1
|
Petkov V, Tsibranska S, Manoylov I, Kechidzhieva L, Ilieva K, Bradyanova S, Ralchev N, Mihaylova N, Denkov N, Tchorbanov A, Tcholakova S. ISCOM-type matrix from beta-escin and glycyrrhizin saponins. Heliyon 2025; 11:e41935. [PMID: 39897917 PMCID: PMC11786834 DOI: 10.1016/j.heliyon.2025.e41935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Background and aims Nanotechnology provides the opportunity for construction of modern transport devices such as nanoparticles for a variety of applications in the field of medicine. A novel experimental protocol for the formation of saponin-cholesterol-phospholipid nanoparticles of vesicular structure has been developed and applied to prepare stable nanoparticles using escin or glycyrrhizin as saponins. Methods The methods for nanoparticle construction include a sonication at 90 °C of the initial mixture of components, followed by an additional sonication on the next day for incorporation of an additional amount of cholesterol, thus forming stable unilamellar vesicles. Tests and assays for cell viability, erythrocyte hemolysis, flow cytometry, and fluorescent microscopy analyses have been performed. Results By selecting appropriate component ratios, stable and safe particles were formulated with respect to the tested bio-cells. The prepared nanoparticles have mean diameter between 70 and 130 nm, depending on their composition. The versatility of these nanoparticles allows for the encapsulation of various molecules, either within the vesicle interior for water-soluble components or within the vesicle walls for hydrophobic components. The saponin particles formed after cholesterol post-addition (E3-M2) are stable and 100 % of the cells remain viable even after 10-times dilution of the initial particle suspension. These particles are successful included into isolated mouse macrophages. Conclusions Among the variety of generated nanoparticles, the E3-M2 particles demonstrated properties of safe and efficient devices for future vaccine design and antigen targeting to immune system.
Collapse
Affiliation(s)
- V. Petkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - S. Tsibranska
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - I. Manoylov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - L. Kechidzhieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - K. Ilieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Bradyanova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Ralchev
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Denkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - A. Tchorbanov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Tcholakova
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| |
Collapse
|
2
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Zhu H, Li X, Li X, Chen H, Qian P. Protection against the H1N1 influenza virus using self-assembled nanoparticles formed by lumazine synthase and bearing the M2e peptide. Virology 2024; 597:110162. [PMID: 38955082 DOI: 10.1016/j.virol.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
5
|
Alkema M, Smit MJ, Marin-Mogollon C, Totté K, Teelen K, van Gemert GJ, van de Vegte-Bolmer M, Mordmüller BG, Reimer JM, Lövgren-Bengtsson KL, Sauerwein RW, Bousema T, Plieskatt J, Theisen M, Jore MM, McCall MBB. A Pfs48/45-based vaccine to block Plasmodium falciparum transmission: phase 1, open-label, clinical trial. BMC Med 2024; 22:170. [PMID: 38649867 PMCID: PMC11036667 DOI: 10.1186/s12916-024-03379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate. The R0.6C fusion protein, consisting of Pfs48/45 domain 3 (6C) and the N-terminal region of P. falciparum glutamate-rich protein (R0), has previously been produced in Lactococcus lactis and elicited functional antibodies in rodents. Here, we assess the safety and transmission-reducing efficacy of R0.6C adsorbed to aluminium hydroxide with and without Matrix-M™ adjuvant in humans. METHODS In this first-in-human, open-label clinical trial, malaria-naïve adults, aged 18-55 years, were recruited at the Radboudumc in Nijmegen, the Netherlands. Participants received four intramuscular vaccinations on days 0, 28, 56 and 168 with either 30 µg or 100 µg of R0.6C and were randomised for the allocation of one of the two different adjuvant combinations: aluminium hydroxide alone, or aluminium hydroxide combined with Matrix-M1™ adjuvant. Adverse events were recorded from inclusion until 84 days after the fourth vaccination. Anti-R0.6C and anti-6C IgG titres were measured by enzyme-linked immunosorbent assay. Transmission-reducing activity of participants' serum and purified vaccine-specific immunoglobulin G was assessed by standard membrane feeding assays using laboratory-reared Anopheles stephensi mosquitoes and cultured P. falciparum gametocytes. RESULTS Thirty-one participants completed four vaccinations and were included in the analysis. Administration of all doses was safe and well-tolerated, with one related grade 3 adverse event (transient fever) and no serious adverse events occurring. Anti-R0.6C and anti-6C IgG titres were similar between the 30 and 100 µg R0.6C arms, but higher in Matrix-M1™ arms. Neat participant sera did not induce significant transmission-reducing activity in mosquito feeding experiments, but concentrated vaccine-specific IgGs purified from sera collected two weeks after the fourth vaccination achieved up to 99% transmission-reducing activity. CONCLUSIONS R0.6C/aluminium hydroxide with or without Matrix-M1™ is safe, immunogenic and induces functional Pfs48/45-specific transmission-blocking antibodies, albeit at insufficient serum concentrations to result in transmission reduction by neat serum. Future work should focus on identifying alternative vaccine formulations or regimens that enhance functional antibody responses. TRIAL REGISTRATION The trial is registered with ClinicalTrials.gov under identifier NCT04862416.
Collapse
Affiliation(s)
- M Alkema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M J Smit
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C Marin-Mogollon
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - K Totté
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - K Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - G J van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M van de Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B G Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - R W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Present Address: TropIQ Health Sciences, Nijmegen, the Netherlands
| | - T Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - M Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - M M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M B B McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Plieskatt J, Bang P, Wood GK, Naghizadeh M, Singh SK, Jore MM, Theisen M. Clinical formulation development of Plasmodium falciparum malaria vaccine candidates based on Pfs48/45, Pfs230, and PfCSP. Vaccine 2024; 42:1980-1992. [PMID: 38388238 DOI: 10.1016/j.vaccine.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Two malaria transmission-blocking vaccine (TBV) candidates, R0.6C and ProC6C, have completed preclinical development including the selection of adjuvants, Alhydrogel® with or without the saponin based adjuvant Matrix-M™. Here, we report on the final drug product (formulation) design of R0.6C and ProC6C and evaluate their safety and biochemical stability in preparation for preclinical and clinical pharmacy handling. The point-of-injection stability studies demonstrated that both the R0.6C and ProC6C antigens are stable on Alhydrogel in the presence or absence of Matrix-M for up to 24 h at room temperature. As this is the first study to combine Alhydrogel and Matrix-M for clinical use, we also evaluated their potential interactions. Matrix-M adsorbs to Alhydrogel, while not displacing the > 95 % adsorbed protein. The R0.6C and ProC6C formulations were found to be safe and well tolerated in repeated dose toxicity studies in rabbits generating high levels of functional antibodies that blocked infection of mosquitoes. Further, the R0.6C and ProC6C drug products were found to be stable for minimally 24 months when stored at 2-8 °C, with studies ongoing through 36 months. Together, this data demonstrates the safety and suitability of the L. lactis expression system as well as supports the clinical testing of the R0.6C and ProC6C malaria vaccine candidates in First-In-Human clinical trials.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bang
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Reinke S, Pantazi E, Chappell GR, Sanchez-Martinez A, Guyon R, Fergusson JR, Salman AM, Aktar A, Mukhopadhyay E, Ventura RA, Auderset F, Dubois PM, Collin N, Hill AVS, Bezbradica JS, Milicic A. Emulsion and liposome-based adjuvanted R21 vaccine formulations mediate protection against malaria through distinct immune mechanisms. Cell Rep Med 2023; 4:101245. [PMID: 37913775 PMCID: PMC10694591 DOI: 10.1016/j.xcrm.2023.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.
