1
|
Wang X, Lenartowicz M, Mazgaj R, Ogłuszka M, Szkopek D, Zaworski K, Kopeć Z, Żelazowska B, Lipiński P, Woliński J, Starzyński RR. Preterm Piglets Born by Cesarean Section as a Suitable Animal Model for the Study of Iron Metabolism in Premature Infants. Int J Mol Sci 2024; 25:11215. [PMID: 39456997 PMCID: PMC11508764 DOI: 10.3390/ijms252011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Preterm infants are most at risk of iron deficiency. However, our knowledge of the regulation of iron homeostasis in preterm infants is poor. The main goal of our research was to develop and validate an animal model of human prematurity to assess iron status in preterm infants. We performed a cesarean section on sows on the 109th day of pregnancy, which corresponds to the last trimester of human pregnancy. Preterm piglets showed decreased body weight, red blood cell indices, plasma iron level and transferrin saturation. Interestingly, higher hepatic and splenic non-heme iron content and plasma and hepatic ferritin levels were found in premature piglets compared with term ones. In addition, premature piglets showed higher mRNA levels of iron-regulatory hormone hepcidin in the liver than term animals, which have not been reflected in higher plasma hepcidin-25 levels. We also showed changes in hepcidin regulators, including hepatic bone morphogenetic protein 6, plasma erythroferrone and growth differentiation factor 15 in preterm piglets. Consequently, no difference was observed in iron-exporter ferroportin levels in the spleen and liver. Overall, it seems that premature piglets show a pattern of iron metabolism characteristic of functional iron deficiency and iron accumulation in the tissue.
Collapse
Affiliation(s)
- Xiuying Wang
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Mazgaj
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Zuzanna Kopeć
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Beata Żelazowska
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Paweł Lipiński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (D.S.); (J.W.)
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Rafał Radosław Starzyński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (X.W.); (R.M.); (Z.K.); (B.Ż.); (P.L.)
| |
Collapse
|
2
|
Țichil I, Mitre I, Zdrenghea MT, Bojan AS, Tomuleasa CI, Cenariu D. A Review of Key Regulators of Steady-State and Ineffective Erythropoiesis. J Clin Med 2024; 13:2585. [PMID: 38731114 PMCID: PMC11084473 DOI: 10.3390/jcm13092585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Erythropoiesis is initiated with the transformation of multipotent hematopoietic stem cells into committed erythroid progenitor cells in the erythroblastic islands of the bone marrow in adults. These cells undergo several stages of differentiation, including erythroblast formation, normoblast formation, and finally, the expulsion of the nucleus to form mature red blood cells. The erythropoietin (EPO) pathway, which is activated by hypoxia, induces stimulation of the erythroid progenitor cells and the promotion of their proliferation and survival as well as maturation and hemoglobin synthesis. The regulation of erythropoiesis is a complex and dynamic interaction of a myriad of factors, such as transcription factors (GATA-1, STAT5), cytokines (IL-3, IL-6, IL-11), iron metabolism and cell cycle regulators. Multiple microRNAs are involved in erythropoiesis, mediating cell growth and development, regulating oxidative stress, erythrocyte maturation and differentiation, hemoglobin synthesis, transferrin function and iron homeostasis. This review aims to explore the physiology of steady-state erythropoiesis and to outline key mechanisms involved in ineffective erythropoiesis linked to anemia, chronic inflammation, stress, and hematological malignancies. Studying aberrations in erythropoiesis in various diseases allows a more in-depth understanding of the heterogeneity within erythroid populations and the development of gene therapies to treat hematological disorders.
Collapse
Affiliation(s)
- Ioana Țichil
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ileana Mitre
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
| | - Mihnea Tudor Zdrenghea
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Anca Simona Bojan
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ciprian Ionuț Tomuleasa
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- Department of Haematology, “Ion Chiricuta” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
- MEDFUTURE—Research Centre for Advanced Medicine, 8 Louis Pasteur Street, 400347 Cluj-Napoca, Romania
| | - Diana Cenariu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (I.M.); (M.T.Z.); (A.S.B.); (C.I.T.); (D.C.)
- MEDFUTURE—Research Centre for Advanced Medicine, 8 Louis Pasteur Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Jiang L, Jia R, Zheng Z, Zhang X, Xu Y, Raj A, Sun D. A clinical study on roxadustat for anemia in diabetic nephropathy: a 8-week study. Int Urol Nephrol 2024; 56:1093-1101. [PMID: 37626163 DOI: 10.1007/s11255-023-03757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
PURPOSE The development of roxadustat is a standard treatment for renal anemia, and multiple clinical trials have proved its safety and efficacy. However, less information is available from trials of the population with diabetic nephropathy (DN). This study aimed to determine whether roxadustat is effective for treating DN. METHODS This was a single-center, retrospective, institutional review board-approved cohort study. The patients with DN were chosen and given roxadustat or erythropoietin (EPO) for 8 weeks. The mean hemoglobin (Hb) level after 8 weeks of treatment served as the primary outcome. Alterations in the iron index and lipid levels were considered secondary objectives. Sub-group analysis was performed to observe the impact of inflammation and glycemic status on Hb. RESULTS A total of 80 patients were enrolled, 40 in each group. After 8 weeks of treatment, the Hb levels in the roxadustat group were higher than those in the control group. The number of patients who achieved Hb response was higher in the roxadustat group than in the control group (77.5% versus 27.5%; P < 0.001). In addition to lowering total cholesterol and low-density lipoprotein cholesterol, roxadustat decreased ferritin and elevated total iron-binding capacity. Compared to the control group, roxadustat was more beneficial for patients with an inflammatory condition and poor glycemic control. CONCLUSIONS Roxadustat treatment remarkably corrected anemia in patients with DN, and its effectiveness was unaffected by inflammation or glycemic control levels. In addition, roxadustat can also reduce a patient's blood lipid level and enhance the body's use of iron. CLINICAL TRIAL REGISTRATION ChiCTR2200057232.
