1
|
Essawy AE, Bekheet GJ, Abdel Salam S, Alhasani RH, Abd Elkader HTAE. Betaine alleviates deficits in motor behavior, neurotoxic effects, and neuroinflammatory responses in a rat model of demyelination. Toxicol Rep 2025; 14:101974. [PMID: 40129881 PMCID: PMC11930798 DOI: 10.1016/j.toxrep.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Multiple sclerosis (MS) is characterized as a chronic inflammatory demyelinating neurodegenerative disorder that leads to the deterioration of the myelin sheath and the loss of axons. Betaine, a trimethylglycine compound, is recognized for its ability to penetrate the blood-brain barrier (BBB) and exhibits properties that are antioxidant, anti-inflammatory, and neuroprotective. The cuprizone (CPZ) model serves as an effective tool for investigating the processes of demyelination and remyelination associated with MS. In our research, we examined the protective and therapeutic effects of betaine in a rat model of MS induced by CPZ. The experimental protocol involved administering 600 mg/kg of CPZ orally for 7 days, followed by 2 weeks with 200 mg/kg of CPZ. The protective group received a combination of betaine (1 g/kg/day, orally) and CPZ (200 mg/kg/day), while the therapeutic group was treated with CPZ (600 mg/kg) alongside betaine for three weeks. Behavioral assessments were conducted using inverted screen and rotarod tests to measure balance, motor coordination, and grasping ability. Following these evaluations, the rats were euthanized for analysis of oxidative stress and inflammatory biomarkers, toluidine blue staining, transmission electron microscopy (TEM) imaging, and myelin basic protein (MBP) immunostaining of the corpus callosum (CC). The results indicated that betaine significantly enhanced balance, motor coordination, and grasping ability, while decreasing oxidative stress, inhibiting interleukin (IL)-4 and IL-17 levels, and reversing the demyelination caused by CPZ. Notably, betaine also mitigated the increase in homocysteine (Hcy) levels and facilitated remyelination, evidenced by the presence of normal compacted myelin and increased expression of MBP in the CC. This study substantiates the remyelinating effects of betaine in the context of CPZ-induced demyelination. It suggests that it may contribute to the repair of myelin through the modulation of behavioral deficits, oxidative stress, neuroinflammation, ultrastructural changes, and MBP expression levels, indicating its potential as a complementary therapeutic agent in the management of MS.
Collapse
Affiliation(s)
- Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gihad Jamal Bekheet
- Euro-Mediterranean Master in Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | | | | |
Collapse
|
2
|
Liu SS, Zha Z, Li C, Li CY, Wang L. The mechanism of exosomes of BMSCs modified with Bu Shen Yi Sui capsule in promoting remyelination via regulating miR-15b/Wnt signaling pathway-mediated differentiation of oligodendrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119283. [PMID: 39733800 DOI: 10.1016/j.jep.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated. AIM OF THE STUDY This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice. MATERIALS AND METHODS C57BL/6J mice were administered a 0.2% CPZ-containing diet for 5 weeks to induce demyelination, followed by treatment with exosomes derived from BMSC (BMSC-exos) and BSYS-modified BMSC exosomes (BSYS-BMSC-exos) twice weekly for 2 weeks. Body weight measurements were recorded, and motor function was evaluated using the rotarod test. Pathological changes in myelin and axons were assessed via Luxol fast blue (LFB) staining, transmission electron microscopy (TEM), and immunofluorescence (IF) staining. Oligodendrocyte proliferation, differentiation, and maturation were analyzed using IF double-staining, Western blot (WB), and real-time quantitative reverse transcription PCR (qRT-PCR). Additionally, microRNA (miRNA) sequencing and a luciferase reporter assay were conducted to verify miRNA binding to its target gene. Key markers of the Wnt/β-catenin signaling pathway were examined using WB and qRT-PCR. RESULTS BSYS-BMSC-exos treatment significantly increased both body weight and rotarod performance in CPZ mice. Moreover, BMSC-exos and BSYS-BMSC-exos reversed myelin loss and axonal damage. These treatments enhanced oligodendrocytes proliferation, differentiation, and maturation, with BSYS-BMSC-exos exhibiting a particularly pronounced effect on the expression of adenomatous polyposis coli clone CC1 (CC1), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin basic protein (MBP). Sequencing and luciferase assays revealed that miR-15b-5p, enriched in BSYS-BMSC-exos, directly targets Wnt3a. Furthermore, BSYS-BMSC-exos elevated axis inhibition protein 2 (Axin2) expression while markedly reducing Wnt family member 3A (Wnt3a), phospho-glycogen synthase kinase-3β (p-GSK3β), β-catenin, and T-cell specific transcription factor 4/transcription factor 7-like 2 (TCF4/TCF7L2) levels. CONCLUSIONS The findings suggest that BSYS-BMSC-exos alleviate neurological deficits, enhance oligodendrocytes differentiation and maturation, and promote remyelination in CPZ mice. miR-15b-5p, enriched in BSYS-BMSC-exos, targets and downregulates Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zheng Zha
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Yu Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Mwema A, Gratpain V, Ucakar B, Vanvarenberg K, Perdaens O, van Pesch V, Muccioli GG, des Rieux A. Impact of calcitriol and PGD 2-G-loaded lipid nanocapsules on oligodendrocyte progenitor cell differentiation and remyelination. Drug Deliv Transl Res 2024; 14:3128-3146. [PMID: 38366115 DOI: 10.1007/s13346-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.
Collapse
Affiliation(s)
- Ariane Mwema
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Viridiane Gratpain
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Océane Perdaens
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| |
Collapse
|
4
|
Anand MAV, Manjula KS, Wang CZ. Functional Role of DDR1 in Oligodendrocyte Signaling Mechanism in Association with Myelination and Remyelination Process in the Central Nerve System. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:161-173. [PMID: 39175192 DOI: 10.4103/ejpi.ejpi-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Multiple sclerosis (MS) is a complicated, inflammatory disease that causes demyelination of the central nervous system (CNS), resulting in a variety of neurological abnormalities. Over the past several decades, different animal models have been used to replicate the clinical symptoms and neuropathology of MS. The experimental model of experimental autoimmune/allergic encephalomyelitis (EAE) and viral and toxin-induced model was widely used to investigate the clinical implications of MS. Discoidin domain receptor 1 (DDR1) signaling in oligodendrocytes (OL) brings a new dimension to our understanding of MS pathophysiology. DDR1 is effectively involved in the OL during neurodevelopment and remyelination. It has been linked to many cellular processes, including migration, invasion, proliferation, differentiation, and adhesion. However, the exact functional involvement of DDR1 in developing OL and myelinogenesis in the CNS remains undefined. In this review, we critically evaluate the current literature on DDR1 signaling in OL and its proliferation, migration, differentiation, and myelination mechanism in OL in association with the progression of MS. It increases our knowledge of DDR1 in OL as a novel target molecule for oligodendrocyte-associated diseases in the CNS, including MS.