Collapse
Affiliation(s)
- Sören Reinke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Eirini Pantazi
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Gabrielle R Chappell
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | | | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Joannah R Fergusson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Anjum Aktar
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Ekta Mukhopadhyay
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Roland A Ventura
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Floriane Auderset
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Patrice M Dubois
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
8
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Kelly E, Greenland M, de Whalley PCS, Aley PK, Plested EL, Singh N, Koleva S, Tonner S, Macaulay GC, Read RC, Ramsay M, Cameron JC, Turner DPJ, Heath PT, Bernatoniene J, Connor P, Cathie K, Faust SN, Banerjee I, Cantrell L, Mujadidi YF, Belhadef HT, Clutterbuck EA, Anslow R, Valliji Z, James T, Hallis B, Otter AD, Lambe T, Nguyen-Van-Tam JS, Minassian AM, Liu X, Snape MD. Reactogenicity, immunogenicity and breakthrough infections following heterologous or fractional second dose COVID-19 vaccination in adolescents (Com-COV3): A randomised controlled trial. J Infect 2023; 87:230-241. [PMID: 37331429 PMCID: PMC10275659 DOI: 10.1016/j.jinf.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND This was the first study to investigate the reactogenicity and immunogenicity of heterologous or fractional second dose COVID-19 vaccine regimens in adolescents. METHODS A phase II, single-blind, multi-centre, randomised-controlled trial recruited across seven UK sites from September to November 2021, with follow-up visits to August 2022. Healthy 12-to-16 years olds were randomised (1:1:1) to either 30 µg BNT162b2 (BNT-30), 10 µg BNT162b2 (BNT-10), or NVX-CoV2373 (NVX), 8 weeks after a first 30 µg dose of BNT162b2. The primary outcome was solicited systemic reactions in the week following vaccination. Secondary outcomes included immunogenicity and safety. 'Breakthrough infection' analyses were exploratory. FINDINGS 148 participants were recruited (median age 14 years old, 62% female, 26% anti-nucleocapsid IgG seropositive pre-second dose); 132 participants received a second dose. Reactions were mostly mild-to-moderate, with lower rates in BNT-10 recipients. No vaccine-related serious adverse events occurred. Compared to BNT-30, at 28 days post-second dose anti-spike antibody responses were similar for NVX (adjusted geometric mean ratio [aGMR]) 1.09 95% confidence interval (CI): 0.84, 1.42] and lower for BNT-10 (aGMR 0.78 [95% CI: 0.61, 0.99]). For Omicron BA.1 and BA.2, the neutralising antibody titres for BNT-30 at day 28 were similar for BNT-10 (aGMR 1.0 [95% CI: 0.65, 1.54] and 1.02 [95% CI: 0.71, 1.48], respectively), but higher for NVX (aGMR 1.7 [95% CI: 1.07, 2.69] and 1.43 [95% CI: 0.96, 2.12], respectively). Compared to BNT-30, cellular immune responses were greatest for NVX (aGMR 1.73 [95% CI: 0.94, 3.18]), and lowest for BNT-10 (aGMR 0.65 [95% CI: 0.37, 1.15]) at 14 days post-second dose. Cellular responses were similar across the study arms by day 236 post-second dose. Amongst SARS-CoV-2 infection naïve participants, NVX participants had an 89% reduction in risk of self-reported 'breakthrough infection' compared to BNT-30 (adjusted hazard ratio [aHR] 0.11 [95% CI: 0.01, 0.86]) up until day 132 after second dose. BNT-10 recipients were more likely to have a 'breakthrough infection' compared to BNT-30 (aHR 2.14 [95% CI: 1.02, 4.51]) up to day 132 and day 236 post-second dose. Antibody responses at 132 and 236 days after second dose were similar for all vaccine schedules. INTERPRETATION Heterologous and fractional dose COVID-19 vaccine schedules in adolescents are safe, well-tolerated and immunogenic. The enhanced performance of the heterologous schedule using NVX-CoV2373 against the Omicron SARS-CoV-2 variant suggests this mRNA prime and protein-subunit boost schedule may provide a greater breadth of protection than the licensed homologous schedule. FUNDING National Institute for Health Research and Vaccine Task Force. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number registry: 12348322.
Collapse
Affiliation(s)
- Eimear Kelly
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melanie Greenland
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Philip C S de Whalley
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma L Plested
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nisha Singh
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Stanislava Koleva
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sharon Tonner
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Grace C Macaulay
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mary Ramsay
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, UK
| | | | - David P J Turner
- University of Nottingham, UK; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Paul T Heath
- Vaccine Institute, St. George's, University of London and St. George's University Hospitals NHS Trust, London, UK
| | - Jolanta Bernatoniene
- Paediatric Infectious Disease and Immunology Department, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, UK
| | - Philip Connor
- Noah's Ark Children's Hospital for Wales, University Hospital of Wales, Cardiff, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Indraneel Banerjee
- Royal Manchester Children's Hospital, Manchester University Hospitals Foundation Trust, UK
| | - Liberty Cantrell
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Hanane Trari Belhadef
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rachel Anslow
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Zara Valliji
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Tim James
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bassam Hallis
- UK Health Security Agency, Porton Down, Salisbury, UK
| | | | - Teresa Lambe
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | | | - Angela M Minassian
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK; Department of Biochemistry, University of Oxford, UK.
| | - Xinxue Liu
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Diallo BK, Ní Chasaide C, Wong TY, Schmitt P, Lee KS, Weaver K, Miller O, Cooper M, Jazayeri SD, Damron FH, Mills KHG. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. NPJ Vaccines 2023; 8:68. [PMID: 37179389 PMCID: PMC10182552 DOI: 10.1038/s41541-023-00665-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.
