1
|
Rayatpour A, Foolad F, Javan M. Deferiprone promoted remyelination and functional recovery through enhancement of oligodendrogenesis in experimental demyelination animal model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:715-727. [PMID: 39046528 DOI: 10.1007/s00210-024-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Remyelination refers to myelin regeneration, which reestablishes metabolic supports to axons. However, remyelination often fails in multiple sclerosis (MS), leading to chronic demyelination and axonal degeneration. Therefore, pharmacological approaches toward enhanced remyelination are highly demanded. Recently, deferiprone (DFP) was reported to exert neuroprotective effects, besides its iron-chelating ability. Since DFP exerts protective effects through various mechanisms, which share several factors with myelin formation process, we aimed to investigate the effects of DFP treatment on remyelination. Focal demyelination was induced by injection of lysolecithin, into the optic nerve of male C57BL/6J mice. The animals were treated with DFP/vehicle, starting from day 7 and continued during the myelin repair period. Histopathological, electrophysiological, and behavioral studies were used to evaluate the outcomes. Results showed that DFP treatment enhanced remyelination, decreased g-ratio and increased myelin thickness. At the mechanistic level, DFP enhanced oligodendrogenesis and ameliorated gliosis during the remyelination period. Furthermore, our results indicated that enhanced remyelination led to functional recovery as evaluated by the electrophysiological and behavioral tests. Even though the exact molecular mechanisms by which DFP-enhanced myelin repair remain to be elucidated, these results raise the possibility of using deferiprone as a therapeutic agent for remyelination therapy in MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Hasaniani N, Ghasemi-Kasman M, Halaji M, Rostami-Mansoor S. Bifidobacterium breve Probiotic Compared to Lactobacillus casei Causes a Better Reduction in Demyelination and Oxidative Stress in Cuprizone-Induced Demyelination Model of Rat. Mol Neurobiol 2024; 61:498-509. [PMID: 37639065 DOI: 10.1007/s12035-023-03593-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28 days. Then, L. casei, B. breve, or their combinations were orally administrated for 28 days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes' expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Cis-p-tau plays crucial role in lysolecithin-induced demyelination and subsequent axonopathy in mouse optic chiasm. Exp Neurol 2023; 359:114262. [PMID: 36343678 DOI: 10.1016/j.expneurol.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease that leads to axon degeneration as the major cause of everlasting neurological disability. The cis-phosphorylated tau (cis-p-tau) is an isoform of tau phosphorylated on threonine 231 and causes tau fails to bind micro-tubules and promotes assembly. It gains toxic function and forms tangles in the cell which finally leads to cell death. An antibody raised against cis- p-tau (cis mAb) detects this isoform and induces its clearance. Here, we investigated the formation of cis-p-tau in a lysophosphatidylcholine (LPC)-induced prolonged demyelination model as well as the beneficial effects of its clearance using cis mAb. Cis -p-tau was increased in the lesion site, especially in axons and microglia. Behavioral and functional studies were performed using visual cliff test, visual placing test, and visual evoked potential recording. Cis-p-tau clearance resulted in decreased gliosis, protected myelin and reduced axon degeneration. Analysis of behavioral and electrophysiological data showed that clearance of cis-p-tau by cis mAb treatment improved the visual acuity along with the integrity of the optic pathway. Our results highlight the opportunity of using cis mAb as a new therapy for protecting myelin and axons in patients suffering from MS.
Collapse
|
4
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
5
|
Failed remyelination of the nonhuman primate optic nerve leads to axon degeneration, retinal damages, and visual dysfunction. Proc Natl Acad Sci U S A 2022; 119:e2115973119. [PMID: 35235463 PMCID: PMC8916013 DOI: 10.1073/pnas.2115973119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery in white matter diseases, such as multiple sclerosis (MS). To date most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair. Well-defined nonhuman primate models closer to man would allow us to efficiently advance therapeutic approaches. Here we present a nonhuman primate model of optic nerve demyelination that recapitulates several features of MS lesions. The model leads to failed remyelination, associated with progressive axonal degeneration and visual dysfunction, thus providing the missing link to translate emerging preclinical therapies to the clinic for myelin disorders such as MS. White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.