Collapse
Affiliation(s)
| | - Kumar Shivamadhaiah Manjula
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Samy DM, Zaki EI, Hassaan PS, Abdelmonsif DA, Mohamed DY, Saleh SR. Neurobehavioral, biochemical and histological assessment of the effects of resveratrol on cuprizone-induced demyelination in mice: role of autophagy modulation. J Physiol Biochem 2023:10.1007/s13105-023-00959-z. [PMID: 37131098 DOI: 10.1007/s13105-023-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Resveratrol is known to exhibit neuroprotective effects in many neurological disorders via autophagy modulation. However, controversial results have been reported about the therapeutic potential of resveratrol and the implication of autophagy in demyelinating diseases. This study aimed to evaluate the autophagic changes in cuprizone-intoxicated C57Bl/6 mice and explore the effect of autophagy activation by resveratrol on the demyelination and remyelination processes. Mice were fed with chow containing 0.2% cuprizone for 5 weeks, followed by a cuprizone-free diet for 2 weeks. Resveratrol (250 mg/kg/day) and/or chloroquine (an autophagy inhibitor; 10 mg/kg/day) were given for 5 weeks starting from the third week. At the end of the experiment, animals were tested on rotarod and then sacrificed for biochemical assessment, luxol fast blue (LFB) staining, and transmission electron microscopy (TEM) imaging of the corpus callosum. We observed that cuprizone-induced demyelination was associated with impaired degradation of autophagic cargo, induction of apoptosis, and manifest neurobehavioral disturbances. Oral treatment with resveratrol promoted motor coordination and improved remyelination with regular compacted myelin in most axons without a significant impact on myelin basic protein (MBP) mRNA expression. These effects are mediated, at least in part, via activating autophagic pathways that may involve SIRT1/FoxO1 activation. This study verified that resveratrol dampens cuprizone-induced demyelination, and partially enhances myelin repair through modulation of the autophagic flux, since interruption of the autophagic machinery by chloroquine reversed the therapeutic potential of resveratrol.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eiman I Zaki
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Y Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Bioscreening and Preclinical Trial Lab, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
La Rosa G, Lonardo MS, Cacciapuoti N, Muscariello E, Guida B, Faraonio R, Santillo M, Damiano S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int J Mol Sci 2023; 24:ijms24087247. [PMID: 37108412 PMCID: PMC10138565 DOI: 10.3390/ijms24087247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial, immune-mediated disease caused by complex gene-environment interactions. Dietary factors modulating the inflammatory status through the control of the metabolic and inflammatory pathways and the composition of commensal gut microbiota, are among the main environmental factors involved in the pathogenesis of MS. There is no etiological therapy for MS and the drugs currently used, often accompanied by major side effects, are represented by immunomodulatory substances capable of modifying the course of the disease. For this reason, nowadays, more attention is paid to alternative therapies with natural substances with anti-inflammatory and antioxidant effects, as adjuvants of classical therapies. Among natural substances with beneficial effects on human health, polyphenols are assuming an increasing interest due to their powerful antioxidant, anti-inflammatory, and neuroprotective effects. Beneficial properties of polyphenols on the CNS are achieved through direct effects depending on their ability to cross the blood-brain barrier and indirect effects exerted in part via interaction with the microbiota. The aim of this review is to examine the literature about the molecular mechanism underlying the protective effects of polyphenols in MS achieved by experiments conducted in vitro and in animal models of the disease. Significant data have been accumulated for resveratrol, curcumin, luteolin, quercetin, and hydroxytyrosol, and therefore we will focus on the results obtained with these polyphenols. Clinical evidence for the use of polyphenols as adjuvant therapy in MS is restricted to a smaller number of substances, mainly curcumin and epigallocatechin gallate. In the last part of the review, a clinical trial studying the effects of these polyphenols in MS patients will also be revised.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Maria Serena Lonardo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| |
Collapse
|
8
|
Beckmann N, Neuhaus A, Zurbruegg S, Volkmer P, Patino C, Joller S, Feuerbach D, Doelemeyer A, Schweizer T, Rudin S, Neumann U, Berth R, Frieauff W, Gasparini F, Shimshek DR. Genetic models of cleavage-reduced and soluble TREM2 reveal distinct effects on myelination and microglia function in the cuprizone model. J Neuroinflammation 2023; 20:29. [PMID: 36755323 PMCID: PMC9909920 DOI: 10.1186/s12974-022-02671-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell-surface immunoreceptor expressed on microglia, osteoclasts, dendritic cells and macrophages. Heterozygous loss-of-function mutations in TREM2, including mutations enhancing shedding form the cell surface, have been associated with myelin/neuronal loss and neuroinflammation in neurodegenerative diseases, such as Alzheimer`s disease and Frontotemporal Dementia. Using the cuprizone model, we investigated the involvement of soluble and cleavage-reduced TREM2 on central myelination processes in cleavage-reduced (TREM2-IPD), soluble-only (TREM2-sol), knockout (TREM2-KO) and wild-type (WT) mice. The TREM2-sol mouse is a new model with selective elimination of plasma membrane TREM2 and a reduced expression of soluble TREM2. In the acute cuprizone model demyelination and remyelination events were reflected by a T2-weighted signal intensity change in magnetic resonance imaging (MRI), most prominently in the external capsule (EC). In contrast to WT and TREM2-IPD, TREM2-sol and TREM2-KO showed an additional increase in MRI signal during the recovery phase. Histological analyses of TREM2-IPD animals revealed no recovery of neuroinflammation as well as of the lysosomal marker LAMP-1 and displayed enhanced cytokine/chemokine levels in the brain. TREM2-sol and, to a much lesser extent, TREM2-KO, however, despite presenting reduced levels of some cytokines/chemokines, showed persistent microgliosis and astrocytosis during recovery, with both homeostatic (TMEM119) as well as activated (LAMP-1) microglia markers increased. This was accompanied, specifically in the EC, by no myelin recovery, with appearance of myelin debris and axonal pathology, while oligodendrocytes recovered. In the chronic model consisting of 12-week cuprizone administration followed by 3-week recovery TREM2-IPD displayed sustained microgliosis and enhanced remyelination in the recovery phase. Taken together, our data suggest that sustained microglia activation led to increased remyelination, whereas microglia without plasma membrane TREM2 and only soluble TREM2 had reduced phagocytic activity despite efficient lysosomal function, as observed in bone marrow-derived macrophages, leading to a dysfunctional phenotype with improper myelin debris removal, lack of remyelination and axonal pathology following cuprizone intoxication.