Collapse
Affiliation(s)
- Béré K Diallo
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitlín Ní Chasaide
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Pauline Schmitt
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly Weaver
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Olivia Miller
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Seyed D Jazayeri
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Stertman L, Palm AKE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, Carnrot C, Shinde V, Smith G, Glenn G, Fries L, Lövgren Bengtsson K. The Matrix-M™ adjuvant: A critical component of vaccines for the 21 st century. Hum Vaccin Immunother 2023; 19:2189885. [PMID: 37113023 PMCID: PMC10158541 DOI: 10.1080/21645515.2023.2189885] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Matrix-M™ adjuvant is a key component of several novel vaccine candidates. The Matrix-M adjuvant consists of two distinct fractions of saponins purified from the Quillaja saponaria Molina tree, combined with cholesterol and phospholipids to form 40-nm open cage-like nanoparticles, achieving potent adjuvanticity with a favorable safety profile. Matrix-M induces early activation of innate immune cells at the injection site and in the draining lymph nodes. This translates into improved magnitude and quality of the antibody response to the antigen, broadened epitope recognition, and the induction of a Th1-dominant immune response. Matrix-M-adjuvanted vaccines have a favorable safety profile and are well tolerated in clinical trials. In this review, we discuss the latest findings on the mechanisms of action, efficacy, and safety of Matrix-M adjuvant and other saponin-based adjuvants, with a focus on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine candidate NVX-CoV2373 developed to prevent coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Linda Stertman
- Department Product Development, Novavax AB, Uppsala, Sweden
| | | | | | - Berit Carow
- Department Product Development, Novavax AB, Uppsala, Sweden
| | | | - Sofia E Magnusson
- Department Alliance and Project Management, Novavax AB, Uppsala, Sweden
| | - Cecilia Carnrot
- Department Alliance and Project Management, Novavax AB, Uppsala, Sweden
| | - Vivek Shinde
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Gale Smith
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Gregory Glenn
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | - Louis Fries
- Department Research and Development, Novavax, Inc, Gaithersburg, MD, USA
| | | |
Collapse
|
12
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
13
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Zeng Y, Zou F, Xia N, Li S. In-depth review of delivery carriers associated with vaccine adjuvants: current status and future perspectives. Expert Rev Vaccines 2023; 22:681-695. [PMID: 37496496 DOI: 10.1080/14760584.2023.2238807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Vaccines are powerful tools for controlling microbial infections and preventing epidemics. To enhance the immune response to antigens, effective subunit vaccines or mRNA vaccines often require the combination of adjuvants or delivery carriers. In recent years, with the rapid development of immune mechanism research and nanotechnology, various studies based on the optimization of traditional adjuvants or various novel carriers have been intensified, and the construction of vaccine adjuvant delivery systems (VADS) with both adjuvant activity and antigen delivery has become more and more important in vaccine research. AREAS COVERED This paper reviews the common types of vaccine adjuvant delivery carriers, classifies the VADS according to their basic carrier types, introduces the current research status and future development trend, and emphasizes the important role of VADS in novel vaccine research. EXPERT OPINION As the number of vaccine types increases, conventional aluminum adjuvants show limitations in effectively stimulating cellular immune responses, limiting their use in therapeutic vaccines for intracellular infections or tumors. In contrast, the use of conventional adjuvants as VADS to carry immunostimulatory molecules or deliver antigens can greatly enhance the immune boosting effect of classical adjuvants. A comprehensive understanding of the various delivery vehicles will further facilitate the development of vaccine adjuvant research.
Collapse
Affiliation(s)
- Yarong Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Feihong Zou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022; 40:6352-6361. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the protective effect of mini-hemagglutinin (mini-HA) proteins expressed on lumazine synthase (LS) nanoparticles against influenza. Soluble mini-HA proteins were assembled with LS proteins via SpyTag/SpyCatcher in vitro. The size of mini-HA-LS nanoparticles was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effect of mini-HA-LS nano-vaccines was explored in mice. The results indicate that the diameter of mini-HA-LS nanoparticles was approximately 60-80 nm. The nanoparticles could induce stronger humoral and cellular immune responses and produce cross-clade protection against influenza in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
16
|
Palomares F, Paris JL, Labella M, Doña I, Mayorga C, Torres MJ. Drug hypersensitivity, in vitro tools, biomarkers, and burden with COVID-19 vaccines. Allergy 2022; 77:3527-3537. [PMID: 35912413 PMCID: PMC9537799 DOI: 10.1111/all.15461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Hypersensitivity reactions to drugs are increasing worldwide. They display a large degree of variability in the immunological mechanisms involved, which impacts both disease severity and the optimal diagnostic procedure. Therefore, drug hypersensitivity diagnosis relies on both in vitro and in vivo assessments, although most of the methods are not well standardized. Moreover, several biomarkers can be used as valuable parameters for precision medicine that provide information on the endotypes, diagnosis, prognosis, and prediction of drug hypersensitivity development, as well on the identification of therapeutic targets and treatment efficacy monitoring. Furthermore, in the last 2 years, the SARS-CoV-2 (severe acute respiratory syndrome-coronavirus) pandemic has had an important impact on health system, leading us to update approaches on how to manage hypersensitivity reactions to drugs used for its treatment and on COVID-19 (Coronavirus disease) vaccines used for its prevention. This article reviews recent advances in these 3 areas regarding drug hypersensitivity: in vitro tools for drug hypersensitivity diagnosis, recently identified biomarkers that could guide clinical decision making and management of hypersensitivity reactions to drugs and vaccines used for COVID-19.
Collapse
Affiliation(s)
- Francisca Palomares
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain
| | - Juan L. Paris
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Andalusian Center for Nanomedicine and Biotechnology‐BIONANDMálagaSpain
| | - Marina Labella
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy UnitHospital Regional Universitario de Málaga‐ARADyALMálagaSpain
| | - Inmaculada Doña
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Allergy UnitHospital Regional Universitario de Málaga‐ARADyALMálagaSpain
| | - Cristobalina Mayorga
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Andalusian Center for Nanomedicine and Biotechnology‐BIONANDMálagaSpain,Allergy UnitHospital Regional Universitario de Málaga‐ARADyALMálagaSpain
| | - María José Torres
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyALMálagaSpain,Andalusian Center for Nanomedicine and Biotechnology‐BIONANDMálagaSpain,Allergy UnitHospital Regional Universitario de Málaga‐ARADyALMálagaSpain,Departamento de MedicinaUniversidad de MálagaMálagaSpain
| |
Collapse
|
17
|
Barbaud A, Garvey LH, Arcolaci A, Brockow K, Mori F, Mayorga C, Bonadonna P, Atanaskovic‐Markovic M, Moral L, Zanoni G, Pagani M, Soria A, Jošt M, Caubet J, Carmo A, Mona A, Alvarez‐Perea A, Bavbek S, Benedetta B, Bilo M, Blanca‐López N, Bogas HG, Buonomo A, Calogiuri G, Carli G, Cernadas J, Cortellini G, Celik G, Demir S, Doña I, Dursun AB, Eberlein B, Faria E, Fernandes B, Garcez T, Garcia‐Nunez I, Gawlik R, Gelincik A, Gomes E, Gooi JHC, Grosber M, Gülen T, Hacard F, Hoarau C, Janson C, Johnston SL, Joerg L, Kepil Özdemir S, Klimek L, Košnik M, Kowalski ML, Kuyucu S, Kvedariene V, Laguna JJ, Lombardo C, Marinho S, Merk H, Meucci E, Morisset M, Munoz‐Cano R, Murzilli F, Nakonechna A, Popescu F, Porebski G, Radice A, Regateiro FS, Röckmann H, Romano A, Sargur R, Sastre J, Scherer Hofmeier K, Sedláčková L, Sobotkova M, Terreehorst I, Treudler R, Walusiak‐Skorupa J, Wedi B, Wöhrl S, Zidarn M, Zuberbier T, Agache I, Torres MJ. Allergies and COVID-19 vaccines: An ENDA/EAACI Position paper. Allergy 2022; 77:2292-2312. [PMID: 35112371 DOI: 10.1111/all.15241] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anaphylaxis, which is rare, has been reported after COVID-19 vaccination, but its management is not standardized. METHOD Members of the European Network for Drug Allergy and the European Academy of Allergy and Clinical Immunology interested in drug allergy participated in an online questionnaire on pre-vaccination screening and management of allergic reactions to COVID-19 vaccines, and literature was analysed. RESULTS No death due to anaphylaxis to COVID-19 vaccines has been confirmed in scientific literature. Potential allergens, polyethylene glycol (PEG), polysorbate and tromethamine are excipients. The authors propose allergy evaluation of persons with the following histories: 1-anaphylaxis to injectable drug or vaccine containing PEG or derivatives; 2-anaphylaxis to oral/topical PEG containing products; 3-recurrent anaphylaxis of unknown cause; 4-suspected or confirmed allergy to any mRNA vaccine; and 5-confirmed allergy to PEG or derivatives. We recommend a prick-to-prick skin test with the left-over solution in the suspected vaccine vial to avoid waste. Prick test panel should include PEG 4000 or 3500, PEG 2000 and polysorbate 80. The value of in vitro test is arguable. CONCLUSIONS These recommendations will lead to a better knowledge of the management and mechanisms involved in anaphylaxis to COVID-19 vaccines and enable more people with history of allergy to be vaccinated.