Collapse
|
6
|
Dehghan S, Aref E, Raoufy MR, Javan M. An optimized animal model of lysolecithin induced demyelination in optic nerve; more feasible, more reproducible, promising for studying the progressive forms of multiple sclerosis. J Neurosci Methods 2021; 352:109088. [PMID: 33508411 DOI: 10.1016/j.jneumeth.2021.109088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a demyelinating disease leading to long-term neurological deficit due to unsuccessful remyelination and axonal loss. Currently, there are no satisfactory treatments for progressive MS somewhat due to the lack of an adequate animal model for studying the mechanisms of disease progression and screening new drugs. NEW METHOD Lysolecithin (LPC) or agarose-gel loaded LPC (AL-LPC) were applied to mouse optic nerve behind the globe via a minor surgery. Agarose loading was used to achieve longer time of LPC exposure and subsequently long-lasting demyelination. RESULTS The lesion sites characterized by luxol fast blue (LFB), FluoroMyelin, Bielschowsky's staining, and immunostaining showed extensive demyelination and axonal damage. The loss of Retinal ganglion cells (RGCs) in the corresponding retinal layer was shown by immunostaining and H&E staining. Visual evoked potential (VEP) recordings showed a significant increase in the latency of the P1 wave and a decrease in the amplitude of the P1N1 wave. COMPARISON WITH EXISTING METHODS The new approach with a very minor surgery seems to be more feasible and reproducible compared to stereotaxic LPC injection to optic chiasm. Our data revealed prolonged demyelination, axonal degeneration and RGCs loss in both AL-LPC and LPC groups; however, these pathologies were more extensive in the AL-LPC group. CONCLUSION The optimized model provides a longer demyelination time frame and axonal damage followed by RGC degeneration; which is of exceptional interest in investigating axonal degeneration mechanisms and screening the new drugs for progressive MS.
Collapse
Affiliation(s)
- Samaneh Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Ehsan Aref
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box:14115-331, Tehran, Iran.
| |
Collapse
|
7
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Macchi M, Magalon K, Zimmer C, Peeva E, El Waly B, Brousse B, Jaekel S, Grobe K, Kiefer F, Williams A, Cayre M, Durbec P. Mature oligodendrocytes bordering lesions limit demyelination and favor myelin repair via heparan sulfate production. eLife 2020; 9:51735. [PMID: 32515730 PMCID: PMC7308090 DOI: 10.7554/elife.51735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter. Mice with selective inactivation of Ndst1 in the OLG lineage display increased lesion size, sustained microglia and OPC reactivity. HS production around the lesion allows Sonic hedgehog (Shh) binding and favors the local enrichment of this morphogen involved in myelin regeneration. In MS patients, Ndst1 is also found overexpressed in oligodendroglia and the number of Ndst1-expressing oligodendroglia is inversely correlated with lesion size and positively correlated with remyelination potential. Our study suggests that mature OLG surrounding demyelinated lesions are not passive witnesses but contribute to protection and regeneration by producing HS.
Collapse
Affiliation(s)
| | | | | | - Elitsa Peeva
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Sarah Jaekel
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Anna Williams
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | |
Collapse
|
9
|
Upadhya R, Zingg W, Shetty S, Shetty AK. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 2020; 323:225-239. [PMID: 32289328 DOI: 10.1016/j.jconrel.2020.04.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) released by neural cells play an essential role in brain homeostasis and the crosstalk between neural cells and the periphery. EVs are diverse, nano-sized vesicles, which transport proteins, nucleic acids, and lipids between cells over short and long expanses and hence are proficient for modulating the target cells. EVs released from neural cells are implicated in synaptic plasticity, neuron-glia interface, neuroprotection, neuroregeneration, and the dissemination of neuropathological molecules. This review confers the various properties of EVs secreted by astrocytes and their potential role in health and disease with a focus on evolving concepts. Naïve astrocytes shed EVs containing a host of neuroprotective compounds, which include fibroblast growth factor-2, vascular endothelial growth factor, and apolipoprotein-D. Stimulated astrocytes secrete EVs with neuroprotective molecules including heat shock proteins, synapsin 1, unique microRNAs, and glutamate transporters. Well-characterized astrocyte-derived EVs (ADEVs) generated in specific culture conditions and ADEVs that are engineered to carry the desired miRNAs or proteins are likely useful for treating brain injury and neurogenerative diseases. On the other hand, in conditions such as Alzheimer's disease (AD), stroke, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and other neuroinflammatory conditions, EVs released by activated astrocytes appear to mediate or exacerbate the pathological processes. The examples include ADEVs spreading the dysregulated complement system in AD, mediating motoneuron toxicity in ALS, and stimulating peripheral leukocyte migration into the brain in inflammatory conditions. Strategies restraining the release of EVs by activated astrocytes or modulating the composition of ADEVs are likely beneficial for treating neurodegenerative diseases. Also, periodic analyses of ADEVs in the blood is useful for detecting astrocyte-specific biomarkers in different neurological conditions and for monitoring disease progression and remission with distinct therapeutic approaches.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Winston Zingg