Collapse
Affiliation(s)
- Nicolau Beckmann
- grid.419481.10000 0001 1515 9979Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Anna Neuhaus
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefan Zurbruegg
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Pia Volkmer
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Claudia Patino
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefanie Joller
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Dominik Feuerbach
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Arno Doelemeyer
- grid.419481.10000 0001 1515 9979Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Tatjana Schweizer
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefan Rudin
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Ulf Neumann
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Ramon Berth
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Wilfried Frieauff
- grid.419481.10000 0001 1515 9979Preclinical Safety, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Fabrizio Gasparini
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Derya R. Shimshek
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| |
Collapse
|
9
|
Hametner S, Silvaieh S, Thurnher M, Dal-Bianco A, Cetin H, Ponleitner M, Zebenholzer K, Pemp B, Trattnig S, Rössler K, Berger T, Lassmann H, Hainfellner JA, Bsteh G. A case of primary optic pathway demyelination caused by oncocytic oligodendrogliopathy of unknown origin. Acta Neuropathol Commun 2022; 10:160. [DOI: 10.1186/s40478-022-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractWe report the case of a 22-year-old woman presenting with an acute onset of dizziness, gait dysbalance and blurred vision. Magnetic resonance imaging included 3 Tesla and 7 Tesla imaging and revealed a T2-hyperintense, T1-hypointense, non-contrast-enhancing lesion strictly confined to the white matter affecting the right optic radiation. An extensive ophthalmologic examination yielded mild quadrantanopia but no signs of optic neuropathy. The lesion was biopsied. The neuropathological evaluation revealed a demyelinating lesion with marked tissue vacuolization and granular myelin disintegration accompanied by mild T cell infiltration and a notable absence of myelin uptake by macrophages. Oligodendrocytes were strikingly enlarged, displaying oncocytic characteristics and showed cytoplasmic accumulation of mitochondria, which had mildly abnormal morphology on electron microscopy. The diagnosis of multiple sclerosis was excluded. Harding's disease, a variant of Leber's hereditary optic neuropathy, was then suspected. However, neither PCR for relevant mutations nor whole exome sequencing yielded known pathogenetic mutations in the patient's genome. We present a pattern of demyelinating tissue injury of unknown etiology with an oncocytic change of oligodendrocytes and a lack of adequate phagocytic response by macrophages, which to the best of our knowledge, has not been described before.
Collapse
|
10
|
Siponimod ameliorates metabolic oligodendrocyte injury via the sphingosine-1 phosphate receptor 5. Proc Natl Acad Sci U S A 2022; 119:e2204509119. [PMID: 36161894 DOI: 10.1073/pnas.2204509119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.
Collapse
|
11
|
Stemazole Promotes Oligodendrocyte Precursor Cell Survival In Vitro and Remyelination In Vivo. Int J Mol Sci 2022; 23:ijms231810756. [PMID: 36142668 PMCID: PMC9500784 DOI: 10.3390/ijms231810756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor cell survival and remyelination. The results show that stemazole enhanced the survival rate and the number of clone formation in a dose-dependent manner and decreased the percentage of cell apoptosis. In particular, the number of cell clones was increased up to 6-fold (p < 0.001) in the stemazole group compared with the control group. In vivo, we assessed the effect of stemazole on recovering the motor dysfunction and demyelination induced by cuprizone (CPZ). The results show that stemazole promoted the recovery of motor dysfunction and the repair of myelin sheaths. Compared with the CPZ group, the stemazole group showed a 30.46% increase in the myelin area (p < 0.001), a 37.08% increase in MBP expression (p < 0.01), and a 1.66-fold increase in Olig2 expression (p < 0.001). Histologically, stemazole had a better effect than the positive control drugs. In conclusion, stemazole promoted OPC survival in vitro and remyelination in vivo, suggesting that this compound may be used as a therapeutic agent against demyelinating disease.
Collapse
|
12
|
Mojaverrostami S, Khadivi F, Zarini D, Mohammadi A. Combination effects of mesenchymal stem cells transplantation and anodal transcranial direct current stimulation on a cuprizone-induced mouse model of multiple sclerosis. J Mol Histol 2022; 53:817-831. [PMID: 35947228 DOI: 10.1007/s10735-022-10092-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current stimulation (tDCS), is a safe, non-invasive procedure for brain stimulating which can enhance working memory, cognitive neurohabitation and motor recovery. Here, we evaluated the effects of tDCS treatment and Mesenchymal stem cells (MSCs) transplantation on remyelination ability of a Cuprizone (CPZ)-induced demyelination mouse model. tDCS significantly increased the motor coordination and balance abilities in CPZ + tDCS and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Luxol fast blue (LFB) staining showed that tDCS and MSCs transplantation could increase remyelination capacity in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. But, the effect of tDCS with MSCs transplantation on remyelination process was larger than each of treatment alone. Immunofluorescence technique indicated that the numbers of Olig2+ cells were increased by tDCS and MSCs transplantation in CPZ + tDCS and CPZ + MSCs mice compared to the CPZ mice. Interestingly, the combination effect of tDCS and MSCs was larger than each of treatment alone on Oligodendrocytes population. MSCs transplantation significantly decreased the TUNEL+ cells in CPZ + MSCs and CPZ + tDCS + MSCs mice in comparison to the CPZ mice. Also, the combination effects of tDCS and MSCs transplantation was much larger than each of treatment alone on increasing the mRNA expression of BDNF and Sox2, while decreasing P53 as compared to CPZ mice. It can be concluded that the combination usage of tDCS and MSCs transplantation enhance remyelination process in CPZ-treated mice by increasing transplanted stem cell homing, oligodendrocyte generation and decreasing apoptosis.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
14
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
15
|
Chaudhary R, Albrecht S, Datunashvili M, Cerina M, Lüttjohann A, Han Y, Narayanan V, Chetkovich DM, Ruck T, Kuhlmann T, Pape HC, Meuth SG, Zobeiri M, Budde T. Modulation of Pacemaker Channel Function in a Model of Thalamocortical Hyperexcitability by Demyelination and Cytokines. Cereb Cortex 2022; 32:4397-4421. [PMID: 35076711 PMCID: PMC9574242 DOI: 10.1093/cercor/bhab491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/02/2022] Open
Abstract
A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike–wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.
Collapse
Affiliation(s)
- Rahul Chaudhary
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Annika Lüttjohann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Ye Han
- Vanderbilt University Medical Center, Department of Neurology, Nashville, TN 37232, USA
| | - Venu Narayanan
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dane M Chetkovich
- Vanderbilt University Medical Center, Department of Neurology, Nashville, TN 37232, USA
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mehrnoush Zobeiri
- Address correspondence to Dr Thomas Budde, Wilhelms-Universität, Institut für Physiologie I, Robert-Koch-Str. 27a, D-48149 Münster, Germany. ; Dr Mehrnoush Zobeiri, Wilhelms-Universität, Institut für Physiologie I, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| | - Thomas Budde
- Address correspondence to Dr Thomas Budde, Wilhelms-Universität, Institut für Physiologie I, Robert-Koch-Str. 27a, D-48149 Münster, Germany. ; Dr Mehrnoush Zobeiri, Wilhelms-Universität, Institut für Physiologie I, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| |
Collapse
|
16
|
Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination. Neurosci Lett 2022; 766:136287. [PMID: 34634393 DOI: 10.1016/j.neulet.2021.136287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.