Collapse
Affiliation(s)
- Annick Barbaud
- Sorbonne UniversitéINSERMInstitut Pierre Louis d’Epidémiologie et de Santé PubliqueAP‐HP.Sorbonne Université, Hôpital TenonDépartement de dermatologie et allergologie Paris France
| | - Lene Heise Garvey
- Allergy ClinicCopenhagen University Hospital at Gentofte Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Denmark
| | - Alessandra Arcolaci
- Immunology UnitUniversity Hospital of VeronaPoliclinico G.B. Rossi Verona Italy
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein Faculty of Medicine Technical University of Munich Munich Germany
| | - Francesca Mori
- Allergy Unit Department of Pediatrics Meyer Children’s University Hospital
| | - Cristobalina Mayorga
- Allergy Clinical Unit Hospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL, Málaga Spain
| | | | | | - Luis Moral
- Moral Luis. Pediatric Allergy and Respiratory Unit Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL) Alicante Spain
| | - Giovanna Zanoni
- Giovanna Zanoni, Immunology Unit, Policlinico G.B. Rossi, Azienda Ospedaliera Universitaria Integrata Verona Italy
| | - Mauro Pagani
- Medicine Department Medicine Ward Mantova HospitalASST di Mantova Italy
| | - Angèle Soria
- Sorbonne UniversitéINSERM 1135 Cimi‐ParisHôpital TenonAssistance Publique‐Hôpitaux de ParisDepartement de dermatologie et d'allergologie Paris France
| | - Maja Jošt
- University Clinic of Respiratory and Allergic Diseases Golnik Golnik Slovenia
| | - Jean‐Christoph Caubet
- Department of Women‐Children‐Teenagers University Hospital of Geneva Geneva Switzerland
| | - Abreu Carmo
- Allergy and Clinical Immunology Unit Centro Hospitalar de Trás‐os‐Montes e Alto DouroVila Real and Allergy and Clinical Immunology UnitCentro Hospitalar do Baixo Vouga Aveiro Portugal
| | - Al‐Ahmad Mona
- Microbiology Department Faculty of MedicineKuwait University Kuwait
| | | | - Sevim Bavbek
- School of Medicine Department of Pulmonary Diseases Division of Allergy FAAAIAnkara University Ankara Turkey
| | - Biagioni Benedetta
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Disease IRCCS Azienda Ospedaliero‐Universitaria di Bologna Italy
| | - M.Beatrice Bilo
- Department of Clinical and Molecular Sciences Università Politecnica delle Marche Ancona Italy
- Allergy Unit ‐ Department of Internal Medicine University Hospital Ospedali Riuniti di Ancona Italy
| | | | - Herrera Gádor Bogas
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA, and Allergy UnitHospital Regional Universitario de Málaga‐HRUM Málaga Spain
| | - Alessandro Buonomo
- Allergy Unit ‐ Fondazione Policlinico Gemelli IRCCS ‐ Largo Gemelli Rome Italy
| | | | - Giulia Carli
- SOS Allergologia e ImmunologiaAzienda USL Toscana CentroOspedale S. Stefano Prato Italy
| | - Josefina Cernadas
- Allergy and Clinical Immunology Department Centro Hospitalar Universitário de S. JoãoPorto and Allergy UnitHospital Lusíadas Porto Portugal
| | - Gabriele Cortellini
- Allergy Unit Departments of Internal Medicine Azienda Sanitaria della RomagnaRimini, Hospital Rimini Italy
| | - Gülfem Celik
- Department of Chest Diseases Division of Immunology and allergy Ankara University School of Medicine cebeci Hospital Ankara Turkey
| | - Semra Demir
- Istanbul UniversityIstanbul Faculty of MedicineInternal MedicineImmunology and Allergic Diseases Istanbul Turkey
| | - Inmaculada Doña
- Allergy Research Group Allergy UnitHospital Regional Universitario de MálagaInstituto de Investigación Biomédica de Málaga‐IBIMAPlaza del Hospital Civil s/n Málaga Spain
| | | | - Bernadette Eberlein
- Faculty of Medicine Department of Dermatology and Allergy Biederstein Technical University of Munich Munich Germany
| | - Emilia Faria
- Allergy and Clinical Immunology Unit Centro Hospitalar E Universitário de Coimbra Coimbra Portugal
| | | | - Tomaz Garcez
- Immunology Department Manchester University NHS Foundation Trust Manchester UK
| | | | - Radoslaw Gawlik
- Department of Internal Diseases, Allergology and Clinical Immunology Medical University of Silesia Katowice Poland
| | - Asli Gelincik
- Istanbul UniversityIstanbul Faculty of Medicine, Internal Medicine, Immunology and Allergic Diseases Istanbul Turkey
| | - Eva Gomes
- Allergy Department Centro Hospitalar Universitário do Porto Porto Portugal
| | - Jimmy H. C. Gooi
- Department of Clinical Immunology King’s College Hospital London UK
| | - Martine Grosber
- Department of Dermatology Universitair ZiekenhuisVrije Universiteit Brussel Brussel Belgium
| | - Theo Gülen
- Department of Respiratory Medicine and Allergy Department of Medicine Karolinska University Hospital HuddingeKarolinska Institutet Stockholm Sweden
| | - Florence Hacard
- Allergology and Clinical Immunology Department Centre Hospitalier Lyon‐Sud Pierre‐Bénite France
| | - Cyrille Hoarau
- Service transversal d'allergologie et immunologie clinique CHR de Tours Tours France
| | | | | | - Lukas Joerg
- Division of Allergology and Clinical Immunology Department of Pneumology, Inselspital Bern University HospitalUniversity of Bern Bern Switzerland
| | - Seçil Kepil Özdemir
- Department of Chest Diseases Division of Allergy and Immunology Chest Diseases and Surgery Training and Research Hospital Izmir Turkey
| | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | | | - Marek L. Kowalski
- Department of Immunology and Allergy Medical University of Lodz Poland
| | - Semanur Kuyucu
- Faculty of Medicine Dpt of Pediatric Allergy and Immunology Mersin University Mersin Turkey
| | - Violeta Kvedariene
- Institute of Biomedical Sciences Department of Pathology Faculty of Medicine Vilnius UniversityInstitute of Clinical Medicine, Clinic of Chest diseases, Immunology and Allergology, Faculty of Medicine Vilnius Lithuania
| | - Jose Julio Laguna
- Allergy Unit, Allergo‐Anaesthesia Unit Faculty of Medicine Hospital Central de la Cruz RojaAlfonso X El Sabio University Madrid Spain
| | | | - Susana Marinho
- Allergy Centre Wythenshawe HospitalManchester University NHS Foundation Trust and University of Manchester Manchester UK
| | | | - Elisa Meucci
- SOS Allergologia ed Immunologia clinicaAzienda USL Toscana CentroOspedale San Giovanni di Dio Firenze Italy
| | | | | | | | - Alla Nakonechna
- Allergy and Clinical Immunology Department University of LiverpoolRoyal Preston HospitalLancashire Teaching HospitalsNHS Foundation Trust UK
| | - Florin‐Dan Popescu
- Department of Allergology Carol Davila University of Medicine and PharmacyNicolae Malaxa Clinical Hospital Bucharest Romania
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Anna Radice
- SOS Allergologia ed Immunologia clinicaAzienda USL Toscana CentroOspedale San Giovanni di Dio Firenze Italy
| | - Frederico S. Regateiro
- Allergy and Clinical Immunology Unit Centro Hospitalar E Universitário de Coimbra Coimbra Portugal
- Institute of Immunology Faculty of Medicine University of Coimbra Coimbra Portugal
- ICBR ‐ Coimbra Institute for Clinical and Biomedical ResearchCIBBFaculty of MedicineUniversity of Coimbra Coimbra Portugal
| | - Heike Röckmann
- Department of Dermatology University Medical Centre Utrecht‐Heidelberglaan 100 Utrecht The Netherlands
| | | | - Ravishankar Sargur
- Clinical Immunology and Allergy Unit Northern General HospitalSheffield Teaching Hospitals NHS Foundation Trust Sheffield UK
| | - Joaquin Sastre
- Allergy Department Fundación Jiménez DiazUniversidad Autonoma de MadridCIBERESInstituto de Salud Carlos III Spain
| | | | | | - Marta Sobotkova