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Siddhant Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|
10
|
Zhao Z, Bao XQ, Zhang Z, Liu H, Zhang D. Phloroglucinol derivative compound 21 attenuates cuprizone-induced multiple sclerosis mice through promoting remyelination and inhibiting neuroinflammation. SCIENCE CHINA-LIFE SCIENCES 2019; 63:905-914. [PMID: 31637574 DOI: 10.1007/s11427-019-9821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease in the central nervous system. The myelin loss is mainly caused by dysfunction of oligodendrocytes and inflammatory responses of microglia and astrocytes further aggravate the demyelination. Current therapies for MS focus on suppressing the overactivated immune response but cannot halt the disease progress, so effective drugs are urgently needed. Compound 21 is a phloroglucinol derivative that has been proved to have an outstanding anti-inflammatory effect. The purpose of the present study is to investigate whether this novel compound is effective in MS. The cuprizone-induced model was used in this study to mimic the pathological progress of MS. The results showed that Compound 21 significantly improved the neurological dysfunction and motor coordination impairment. Luxol Fast Blue staining and myelin basic protein immunostaining demonstrated that Compound 21 remarkably promoted remyelination. In addition, Compound 21 significantly promoted oligodendrocytes differentiation. Furthermore, we found that Compound 21 decreased microglia and astrocytes activities and the subsequent neuroinflammatory response, indicating that the anti-inflammatory effect of Compound 21 was also involved in its neuro-protection. All the data prove that Compound 21 exerts protective effect on MS through promoting remyelination and suppressing neuroinflammation, indicating that Compound 21 might be a potential drug candidate for MS treatment.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Front Mol Neurosci 2019; 12:225. [PMID: 31616249 PMCID: PMC6764409 DOI: 10.3389/fnmol.2019.00225] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
In diseases such as multiple sclerosis (MS), inflammation can injure the myelin sheath that surrounds axons, a process known as demyelination. The spontaneous regeneration of myelin, called remyelination, is associated with restoration of function and prevention of axonal degeneration. Boosting remyelination with therapeutic intervention is a promising new approach that is currently being tested in several clinical trials. The endogenous regulation of remyelination is highly dependent on the immune response. In this review article, we highlight the cell biology of remyelination and its regulation by innate immune cells. For the purpose of this review, we discuss the roles of microglia, and also astrocytes and oligodendrocyte progenitor cells (OPCs) as they are being increasingly recognized to have immune cell functions.
Collapse
Affiliation(s)
- Charbel S. Baaklini
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalil S. Rawji
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, United States
| | - Madelene F. S. Ho
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
12
|
Niknam P, Raoufy MR, Fathollahi Y, Javan M. Modulating proteoglycan receptor PTPσ using intracellular sigma peptide improves remyelination and functional recovery in mice with demyelinated optic chiasm. Mol Cell Neurosci 2019; 99:103391. [DOI: 10.1016/j.mcn.2019.103391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
|
13
|
Zare L, Baharvand H, Javan M. In vivo conversion of astrocytes to oligodendrocyte lineage cells using chemicals: targeting gliosis for myelin repair. Regen Med 2018; 13:803-819. [PMID: 30284949 DOI: 10.2217/rme-2017-0155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM It would be clinically ideal to target astrocytes in vivo for conversion into oligodendrocyte lineage cells to reduce astrogliosis and generate new myelinating cells. MATERIALS & METHODS Here, we prepared a GFP-labeled human astrocyte cell line, treated with epigenetic modifiers trichostatin A or 5-azacytidine and transplanted them into cuprizone-induced demyelinated mice brains. The fate of the transplanted astrocytes was studied at days 7, 14 and 28 post-transplantation. RESULTS GFP+ astrocytes were reduced over time, whereas the GFP+ oligodendrocyte lineage cells were found on days 14 and 28. Nontreated astrocytes did not convert to myelinating cells following transplantation. Cell conversion was proved in vitro by maintaining the treated cells in oligodendrocyte progenitor cell medium. CONCLUSION These findings seem promising for the application of epigenetic modifiers, especially their targeted delivery to glial scars to treat demyelinating diseases.