Collapse
Affiliation(s)
- Luhua Jiang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Ruoyu Jia
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Zhifang Zheng
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xuejie Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yizhou Xu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Ashok Raj
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Quanshan District, Xuzhou, 221001, China.
| |
Collapse
|
4
|
Xue L, Mukherjee K, Kelley KA, Bieker JJ. Generation, characterization, and use of EKLF(Klf1)/CRE knock-in mice for cell-restricted analyses. FRONTIERS IN HEMATOLOGY 2024; 2:1292589. [PMID: 39280931 PMCID: PMC11393758 DOI: 10.3389/frhem.2023.1292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction EKLF/Klf1 is a tissue-restricted transcription factor that plays a critical role in all aspects of erythropoiesis. Of particular note is its tissue-restricted pattern of expression, a property that could prove useful for expression control of a linked marker or enzymatic gene. Methods and results With this in mind, we fused the CRE recombinase to the genomic EKLF coding region and established mouse lines. We find by FACS analyses that CRE expression driven by the EKLF transcription unit recapitulates erythroid-restricted expression with high penetrance in developing embryos. We then used this line to test its properties in the adult, where we found EKLF/CRE is an active and is a robust mimic of normal EKLF expression in the adult bone marrow. EKLF/CRE is also expressed in erythroblastic island macrophage in the fetal liver, and we demonstrate for the first time that, as seen during embryonic development, EKLF is also expressed in adult BM-derived erythroblastic island macrophage. Our data also support lineage studies showing EKLF expression at early stages of hematopoiesis. Discussion The EKLF/CRE mouse lines are novel reagents whose availability will be of great utility for future experiments by investigators in the red cell field.
Collapse
Affiliation(s)
- Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin A Kelley
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Tumas KC, Xu F, Wu J, Hernandez M, Pattaradilokrat S, Xia L, Peng YC, Lavali AM, He X, Singh BK, Zhang C, Percopo C, Qi CF, Huang S, Long CA, Su XZ. Dysfunction of CD169 + macrophages and blockage of erythrocyte maturation as a mechanism of anemia in Plasmodium yoelii infection. Proc Natl Acad Sci U S A 2023; 120:e2311557120. [PMID: 37748059 PMCID: PMC10556621 DOI: 10.1073/pnas.2311557120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.
Collapse
Affiliation(s)
- Keyla C. Tumas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Fangzheng Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Maricarmen Hernandez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Sittiporn Pattaradilokrat
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Lu Xia
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan410033, China
| | - Yu-chih Peng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Angela Musu Lavali
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xiao He
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Brajesh K. Singh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Chen-Feng Qi
- Pathology Core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Suming Huang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State Cancer Institute, Hershey, PA17033
- Department of Pharmacology, Division of Pediatric Hematology and Oncology, Penn State Cancer Institute, Hershey, PA17033
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD20852
| |
Collapse
|
6
|
Maria NI, Papoin J, Raparia C, Sun Z, Josselsohn R, Lu A, Katerji H, Syeda MM, Polsky D, Paulson R, Kalfa T, Barnes BJ, Zhang W, Blanc L, Davidson A. Human TLR8 induces inflammatory bone marrow erythromyeloblastic islands and anemia in SLE-prone mice. Life Sci Alliance 2023; 6:e202302241. [PMID: 37495396 PMCID: PMC10372407 DOI: 10.26508/lsa.202302241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023] Open
Abstract
Anemia commonly occurs in systemic lupus erythematosus, a disease characterized by innate immune activation by nucleic acids. Overactivation of cytoplasmic sensors by self-DNA or RNA can cause erythroid cell death, while sparing other hematopoietic cell lineages. Whereas chronic inflammation is involved in this mechanism, less is known about the impact of systemic lupus erythematosus on the BM erythropoietic niche. We discovered that expression of the endosomal ssRNA sensor human TLR8 induces fatal anemia in Sle1.Yaa lupus mice. We observed that anemia was associated with a decrease in erythromyeloblastic islands and a block in differentiation at the CFU-E to proerythroblast transition in the BM. Single-cell RNAseq analyses of isolated BM erythromyeloblastic islands from human TLR8-expressing mice revealed that genes associated with essential central macrophage functions including adhesion and provision of nutrients were down-regulated. Although compensatory stress erythropoiesis occurred in the spleen, red blood cell half-life decreased because of hemophagocytosis. These data implicate the endosomal RNA sensor TLR8 as an additional innate receptor whose overactivation causes acquired failure of erythropoiesis via myeloid cell dysregulation.
Collapse
Affiliation(s)
- Naomi I Maria
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Zeguo Sun
- Department of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Rachel Josselsohn
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ailing Lu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hani Katerji
- Department of Pathology, University of Rochester, Rochester, NY, USA
| | - Mahrukh M Syeda
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert Paulson
- Department of Veterinary and Biomedical Sciences, Penn State College of Agricultural Sciences, University Park, PA, USA
| | - Theodosia Kalfa
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Betsy J Barnes
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Northwell Health, Hempstead, NY, USA
| |
Collapse
|
7
|
Romano L, Seu KG, Blanc L, Kalfa TA. Crosstalk between terminal erythropoiesis and granulopoiesis within their common niche: the erythromyeloblastic island. Curr Opin Hematol 2023; 30:99-105. [PMID: 37254853 PMCID: PMC10236084 DOI: 10.1097/moh.0000000000000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW The identity of the erythroblastic island (EBI) macrophage (Mϕ) has been under investigation for decades since it was recognized as the first hematopoietic niche 'nursing' terminal erythropoiesis. This review will focus on the current insights to the characteristics and the role of the EBI Mϕ balancing terminal erythropoiesis and granulopoiesis. RECENT FINDINGS While the EBI has long been known as the niche for erythroid precursors, significant advancements in biology research technologies, including optimization of EBI enrichment protocols, single-cell ribonucleic acid sequencing, and imaging flow cytometry, have recently revealed that granulocytic precursors co-exist in this niche, termed erythromyeloblastic island (EMBI). More importantly, the balance noted at baseline between terminal granulopoiesis and erythropoiesis within EBIs/EMBIs is altered with diseases affecting hematopoiesis, such as stress erythropoiesis and inflammatory conditions causing anemia of inflammation. The role of the EMBI niche has yet to be fully investigated mechanistically, however, a notable degree of transcriptional and cell surface marker heterogeneity has been identified for the EMBI Mϕ, implicating its plasticity and diverse function. SUMMARY Terminal erythropoiesis and granulopoiesis are regulated within the EMBI. Investigations of their balance within this niche in health and disease may reveal new targets for treatment of diseases of terminal hematopoiesis.