Collapse
|
17
|
Huang L, Fung E, Bose S, Popp A, Böser P, Memmott J, Kutskova YA, Miller R, Tarcsa E, Klein C, Veldman GM, Mueller BK, Cui YF. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis 2021; 159:105492. [PMID: 34478849 DOI: 10.1016/j.nbd.2021.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Repulsive guidance molecule A (RGMa) is a potent inhibitor of axonal growth and a regulator of neuronal cell death. It is up-regulated following neuronal injury and accumulates in chronic neurodegenerative diseases. Neutralizing RGMa has the potential to promote neuroregeneration and neuroprotection. Previously we reported that a rat anti-N terminal RGMa (N-RGMa) antibody r5F9 and its humanized version h5F9 (ABT-207) promote neuroprotection and neuroregeneration in preclinical neurodegenerative disease models. However, due to its cross-reactivity to RGMc/hemojuvelin, ABT-207 causes iron accumulation in vivo, which could present a safety liability. Here we report the generation and characterization of a novel RGMa-selective anti-N-RGMa antibody elezanumab, which is currently under Phase 2 clinical evaluation in multiple disease indications. Elezanumab, a human monoclonal antibody generated by in vitro PROfusion mRNA display technology, competes with ABT-207 in binding to N-RGMa but lacks RGMc cross-reactivity with no impact on iron metabolism. It neutralizes repulsive activity of soluble RGMa in vitro and blocks membrane RGMa mediated BMP signaling. In the optic nerve crush and optic neuritis models, elezanumab promotes axonal regeneration and prevents retinal nerve fiber layer degeneration. In the spinal targeted experimental autoimmune encephalomyelitis (EAE) model, elezanumab promotes axonal regeneration and remyelination, decreases inflammatory lesion area and improves functional recovery. Finally, in the mouse cuprizone model, elezanumab reduces demyelination, which is consistent with its inhibitory effect on BMP signaling. Taken together, these preclinical data demonstrate that elezanumab has neuroregenerative and neuroprotective activities without impact on iron metabolism, thus providing a compelling rationale for its clinical development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Sahana Bose
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Andreas Popp
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Preethne Böser
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - John Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Renee Miller
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Edit Tarcsa
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | | | - Bernhard K Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Yi-Fang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| |
Collapse
|
18
|
Moradbeygi K, Parviz M, Rezaeizadeh H, Zargaran A, Sahraian MA, Mehrabadi S, Nikbakhtzadeh M, Zahedi E. Anti-LINGO-1 improved remyelination and neurobehavioral deficit in cuprizone-induced demyelination. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:900-907. [PMID: 34712419 PMCID: PMC8528247 DOI: 10.22038/ijbms.2021.53531.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): Central nervous system demyelination is the main feature of multiple sclerosis (MS). The most important unmet need in MS is use of treatments that delay the progression of the disease. Leucine-rich repeat and Immunoglobulin-like domain containing NOGO receptor-interacting protein 1(LINGO-1) have been known as inhibitors of oligodendrocyte differentiation and myelination. Materials and Methods: We investigated LINGO-1 antibody effects on remyelination and neurobehavioral deficit using cuprizone-induced demyelination. Animals were randomly divided into three groups (n = 10): (1) Control group; received the regular diet, (2) CPZ group; normal saline was injected intraperitoneally, and (3) Treatment group; LINGO-1 antibody (10 mg/kg) was injected IP once every six days for 3 weeks. We assessed the level of myelin basic protein (MBP), neurofilament heavy chain (NF200), and Brain-derived neuroprotective factor (BDNF) in the corpus callosum (CC) by immunostaining against MBP, NF200, and BDNF. Results: We found decreased levels of MBP, NF200, and BDNF in demyelinated CC, and anti-LINGO-1 treatment improved demyelinated structures. Furthermore, motor impairment was measured by Open-field (OFT) and Balance beam tests. In the treatment group, motor impairment was significantly improved. Conclusion: These results provide evidence that LINGO-1 antibody can improve remyelination and neurobehavioral deficit.
Collapse
Affiliation(s)
- Khadijeh Moradbeygi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Department of Neurology, Neuroscience Institute, MS Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang Z, Baharani A, Wei Z, Truong D, Bi X, Wang F, Li XM, Verge VMK, Zhang Y. Low field magnetic stimulation promotes myelin repair and cognitive recovery in chronic cuprizone mouse model. Clin Exp Pharmacol Physiol 2021; 48:1090-1102. [PMID: 33638234 DOI: 10.1111/1440-1681.13490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease featured with neuroinflammation, demyelination, and the loss of oligodendrocytes. Cognitive impairment and depression are common neuropsychiatric symptoms in MS that are poorly managed with the present interventions. OBJECTIVE This study aimed to investigate the effects of low field magnetic stimulation (LFMS), a novel non-invasive neuromodulation technology, on cognitive impairment and depressive symptoms associated with MS using a mouse model of demyelination. METHODS C57BL female mice were fed with a 0.2% cuprizone diet for 12 weeks to induce a chronic demyelinating model followed by 4 weeks of cuprizone withdrawal with either sham or LFMS treatment. RESULTS Improved cognition and depression-like behaviour and restored weight gain were observed in mice with LFMS treatment. Immunohistochemical and immunoblotting data showed enhanced myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein expressions (MOG) in the prefrontal cortex of mice with LFMS treatment, supporting that myelin repair was promoted. LFMS also increased the protein expression of mature oligodendrocyte biomarker glutathione-S-transferase (GST-π). In addition, expression of TGF-β and associated receptors were elevated with LFMS treatment, implicating this pathway in the response. CONCLUSION Results from the present study revealed LFMS to have neuroprotective effects, suggesting that LFMS has potential therapeutic value for treating cognitive impairment and depression related to demyelination disorders.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Akanksha Baharani
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zelan Wei
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Davin Truong
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Fei Wang
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario M, Dina G, Fredrickx E, Fermo I, Martinelli V, Newcombe J, Taveggia C, Quattrini A, Comi G, Farina C. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A 2021; 118:e2025804118. [PMID: 34183414 PMCID: PMC8271600 DOI: 10.1073/pnas.2025804118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Demyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage. In vitro and ex vivo approaches highlighted that astrocyte TrkB supported scar formation and glia proliferation even in the absence of neurotrophin binding, indicating TrkB transactivation in response to inflammatory or toxic mediators. Notably, our neuropathological studies demonstrated copper dysregulation in MS and model lesions and TrkB-dependent expression of copper transporter (CTR1) on glia cells during neuroinflammation. In vitro experiments evidenced that TrkB was critical for the generation of glial intracellular calcium flux and CTR1 up-regulation induced by stimuli distinct from neurotrophins. These events led to copper uptake and release by the astrocyte, and in turn resulted in oligodendrocyte loss. Collectively, these data demonstrate a pathogenic demyelination mechanism via the astrocyte release of copper and open up the possibility of restoring copper homeostasis in the white matter as a therapeutic target in MS.