Collapse
Affiliation(s)
- Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Hossein Baharvand
- Department of Brain Sciences & Cognition, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran 16635-148, Iran.,Department of Developmental Biology, University of Science & Culture, Tehran 1461968151, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.,Department of Brain Sciences & Cognition, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
14
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
15
|
Motavaf M, Sadeghizadeh M, Javan M. Attempts to Overcome Remyelination Failure: Toward Opening New Therapeutic Avenues for Multiple Sclerosis. Cell Mol Neurobiol 2017; 37:1335-1348. [PMID: 28224237 PMCID: PMC11482203 DOI: 10.1007/s10571-017-0472-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/12/2017] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath wrapped around the axons and eventual axon degeneration. The disease is pathologically heterogeneous; however, perhaps its most frustrating aspect is the lack of efficient regenerative response for remyelination. Current treatment strategies are based on anti-inflammatory or immunomodulatory medications that have the potential to reduce the numbers of newly evolving lesions. However, therapies are still required that can repair already damaged myelin for which current treatments are not effective. A prerequisite for the development of such new treatments is understanding the reasons for insufficient endogenous repair. This review briefly summarizes the currently suggested causes of remyelination failure in MS and possible solutions.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
16
|
Pachenari N, Kiani S, Javan M. Inhibition of glycogen synthase kinase 3 increased subventricular zone stem cells proliferation. Biomed Pharmacother 2017; 93:1074-1082. [PMID: 28738501 DOI: 10.1016/j.biopha.2017.07.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/30/2017] [Accepted: 07/09/2017] [Indexed: 11/26/2022] Open
Abstract
The effects of Wnt signaling modifiers on cell proliferation, seem to be cell specific. Enhancing the proliferation of subventricular zone (SVZ) progenitors has been in the focus of research in recent years. Here we investigate the effect of CHIR99021, a Glycogen Synthase Kinase 3 (GSk-3) inhibitor, on SVZ progenitor's proliferation both in vivo and in vitro. Neural stem cells were extracted from the adult C57bl/6 by mincing and trypsin treatment followed by culturing in specific medium. Sphere cells formed within about 7-10days and were characterized by immunostaining. Number of spheres and their size was assessed following exposure to different concentration of CHIR99021 or vehicle. For in vivo studies, animals received intracerebroventricular (i.c.v.) injection of CHIR99021 or vehicle for four days. A subgroup of animals, after 4days treatment with CHIR99021 received intranasal kainic acid to induce local neurodegeneration in CA3 area of hippocampus. Inhibition of GSk-3 by CHIR99021 increased neural progenitor proliferation and the effect of CHIR99021 was long lasting so that the treated cells showed higher proliferation even after CHIR99021 removal. In vivo administration of CHIR99021 increased the number of neural progenitors at the rims of lateral ventricles especially when the treatment was followed by kainic acid administration which induces neural insult. Results showed that direct administration of CHIR99021 into the culture medium or animal brain increased the number of SVZ progenitors, especially when a neural insult was induced in the hippocampus.