- Department of Immunology Motol University Hospital and 2nd Faculty of Medicine Charles University Prague Czech Republic
| | | | - Regina Treudler
- Department of Dermatology, Venerology and Allergology Universitätsmedizin Leipzig Leipzig Germany
| | - Jolanta Walusiak‐Skorupa
- Department of Occupational Diseases and Environmental Health Walusiak‐Skorupa JolantaNofer Institute of Occupational Medicine Lodz Poland
| | - Bettina Wedi
- Department of Dermatology & Allergy OE6600Comprehensive Allergy CenterHannover Medical School Hannover Germany
| | | | - Mihael Zidarn
- University Clinic of Respiratory and Allergic Diseases GolnikGolnik, and Internal Medicine, Faculty of MedicineUniversity of Ljubljana Ljubljana Slovenia
| | - Torsten Zuberbier
- Charité ‐ Universitätsmedizin BerlinKlinik für Dermatologie Berlin Germany
| | - Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of MalagaIBIMA‐UMA‐ARADyAL Malaga Spain
| |
Collapse
|
18
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
19
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
20
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
21
|
Neil JA, Griffith M, Godfrey DI, Purcell DFJ, Deliyannis G, Jackson D, Rockman S, Subbarao K, Nolan T. Nonhuman primate models for evaluation of SARS-CoV-2 vaccines. Expert Rev Vaccines 2022; 21:1055-1070. [PMID: 35652289 DOI: 10.1080/14760584.2022.2071264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Evaluation of immunogenicity and efficacy in animal models provide critical data in vaccine development. Nonhuman primates (NHPs) have been used extensively in the evaluation of SARS-CoV-2 vaccines. AREAS COVERED A critical synthesis of SARS-CoV-2 vaccine development with a focus on challenge studies in NHPs is provided. The benefits and drawbacks of the NHP models are discussed. The citations were selected by the authors based on PubMed searches of the literature, summaries from national public health bodies, and press-release information provided by vaccine developers. EXPERT OPINION We identify several aspects of NHP models that limit their usefulness for vaccine-challenge studies and numerous variables that constrain comparisons across vaccine platforms. We propose that studies conducted in NHPs for vaccine development should use a standardized protocol and, where possible, be substituted with smaller animal models. This will ensure continued rapid progression of vaccines to clinical trials without compromising assessments of safety or efficacy.
Collapse
Affiliation(s)
- Jessica A Neil
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Maryanne Griffith
- Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - David Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,Seqirus, Parkville, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Terry Nolan
- Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
22
|
Lee JK, Shin OS. Coronavirus disease 2019 (COVID-19) vaccine platforms: how novel platforms can prepare us for future pandemics: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:89-97. [PMID: 35152616 PMCID: PMC8913917 DOI: 10.12701/jyms.2021.01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 11/14/2022]
Abstract
More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
- Corresponding author: Ok Sarah Shin, MD Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3280 • Fax: +82-2-2626-1962 • E-mail:
| |
Collapse
|
23
|
Nwagwu CS, Ugwu CN, Ogbonna JDN, Onugwu AL, Agbo CP, Echezona AC, Ezeibe EN, Uzondu S, Kenechukwu FC, Akpa PA, Momoh MA, Nnamani PO, Tarirai C, Ofokansi KC, Attama AA. Recent and advanced nano-technological strategies for COVID-19 vaccine development. METHODS IN MICROBIOLOGY 2022; 50:151-188. [PMID: 38620863 PMCID: PMC9015106 DOI: 10.1016/bs.mim.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of the COVID-19 pandemic in 2019 has been one of the greatest challenges modern medicine and science has ever faced. It has affected millions of people around the world and altered human life and activities as we once knew. The high prevalence as well as an extended period of incubations which usually does not present with symptoms have played a formidable role in the transmission and infection of millions. A lot of research has been carried out on developing suitable treatment and effective preventive measures for the control of the pandemic. Preventive strategies which include social distancing, use of masks, washing of hands, and contact tracing have been effective in slowing the spread of the virus; however, the infectious nature of the SARS-COV-2 has made these strategies unable to eradicate its spread. In addition, the continuous increase in the number of cases and death, as well as the appearance of several variants of the virus, has necessitated the development of effective and safe vaccines in a bid to ensure that human activities can return to normalcy. Nanotechnology has been of great benefit in the design of vaccines as nano-sized materials have been known to aid the safe and effective delivery of antigens as well as serve as suitable adjuvants to potentiate responses to vaccines. There are only four vaccine candidates currently approved for use in humans while many other candidates are at various levels of development. This review seeks to provide updated information on the current nano-technological strategies employed in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinenye Nnenna Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - John Dike Nwabueze Ogbonna
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ezinwanne Nneoma Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - Samuel Uzondu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Frankline Chimaobi Kenechukwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Paul Achile Akpa
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mumuni Audu Momoh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Kenneth Chibuzor Ofokansi
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
24
|
Saponin-based adjuvant-induced dendritic cell cross-presentation is dependent on PERK activation. Cell Mol Life Sci 2022; 79:231. [PMID: 35396971 PMCID: PMC8994093 DOI: 10.1007/s00018-022-04253-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Saponin-based adjuvants (SBAs) are promising new adjuvants that stand out as they not only enforce CD4 + T cell-mediated immunity and antibody responses, but also induce an unprecedented level of antigen cross-presentation by dendritic cells (DC) and subsequent CD8 + T cell activation. We discovered that SBA’s ability to boost cross-presentation depends on the induction of lipid bodies (LBs). Moreover, the MHCIIloCD11bhi DC subset was identified to be most responsive to SBA-induced cross-presentation. The aim is to further unravel the mechanisms behind the induction of DC cross-presentation by SBAs. Here we show that SBAs specifically induce the PKR-like Endoplasmic Reticulum kinase (PERK) pathway and that SBA-induced DC cross-presentation is dependent on activation of the PERK pathway. PERK activation and LB formation are both crucial for SBA-induced cross-presentation and PERK inhibition has little or no effect on SBA-induced LB formation. SBA’s responsiveness, LB formation and PERK activation are specific for the MHCIIloCD11bhi DCs. These findings contribute to understanding the pathways involved in SBA-induced cross-presentation and immune activation which will ultimately lead to the development of vaccines with improved efficiency and safety.