Collapse
Affiliation(s)
- Laurel Romano
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Katie G. Seu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Theodosia A. Kalfa
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Josselsohn R, Barnes BJ, Kalfa TA, Blanc L. Navigating the marrow sea towards erythromyeloblastic islands under normal and inflammatory conditions. Curr Opin Hematol 2023; 30:80-85. [PMID: 36718814 PMCID: PMC10065913 DOI: 10.1097/moh.0000000000000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation. RECENT FINDINGS The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors. SUMMARY Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.
Collapse
Affiliation(s)
- Rachel Josselsohn
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
| | - Betsy J. Barnes
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | | | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| |
Collapse
|
9
|
Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum Cell 2023; 36:894-907. [PMID: 36754940 PMCID: PMC9908308 DOI: 10.1007/s13577-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics such as COVID-19 have prompted us to search for alternative therapeutics to replace this resource. Originally, RBC production was attempted via the ex vivo differentiation of stem cells. However, a more approachable and effective cell source is now required for broader applications. As a viable alternative, pluripotent stem cells have been actively used in recent research. In this review, we discuss the basic concepts related to erythropoiesis, as well as early research using hematopoietic stem cells ex vivo, and discuss the current trend of in vitro erythropoiesis using human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Heeju Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, , Seoul, Republic of Korea ,Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Franklin AD, Freedman A, Ernst LM. Association of placental histology and neonatal hematologic outcomes. J Perinatol 2023; 43:155-161. [PMID: 36585507 DOI: 10.1038/s41372-022-01595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of the paper was to investigate how neonatal hematologic outcomes vary by major placental histopathology categories. STUDY DESIGN Placental pathology reports from 5263 subjects were coded into individual placental lesions. Infant hematologic data (complete blood count parameters (n = 1945), transfusions, and phototherapy) were compared by placental pathologic phenotype. RESULTS Red blood cell transfusions were more likely with maternal vascular malperfusion (MVM; OR 9.4 [2.2, 40.8]) and chronic inflammation (1.7 [1.04, 2.7]). White blood cells were decreased with MVM (10.6 103/μL vs 16.4) and elevated with acute inflammation (AI; 18.6 vs 11.9). Thrombocytopenia was associated with MVM (OR 3.7 [2.2, 5.1]) and fetal vascular malperfusion (FVM; OR 2.6 [1.5, 4.6]). Platelet transfusions were more likely with MVM (OR 8.3 [4.6, 15.0]) and FVM (OR 2.9 [1.4, 6.1]). Phototherapy was associated with MVM (OR 3.3 [2.7, 4.0]) and AI (OR 0.8 [0.6, 0.9]). CONCLUSIONS Neonatal hematologic outcomes are associated with the in utero environment described by placental pathology.
Collapse
Affiliation(s)
- Andrew D Franklin
- Department of Pediatrics, Division of Neonatology, NorthShore University HealthSystem, Evanston, IL, USA.
| | - Alexa Freedman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Iskander D. Two's company but three's a blast! Blood 2022; 140:1578-1580. [PMID: 36201331 DOI: 10.1182/blood.2022017644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Romano L, Seu KG, Papoin J, Muench DE, Konstantinidis D, Olsson A, Schlum K, Chetal K, Chasis JA, Mohandas N, Barnes BJ, Zheng Y, Grimes HL, Salomonis N, Blanc L, Kalfa TA. Erythroblastic islands foster granulopoiesis in parallel to terminal erythropoiesis. Blood 2022; 140:1621-1634. [PMID: 35862735 PMCID: PMC9707396 DOI: 10.1182/blood.2022015724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
The erythroblastic island (EBI), composed of a central macrophage surrounded by maturing erythroblasts, is the erythroid precursor niche. Despite numerous studies, its precise composition is still unclear. Using multispectral imaging flow cytometry, in vitro island reconstitution, and single-cell RNA sequencing of adult mouse bone marrow (BM) EBI-component cells enriched by gradient sedimentation, we present evidence that the CD11b+ cells present in the EBIs are neutrophil precursors specifically associated with BM EBI macrophages, indicating that erythro-(myelo)-blastic islands are a site for terminal granulopoiesis and erythropoiesis. We further demonstrate that the balance between these dominant and terminal differentiation programs is dynamically regulated within this BM niche by pathophysiological states that favor granulopoiesis during anemia of inflammation and favor erythropoiesis after erythropoietin stimulation. Finally, by molecular profiling, we reveal the heterogeneity of EBI macrophages by cellular indexing of transcriptome and epitope sequencing of mouse BM EBIs at baseline and after erythropoietin stimulation in vivo and provide a searchable online viewer of these data characterizing the macrophage subsets serving as hematopoietic niches. Taken together, our findings demonstrate that EBIs serve a dual role as niches for terminal erythropoiesis and granulopoiesis and the central macrophages adapt to optimize production of red blood cells or neutrophils.