Collapse
Affiliation(s)
- Emanuela Colombo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Daniela Triolo
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Claudia Bassani
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Bedogni
- San Raffaele Rett Research Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Di Dario
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgia Dina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Evelien Fredrickx
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Isabella Fermo
- Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vittorio Martinelli
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Carla Taveggia
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giancarlo Comi
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132, Milan, Italy;
| |
Collapse
|
21
|
Ramasamy R, Smith PP. PART 2: Mouse models for multiple sclerosis research. Neurourol Urodyn 2021; 40:958-967. [PMID: 33739481 DOI: 10.1002/nau.24654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Lower urinary tract symptoms and dysfunction (LUTS/LUTD) contribute to loss of quality of life, morbidity, and need for medical intervention in most patients with multiple sclerosis (MS). Although MS is an inflammatory neurodegenerative disease, clinical manifestations including continence control disorders have traditionally been attributed to the loss of neural signaling due to neurodegeneration. Clinical approaches to MS-LUTS/LUTD have focused on addressing symptoms in the context of urodynamic dysfunctions as pathophysiologic understandings are incomplete. The mouse model provides a useful research platform for discovery of more detailed molecular, cellular, and tissue-level knowledge of the disease and its clinical manifestations. The aim of this two-part review is to provide a state-of-the-art update on the use of the mouse model for MS research, with a focus on lower urinary tract symptoms. Part I presents a summary of current understanding of MS pathophysiology, the impact on lower urinary tract symptoms, and briefly introduces the types of mouse models available to study MS. Part II presents the common animal models that are currently available to study MS, their mechanism, relevance to MS-LUTS/LUTD and their urinary pathophysiology, advantages and disadvantages.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
22
|
Khalilian B, Madadi S, Fattahi N, Abouhamzeh B. Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. J Mol Histol 2021; 52:125-134. [PMID: 33245472 DOI: 10.1007/s10735-020-09929-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is a chronic, progressive demyelinating disease of the central nervous system that causes the most disability in young people, besides trauma. Coenzyme Q10 (CoQ10)-also known as ubiquinone-is an endogenous lipid-soluble antioxidant in the mitochondrial oxidative respiratory chain which can reduce oxidative stress and inflammation, the processes associated with demyelination in MS. Cuprizone (CPZ) intoxication is a well-established model of inducing MS, best for studying demyelination-remyelination. In this study, we examined for the first time the role of CoQ10 in preventing demyelination and induction of remyelination in the chronic CPZ model of MS. 40 male mice were divided into four groups. 3 group chewed CPZ-containing food for 12 weeks to induce MS. After 4 weeks, one group were treated with CoQ10 (150 mg/kg/day) by daily gavage until the end of the experiment, while CPZ poisoning continued. At the end of 12 weeks, tail suspension test (TST) and open field test (OFT) was taken and animals were sacrificed to assess myelin basic protein (MBP), oligodendrocyte transcription factor-1 (Olig1), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) by real-time polymerase chain reaction (real-time PCR) and total antioxidant capacity (TAC) and superoxide dismutase (SOD) by Elisa test. Luxol fast blue (LFB) staining was used to evaluate histological changes. CoQ10 administration promoted remyelination in histological findings. MBP and Olig-1 expression were increased significantly in CoQ10 treated group compare to the CPZ-intoxicated group. CoQ10 treatment alleviated stress oxidative status induced by CPZ and dramatically suppress inflammatory biomarkers. CPZ ingestion made no significant difference between normal control group and the CPZ-intoxicated group in TST and OFT. CoQ10 can enhance remyelination in the CPZ model and potentially might have same effects in MS patients.
Collapse
Affiliation(s)
- Behnam Khalilian
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, 1411718541, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nima Fattahi
- Non-communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Abouhamzeh
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, 1411718541, Tehran, Iran.
| |
Collapse
|
23
|
Ineichen BV, Zhu K, Carlström KE. Axonal mitochondria adjust in size depending on g-ratio of surrounding myelin during homeostasis and advanced remyelination. J Neurosci Res 2020; 99:793-805. [PMID: 33368634 PMCID: PMC7898477 DOI: 10.1002/jnr.24767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Demyelinating pathology is common in many neurological diseases such as multiple sclerosis, stroke, and Alzheimer's disease and results in axonal energy deficiency, dysfunctional axonal propagation, and neurodegeneration. During myelin repair and also during myelin homeostasis, mutual regulative processes between axons and myelin sheaths are known to be essential. However, proficient tools are lacking to characterize axon‐myelin interdependence during (re)myelination. Thus, we herein investigated adaptions in myelin sheath g‐ratio as a proxy for myelin thickness and axon metabolic status during homeostasis and myelin repair, by using axonal mitochondrial size as a proxy for axonal metabolic status. We found that axons with thinner myelin sheaths had larger axonal mitochondria; this was true for across different central nervous system tracts as well as across species, including humans. The link between myelin sheath thickness and mitochondrial size was temporarily absent during demyelination but reestablished during advanced remyelination, as shown in two commonly used animal models of toxic demyelination. By further exploring this association in mice with either genetically induced mitochondrial or myelin dysfunction, we show that axonal mitochondrial size adjusts in response to the thickness of the myelin sheath but not vice versa. This pinpoints the relevance of mitochondrial adaptation upon myelin repair and might open a new therapeutic window for remyelinating therapies.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden
| | - Karl E Carlström
