno-miR-203a-3p-Socs3-Casp3 or Mex3B-Socs3-Casp3 axis may be the part of the biological defense response to maintain homeostasis under extreme hypothermia.
Collapse
Affiliation(s)
- Takahiro Umehara
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University, School of Medicine and Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
21
|
STABILITY OF SELECTED MICRORNAs IN HUMAN BLOOD, SEMEN AND SALIVA SAMPLES EXPOSED TO DIFFERENT ENVIRONMENTAL CONDITIONS. Forensic Sci Int 2022; 336:111338. [DOI: 10.1016/j.forsciint.2022.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
|
22
|
Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, Srivastava PK, Gaetano C, Thum T, Vanhaverbeke M, Angione C, Heymans S, Devaux Y, Pedrazzini T, Martelli F. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res 2022; 118:1004-1019. [PMID: 33757121 PMCID: PMC8930073 DOI: 10.1093/cvr/cvab117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
- The Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ian McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Condorelli
- Humanitas Research Hospital, Humanitas University, Via Manzoni 113, Rozzano, MI 20089, Italy
| | - C Emanueli
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - P K Srivastava
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
| | - T Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1 30625 Hannover, Germany
| | - M Vanhaverbeke
- UZ Gasthuisberg Campus, KU Leuven, Herestraat 49 3000 Leuven, Belgium
| | - C Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, TS4 3BX, UK
| | - S Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
| | - Y Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - T Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato, Milan, Italy
| | | |
Collapse
|
23
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
24
|
Saeedi S, Nagy C, Ibrahim P, Théroux JF, Wakid M, Fiori LM, Yang J, Rotzinger S, Foster JA, Mechawar N, Kennedy SH, Turecki G. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry 2021; 26:7417-7424. [PMID: 34385599 DOI: 10.1038/s41380-021-01255-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Abstract
Previous work has demonstrated that microRNAs (miRNAs) change as a function of antidepressant treatment (ADT) response. However, it is unclear how representative these peripherally detected miRNA changes are to those occurring in the brain. This study aimed to use peripherally extracted neuron-derived extracellular vesicles (NDEV) to circumvent these limitations and investigate neuronal miRNA changes associated with antidepressant response. Samples were collected at two time points (baseline and after 8 weeks of follow-up) from depressed patients who responded (N = 20) and did not respond (N = 20) to escitalopram treatment, as well as controls (N = 20). Total extracellular vesicles (EVs) were extracted from plasma, and then further enriched for NDEV by immunoprecipitation with L1CAM. EVs and NDEVs were characterized, and NDEV miRNA cargo was extracted and sequenced. Subsequently, studies in cell lines and postmortem tissue were conducted. Characterization of NDEVs revealed that they were smaller than other EVs isolated from plasma (p < 0.0001), had brain-specific neuronal markers, and contained miRNAs enriched for brain functions (p < 0.0001) Furthermore, NDEVs from depressed patients were smaller than controls (p < 0.05), and NDEV size increased with ADT response (p < 0.01). Finally, changes in NDEV cargo, specifically changes in miR-21-5p, miR-30d-5p, and miR-486-5p together (p < 0.01), were associated with ADT response. Targets of these three miRNAs were altered in brain tissue from depressed individuals (p < 0.05). Together, this study indicates that changes in peripherally isolated NDEV can act as both a clinically accessible and informative biomarker of ADT response specifically through size and cargo.