Collapse
Affiliation(s)
- Laurel Romano
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Katie G Seu
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - David E Muench
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | | | | | - Katrina Schlum
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Joel Anne Chasis
- Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY
| | - Betsy J Barnes
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Theodosia A Kalfa
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
13
|
Li Y, Yao R, Ren M, Yuan K, Du Y, He Y, Kang H, Yuan S, Ju W, Qiao J, Xu K, Zeng L. Liposomes trigger bone marrow niche macrophage "foam" cell formation and affect hematopoiesis in mice. J Lipid Res 2022; 63:100273. [PMID: 36084713 PMCID: PMC9587404 DOI: 10.1016/j.jlr.2022.100273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Liposomes are the most widely used nanocarrier platform for the delivery of therapeutic and diagnostic agents, and a number of liposomes have been approved for use in clinical practice. After systemic administration, most liposomes are cleared by macrophages in the mononuclear phagocyte system, such as the liver and bone marrow (BM). However, the majority of studies have focused on investigating the therapeutic results of liposomal drugs, and too few studies have evaluated the potential side effects of empty nanocarriers on the functions of macrophages in the mononuclear phagocyte system. Here, we evaluate the potential effects of empty liposomes on the functions of BM niche macrophages. Following liposome administration, we observed lipid droplet (LD) accumulation in cultured primary macrophages and BM niche macrophages. We found that these LD-accumulating macrophages, similar to foam cells, exhibited increased expression of inflammatory cytokines, such as IL-1β and IL-6. We further provided evidence that liposome deposition and degradation induced LD biogenesis on the endoplasmic reticulum membrane and subsequently disturbed endoplasmic reticulum homeostasis and activated the inositol-requiring transmembrane kinase/endoribonuclease 1α/NF-κB signaling pathway, which is responsible for the inflammatory activation of macrophages after liposome engulfment. Finally, we also showed the side effects of dysfunctional BM niche macrophages on hematopoiesis in mice, such as the promotion of myeloid-biased output and impairment of erythropoiesis. This study not only draws attention to the safety of liposomal drugs in clinical practice but also provides new directions for the design of lipid-based drug carriers in preclinical studies.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ran Yao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Ren
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiquan Kang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengnan Yuan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Defending the island against excess heme. Blood 2022; 139:3359-3360. [PMID: 35679077 PMCID: PMC9185156 DOI: 10.1182/blood.2022016341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/23/2023] Open
|
15
|
Feldman TP, Egan ES. Uncovering a Cryptic Site of Malaria Pathogenesis: Models to Study Interactions Between Plasmodium and the Bone Marrow. Front Cell Infect Microbiol 2022; 12:917267. [PMID: 35719356 PMCID: PMC9201243 DOI: 10.3389/fcimb.2022.917267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
The bone marrow is a critical site of host-pathogen interactions in malaria infection. The discovery of Plasmodium asexual and transmission stages in the bone marrow has renewed interest in the tissue as a niche for cellular development of both host and parasite. Despite its importance, bone marrow in malaria infection remains largely unexplored due to the challenge of modeling the complex hematopoietic environment in vitro. Advancements in modeling human erythropoiesis ex-vivo from primary human hematopoietic stem and progenitor cells provide a foothold to study the host-parasite interactions occurring in this understudied site of malaria pathogenesis. This review focuses on current in vitro methods to recapitulate and assess bone marrow erythropoiesis and their potential applications in the malaria field. We summarize recent studies that leveraged ex-vivo erythropoiesis to shed light on gametocyte development in nucleated erythroid stem cells and begin to characterize host cell responses to Plasmodium infection in the hematopoietic niche. Such models hold potential to elucidate mechanisms of disordered erythropoiesis, an underlying contributor to malaria anemia, as well as understand the biological determinants of parasite sexual conversion. This review compares the advantages and limitations of the ex-vivo erythropoiesis approach with those of in vivo human and animal studies of the hematopoietic niche in malaria infection. We highlight the need for studies that apply single cell analyses to this complex system and incorporate physical and cellular components of the bone marrow that may influence erythropoiesis and parasite development.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Elizabeth S. Egan,
| |
Collapse
|
16
|
Grzywa TM, Sosnowska A, Rydzynska Z, Lazniewski M, Plewczynski D, Klicka K, Malecka-Gieldowska M, Rodziewicz-Lurzynska A, Ciepiela O, Justyniarska M, Pomper P, Grzybowski MM, Blaszczyk R, Wegrzynowicz M, Tomaszewska A, Basak G, Golab J, Nowis D. Potent but transient immunosuppression of T-cells is a general feature of CD71 + erythroid cells. Commun Biol 2021; 4:1384. [PMID: 34893694 PMCID: PMC8664950 DOI: 10.1038/s42003-021-02914-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
CD71+ erythroid cells (CECs) have been recently recognized in both neonates and cancer patients as potent immunoregulatory cells. Here, we show that in mice early-stage CECs expand in anemia, have high levels of arginase 2 (ARG2) and reactive oxygen species (ROS). In the spleens of anemic mice, CECs expansion-induced L-arginine depletion suppresses T-cell responses. In humans with anemia, CECs expand and express ARG1 and ARG2 that suppress T-cells IFN-γ production. Moreover, bone marrow CECs from healthy human donors suppress T-cells proliferation. CECs differentiated from peripheral blood mononuclear cells potently suppress T-cell activation, proliferation, and IFN-γ production in an ARG- and ROS-dependent manner. These effects are the most prominent for early-stage CECs (CD71highCD235adim cells). The suppressive properties disappear during erythroid differentiation as more differentiated CECs and mature erythrocytes lack significant immunoregulatory properties. Our studies provide a novel insight into the role of CECs in the immune response regulation.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School of the Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Klaudia Klicka
- Doctoral School of the Medical University of Warsaw, Warsaw, Poland
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Olga Ciepiela
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | - Michal Wegrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.