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden.,Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Dong F, Liu D, Jiang F, Liu Y, Wu X, Qu X, Liu J, Chen Y, Fan H, Yao R. Conditional Deletion of Foxg1 Alleviates Demyelination and Facilitates Remyelination via the Wnt Signaling Pathway in Cuprizone-Induced Demyelinated Mice. Neurosci Bull 2020; 37:15-30. [PMID: 33015737 PMCID: PMC7811968 DOI: 10.1007/s12264-020-00583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system (CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone (CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type (WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3β, a key regulatory kinase in the Wnt pathway, regulates the ability of β-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763, a selective inhibitor of GSK-3β activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3β, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dajin Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Feiyu Jiang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaping Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
25
|
Mojaverrostami S, Pasbakhsh P, Madadi S, Nekoonam S, Zarini D, Noori L, Shiri E, Salama M, Zibara K, Kashani IR. Calorie restriction promotes remyelination in a Cuprizone-Induced demyelination mouse model of multiple sclerosis. Metab Brain Dis 2020; 35:1211-1224. [PMID: 32638202 DOI: 10.1007/s11011-020-00597-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Over the past few decades several attempts have been made to introduce a potential and promising therapy for Multiple sclerosis (MS). Calorie restriction (CR) is a dietary manipulation to reduce calorie intake which has been shown to improve neuroprotection and attenuate neurodegenerative disorders. Here, we evaluated the effect of 33% CR regimen for 4 weeks on the remyelination capacity of Cuprizone (CPZ) induced demyelination in a mouse model of MS. Results showed that CR induced a significant increase in motor coordination and balance performance in CPZ mice. Also, luxol fast blue (LFB) staining showed that CR regimen significantly improved the remyelination in the corpus callosum of CPZ + CR mice compared to the CPZ group. In addition, CR regimen significantly increased the transcript expression levels of BDNF, Sox2, and Sirt1 in the corpus callosum of CPZ mice, while decreasing the p53 levels. Moreover, CR regimen significantly decreased the apoptosis rate. Furthermore, astrogliosis (GFAP + astrocytes) and microgliosis (Iba-1 + microglia) were significantly decreased by CR regimen while oligodendrogenesis (Olig2+) and Sirt1 + cell expression were significantly increased in the corpus callosum of CPZ + CR mice compared to the CPZ group. In conclusion, CR regimen can promote remyelination potential in a CPZ-demyelinating mouse model of MS by increasing oligodendrocyte generation while decreasing their apoptosis.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Noori
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Shiri
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Salama
- Neuroscience Unit, Menoufia Medical School, Shebin El Kom, Egypt
| | - Kazem Zibara
- ER045, PRASE, DSST and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Dominguez S, Varfolomeev E, Brendza R, Stark K, Tea J, Imperio J, Ngu H, Earr T, Foreman O, Webster JD, Easton A, Vucic D, Bingol B. Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death Differ 2020; 28:915-931. [PMID: 32994544 DOI: 10.1038/s41418-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.
Collapse
Affiliation(s)
- Sara Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Kim Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joy Tea
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Timothy Earr
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
27
|
The ameliorative effects of a phenolic derivative of Moringa oleifera leave against vanadium-induced neurotoxicity in mice. IBRO Rep 2020; 9:164-182. [PMID: 32803016 PMCID: PMC7417907 DOI: 10.1016/j.ibror.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022] Open
Abstract
Vanadium, a transition series metal released during some industrial activities, induces oxidative stress and lipid peroxidation. Ameliorative effect of a pure compound from the methanolic extract of Moringa oleifera leaves, code-named MIMO2, in 14-day old mice administered with vanadium (as sodium metavanadate 3 mg/kg) for 2 weeks was assessed. Results from body weight monitoring, muscular strength, and open field showed slight reduction in body weight and locomotion deficit in vanadium-exposed mice, ameliorated with MIMO2 co-administration. Degeneration of the Purkinje cell layer and neuronal death in the hippocampal CA1 region were observed in vanadium-exposed mice and both appeared significantly reduced with MIMO2 co-administration. Demyelination involving the midline of the corpus callosum, somatosensory and retrosplenial cortices was also reduced with MIMO2. Microglia activation and astrogliosis observed through immunohistochemistry were also alleviated. Immunohistochemistry for myelin, axons and oligodendrocyte lineage cells were also carried out and showed that in vanadium-treated mice brains, oligodendrocyte progenitor cells increased NG2 immunolabelling with hypertrophy and bushy, ramified appearance of their processes. MIMO2 displayed ameliorative and antioxidative effects in vanadium-induced neurotoxicity in experimental murine species. This is likely the first time MIMO2 is being used in vivo in an animal model.
Collapse
|
28
|
Shao Y, Ding J, He QX, Ma QR, Liu Q, Zhang C, Lv HW, Liu J. Effect of Sox10 on remyelination of the hippocampus in cuprizone-induced demyelinated mice. Brain Behav 2020; 10:e01623. [PMID: 32363773 PMCID: PMC7303379 DOI: 10.1002/brb3.1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The low number of oligodendrocytes (OLs) in the hippocampus of patients with schizophrenia suggests that hippocampal demyelination is changed in this condition. Sox10 is expressed throughout OL development. The effect of Sox10 on myelin regeneration is unknown. This study aimed to analyze changes in Sox10 expression in the hippocampus and its regulatory role in hippocampal myelin regeneration in a mouse model of demyelination. METHODS Mice were fed 0.2% cuprizone (CPZ) for six weeks to establish the acute demyelinating model (CPZ mice). Behavioral changes of these mice were assessed via open field and tail suspension tests. The ultrastructure of the myelin sheaths in the hippocampus was observed by transmission electron microscopy. The expression levels of myelin sheath-related proteins and the transcription factor Sox10 were detected via immunohistochemistry and Western blots. Furthermore, Sox10-overexpressing adeno-associated virus was injected into the hippocampus after establishing the demyelinating model to investigate effects of Sox10 on remyelination. RESULTS CPZ mice showed abnormal behavioral changes, a large number of pathological changes in the myelin sheaths, and significantly reduced protein expression of the myelin sheath markers myelin basic protein and proteolipid protein. This confirmed that the demyelinating model was successfully established. Meanwhile, the protein expression of the oligodendrocyte precursor cell marker neural/glial antigen 2 (NG2) increased, whereas Sox10 expression decreased. After Sox10 overexpression in the hippocampus, the abnormal behavior was improved, the ultrastructure of the myelin sheaths was restored, and the expression of myelin sheath protein was reversed. NG2 expression was upregulated. CONCLUSION Overexpression of Sox10 promotes hippocampal remyelination after CPZ-induced acute demyelination.