Collapse
Affiliation(s)
- Narges Pachenari
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Tarbali S, Khezri S, Rahmani F. Analysis of molecular events associated with adult rat dorsal hippocampus demyelination following treatment with vitamin D3. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Huang Y, Dreyfus CF. The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol 2016; 283:531-40. [PMID: 27016070 PMCID: PMC5010931 DOI: 10.1016/j.expneurol.2016.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
A variety of growth factors are being explored as therapeutic agents relevant to the axonal and oligodendroglial deficits that occur as a result of demyelinating lesions such as are evident in Multiple Sclerosis (MS). This review focuses on five such proteins that are present in the lesion site and impact oligodendrocyte regeneration. It then presents approaches that are being exploited to manipulate the lesion environment affiliated with multiple neurodegenerative diseases and suggests that the utility of these approaches can extend to demyelination. Challenges are to further understand the roles of specific growth factors on a cellular and tissue level. Emerging technologies can then be employed to optimize the use of growth factors to ameliorate the deficits associated with demyelinating degenerative diseases.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
20
|
Moradpour F, Fathollahi Y, Naghdi N, Hosseinmardi N, Javan M. Prepubertal castration-associated developmental changes in sigma-1 receptor gene expression levels regulate hippocampus area CA1 activity during adolescence. Hippocampus 2016; 26:933-46. [PMID: 26860755 DOI: 10.1002/hipo.22576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/08/2022]
Abstract
The functional relevance of sigma-1 (σ1 ) receptor expression in the rat hippocampal CA1 during adolescence (i.e., 35-60 days old) was explored. A selective antagonist for the σ1 receptor subtype, BD-1047, was applied to study hippocampal long-term potentiation (LTP) and spatial learning performance. Changes in the expression of the σ1 receptor subtype and its function were compared between castrated and sham-castrated rats. Castration reduced the magnitude of both field excitatory postsynaptic potential (fEPSP)-LTP and population spike (PS)-LTP at 35 days (d). BD-1047 decreased PS-LTP in sham-castrated rats, whereas BD-1047 reversed the effect of castration on fEPSP-LTP at 35 d. In addition, BD1047 impaired spatial learning and augmented σ1 receptor mRNA levels in castrated rats at 35 d. Surprisingly, neither castration nor BD1047 had an effect on fEPSP-LTP and PS-LTP, spatial learning ability or gene expression levels at 45 d. Castration had no effect on fEPSP-LTP but reduced PS-LTP at 60 d. BD1047 increased the magnitude of fEPSP-LTP, but had no effect on PS-LTP in castrated rats at 60 d. However, BD1047 reduced spatial learning ability, and σ1 receptor mRNA levels were decreased in castrated rats at 60 d. This study shows that σ1 receptors play a role in the regulation of both CA1 synaptic efficacy and spatial learning performance. The regulatory role of σ1 receptors in activity-dependent CA1-LTP is locality- and age-dependent, whereas its role in spatial learning ability is only age-dependent. Prepubertal castration-associated changes in the expression and function of the σ1 receptor during adolescence may play a developmental role in the regulation of hippocampal area CA1 activity and plasticity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farshad Moradpour
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Physiology School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nargess Hosseinmardi
- Department of Physiology School of Medicine, Shahid Behsheti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 2016; 318:178-89. [PMID: 26804242 DOI: 10.1016/j.neuroscience.2016.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is a demyelinating disease with severe neurological symptoms due to blockage of signal conduction in affected axons. Spontaneous remyelination via endogenous progenitors is limited and eventually fails. Recent reports showed that forced expression of some transcription factors within the brain converted somatic cells to neural progenitors and neuroblasts. Here, we report the effect of valproic acid (VPA) along with forced expression of Oct4 transcription factor on lysolecithin (LPC)-induced experimental demyelination. Mice were gavaged with VPA for one week, and then inducible Oct4 expressing lentiviral particles were injected into the lateral ventricle. After one-week induction of Oct4, LPC was injected into the optic chiasm. Functional remyelination was assessed by visual-evoked potential (VEP) recording. Myelination level was studied using FluoroMyelin staining and immunohistofluorescent (IHF) against proteolipid protein (PLP). IHF was also performed to detect Oct4 and SSEA1 as pluripotency markers and Olig2, Sox10, CNPase and PDGFRα as oligodendrocyte lineage markers. One week after injection of Oct4 expressing vector, pluripotency markers SSEA1 and Oct4 were detected in the rims of the 3rd ventricle. LPC injection caused extensive demyelination and significantly delayed the latency of VEP wave. Animals pre-treated with VPA+Oct4 expressing vector, showed faster recovery in the VEP latency and enhanced myelination. Immunostaining against oligodendrocyte lineage markers showed an increased number of Sox10+ and myelinating cells. Moreover, transdifferentiation of some Oct4-transfected cells (GFP+ cells) to Olig2+ and CNPase+ cells was confirmed by immunostaining. One-week administration of VPA followed by one-week forced expression of Oct4 enhanced myelination by converting transduced cells to myelinating oligodendrocytes. This finding seems promising for enhancing myelin repair within the adult brains.