Collapse
|
25
|
Lage DP, Machado AS, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Oliveira-da-Silva JA, Bandeira RS, Silva AM, Simões LC, Reis TAR, Oliveira JS, Christodoulides M, Chávez-Fumagalli MA, Roatt BM, Martins VT, Coelho EAF. Recombinant guanosine-5'-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine 2022; 153:155865. [PMID: 35339043 DOI: 10.1016/j.cyto.2022.155865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
Leishmania virulence proteins should be considered as vaccine candidates against disease, since they are involved in developing infection in mammalian hosts. In a previous study, a Leishmania guanosine-5'-triphosphate (GTP)-binding protein was identified as a potential parasite virulence factor. In the present work, the gene encoding GTP was cloned and the recombinant protein (rGTP) was evaluated as a vaccine candidate against Leishmania infantum infection. The protein was associated with saponin (rGTP/Sap) or Poloxamer 407-based micelles (rGTP/Mic) as adjuvants, and protective efficacy was investigated in BALB/c mice after parasite challenge. Both rGTP/Sap and rGTP/Mic compositions induced a Th1-type immune response in vaccinated animals, with significantly higher levels of IFN-γ, IL-12, IL-2, TNF-α, GM-CSF, nitrite, specific IgG2a isotype antibody and positive lymphoproliferation, when compared to the control groups. This response was accompanied by significantly lower parasite load in the spleens, livers, bone marrows and draining lymph nodes of the animals. Immunological and parasitological evaluations indicated that rGTP/Mic induced a more polarized Th1-type response and higher reduction in the organ parasitism, and with lower hepatotoxicity, when compared to the use of rGTP/Sap. In conclusion, our preliminary data suggest that rGTP could be considered for further development as a vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C Simões
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, England
| | | | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Torres-Estrella CU, Reyes-Montes MDR, Duarte-Escalante E, Sierra Martínez M, Frías-De-León MG, Acosta-Altamirano G. Vaccines Against COVID-19: A Review. Vaccines (Basel) 2022; 10:414. [PMID: 35335046 PMCID: PMC8953736 DOI: 10.3390/vaccines10030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
As a result of the COVID-19 pandemic, various joint efforts have been made to support the creation of vaccines. Different projects have been under development, of which some are in the clinical evaluation stage and others in are in phase III with positive results. The aim of this paper was to describe the current situation of the development and production of vaccines available to the population to facilitate future research and continue developing and proposing ideas for the benefit of the population. So, we carried out a systematic review using databases such as PubMed, ScienceDirect, SciELO, and MEDLINE, including keywords such as "vaccines," "COVID-19," and "SARS-CoV-2". We reviewed the development and production of the anti-COVID vaccine and its different platforms, the background leading to the massive development of these substances, and the most basic immune aspects for a better understanding of their physiological activity and the immune response in those who receive the vaccine. We also analyzed immunization effects in populations with any medical or physiological conditions (such as immunosuppression, people with comorbidities, and pregnancy), as well as the response to immunization with heterologous vaccines and the hybrid immunity (the combination of natural immunity to SARS-CoV-2 with immunity generated by the vaccine). Likewise, we address the current situation in Mexico and its role in managing the vaccination process against SARS-CoV-2 at the national and international levels. There are still many clinical and molecular aspects to be described, such as the duration of active immunity and the development of immunological memory, to mention some of the most important ones. However, due to the short time since the global vaccination roll-out and that it has been progressive (not counting children and people with medical conditions), it is premature to say whether a second vaccination schedule will be necessary for the near future. Thus, it is essential to continue with health measures.
Collapse
Affiliation(s)
- Carlos U. Torres-Estrella
- Hospital Regional de Alta Especialidad de Ixtapaluca, Ciudad de México PC 56530, Mexico; (C.U.T.-E.); (M.S.M.); (M.G.F.-D.-L.)
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), Ciudad de México PC 07340, Mexico
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México PC 04510, Mexico; (M.d.R.R.-M.); (E.D.-E.)
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México PC 04510, Mexico; (M.d.R.R.-M.); (E.D.-E.)
| | - Mónica Sierra Martínez
- Hospital Regional de Alta Especialidad de Ixtapaluca, Ciudad de México PC 56530, Mexico; (C.U.T.-E.); (M.S.M.); (M.G.F.-D.-L.)
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Ciudad de México PC 56530, Mexico; (C.U.T.-E.); (M.S.M.); (M.G.F.-D.-L.)
| | - Gustavo Acosta-Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Ciudad de México PC 56530, Mexico; (C.U.T.-E.); (M.S.M.); (M.G.F.-D.-L.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México PC 11340, Mexico
| |
Collapse
|
27
|
Mabrouk MT, Huang W, Martinez‐Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107781. [PMID: 34894000 PMCID: PMC8957524 DOI: 10.1002/adma.202107781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Indexed: 05/09/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Wei‐Chiao Huang
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Luis Martinez‐Sobrido
- Division of Disease Intervention and PreventionTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| |
Collapse
|
28
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Mohamed N, Hamad MA, Ghaleb AH, Esmat G, Elsabahy M. Applications of nanoengineered therapeutics and vaccines: special emphasis on COVID-19. IMMUNOMODULATORY EFFECTS OF NANOMATERIALS 2022. [PMCID: PMC9212255 DOI: 10.1016/b978-0-323-90604-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomedicine provides innovative strategies that had significantly improved drug and gene delivery and allowed control over the engineering of therapeutics, diagnostics, vaccines, and other medical devices, for a diversity of medical applications. This review focuses on the current attempts to develop potent nanoengineered vaccines and therapeutics against coronaviruses, and the recent fabrication strategies and design principles to control acute infections from the escalating SARS-CoV-2 pandemic. Nanomedical approaches provide versatile platforms that can be utilized to enhance the overall potency, safety, and stability of vaccines, thus augmenting the desired immune response. Their modulable conformational features of size, shape, surface charge, antigen display, and composition allow for precise tuning and optimization of the nanoconstructs for the management of a variety of diseases and pathological conditions. The ability to control the release of their encapsulated cargoes and the possibility of surface decoration with various moieties support the construction of multifunctional nanomaterials that ultimately boost and prolong the immune response elicited and/or therapeutic effects, selectively at the diseased tissues and target sites.
Collapse
|
30
|
Tsakiri M, Naziris N, Demetzos C. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic. Int J Pharm 2021; 610:121212. [PMID: 34687816 PMCID: PMC8527590 DOI: 10.1016/j.ijpharm.2021.121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
31
|
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol 2021; 188:740-750. [PMID: 34403674 PMCID: PMC8364403 DOI: 10.1016/j.ijbiomac.2021.08.076] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
The world has been suffering from COVID-19 disease for more than a year, and it still has a high mortality rate. In addition to the need to minimize transmission of the virus through non-pharmacological measures such as the use of masks and social distance, many efforts are being made to develop a variety of vaccines to prevent the disease worldwide. So far, several vaccines have reached the final stages of safety and efficacy in various phases of clinical trials, and some, such as Moderna/NIAID and BioNTech/Pfizer, have reported very high safety and protection. The important point is that comparing different vaccines is not easy because there is no set standard for measuring neutralization. In this study, we have reviewed the common platforms of COVID-19 vaccines and tried to present the latest reports on the effectiveness of these vaccines.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Saman Afshar
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mahmood Reza Masoudi
- Department of Internal Medicine, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Pourya Gholizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Iran
| | | | | | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
32
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
33
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
34
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections trigger viral RNA sensors such as TLR7 and RIG-I, thereby leading to production of type I interferon (IFN) and other inflammatory mediators. Expression of viral proteins in the context of this inflammation leads to stereotypical antigen-specific antibody and T cell responses that clear the virus. Immunity is then maintained through long-lived antibody-secreting plasma cells and by memory B and T cells that can initiate anamnestic responses. Each of these steps is consistent with prior knowledge of acute RNA virus infections. Yet there are certain concepts, while not entirely new, that have been resurrected by the biology of severe SARS-CoV-2 infections and deserve further attention. These include production of anti-IFN autoantibodies, early inflammatory processes that slow adaptive humoral immunity, immunodominance of antibody responses, and original antigenic sin. Moreover, multiple different vaccine platforms allow for comparisons of pathways that promote robust and durable adaptive immunity.