Collapse
Affiliation(s)
- Saumeh Saeedi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Pascal Ibrahim
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jean-Francois Théroux
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada.,St Michael's Hospital, Li Ka Shing Knowledge Institute, Arthur Sommer Rotenberg Suicide and Depression Studies Program and Centre for Depression and Suicide Studies, Toronto, ON, Canada
| | - Jane A Foster
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of Toronto, Toronto, ON, Canada.,St Michael's Hospital, Li Ka Shing Knowledge Institute, Arthur Sommer Rotenberg Suicide and Depression Studies Program and Centre for Depression and Suicide Studies, Toronto, ON, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Li S, Lin J, Hao H, Jin H, Song D, Zhu B. Validation of a 6-Dye Short Tandem Repeat System: A Dry Kit With Lyophilized Amplification Reagent. Front Genet 2021; 12:705819. [PMID: 34552616 PMCID: PMC8451954 DOI: 10.3389/fgene.2021.705819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
The SureID®S6 system used a lyophilized pellet as the amplification reagent to enable multiplexing of sex-determining marker Amelogenin, 21 autosomal short tandem repeats (STRs), and one Y-STR. To assess the performance, reliability, and limitation of the dry amplification system, the validation studies including PCR condition, reproducibility, sizing and precision, analytical threshold calculation, sensitivity and stochastic threshold calculation, species specificity, stability, mixture, case sample, and population and concordance were conducted according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) Validation Guidelines. Experimental data suggested that the optimal range of total input DNA was from 125 to 500 pg; the appropriate analytical threshold was 80 relative fluorescence units (RFUs) while the stochastic threshold was 260 RFUs; for the stability studies, SureID®S6 system could resist against less than 500 μmol/L of hematin, 100 ng/μl of humic acid, 4 mM of indigotin, 800 mM of tannic acid, and 800 mM of calcium ion. Population and concordance studies using 500 unrelated individuals showed that the combined probability of discrimination (CPD) and cumulative probability of exclusion (CPE) values were 0.999999999999 and 0.999999998416, respectively. The genotypes for the same sample were concordant with the previously validated HUAXIA™ Platinum kit. The validation results demonstrated that the SureID®S6 system could be used for forensic applifications.
Collapse
Affiliation(s)
- Shuanglin Li
- Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jinfeng Lin
- School of Medicine, Ningbo University, Ningbo, China
| | - Honglei Hao
- Zhejiang Key Laboratory of Forensic Science and Technology, Hangzhou, China
| | - Haiying Jin
- Ningbo Health Gene Technologies Co., Ltd, Ningbo, China
| | - Danlu Song
- Ningbo Health Gene Technologies Co., Ltd, Ningbo, China
| | - Bofeng Zhu
- Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Tian M, Xue J, Dai C, Jiang E, Zhu B, Pang H. CircSLC8A1 and circNFIX can be used as auxiliary diagnostic markers for sudden cardiac death caused by acute ischemic heart disease. Sci Rep 2021; 11:4695. [PMID: 33633191 PMCID: PMC7907149 DOI: 10.1038/s41598-021-84056-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden cardiac death (SCD) caused by acute ischemic heart disease (IHD) is a major cause of sudden death worldwide. Circular RNAs (circRNAs) are abundant in the heart and play important roles in cardiovascular diseases, but the role of circRNAs as biomarkers in the forensic diagnosis of SCD caused by acute IHD remains poorly characterized. To investigate the potential of two heart-enriched circRNAs, circNFIX and circSLC8A1, we explored the expression of these two circRNAs in different kinds of commonly used IHD models, and further verified their expressions in forensic autopsy cases. The results from both the IHD rat and H9c2 cell models revealed that circSlc8a1 level was upregulated, while the circNfix level was elevated in the early stage of ischemia and subsequently downregulated. The time-dependent expression patterns of the two circRNAs suggested their potential as SCD biomarkers. In autopsy cases, the results showed that the expression of these two circRNAs in the myocardium with acute IHD-related SCDs corresponded to the observations in the ischemic models. Further analysis related to myocardial ischemia indicated that circSLC8A1 showed high sensitivity and specificity for myocardial infarction and was positively correlated with creatine kinase MB in pericardial fluid. Downregulated circNFIX level could indicate the ischemic myocardial damage, and it was negatively correlated with the coronary artery stenosis grade. The combination of circSLC8A1 and circNFIX had better performance to discriminate IHD-related SCDs. The results suggested that circSLC8A1 and circNFIX may be used as auxiliary diagnostic markers for SCD caused by acute IHD in forensic medicine.
Collapse
Affiliation(s)
- Meihui Tian
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Jiajia Xue
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Cuiyun Dai
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Enzhu Jiang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P.R. China.