Collapse
Affiliation(s)
- S Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Hesaraki
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - M Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - J Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Y Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells. Ann Plast Surg 2016; 74:584-8. [PMID: 25643192 DOI: 10.1097/sap.0000000000000436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schwann cell-like cells differentiated from adipose-derived stem cells may have an important role in peripheral nerve regeneration. Herein, we document the individual effects of growth factors in Schwann cell-like differentiation medium. METHODS There were 6 groups in the study. In the control group, we supplemented the rat adipose-derived stem cells with normal cell culture medium. In group 1, we fed the cells with Schwann cell-like differentiation medium (normal cell culture medium supplemented with platelet-derived growth factor, basic fibroblast growth factor, forskolin, and glial growth factor). In the other groups, we removed the components of the medium one at a time from the differentiation medium so that group 2 lacked glial growth factor, group 3 lacked forskolin, group 4 lacked basic fibroblast growth factor, and group 5 lacked platelet-derived growth factor. We examined the expression of the Schwann cell-specific genes with quantitative reverse transcription polymerase chain reaction and immunofluorescence staining in each group. RESULTS Groups 3 and 4, lacking forskolin and basic fibroblast growth factor, respectively, had the highest expression levels of integrin-β4, and p75. Group 1 showed a 3.2-fold increase in the expression of S100, but the expressions of integrin-β4 and p75 were significantly lower compared to groups 3 and 4. Group 2 [glial growth factor (-)] did not express significant levels of Schwann cell-specific genes. The gene expression profile in group 4 most closely resembled Schwann cells. Immunofluorescence staining results were parallel with the quantitative real-time polymerase chain reaction results. CONCLUSIONS Glial growth factor is a key component of Schwann cell-like differentiation medium.
Collapse
|
23
|
Wei W, Wang Y, Dong J, Wang Y, Min H, Song B, Shan Z, Teng W, Xi Q, Chen J. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1264-1274. [PMID: 24753110 DOI: 10.1002/tox.21997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring.
Collapse
Affiliation(s)
- Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qi Xi
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Azin M, Mirnajafi-Zadeh J, Javan M. Fibroblast Growth Factor-2 Enhanced The Recruitment of Progenitor Cells and Myelin Repair in Experimental Demyelination of Rat Hippocampal Formations. CELL JOURNAL 2015; 17:540-456. [PMID: 26464826 PMCID: PMC4601875 DOI: 10.22074/cellj.2015.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/20/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hippocampal insults have been observed in multiple sclerosis (MS) patients. Fibroblast growth factor-2 (FGF2) induces neurogenesis in the hippocampus and en- hances the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs). In the current study, we have investigated the effect of FGF2 on the processes of gliotoxin induced demyelination and subsequent remyelination in the hippocampus. MATERIALS AND METHODS In this experimental study adult male Sprague-Dawley rats re- ceived either saline or lysolecithin (LPC) injections to the right hippocampi. Animals re- ceived intraperitoneal (i.p.) injections of FGF2 (5 ng/g) on days 0, 5, 12 and 26 post-LPC. Expressions of myelin basic protein (Mbp) as a marker of myelination, Olig2 as a marker of OPC proliferation, Nestin as a marker of neural progenitor cells, and glial fibrillary acidic protein (Gfap) as a marker of reactive astrocytes were investigated in the right hippocampi by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS There was reduced Mbp expression at seven days after LPC injection, in- creased expressions of Olig2 and Nestin, and the level of Gfap did not change. FGF2 treatment reversed the expression level of Mbp to the control, significantly enhanced the levels of Olig2 and Nestin, but did not change the level of Gfap. At day-28 post- LPC, the expression level of Mbp was higher than the control in LPC-treated animals that received FGF2. The levels of Olig2, Nestin and Gfap were at the control level in the non-treated LPC group but significantly higher in the FGF2-treated LPC group. CONCLUSION FGF2 enhanced hippocampal myelination and potentiated the recruitment of OPCs and neural stem cells (NSCs) to the lesion area. Long-term application of FGF2 might also enhance astrogliosis in the lesion site.