Collapse
Affiliation(s)
- Dominik Schenten
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, United States.
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, United States.
| |
Collapse
|
35
|
Bhutta ZA, Kanwal A, Ali M, Kulyar MFEA, Yao W, Shoaib M, Ashar A, Mahfooz A, Ijaz M, Ijaz N, Asif M, Nawaz S, Mahfooz MR, Kanwal T. Emerging nanotechnology role in the development of innovative solutions against COVID-19 pandemic. NANOTECHNOLOGY 2021; 32:482001. [PMID: 34320471 DOI: 10.1088/1361-6528/ac189e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 outbreak is creating severe impressions on all facets of the global community. Despite strong measures worldwide to try and re-achieve normalcy, the ability of SARS-CoV-2 to survive sturdy ecological settings may contribute to its rapid spread. Scientists from different aspects of life are working together to develop effective treatment strategies against SARS-CoV-2. Apart from using clinical devices for patient recovery, the key focus is on developing antiviral drugs and vaccines. Given the physical size of the SARS-CoV-2 pathogen and with the vaccine delivery platform currently undergoing clinical trials, the link between nanotechnology is clear, and previous antiviral research using nanomaterials confirms this link. Nanotechnology based products can effectively suppress various pathogens, including viruses, regardless of drug resistance, biological structure, or physiology. Thus, nanotechnology is opening up new dimensions for developing new strategies for diagnosing, preventing, treating COVID-19 and other viral ailments. This article describes the application of nanotechnology against the COVID-19 virus in terms of therapeutic purposes and vaccine development through the invention of nanomaterial based substances such as sanitizers (handwashing agents and surface disinfectants), masks and gowns, amongst other personal protective equipment, diagnostic tools, and nanocarrier systems, as well as the drawbacks and challenges of nanotechnology that need to be addressed.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, United Kingdom
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ayesha Kanwal
- Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Moazam Ali
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | | | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, 430070, People's Republic of China
| | - Muhammad Shoaib
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ambreen Ashar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ashar Mahfooz
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Misbah Ijaz
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Asif
- Department of Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Shah Nawaz
- Department of Pathology, University of Agriculture Faisalabad, 38000, Pakistan
| | | | - Tahreem Kanwal
- Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, 63100, Pakistan
| |
Collapse
|
36
|
Abstract
Mucosal vaccines offer the potential to trigger robust protective immune responses at the predominant sites of pathogen infection. In principle, the induction of adaptive immunity at mucosal sites, involving secretory antibody responses and tissue-resident T cells, has the capacity to prevent an infection from becoming established in the first place, rather than only curtailing infection and protecting against the development of disease symptoms. Although numerous effective mucosal vaccines are in use, the major advances seen with injectable vaccines (including adjuvanted subunit antigens, RNA and DNA vaccines) have not yet been translated into licensed mucosal vaccines, which currently comprise solely live attenuated and inactivated whole-cell preparations. The identification of safe and effective mucosal adjuvants allied to innovative antigen discovery and delivery strategies is key to advancing mucosal vaccines. Significant progress has been made in resolving the mechanisms that regulate innate and adaptive mucosal immunity and in understanding the crosstalk between mucosal sites, and this provides valuable pointers to inform mucosal adjuvant design. In particular, increased knowledge on mucosal antigen-presenting cells, innate lymphoid cell populations and resident memory cells at mucosal sites highlights attractive targets for vaccine design. Exploiting these insights will allow new vaccine technologies to be leveraged to facilitate rational mucosal vaccine design for pathogens including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for cancer.
Collapse
|
37
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
38
|
Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS NANO 2021; 15:5793-5818. [PMID: 33793189 PMCID: PMC8029448 DOI: 10.1021/acsnano.1c01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeff F. Miller
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
39
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|
40
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
41
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
42
|
Hyder Pottoo F, Abu-Izneid T, Mohammad Ibrahim A, Noushad Javed M, AlHajri N, Hamrouni AM. Immune system response during viral Infections: Immunomodulators, cytokine storm (CS) and Immunotherapeutics in COVID-19. Saudi Pharm J 2021; 29:173-187. [PMID: 33519271 PMCID: PMC7833973 DOI: 10.1016/j.jsps.2020.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are non-segmented and single stranded positive-sense RNA (+ssRNA) viruses. To date, 06 human coronaviruses (HCoVs) are reported; α-CoVs (HCoVs-NL63 and HCoVs-229E) and β-CoVs (HCoVs-OC43, HCoVs-HKU1, SARS-CoV, MERS-CoV). While, novel coronavirus (SARS-CoV-2) is the most recent member. The genome sequence of SARS-CoV-2 is 82% similar to SARS-COV-1. The compelling evidences link the progression of viral infection of SARS-CoV-2 with excessive inflammation as a result of the exaggerated immune response and elevated production of "immunocytokines" resulting in cytokine storm (CS); followed by a series of events, like acute organ damage, acute respiratory distress syndrome (ARDS) as well as death. Hence attempts to reduce cytokine storm are now being considered as a new paradigm shift in the clinical management of SARS-CoV-2. Tocilizumab (IL-6 blocker), Baricitinib (JAKs and AAK1 inhibitor), TNFα inhibitors (Infliximab, Adalimumab, Certolizumab) are currently being evaluated for possible block of the CS. Hence, rationalizing anti-inflammatory therapeutics would be the most judicious approach for significant reduction in COVID-19 mortality. In order to elucidate optimized and rationaled use of different therapeutics in COVID-19, we collated latest available information from emerging scientific evidences, integrated previous attempts as well as clinical successes, and various adopted approaches to mitigate past outbreaks with of SARS-CoV and MERS CoV.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Amar M. Hamrouni
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Batty CJ, Heise MT, Bachelder EM, Ainslie KM. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev 2021; 169:168-189. [PMID: 33316346 PMCID: PMC7733686 DOI: 10.1016/j.addr.2020.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented effort toward the development of an effective and safe vaccine. Aided by extensive research efforts into characterizing and developing countermeasures towards prior coronavirus epidemics, as well as recent developments of diverse vaccine platform technologies, hundreds of vaccine candidates using dozens of delivery vehicles and routes have been proposed and evaluated preclinically. A high demand coupled with massive effort from researchers has led to the advancement of at least 31 candidate vaccines in clinical trials, many using platforms that have never before been approved for use in humans. This review will address the approach and requirements for a successful vaccine against SARS-CoV-2, the background of the myriad of vaccine platforms currently in clinical trials for COVID-19 prevention, and a summary of the present results of those trials. It concludes with a perspective on formulation problems which remain to be addressed in COVID-19 vaccine development and antigens or adjuvants which may be worth further investigation.
Collapse
Affiliation(s)
- Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Mark T Heise
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, Zhou B, Jacobson K, Maciejewski S, Khatoon R, Wisniewska M, Moffitt W, Kluepfel-Stahl S, Ekechukwu B, Papin J, Boddapati S, Jason Wong C, Piedra PA, Frieman MB, Massare MJ, Fries L, Bengtsson KL, Stertman L, Ellingsworth L, Glenn G, Smith G. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 2021; 12:372. [PMID: 33446655 PMCID: PMC7809486 DOI: 10.1038/s41467-020-20653-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).