- Centre of Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
17
|
Mukherjee K, Bieker JJ. Transcriptional Control of Gene Expression and the Heterogeneous Cellular Identity of Erythroblastic Island Macrophages. Front Genet 2021; 12:756028. [PMID: 34880902 PMCID: PMC8646026 DOI: 10.3389/fgene.2021.756028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
During definitive erythropoiesis, maturation of erythroid progenitors into enucleated reticulocytes requires the erythroblastic island (EBI) niche comprising a central macrophage attached to differentiating erythroid progenitors. Normally, the macrophage provides a nurturing environment for maturation of erythroid cells. Its critical physiologic importance entails aiding in recovery from anemic insults, such as systemic stress or acquired disease. Considerable interest in characterizing the central macrophage of the island niche led to the identification of putative cell surface markers enriched in island macrophages, enabling isolation and characterization. Recent studies focus on bulk and single cell transcriptomics of the island macrophage during adult steady-state erythropoiesis and embryonic erythropoiesis. They reveal that the island macrophage is a distinct cell type but with widespread cellular heterogeneity, likely suggesting distinct developmental origins and biological function. These studies have also uncovered transcriptional programs that drive gene expression in the island macrophage. Strikingly, the master erythroid regulator EKLF/Klf1 seems to also play a major role in specifying gene expression in island macrophages, including a putative EKLF/Klf1-dependent transcription circuit. Our present review and analysis of mouse single cell genetic patterns suggest novel expression characteristics that will enable a clear enrichment of EBI subtypes and resolution of island macrophage heterogeneity. Specifically, the discovery of markers such as Epor, and specific features for EKLF/Klf1-expressing island macrophages such as Sptb and Add2, or for SpiC-expressing island macrophage such as Timd4, or for Maf/Nr1h3-expressing island macrophage such as Vcam1, opens exciting possibilities for further characterization of these unique macrophage cell types in the context of their critical developmental function.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.,Tisch Cancer Center, Mount Sinai School of Medicine, New York, NY, United States.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
19
|
Yang C, Endoh M, Tan DQ, Nakamura-Ishizu A, Takihara Y, Matsumura T, Suda T. Mitochondria transfer from early stages of erythroblasts to their macrophage niche via tunnelling nanotubes. Br J Haematol 2021; 193:1260-1274. [PMID: 34036571 DOI: 10.1111/bjh.17531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Adult erythropoiesis entails a series of well-coordinated events that produce mature red blood cells. One of such events is the mitochondria clearance that occurs cell-autonomously via autophagy-dependent mechanisms. Interestingly, recent studies have shown mitochondria transfer activities between various cell types. In the context of erythropoiesis, macrophages are known to interact closely with the early stages of erythroblasts to provide a specialized niche, termed erythroblastic islands (EBI). However, whether mitochondria transfer can occur in the EBI niche has not been explored. Here, we report that mitochondria transfer in the EBI niche occurs in vivo. We observed mitochondria transfer activities from the early stages of erythroblasts to macrophages in the reconstituted in vitro murine EBI via different modes, including tunnelling nanotubes (TNT). Moreover, we demonstrated that Wiskott-Aldrich syndrome protein (WASp) in macrophages mediates TNT formation and mitochondria transfer via the modulation of F-actin filamentation, thus promoting mitochondria clearance from erythroid cells, to potentially enhance their differentiation. Taken together, our findings provide novel insight into the mitochondria clearance machineries that mediate erythroid maturation.
Collapse
Affiliation(s)
- Chong Yang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitsuhiro Endoh
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Darren Q Tan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ayako Nakamura-Ishizu
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuji Takihara
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Takayoshi Matsumura
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Dynamic changes in murine erythropoiesis from birth to adulthood: implications for the study of murine models of anemia. Blood Adv 2021; 5:16-25. [PMID: 33570621 DOI: 10.1182/bloodadvances.2020003632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Liver, spleen, and bone marrow are 3 key erythropoietic tissues in mammals. In the mouse, the liver is the predominant site of erythropoiesis during fetal development, the spleen responds to stress erythropoiesis, and the bone marrow is involved in maintaining homeostatic erythropoiesis in adults. However, the dynamic changes and respective contributions of the erythropoietic activity of these tissues from birth to adulthood are incompletely defined. Using C57BL/6 mice, we systematically examined the age-dependent changes in liver, spleen, and bone marrow erythropoiesis following birth. In addition to bone marrow, the liver and spleen of newborn mice sustain an active erythropoietic activity that is gradually lost during first few weeks of life. While the erythropoietic activity of the liver is lost 1 week after birth, that of the spleen is maintained for 7 weeks until the erythropoietic activity of the bone marrow is sufficient to sustain steady-state adult erythropoiesis. Measurement of the red cell parameters demonstrates that these postnatal dynamic changes are reflected by varying indices of circulating red cells. While the red cell numbers, hemoglobin concentration, and hematocrit progressively increase after birth and reach steady-state levels by week 7, reticulocyte counts decrease during this time period. Mean cell volume and mean cell hemoglobin progressively decrease and reach steady state by week 3. Our findings provide comprehensive insights into developmental changes of murine erythropoiesis postnatally and have significant implications for the appropriate interpretation of findings from the variety of murine models used in the study of normal and disordered erythropoiesis.
Collapse
|
21
|
Mukherjee K, Xue L, Planutis A, Gnanapragasam MN, Chess A, Bieker JJ. EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis. eLife 2021; 10:61070. [PMID: 33570494 PMCID: PMC7932694 DOI: 10.7554/elife.61070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
| | - Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Andrew Chess
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
- Tisch Cancer InstituteNew York, NYUnited States
- Mindich Child Health and Development Institute, Mount Sinai School of MedicineNew York, NYUnited States
| |
Collapse
|
22
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
23
|
Paulson RF, Hariharan S, Little JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol 2020; 89:43-54.e2. [PMID: 32750404 DOI: 10.1016/j.exphem.2020.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Steady-state erythropoiesis generates new erythrocytes at a constant rate, and it has enormous productive capacity. This production is balanced by the removal of senescent erythrocytes by macrophages in the spleen and liver. Erythroid homeostasis is highly regulated to maintain sufficient erythrocytes for efficient oxygen delivery to the tissues, while avoiding viscosity problems associated with overproduction. However, there are times when this constant production of erythrocytes is inhibited or is inadequate; at these times, erythroid output is increased to compensate for the loss of production. In some cases, increased steady-state erythropoiesis can offset the loss of erythrocytes but, in response to inflammation caused by infection or tissue damage, steady-state erythropoiesis is inhibited. To maintain homeostasis under these conditions, an alternative stress erythropoiesis pathway is activated. Emerging data suggest that the bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis pathway is integrated into the inflammatory response and generates a bolus of new erythrocytes that maintain homeostasis until steady-state erythropoiesis can resume. In this perspective, we define the mechanisms that generate new erythrocytes when steady-state erythropoiesis is impaired and discuss experimental models to study human stress erythropoiesis.
Collapse
Affiliation(s)
- Robert F Paulson
- Center for Molecular Immunology and Infectious Disease and the Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA; Intercollege Graduate Program in Genetics, Penn State University, University Park, PA.