Collapse
Affiliation(s)
- Yu Shao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Juan Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Qian-Xiong He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Quan-Rui Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Hao-Wen Lv
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
29
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
30
|
Sanabria-Castro A, Flores-Díaz M, Alape-Girón A. Biological models in multiple sclerosis. J Neurosci Res 2019; 98:491-508. [PMID: 31571267 DOI: 10.1002/jnr.24528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Considering the etiology of multiple sclerosis (MS) is still unknown, experimental models resembling specific aspects of this immune-mediated demyelinating human disease have been developed to increase the understanding of processes related to pathogenesis, disease evolution, evaluation of therapeutic interventions, and demyelination and remyelination mechanisms. Based on the nature of the investigation, biological models may include in vitro, in vivo, and ex vivo assessments. Even though these approaches have disclosed valuable information, every disease animal model has limitations and can only replicate specific features of MS. In vitro and ex vivo models generally do not reflect what occurs in the organism, and in vivo animal models are more likely used; nevertheless, they are able to reproduce only certain stages of the disease. In vivo MS disease animal models in mammals include: experimental autoimmune encephalomyelitis, viral encephalomyelitis, and induced demyelination. This review examines and describes the most common biological disease animal models for the study of MS, their specific characteristics and limitations.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, San Juan de Dios Hospital CCSS, San José, Costa Rica.,School of Pharmacy, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
31
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|
32
|
Animal Weight Is an Important Variable for Reliable Cuprizone-Induced Demyelination. J Mol Neurosci 2019; 68:522-528. [PMID: 30937629 DOI: 10.1007/s12031-019-01312-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
An elegant model to study mechanisms operant during oligodendrocyte degeneration and subsequent demyelination is the cuprizone model. In that model, mice are intoxicated with the copper chelation agent cuprizone which results in early oligodendrocyte stress, oligodendrocyte apoptosis, and, finally, demyelination. Here, we systematically investigated to what extent the animals' weight at the beginning of the cuprizone intoxication period is critical for the reproducibility of the cuprizone-induced pathology. We can demonstrate that a negative correlation exists between the two variables "extent of cuprizone-induced demyelination" and "starting weight." Demyelination and microglia activation were more severe in low weight compared to heavy weight mice. These findings are highly relevant for the experimental design using the cuprizone model.
Collapse
|
33
|
Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis. Sci Rep 2019; 9:822. [PMID: 30696832 PMCID: PMC6351564 DOI: 10.1038/s41598-018-35734-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
An unmet but urgent medical need is the development of myelin repair promoting therapies for Multiple Sclerosis (MS). Many such therapies have been pre-clinically tested using different models of toxic demyelination such as cuprizone, ethidium bromide, or lysolecithin and some of the therapies already entered clinical trials. However, keeping track on all these possible new therapies and their efficacy has become difficult with the increasing number of studies. In this study, we aimed at summarizing the current evidence on such therapies through a systematic review and at providing an estimate of the effects of tested interventions by a meta-analysis. We show that 88 different therapies have been pre-clinically tested for remyelination. 25 of them (28%) entered clinical trials. Our meta-analysis also identifies 16 promising therapies which did not enter a clinical trial for MS so far, among them Pigment epithelium-derived factor, Plateled derived growth factor, and Tocopherol derivate TFA-12.We also show that failure in bench to bedside translation from certain therapies may in part be attributable to poor study quality. By addressing these problems, clinical translation might be smoother and possibly animal numbers could be reduced.
Collapse
|
34
|
Kumar P, Sharma G, Gupta V, Kaur R, Thakur K, Malik R, Kumar A, Kaushal N, Katare OP, Raza K. Oral Delivery of Methylthioadenosine to the Brain Employing Solid Lipid Nanoparticles: Pharmacokinetic, Behavioral, and Histopathological Evidences. AAPS PharmSciTech 2019; 20:74. [PMID: 30631981 DOI: 10.1208/s12249-019-1296-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to orally deliver methylthioadenosine (MTA) to the brain employing solid lipid nanoparticles (SLNs) for the management of neurological conditions like multiple sclerosis. The stearic acid-based SLNs were below 100 nm with almost neutral zeta potential and offered higher drug entrapment and drug loading. Cuprizone-induced demyelination model in mice was employed to mimic the multiple sclerosis-like conditions. It was observed that the MTA-loaded SLNs were able to maintain the normal metabolism, locomotor activity, motor coordination, balancing, and grip strength of the rodents in substantially superior ways vis-à-vis plain MTA. Histopathological studies of the corpus callosum and its subsequent staining with myelin staining dye luxol fast blue proved the potential of MTA-loaded SLNs in the remyelination of neurons. The pharmacokinetic studies provided the evidences for improved bioavailability and enhanced bioresidence supporting the pharmacodynamic findings. The studies proved that SLN-encapsulated MTA can be substantially delivered to the brain and can effectively remyelinate the neurons. It can reverse the multiple sclerosis-like symptoms in a safer and effective manner, that too by oral route.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt., Ajmer, Rajasthan, 305817, India
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781125, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Varun Gupta
- Division of Pharmacology, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Ramanpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Kanika Thakur
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt., Ajmer, Rajasthan, 305817, India
| | - Anil Kumar
- Division of Pharmacology, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Om Prakash Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt., Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
35
|
Ohgomori T, Jinno S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 2019; 363:98-110. [DOI: 10.1016/j.taap.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
36
|
Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O. Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases. Curr Neuropharmacol 2019; 17:129-141. [PMID: 28714395 PMCID: PMC6343207 DOI: 10.2174/1570159x15666170717120343] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological disorders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropathy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiology and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oligodendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callosum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several demyelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some authors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating diseases. CONCLUSION for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demyelinating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Oscar Gonzalez-Perez
- Address correspondence to this author at the Facultad de Psicologia, Universidad de Colima, Colima, COL 28040, Mexico; Tel: +52 (312) 3161091; E-mail: :
| |
Collapse
|
37
|
Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem Pharmacol 2018; 159:154-171. [PMID: 30529211 DOI: 10.1016/j.bcp.2018.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Myelin loss subsequent to oligodendrocyte death has been reported in a variety of myelin-associated disorders such as multiple sclerosis (MS). Lipopolysaccharide (LPS) has been shown to elicit cellular responses in the central nervous system (CNS) and trigger immune infiltrates and glial cells to release a variety of inflammatory cytokines and mediators. LPS-induced oligodendrocytes toxicity may be chosen as an efficient model to evaluate the role of oligodendrocytes in neuroprotective activities of compounds. β-Caryophyllene (BCP) is a selective type 2 cannabinoid (CB2) receptor agonist. However, the mechanisms underlying the anti-inflammatory effects of BCP are not completely understood. On this basis, we aimed to investigate the protective effects of a wide range of BCP concentrations against LPS-induced toxicity in a proliferative oligodendrocyte cell line (OLN-93) and evaluate the possible correlation between BCP concentration and selective modulation of CB2, Nrf2, sphingomyelinase (SMase) and peroxisome proliferator-activated receptors (PPAR)-γ signaling pathways. We found that LPS significantly increases the levels of reactive oxygen species (ROS), nitric oxide (NO) metabolite and tumor necrosis factor (TNF)-α production while decreases the level of GSH. BCP could prevent LPS-induced cytotoxicity and excessive production of NO, ROS, and TNF-α. Also, we demonstrated that BCP's protective effects against LPS-induced oligodendrocytes toxicity were mediated via the CB2 receptor through different pathways including Nrf2/HO-1/anti-oxidant axis, and PPAR-γ, at low (0.2 and 1 µM), and high (10-50 µM) concentrations, respectively. Additionally, we observed that the addition of SMase inhibitors imipramine (IMP) and fluoxetine (FLX) synergistically increased the protective effects of BCP. Finally, BCP at low concentrations exerted promising protective effects that could be considered for the treatment of neurodegenerative disorders such as MS. However, more studies using other models of neurodegenerative diseases should be undertaken to assess different parameters such as the activity or expression of SMase.