| |
Collapse
|
27
|
Circular RNAs in Sudden Cardiac Death Related Diseases: Novel Biomarker for Clinical and Forensic Diagnosis. Molecules 2021; 26:molecules26041155. [PMID: 33670057 PMCID: PMC7926443 DOI: 10.3390/molecules26041155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
The prevention and diagnosis of sudden cardiac death (SCD) are among the most important keystones and challenges in clinical and forensic practice. However, the diagnostic value of the current biomarkers remains unresolved issues. Therefore, novel diagnostic biomarkers are urgently required to identify patients with early-stage cardiovascular diseases (CVD), and to assist in the postmortem diagnosis of SCD cases without typical cardiac damage. An increasing number of studies show that circular RNAs (circRNAs) have stable expressions in myocardial tissue, and their time- and tissue-specific expression levels might reflect the pathophysiological status of the heart, which makes them potential CVD biomarkers. In this article, we briefly introduced the biogenesis and functional characteristics of circRNAs. Moreover, we described the roles of circRNAs in multiple SCD-related diseases, including coronary artery disease (CAD), myocardial ischemia or infarction, arrhythmia, cardiomyopathy, and myocarditis, and discussed the application prospects and challenges of circRNAs as a novel biomarker in the clinical and forensic diagnosis of SCD.
Collapse
|
28
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
29
|
Maiese A, Scatena A, Costantino A, Di Paolo M, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics (Basel) 2021; 11:64. [PMID: 33401603 PMCID: PMC7823686 DOI: 10.3390/diagnostics11010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Estimating the time of death remains the most challenging question in forensic medicine, because post-mortem interval (PMI) estimation can be a remarkably difficult goal to achieve. The aim of this review is to analyze the potential of microRNAs (miRNAs) to evaluate PMI. MiRNAs have been studied as hallmarks and biomarkers in several pathologies and have also showed interesting applications in forensic science, such as high sensible biomarkers in body fluid and tissue, for wound age determination and PMI evaluation due to their low molecular weight and tissue-specific expression. The present systematic review was carried out according to the Preferred Reporting Items for Systematic Review (PRISMA) standards. We performed an electronic search of PubMed, Science Direct Scopus, and Excerpta Medica Database (EMBASE) from the inception of these databases to 12 August 2020. The search terms were ("PMI miRNA" or "PMI micro RNA") and ("miRNA" and "time of death") in the title, abstract and keywords. Through analysis of scientific literature regarding forensic uses of miRNAs, has emerged that the intrinsic characteristics of such molecules, and their subsequent resistance to degradation, make them suitable as endogenous markers in order to determine PMI. However, further and larger studies with human samples and standardized protocols are still needed.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.M.); (A.S.); (A.C.); (M.D.P.); (E.T.)
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.M.); (A.S.); (A.C.); (M.D.P.); (E.T.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.M.); (A.S.); (A.C.); (M.D.P.); (E.T.)
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.M.); (A.S.); (A.C.); (M.D.P.); (E.T.)
| | - Raffaele La Russa
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.M.); (A.S.); (A.C.); (M.D.P.); (E.T.)
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy
| |
Collapse
|
30
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
31
|
Body temperature-dependent microRNA expression analysis in rats: rno-miR-374-5p regulates apoptosis in skeletal muscle cells via Mex3B under hypothermia. Sci Rep 2020; 10:15432. [PMID: 32963265 PMCID: PMC7508983 DOI: 10.1038/s41598-020-71931-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023] Open
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis in hypothermia and identify novel molecular markers to inform the diagnosis of fatal hypothermia, we focused on microRNA expression in skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We generated rat models of mild, moderate, and severe hypothermia, and performed body temperature-dependent microRNA expression analysis of the iliopsoas muscle using microarray and quantitative real-time PCR (qRT-PCR). The results show that rno-miR-374-5p expression was significantly induced only by severe hypothermia. Luciferase reporter assay and qRT-PCR results indicated that Mex3B expression was regulated by rno-miR-374-5p and decreased with decreasing body temperature. Gene ontology analysis indicated the involvement of Mex3B in positive regulation of GTPase activity. siRNA analysis showed that Mex3B directly or indirectly regulated Kras expression in vitro, and significantly changed the expression of apoptosis-related genes and proteins. Collectively, these results indicate that rno-miR-374-5p was activated by a decrease in body temperature, whereby it contributed to cell survival by suppressing Mex3B and activating or inactivating Kras. Thus, rno-miR-374-5p is a potential supporting marker for the diagnosis of fatal hypothermia.