| | - Sneha Hariharan
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA
| | - Jane A Little
- Department of Medicine, University of North Carolina Comprehensive Sickle Cell Disease Program, Chapel Hill, NC
| |
Collapse
|
24
|
Is the erythropoietin receptor the key to the identification of the central macrophage in erythroblastic islands? BLOOD SCIENCE 2020; 2:38-39. [PMID: 35399864 PMCID: PMC8975050 DOI: 10.1097/bs9.0000000000000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022] Open
|
25
|
Hasan S, Johnson MC, Kini AR, Baldea AJ, Muthumalaiappan K. A Shift in Myeloid Cell Phenotype via Down Regulation of Siglec-1 in Island Macrophages of Bone Marrow Is Associated With Decreased Late Erythroblasts Seen in Anemia of Critical Illness. Front Med (Lausanne) 2019; 6:260. [PMID: 31824951 PMCID: PMC6880610 DOI: 10.3389/fmed.2019.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Burn injury has been shown to significantly dampen erythropoiesis in both burn patients and in murine models. Our previous findings elucidated the erythropoietin independent defects in red cell development stages involving erythroid progenitor production and late stage erythroblast enucleation processes. We hypothesized that macrophages (MØ) in erythroblast islands (EBI) could be yet another roadblock impeding erythropoiesis following burn injury. Here we highlight that the methodology to study EBI can be achieved with single cell suspensions using a simple technique such as flow cytometry, as obtaining the central erythroblast island macrophages (EBIMØs) of interest is a delicate process. We elucidated the requisite of EBIMØ from the erythroblast as well as the MØ perspective. In addition to the primary erythropoiesis organ, the bone marrow (BM), spleens were also examined for extra-medullary erythropoiesis. Femurs and spleens were harvested from adult mice (B6D2F1) subjected to 15% total body surface area (TBSA) scald burn (B) or sham burn (S). Total bone marrow cells (TBM) and splenocytes were probed for total erythrons, early and late erythroblasts and EBIMØ by flow cytometry. There was only a marginal increase in the number of EBIMØ after burn, but, between the signatures of EBIMØ, Siglec-1 expression (MFI) was reduced by 40% in B with and a parallel 44% decrease in TBM erythrons in the BM. There were more (2.5-fold) EEBs and less LEBs (2.4-fold) per million TBM cells in B; with a corresponding decrease in Siglec-1 and Ly6G expressions in EBIMØ associated with EEB. Conversely, extra-medullary erythropoiesis was robust in spleens from B. Not only were the numbers of EBIMØs increased in B (p < 0.002), both EEBs and LEBs associated with EBIMØ were higher by 30 and 75%, respectively. Importantly, an increase in Siglec-1 and Vcam1 expressing F480+ splenic macrophages was observed after burn injury. Therefore, stagnant EEBs in the BM after burn injury could be due to low Siglec1 expressing EBIMØ, which perhaps impede their maturation into LEBs and reticulocytes. Repercussion of myeloid cell phenotype specific to BM after burn injury could plausibly account for a defective late stage RBC maturation resulting in anemia of critical illness. Summary Sentence: Characterization of erythroblast island macrophages (EBIMØ) in the bone marrow and spleen at different stages of erythropoiesis after burn injury.
Collapse
Affiliation(s)
- Shirin Hasan
- Health Sciences Division, Department of Surgery, Loyola University Chicago, Maywood, IL, United States.,Health Sciences Division, Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Maria Camargo Johnson
- Health Sciences Division, Department of Surgery, Loyola University Chicago, Maywood, IL, United States.,Health Sciences Division, Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Ameet R Kini
- Health Sciences Division, Department of Pathology, Loyola University Chicago, Maywood, IL, United States
| | - Anthony J Baldea
- Health Sciences Division, Department of Surgery, Loyola University Chicago, Maywood, IL, United States
| | - Kuzhali Muthumalaiappan
- Health Sciences Division, Department of Surgery, Loyola University Chicago, Maywood, IL, United States.,Health Sciences Division, Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
26
|
Abstract
Approximately 14-40% of patients in industrialized countries present with preoperative anemia. Depending on the severity, anemia is associates with increased perioperative morbidity and mortality. One of the most important causes of preoperative anemia is iron deficiency which is usually easy to treat. Implemented in the multimodal concept of patient blood management, the diagnostics and treatment of preoperative anemia are important aspects for improvement of perioperative outcome. Adequate and early diagnostics of the cause of anemia before treatment is important because treatment options, e.g. with iron, erythropoetin, folic acid and vitamin B12, may be expensive, may have severe side effects, and in the case of a wrong indication, will not improve anemia. In addition, an adequate regeneration of the erythrocyte volume requires time. This review article presents important aspects of the epidemiology and prognostic implications of preoperative anemia, the physiology and pathophysiology of anemia as well as diagnostic features and the evidence base for preoperative treatment options.
Collapse
Affiliation(s)
- C Rosenthal
- Klinik für Anästhesie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Vivantes Klinikum im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Deutschland.
| | | | | |
Collapse
|
27
|
Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat Commun 2019; 10:881. [PMID: 30787325 PMCID: PMC6382809 DOI: 10.1038/s41467-019-08705-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Red blood cells mature within the erythroblastic island (EI) niche that consists of specialized macrophages surrounded by differentiating erythroblasts. Here we establish an in vitro system to model the human EI niche using macrophages that are derived from human induced pluripotent stem cells (iPSCs), and are also genetically programmed to an EI-like phenotype by inducible activation of the transcription factor, KLF1. These EI-like macrophages increase the production of mature, enucleated erythroid cells from umbilical cord blood derived CD34+ haematopoietic progenitor cells and iPSCs; this enhanced production is partially retained even when the contact between progenitor cells and macrophages is inhibited, suggesting that KLF1-induced secreted proteins may be involved in this enhancement. Lastly, we find that the addition of three secreted factors, ANGPTL7, IL-33 and SERPINB2, significantly enhances the production of mature enucleated red blood cells. Our study thus contributes to the ultimate goal of replacing blood transfusion with a manufactured product. In vitro differentiation of red blood cells (RBCs) is a desirable therapy for various disorders. Here the authors develop a culture system using stem cell-derived macrophages to show that inducible expression of a transcription factor, KLF1, enhances RBC production, potentially through the induction of three soluble factors, ANGPTL7, IL33 and SERPINB2.