Collapse
Affiliation(s)
- Mahdieh Azin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Furusho M, Roulois AJ, Franklin RJM, Bansal R. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia 2015; 63:1714-28. [PMID: 25913734 PMCID: PMC4534313 DOI: 10.1002/glia.22838] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/29/2015] [Indexed: 11/10/2022]
Abstract
Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of proregenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre-driver mouse lines. Acute and chronic cuprizone-induced or lysolecithin-induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin-induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell-autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF-based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late-stage disease.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Lineage/drug effects
- Cell Lineage/genetics
- Cells, Cultured
- Chelating Agents/toxicity
- Cuprizone/toxicity
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/genetics
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/physiology
- Lysophosphatidylcholines/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Miki Furusho
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| | - Aude J Roulois
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| |
Collapse
|
26
|
Qu X, Guo R, Zhang Z, Ma L, Wu X, Luo M, Dong F, Yao R. bFGF Protects Pre-oligodendrocytes from Oxygen/Glucose Deprivation Injury to Ameliorate Demyelination. Cell Mol Neurobiol 2015; 35:913-20. [PMID: 25833395 PMCID: PMC11486240 DOI: 10.1007/s10571-015-0186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/19/2015] [Indexed: 02/05/2023]
Abstract
One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.
Collapse
Affiliation(s)
- Xuebin Qu
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China.
| | - Rui Guo
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Zhenzhong Zhang
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Li Ma
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xiuxiang Wu
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Mengjiao Luo
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Fuxing Dong
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Pourabdolhossein F, Mozafari S, Morvan-Dubois G, Mirnajafi-Zadeh J, Lopez-Juarez A, Pierre-Simons J, Demeneix BA, Javan M. Nogo receptor inhibition enhances functional recovery following lysolecithin-induced demyelination in mouse optic chiasm. PLoS One 2014; 9:e106378. [PMID: 25184636 PMCID: PMC4153612 DOI: 10.1371/journal.pone.0106378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR) that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm. METHODOLOGY/PRINCIPAL FINDINGS A focal area of demyelination was induced in adult mouse optic chiasm by microinjection of lysolecithin. To knock down NgR levels, siRNAs against NgR were intracerebroventricularly administered via a permanent cannula over 14 days, Functional changes were monitored by electrophysiological recording of latency of visual evoked potentials (VEPs). Histological analysis was carried out 3, 7 and 14 days post demyelination lesion. To assess the effect of NgR inhibition on precursor cell repopulation, BrdU was administered to the animals prior to the demyelination induction. Inhibition of NgR significantly restored VEPs responses following optic chiasm demyelination. These findings were confirmed histologically by myelin specific staining. siNgR application resulted in a smaller lesion size compared to control. NgR inhibition significantly increased the numbers of BrdU+/Olig2+ progenitor cells in the lesioned area and in the neurogenic zone of the third ventricle. These progenitor cells (Olig2+ or GFAP+) migrated away from this area as a function of time. CONCLUSIONS/SIGNIFICANCE Our results show that inhibition of NgR facilitate myelin repair in the demyelinated chiasm, with enhanced recruitment of proliferating cells to the lesion site. Thus, antagonizing NgR function could have therapeutic potential for demyelinating disorders such as Multiple Sclerosis.
Collapse
Affiliation(s)
- Fereshteh Pourabdolhossein
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Sabah Mozafari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alejandra Lopez-Juarez
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Jacqueline Pierre-Simons
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A. Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
28
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
29
|
Adenosine A1 receptor agonist, N6-cyclohexyladenosine, protects myelin and induces remyelination in an experimental model of rat optic chiasm demyelination; electrophysiological and histopathological studies. J Neurol Sci 2013; 325:22-8. [DOI: 10.1016/j.jns.2012.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
|
30
|
Gu Z, Li F, Zhang YP, Shields LBE, Hu X, Zheng Y, Yu P, Zhang Y, Cai J, Vitek MP, Shields CB. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice. ACTA ACUST UNITED AC 2013; 2014:10. [PMID: 25642353 PMCID: PMC4309015 DOI: 10.4172/2155-9562.s12-010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. Methods A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. Results The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. Conclusion The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, China ; Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Fengqiao Li
- Cognosci, Inc. Research Triangle Park, NC 27709, USA ; Department of Neurology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Xiaoling Hu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yiyan Zheng
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Panpan Yu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yongjie Zhang
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Michael P Vitek
- Cognosci, Inc. Research Triangle Park, NC 27709, USA ; Department of Neurology, Duke University Medical Center, Durham, 27708, NC, USA
| | | |
Collapse
|