Collapse
Affiliation(s)
- Jing-Hui Tian
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Robert Haupt
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - Haixia Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Stuart Weston
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - Holly Hammond
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - James Logue
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | | | - James Norton
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Bin Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Kelsey Jacobson
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Rafia Khatoon
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Will Moffitt
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Betty Ekechukwu
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - James Papin
- Department of Pathology, Division of Comparative Medicine, University of Oklahoma, Health Sciences Center, 940 Stanton L. Young, BMS 203, Oklahoma City, OK, 73104, USA
| | - Sarathi Boddapati
- Catalent Cell & Gene Therapy, 20 Firstfield Road, Gaithersburg, MD, 20874, USA
| | - C Jason Wong
- Catalent Cell & Gene Therapy, 20 Firstfield Road, Gaithersburg, MD, 20874, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Frieman
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | | | - Louis Fries
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | | | | | - Gregory Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
45
|
Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, Zhou B, Jacobson K, Maciejewski S, Khatoon R, Wisniewska M, Moffitt W, Kluepfel-Stahl S, Ekechukwu B, Papin J, Boddapati S, Jason Wong C, Piedra PA, Frieman MB, Massare MJ, Fries L, Bengtsson KL, Stertman L, Ellingsworth L, Glenn G, Smith G. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 2021; 12:372. [PMID: 33446655 DOI: 10.1101/2020.06.29.178509] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Papio
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/administration & dosage
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocytes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Jing-Hui Tian
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Robert Haupt
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - Haixia Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Stuart Weston
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - Holly Hammond
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | - James Logue
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | | | - James Norton
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Bin Zhou
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Kelsey Jacobson
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Rafia Khatoon
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Will Moffitt
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Betty Ekechukwu
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - James Papin
- Department of Pathology, Division of Comparative Medicine, University of Oklahoma, Health Sciences Center, 940 Stanton L. Young, BMS 203, Oklahoma City, OK, 73104, USA
| | - Sarathi Boddapati
- Catalent Cell & Gene Therapy, 20 Firstfield Road, Gaithersburg, MD, 20874, USA
| | - C Jason Wong
- Catalent Cell & Gene Therapy, 20 Firstfield Road, Gaithersburg, MD, 20874, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Frieman
- University of Maryland, School of Medicine, 685 West Baltimore St, Baltimore, MD, 21201, USA
| | | | - Louis Fries
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | | | | | - Gregory Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
46
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
47
|
Singh SK, Plieskatt J, Chourasia BK, Fabra-García A, Garcia-Senosiain A, Singh V, Bengtsson KL, Reimer JM, Sauerwein R, Jore MM, Theisen M. A Reproducible and Scalable Process for Manufacturing a Pfs48/45 Based Plasmodium falciparum Transmission-Blocking Vaccine. Front Immunol 2021; 11:606266. [PMID: 33505395 PMCID: PMC7832176 DOI: 10.3389/fimmu.2020.606266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordan Plieskatt
- PATH's Malaria Vaccine Initiative, Washington, DC, United States
| | - Bishwanath K Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Fabra-García
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
He J, Huang F, Zhang J, Chen Q, Zheng Z, Zhou Q, Chen D, Li J, Chen J. Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein. J Med Virol 2020; 93:2115-2131. [PMID: 33091154 PMCID: PMC7675516 DOI: 10.1002/jmv.26596] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) urgently requires an effective vaccine for prevention. In this study, 66 epitopes containing pentapeptides of SARS‐CoV‐2 spike protein in the IEDB database were compared with the amino acid sequence of SARS‐CoV‐2 spike protein, and 66 potentially immune‐related peptides of SARS‐CoV‐2 spike protein were obtained. Based on the single‐nucleotide polymorphisms analysis of spike protein of 1218 SARS‐CoV‐2 isolates, 52 easily mutated sites were identified and used for vaccine epitope screening. The best vaccine candidate epitopes in the 66 peptides of SARS‐CoV‐2 spike protein were screened out through mutation and immunoinformatics analysis. The best candidate epitopes were connected by different linkers in silico to obtain vaccine candidate sequences. The results showed that 16 epitopes were relatively conservative, immunological, nontoxic, and nonallergenic, could induce the secretion of cytokines, and were more likely to be exposed on the surface of the spike protein. They were both B‐ and T‐cell epitopes, and could recognize a certain number of HLA molecules and had high coverage rates in different populations. Moreover, epitopes 897‐913 were predicted to have possible cross‐immunoprotection for SARS‐CoV and SARS‐CoV‐2. The results of vaccine candidate sequences screening suggested that sequences (without linker, with linker GGGSGGG, EAAAK, GPGPG, and KK, respectively) were the best. The proteins translated by these sequences were relatively stable, with a high antigenic index and good biological activity. Our study provided vaccine candidate epitopes and sequences for the research of the SARS‐CoV‐2 vaccine.
Collapse
Affiliation(s)
- Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Huang
- Department of First Surgical, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
49
|
Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clin Proc 2020; 95:2172-2188. [PMID: 33012348 PMCID: PMC7392072 DOI: 10.1016/j.mayocp.2020.07.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
In the midst of the severe acute respiratory syndrome coronavirus 2 pandemic and its attendant morbidity and mortality, safe and efficacious vaccines are needed that induce protective and long-lived immune responses. More than 120 vaccine candidates worldwide are in various preclinical and phase 1 to 3 clinical trials that include inactivated, live-attenuated, viral-vectored replicating and nonreplicating, protein- and peptide-based, and nucleic acid approaches. Vaccines will be necessary both for individual protection and for the safe development of population-level herd immunity. Public-private partnership collaborative efforts, such as the Accelerating COVID-19 Therapeutic Interventions and Vaccines mechanism, are key to rapidly identifying safe and effective vaccine candidates as quickly and efficiently as possible. In this article, we review the major vaccine approaches being taken and issues that must be resolved in the quest for vaccines to prevent coronavirus disease 2019. For this study, we scanned the PubMed database from 1963 to 2020 for all publications using the following search terms in various combinations: SARS, MERS, COVID-19, SARS-CoV-2, vaccine, clinical trial, coronavirus, pandemic, and vaccine development. We also did a Web search for these same terms. In addition, we examined the World Health Organization, Centers for Disease Control and Prevention, and other public health authority websites. We excluded abstracts and all articles that were not written in English.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- ade, antibody-dependent enhancement
- covid-19, coronavirus disease 2019
- il, interleukin
- mers, middle east respiratory syndrome
- mva, modified vaccinia virus ankara
- nih, national institutes of health
- rbd, receptor-binding domain
- s, spike
- sars, severe acute respiratory syndrome
- sars-cov, sars coronavirus
- tlr, toll-like receptor
- vlp, virus-like particle
- who, world health organization
Collapse
|
50
|
Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020; 18:125. [PMID: 32891146 PMCID: PMC7474329 DOI: 10.1186/s12951-020-00685-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. However, the ratio between mortality and number of infections seems to be lower in this case in comparison to other human coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)). These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.
Collapse
Affiliation(s)
- Estefânia V R Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. dos Estados, 5001. Bl. A, T3 Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Anderson E S Pereira
- São Paulo State University-UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | | | | | | | - Renata de Lima
- Universidade de Sorocaba, Rodovia Raposo Tavares km 92,5, Sorocaba, São Paulo, Brazil.
| | | |
Collapse
|