Collapse
|
28
|
Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 2019; 133:1222-1232. [PMID: 30674470 DOI: 10.1182/blood-2018-11-888180] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
The erythroblastic island (EI), formed by a central macrophage and developing erythroblasts (EBs), was first described decades ago and was recently shown to play an in vivo role in homeostatic and pathological erythropoiesis. The exact molecular mechanisms, however, mediating the interactions between macrophages and EBs remain unclear. Macrophage-EB attacher (Maea) has previously been suggested to mediate homophilic adhesion bounds bridging macrophages and EBs. Maea-deficient mice die perinatally with anemia and defective erythrocyte enucleation, suggesting a critical role in fetal erythropoiesis. Here, we generated conditional knockout mouse models of Maea to assess its cellular and postnatal contributions. Deletion of Maea in macrophages using Csf1r-Cre or CD169-Cre caused severe reductions of bone marrow (BM) macrophages, EBs, and in vivo island formation, whereas its deletion in the erythroid lineage using Epor-Cre had no such phenotype, suggesting a dominant role of Maea in the macrophage for BM erythropoiesis. Interestingly, Maea deletion in spleen macrophages did not alter their numbers or functions. Postnatal Maea deletion using Mx1-Cre or function inhibition using a novel monoclonal antibody also impaired BM erythropoiesis. These results indicate that Maea contributes to adult BM erythropoiesis by regulating the maintenance of macrophages and their interaction with EBs via an as-yet-unidentified EB receptor.
Collapse
|
29
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
30
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Thomson-Luque R, Wang C, Ntumngia FB, Xu S, Szekeres K, Conway A, Adapa SR, Barnes SJ, Adams JH, Jiang RHY. In-depth phenotypic characterization of reticulocyte maturation using mass cytometry. Blood Cells Mol Dis 2018; 72:22-33. [PMID: 30007855 PMCID: PMC6097872 DOI: 10.1016/j.bcmd.2018.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
Abstract
Progress towards an in-depth understanding of the final steps of the erythroid lineage development is paramount for many hematological diseases. We have characterized the final stages of reticulocyte maturation from bone marrow to peripheral blood using for the first time single-cell Mass Cytometry (CyTOF). We were able to measure the expression of 31 surface markers within a single red blood cell (RBC). We demonstrate the validity of CyTOF for RBC phenotyping by confirming the progressive reduction of transferrin receptor 1 (CD71) during reticulocyte maturation to mature RBC. We highlight the high-dimensional nature of mass cytometry data by correlating the expression of multiple proteins on individual RBCs. We further describe a more drastic reduction pattern for a component of the alpha4/beta1 integrin CD49d at the very early steps of reticulocyte maturation in bone marrow and directly linked with the mitochondria remnants clearance pattern. The enhanced and accurate RBC phenotyping potential of CyTOF described herein could be beneficial to decipher RBC preferences, as well as still not well understood receptor-ligand interaction of some hemotropic parasites such as the malaria causing agent Plasmodium vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Shulin Xu
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Karoly Szekeres
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Amy Conway
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA.
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA.
| |
Collapse
|
32
|
Abstract
Anemia is a frequent complication of many inflammatory disorders, including inflammatory bowel disease. Although the pathogenesis of this problem is multifactorial, a key component is the abnormal elevation of the hormone hepcidin, the central regulator of systemic iron homeostasis. Investigations over the last decade have resulted in important insights into the role of hepcidin in iron metabolism and the mechanisms that lead to hepcidin dysregulation in the context of inflammation. These insights provide the foundation for novel strategies to prevent and treat the anemia associated with inflammatory diseases.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
33
|
Wang J, Hayashi Y, Yokota A, Xu Z, Zhang Y, Huang R, Yan X, Liu H, Ma L, Azam M, Bridges JP, Cancelas JA, Kalfa TA, An X, Xiao Z, Huang G. Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models. Haematologica 2017; 103:40-50. [PMID: 29051279 PMCID: PMC5777189 DOI: 10.3324/haematol.2017.172775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/10/2017] [Indexed: 02/04/2023] Open
Abstract
Activated erythropoietin (EPO) receptor (EPOR) signaling causes erythrocytosis. The important role of macrophages for the erythroid expansion and differentiation process has been reported, both in baseline and stress erythropoiesis. However, the significance of EPOR signaling for regulation of macrophages contributing to erythropoiesis has not been fully understood. Here we show that EPOR signaling activation quickly expands both erythrocytes and macrophages in vivo in mouse models of primary and secondary erythrocytosis. To mimic the chimeric condition and expansion of the disease clone in the polycythemia vera patients, we combined Cre-inducible Jak2V617F/+ allele with LysM-Cre allele which expresses in mature myeloid cells and some of the HSC/Ps (LysM-Cre;Jak2V617F/+ mice). We also generated inducible EPO-mediated secondary erythrocytosis models using Alb-Cre, Rosa26-loxP-stop-loxP-rtTA, and doxycycline inducible EPAS1-double point mutant (DPM) alleles (Alb-Cre;DPM mice). Both models developed a similar degree of erythrocytosis. Macrophages were also increased in both models without increase of major inflammatory cytokines and chemokines. EPO administration also quickly induced these macrophages in wild-type mice before observable erythrocytosis. These findings suggest that EPOR signaling activation could induce not only erythroid cell expansion, but also macrophages. Surprisingly, an in vivo genetic approach indicated that most of those macrophages do not express EPOR, but erythroid cells and macrophages contacted tightly with each other. Given the importance of the central macrophages as a niche for erythropoiesis, further elucidation of the EPOR signaling mediated-regulatory mechanisms underlying macrophage induction might reveal a potential therapeutic target for erythrocytosis.
Collapse
Affiliation(s)
- Jieyu Wang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yoshihiro Hayashi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Zefeng Xu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Zhang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rui Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Hongyun Liu
- Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Ma
- Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mohammad Azam
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Jose A Cancelas
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
34
|
Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N, Blanc L, Kalfa TA. Unraveling Macrophage Heterogeneity in Erythroblastic Islands. Front Immunol 2017; 8:1140. [PMID: 28979259 PMCID: PMC5611421 DOI: 10.3389/fimmu.2017.01140] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023] Open
Abstract
Mammalian erythropoiesis occurs within erythroblastic islands (EBIs), niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example) provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC), which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b) can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We found that VCAM-1, F4/80, and CD169 are expressed heterogeneously by the central macrophages within the EBIs, while CD11b, although abundantly expressed by cells within the islands, is not expressed on the EBI macrophages. Moreover, differences in the phenotype of EBIs in rats compared to mice point to potential functional differences between these species. These data demonstrate the usefulness of IFC in analysis and characterization of EBIs and more importantly in exploring the heterogeneity and plasticity of EBI macrophages.