Collapse
|
32
|
Noshy PA. Postmortem expression of apoptosis-related genes in the liver of mice and their use for estimation of the time of death. Int J Legal Med 2020; 135:539-545. [PMID: 32914226 DOI: 10.1007/s00414-020-02419-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE A major challenge in forensic medicine is to estimate the postmortem interval (PMI). Several approaches had been tried to determine the time of death, including physical and chemical changes. This study aims to explore the postmortem changes in the expression of apoptosis-related genes in the liver of mice and to use these changes for estimation of the PMI. METHODS Hepatic tissue was collected from sacrificed mice immediately after death (the control group) and at 3, 6, 9, 12, 18, and 24 hours after death. Four apoptosisrelated genes were selected as target genes, which are Caspase 3 (Casp3), B cell leukemia/ lymphoma 2 (Bcl2), BCL2-associated X protein (Bax), and Transformation related protein 53 (Trp53), and their relative expression was measured using quantitative PCR. miR-122 was used as a reference gene for normalization of the Ct (threshold cycle) values of the target genes. RESULTS The results revealed that the postmortem expression of Casp3 increased in a time-dependent manner; the expression of Bax increased from 3 to 18 hours followed by a decrease at 24 hours after death; the expression of Bcl2 decreased in a time-dependent manner after death; the expression of Trp53 increased from 3 to 6 hours and then started to decrease from 9 to 24 hours after death. CONCLUSION Based on the observed changes in the expression level of these genes, mathematical models were established to estimate the PMI. Further research is needed to investigate these markers and mathematical models in human tissues.
Collapse
Affiliation(s)
- Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
33
|
Comparative Evaluation of RNAlater Solution and Snap Frozen Methods for Gene Expression Studies in Different Tissues. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Freezing of tissues with liquid nitrogen is the most common method in studies performed at the RNA level. However, the use of RNA stabilization solutions has become a popular alternative method. The aim of this study is to investigate the effectiveness of RNAlater on RNA stabilization in different tissues.
Material and Methods: In this study, RNA were isolated from the lung, heart, liver and skeletal muscle tissues of rats that were frozen with liquid nitrogen (snap frozen, SF group) or stored in RNAlater solution (RL group), and the changes in concentration, purity, reference genes expression, and fold-change levels between groups were analyzed.
Results: In the RL group, the concentration of RNA isolated from the liver tissues was higher (P<0.05), whereas the A260/280 ratio was lower in the heart and liver tissues (P<0.05). PPIA and SRP72 genes were found to have lower Ct values in the heart tissues of rats in the RL group (P<0.05 and P<0.001, respectively) than the SF group. Expression levels of PPIA, ACTB, and SRP72 genes across the tissues were found to be different between the groups (P<0.05). The gene expression level examined in terms of fold-change was significantly different in the RL group (upregulated up to 4 folds and downregulated about 0.5 fold) (P< 0.05).
Conclusions: The results showed that RNAlater can maintain the RNA integrity and can also change the results of gene expression because it does not inhibit biological activity. The snap freezing method is more reliable because gene expression is more stable in tissues frozen with liquid nitrogen.
Collapse
|
34
|
Muñoz JJ, Anauate AC, Amaral AG, Ferreira FM, Meca R, Ormanji MS, Boim MA, Onuchic LF, Heilberg IP. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci Rep 2020; 10:231. [PMID: 31937827 PMCID: PMC6959247 DOI: 10.1038/s41598-019-57112-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease is a complex clinical entity which comprises a group of genetic diseases that leads to renal cyst development. We evaluated the most suitable housekeeping genes for microRNA expression by RT-qPCR analyses of kidney tissues in Pkd1-deficient mouse models from a panel of five candidates genes (miR-20a, miR-25, miR-26a, miR-191 and U6) and 3 target genes (miR-17, miR-21 and let-7a) using samples from kidneys of cystic mice (Pkd1flox/flox:Nestincre, CY), non-cystic controls (Pkd1flox/flox, NC), Pkd1-haploinsufficient (Pkd1+/−, HT), wild-type controls (Pkd1+/+, WT), severely cystic mice (Pkd1V/V, SC), wild-type controls (CO). The stability of the candidate genes was investigated using NormFinder, GeNorm, BestKeeper, DataAssist, and RefFinder software packages and the comparative ΔCt method. The analyses identified miR-26a as the most stable housekeeping gene for all kidney samples, miR-20a for CY and NC, miR-20a and miR-26a for HT and WT, and miR-25 and miR-26a for SC and CO. Expression of miR-21 was upregulated in SC compared to CO and trends of miR-21 upregulation and let-7a downregulation in CY and HT compared to its control kidneys, when normalized by different combinations of miR-20a, miR-25 and miR-26a. Our findings established miR-20a, miR-25, and miR-26a as the best housekeeping genes for miRNA expression analyses by RT-qPCR in kidney tissues of Pkd1-deficient mouse models.