Collapse
Affiliation(s)
- Katie Giger Seu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Rose Fessler
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jimmy Hom
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine and Pediatrics, Hofstra-Northwell School of Medicine, Hempstead, NY, United States
| | - Gang Huang
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine and Pediatrics, Hofstra-Northwell School of Medicine, Hempstead, NY, United States
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
35
|
Jing W, Zhang L, Qin F, Li X, Guo X, Li Y, Qiu C, Zhao Y. Targeting macrophages for cancer therapy disrupts bone homeostasis and impairs bone marrow erythropoiesis in mice bearing Lewis lung carcinoma tumors. Cell Immunol 2017; 331:168-177. [PMID: 30103869 DOI: 10.1016/j.cellimm.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023]
Abstract
Macrophages are represented in all tissues by phenotypically distinct resident populations that show great functional diversity. Macrophages generally play a protumoral role, and they are attractive targets for cancer therapy. In this study, we found that CD169+ macrophages depletion inhibited the growth of established Lewis lung carcinoma tumors in mice. Benefits must be weighed against potential adverse effects in cancer therapy. Here, we investigated the adverse effects of CD169+ macrophages depletion on bone and bone marrow in mice bearing Lewis lung carcinoma tumors. Our studies showed that depletion of CD169+ macrophages in LLC tumor-bearing mice disrupted bone homeostasis, including bone weight loss and bone mineral density decrease. Further studies revealed that bone marrow erythropoiesis was severely impaired after depletion of CD169+ macrophages in LLC tumor-bearing mice. Our findings suggest that depletion of macrophages for cancer therapy may be associated with potential adverse effects that need to be recognized, prevented, and optimally managed.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Li Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Fei Qin
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - XiuXiu Li
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Xing Guo
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Yue Li
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Chunhong Qiu
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Yunxue Zhao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
36
|
Planutis A, Xue L, Trainor CD, Dangeti M, Gillinder K, Siatecka M, Nebor D, Peters LL, Perkins AC, Bieker JJ. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development 2017; 144:430-440. [PMID: 28143845 DOI: 10.1242/dev.145656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Transcription factor control of cell-specific downstream targets can be significantly altered when the controlling factor is mutated. We show that the semi-dominant neonatal anemia (Nan) mutation in the EKLF/KLF1 transcription factor leads to ectopic expression of proteins that are not normally expressed in the red blood cell, leading to systemic effects that exacerbate the intrinsic anemia in the adult and alter correct development in the early embryo. Even when expressed as a heterozygote, the Nan-EKLF protein accomplishes this by direct binding and aberrant activation of genes encoding secreted factors that exert a negative effect on erythropoiesis and iron use. Our data form the basis for a novel mechanism of physiological deficiency that is relevant to human dyserythropoietic anemia and likely other disease states.
Collapse
Affiliation(s)
- Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Li Xue
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Cecelia D Trainor
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin Gillinder
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia
| | - Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.,Department of Genetics, University of Adam Mickiewicz, Poznan 61-614, Poland
| | | | | | - Andrew C Perkins
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia.,Princess Alexandra Hospital, Brisbane QLD 4102, Queensland, Australia
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA .,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
37
|
Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol 2017; 24:159-166. [PMID: 28099275 PMCID: PMC5518670 DOI: 10.1097/moh.0000000000000328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The erythroid progenitors burst-forming unit-erythroid and colony-forming unit-erythroid have a critical role in erythropoiesis. These cells represent a heterogeneous and poorly characterized population with modifiable self-renewal, proliferation and differentiation capabilities. This review focuses on the current state of erythroid progenitor biology with regard to immunophenotypic identification and regulatory programs. In addition, we will discuss the therapeutic implications of using these erythroid progenitors as pharmacologic targets. RECENT FINDINGS Erythroid progenitors are classically characterized by the appearance of morphologically defined colonies in semisolid cultures. However, these prior systems preclude a more thorough understanding of the composite nature of progenitor populations. Recent studies employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. Moreover, the identification of cell surface marker patterns in human burst-forming unit-erythroid and colony-forming unit-erythroid enhance our ability to perform downstream functional and molecular analyses at the population and single cell level. Advances in these techniques have already revealed novel subpopulations with increased self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into pharmacologic mechanisms of glucocorticoids and pomalidomide. SUMMARY Immunophenotypic and molecular characterization resolves the diversity of erythroid progenitors, and may ultimately lead to the ability to target these progenitors to ameliorate diseases of dyserythropoiesis.
Collapse
Affiliation(s)
- Brian M. Dulmovits
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Jimmy Hom
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Anupama Narla
- Stanford University School of Medicine, Department of Pediatric Hematology/Oncology, Stanford, CA
| | - Narla Mohandas
- Red Cell Physiology laboratory, New York Blood Center, New York, NY
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| |
Collapse
|
38
|
Yeo JH, McAllan BM, Fraser ST. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:368-378. [PMID: 26898901 DOI: 10.1017/s1431927616000155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production.
Collapse
Affiliation(s)
- Jia Hao Yeo
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Bronwyn M McAllan
- 2Discipline of Physiology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Stuart T Fraser
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| |
Collapse
|
39
|
McCabe A, MacNamara KC. Macrophages: Key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 2016; 44:213-22. [PMID: 26806720 DOI: 10.1016/j.exphem.2016.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell (HSC) function is required for balanced blood production throughout life; it is thus essential to understand the mechanisms regulating this highly dynamic process. Bone marrow-resident macrophages (Mϕs) have recently emerged as an important component of the HSC niche, where they contribute to regulating HSC and progenitor cell (HSPC) mobilization and function. Here we review the role of macrophages (Mϕs) on immune cell production, HSPC pool size, and mobilization at steady state and under inflammatory conditions. Inflammation induces marked changes in hematopoiesis to restrict or promote generation of specific cell lineages, and this often has a negative impact on HSC function. Cytokines and growth factors induced during inflammation influence hematopoiesis by acting directly on HSPCs and/or by modulating niche cell function. We focus particular attention on the opposing effects of two key inflammatory proteins, interferon-γ and granulocyte-colony stimulating factor, in regulating bone marrow-resident macrophages (Mϕs) and HSPCs. Macrophages (Mϕs) are essential for tissue homeostasis, and here we highlight their emerging role as a central regulator of both steady-state and demand-adapted hematopoiesis.
Collapse
Affiliation(s)
- Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | | |
Collapse
|