Collapse
Affiliation(s)
- J J Muñoz
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A C Anauate
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A G Amaral
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - F M Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R Meca
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M S Ormanji
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Boim
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Onuchic
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - I P Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020; 731:144349. [PMID: 31935499 DOI: 10.1016/j.gene.2020.144349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The "transcriptome after death" involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.
Collapse
|
36
|
Peng D, Lv M, Li Z, Tian H, Qu S, Jin B, Long B, Liang W, Zhang L. Postmortem interval determination using mRNA markers and DNA normalization. Int J Legal Med 2020; 134:149-157. [PMID: 31773316 DOI: 10.1007/s00414-019-02199-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
Postmortem interval (PMI) determination is an important part of criminal investigations, but it is still subject to uncertainty. Degradation of mRNA in PMI determination has been studied in decays; however, some studies have reported no correlation between PMI and RNA degradation. Thus, we aimed to determine whether RNA quantity was correlated with PMI. Heart and brain tissues were separated from a mouse model of a 0-48 h PMI with 29 time points. We then coextracted the DNA and RNA in one tube with Bioteke coextraction kits and selected some mRNA markers associated with cell oxygen deprivation and apoptosis as target genes, such as hypoxia-associated factor (HAF), apoptosis-inducing factor (AIF), hypoxia-inducible factor 2 alpha (HIF2a), and factor inhibiting HIF (FIH). We measured the quantity of these markers using real-time quantitative PCR (qPCR), and Caspase-3 DNA and 18S were each used for normalization. The results showed that in the heart tissue, the degradation of HIF2a, AIF, and FIH was correlated with PMI, as was the degradation of HIF2a, FIH, and AIF in brain tissue when normalized with Caspase-3 DNA. However, when normalized with 18S, only the degradation of HIF2a in brain tissue was correlated with PMI. Interestingly, the quantity of HAF in brain tissue was found to increase after death with either 18S or Caspase-3 DNA normalization, and it was significantly correlated with 0-48 h PMI. These results indicated that mRNA quantity can be used to determine PMI and that Caspase-3 DNA is feasible for PMI estimation. In summary, we established mathematical models for PMI determination using multiple mRNA markers and multiple tissues and further studies are needed to validate and investigate these markers and mathematical models in human tissues.Duo Peng and Meili Lv contributed equally to this work.
Collapse
Affiliation(s)
- Duo Peng
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Meili Lv
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilong Li
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huan Tian
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - ShengQiu Qu
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Jin
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Bing Long
- Sichuan Police College, Luzhou, 646000, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
37
|
Identification of internal control genes for circular RNAs. Biotechnol Lett 2019; 41:1111-1119. [PMID: 31428905 DOI: 10.1007/s10529-019-02723-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE At present, no studies have established internal control genes for circular RNA (circRNA) analyses. We aimed to identify reference circRNAs for real-time quantitative PCR (RT-qPCR). RESULTS After analyzing the RNA-seq data, we obtained 50 circRNAs that were expressed in all samples. We ranked these 50 circRNAs according to their stability and obtained the six most stable circRNAs. We further evaluated the stability of the six circRNAs and three linear control genes (i.e., GAPDH, β-actin and 18S rRNA) in 22 cell lines. Our results indicated that hsa_circ_0000284 (circHIPK3) and hsa_circ_0000471 (circN4BP2L2) were the two most stable genes. After removing linear RNAs or including the cells treated with Adriamycin, NH4Cl and shikonin, the two most stable genes were hsa_circ_0000471 and hsa_circ_0000284. The amplification efficiency was 100% for hsa_circ_0000471 and 95% for hsa_circ_0000284. CONCLUSIONS In conclusion, since the stability of circRNAs is higher than that of linear RNAs, hsa_circ_0000284 and hsa_circ_0000471 may be used as reference genes not only for circRNAs but also for other kinds of RNAs. The findings in the present study fill the gap of lacking reference genes in the detection of circRNAs.
Collapse
|
38
|
Analysis of RNA in the estimation of post-mortem interval: a review of current evidence. Int J Legal Med 2019; 133:1629-1640. [DOI: 10.1007/s00414-019-02125-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
39
|
Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet 2019; 42:e21-e24. [PMID: 31270013 DOI: 10.1016/j.fsigen.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Cornelius Courts
- University Hospital of Schleswig-Holstein, Institute of Forensic Medicine, Kiel, Germany.
| | - Michael W Pfaffl
- Technical University of Munich, Animal Physiology and Immunology, Freising, Germany
| | - Eva Sauer
- State Office of Criminal Investigation of Rhineland-Palatinate, Mainz, Germany
| | - Walther Parson
- Innsbruck Medical University, Institute of Legal Medicine, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
40
|
Tu C, Du T, Ye X, Shao C, Xie J, Shen Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg Med (Tokyo) 2019; 38:51-57. [PMID: 30986695 DOI: 10.1016/j.legalmed.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
In our previous study, we evaluated the stability of multi-RNA markers in heart, liver and skeletal muscle tissues of mice within 8 days after death and concluded that microRNAs (miRNAs) and circular (circRNAs) were more stable as reference genes in dead bodies than other kinds of RNAs. Based on their tissue-specific expression, we obtained reference genes for three kinds of tissues: miR-122, miR-133a and 18S in heart tissues; LC-Ogdh, circ-AFF1 and miR-122 in liver tissues; and miR-133a, circ-AFF1 in skeletal muscle tissues. For the estimation of post mortem interval (PMI), we also selected suitable biomarkers, which exhibited the best correlation coefficient with PMI. In our stability analysis of multi-RNA markers, Gapdh, Rps18, U6 and β-actin were unstable and selected as candidate target biomarkers. By analyzing the correlation between the expression levels of candidate target biomarkers and PMI, we obtained suitable target biomarkers for the three kinds of tissues, respectively. Finally, we established mathematical models of PMI estimation using the above selected reference genes and target biomarkers. The low estimated error in the validated samples demonstrated that PMI in advanced stage could be accurately predicted by real-time quantitative polymerase chain reaction (qPCR) through systematically selected effective reference genes and target biomarkers. Besides, combining the estimated results of various tissues and multi-biomarkers could improve the accuracy of PMI estimation.
Collapse
Affiliation(s)
- Chunyan Tu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Tieshuai Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
41
|
Qin XG, Zeng JH, Lin P, Mo WJ, Li Q, Feng ZB, Luo DZ, Yang H, Chen G, Zeng JJ. Prognostic value of small nuclear RNAs (snRNAs) for digestive tract pan- adenocarcinomas identified by RNA sequencing data. Pathol Res Pract 2018; 215:414-426. [PMID: 30455130 DOI: 10.1016/j.prp.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Malignant tumors of the digestive tract include esophageal, gastric, and colorectal carcinomas, which all have high global mortality rates. A clinical role for small nuclear RNA (snRNA), a type of small non-coding RNA, has not yet been documented for digestive tract pan-adenocarcinomas. Therefore, the aim of the study was to identify differentially expressed snRNAs and to explore their prognostic implications in pan-adenocarcinomas from the esophagus, stomach, colon, and rectum. The pan-carcinoma RNA-sequencing data of four types of digestive tract cancers with 1, 102 cases obtained from The Cancer Genome Atlas (TCGA) project were analyzed and the differentially expressed snRNAs were evaluated using the edgeR package. The prognostic value of each of the selected snRNAs was determined by univariate and multivariate Cox regression analyses. All the digestive tract pan-adenocarcinomas showed differential expression of three snRNAs: the up-regulated RNU1-106 P and RNU6-850 P and the down-regulated RNU6-529 P. Interestingly, RNU6-101 P appeared to be a risk factor for esophageal adenocarcinoma (ESAD) and RNVU1-4 was potentially a protective factor for stomach adenocarcinoma (STAD) survival. This consistent finding of differential expression of all three snRNAs in all four types of digestive system cancers suggests potential roles for these snRNAs in the tumorigenesis of digestive system cancers. RNU6-101 P could play a pivotal role in the progression of ESAD and RNVU1-4 could perform a protective role in STAD. However, since the current findings were based on RNA-sequencing data mining, more studies are needed for verification.
Collapse
Affiliation(s)
- Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Qing Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China.
| |
Collapse
|