Collapse
|
38
|
Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, Aslani S. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 2018; 68:25-38. [DOI: 10.1007/s00011-018-1185-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
|
39
|
Nystad AE, Torkildsen Ø, Wergeland S. Effects of vitamin D on axonal damage during de- and remyelination in the cuprizone model. J Neuroimmunol 2018; 321:61-65. [DOI: 10.1016/j.jneuroim.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
|
40
|
Jakovac H, Grubić Kezele T, Radošević-Stašić B. Expression Profiles of Metallothionein I/II and Megalin in Cuprizone Model of De- and Remyelination. Neuroscience 2018; 388:69-86. [PMID: 30025861 DOI: 10.1016/j.neuroscience.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022]
Abstract
Copper chelator cuprizone (CPZ) is neurotoxicant, which selectively disrupts oligodendroglial respiratory chain, leading to oxidative stress and subsequent apoptosis. Demyelination is, however, followed by spontaneous remyelination owing to the activation of intrinsic CNS repair mechanisms. To explore the participation of metallothioneins (MTs) in these processes, in this study we analyzed the expression profiles of MT-I/II and their receptor megalin (low-density lipoprotein receptor related protein-2) in the brain of mice subjected to different protocols of CPZ feeding. Experiments were performed in female C57BL/6 mice fed with 0.25% CPZ during 1, 3 and 5 weeks. They were sacrificed immediately after feeding with CPZ or 2 weeks after the withdrawal of CPZ. The data showed that CPZ-induced demyelination was followed by high astrogliosis and enhanced expression of MTs and megalin in white (corpus callosum and internal capsule) and gray matter of the brain (cortex, hippocampus, and cerebellum). Moreover, in numerous cortical neurons and progenitor cells the signs of MT/megalin interactions and Akt1 phosphorylation was found supporting the hypothesis that MTs secreted from the astrocytes might directly affect the neuronal differentiation and survival. Furthermore, in mice treated with CPZ for 5 weeks the prominent MTs and megalin immunoreactivities were found on several neural stem cells and oligodendrocyte progenitors in subgranular zone of dentate gyrus and subventricular zone of lateral ventricles pointing to high modulatory effect of MTs on adult neuro- and oligodendrogenesis. The data show that MT I/II perform important cytoprotective and growth-regulating functions in remyelinating processes activated after toxic demyelinating insults.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia.
| |
Collapse
|
41
|
Kumar P, Sharma G, Gupta V, Kaur R, Thakur K, Malik R, Kumar A, Kaushal N, Raza K. Preclinical Explorative Assessment of Dimethyl Fumarate-Based Biocompatible Nanolipoidal Carriers for the Management of Multiple Sclerosis. ACS Chem Neurosci 2018; 9:1152-1158. [PMID: 29357233 DOI: 10.1021/acschemneuro.7b00519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease in which myelin sheath damage occurs due to internal and external factors. MS especially affects the young population. Dimethyl fumarate (DMF) is a promising agent for MS treatment, although it is associated with concerns such as poor brain permeation, multiple dosing, and gastrointestinal flushing. The present study attempts to evaluate the preclinical performance of specially designed DMF-based lipoidal nanoparticles in a cuprizone-induced demyelination model in rodents. The studies proved the efficacy of lipid-based nanoparticles containing DMF in a once-a-day dosage regimen over that of thrice-a-day plain DMF administration on crucial parameters like motor coordination, grip strength, mortality, body weight, and locomotor activity. However, neither blank lipid nor blank neuroprotective (vitamins A, D, and E) loaded nanoparticles were able to elicit any desirable behavioral response. Histopathological studies showed that the designed once-a-day DMF nanomedicines were well tolerated and rejuvenated the myelin sheath vis-à-vis the plain DMF thrice-a-day regimen. These findings provide proof of concept for a biocompatible nanomedicine for MS with tremendous promise for effective brain delivery and patient compliance on the grounds of a reduction in the dosage frequency.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandar Sindri , Distt. Ajmer , Rajasthan , India 305817
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India 160014
| | - Varun Gupta
- Pharmacology Division, University Institute of Pharmaceutical Sciences , UGC Centre of Advanced Studies (UGC-CAS), Panjab University , Chandigarh , India 160014
| | - Ramanpreet Kaur
- Department of Biophysics , Panjab University , Chandigarh , India 160014
| | - Kanika Thakur
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India 160014
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandar Sindri , Distt. Ajmer , Rajasthan , India 305817
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences , UGC Centre of Advanced Studies (UGC-CAS), Panjab University , Chandigarh , India 160014
| | - Naveen Kaushal
- Department of Biophysics , Panjab University , Chandigarh , India 160014
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Bandar Sindri , Distt. Ajmer , Rajasthan , India 305817
| |
Collapse
|
42
|
Protective potential of dimethyl fumarate in a mouse model of thalamocortical demyelination. Brain Struct Funct 2018; 223:3091-3106. [PMID: 29744572 PMCID: PMC6132667 DOI: 10.1007/s00429-018-1680-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Alterations in cortical cellular organization, network functionality, as well as cognitive and locomotor deficits were recently suggested to be pathological hallmarks in multiple sclerosis and corresponding animal models as they might occur following demyelination. To investigate functional changes following demyelination in a well-defined, topographically organized neuronal network, in vitro and in vivo, we focused on the primary auditory cortex (A1) of mice in the cuprizone model of general de- and remyelination. Following myelin loss in this model system, the spatiotemporal propagation of incoming stimuli in A1 was altered and the hierarchical activation of supra- and infragranular cortical layers was lost suggesting a profound effect exerted on neuronal network level. In addition, the response latency in field potential recordings and voltage-sensitive dye imaging was increased following demyelination. These alterations were accompanied by a loss of auditory discrimination abilities in freely behaving animals, a reduction of the nuclear factor-erythroid 2-related factor-2 (Nrf-2) protein in the nucleus in histological staining and persisted during remyelination. To find new strategies to restore demyelination-induced network alteration in addition to the ongoing remyelination, we tested the cytoprotective potential of dimethyl fumarate (DMF). Therapeutic treatment with DMF during remyelination significantly modified spatiotemporal stimulus propagation in the cortex, reduced the cognitive impairment, and prevented the demyelination-induced decrease in nuclear Nrf-2. These results indicate the involvement of anti-oxidative mechanisms in regulating spatiotemporal cortical response pattern following changes in myelination and point to DMF as therapeutic compound for intervention.
Collapse
|
43
|
Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective Modulation of TNF-TNFRs Signaling: Insights for Multiple Sclerosis Treatment. Front Immunol 2018; 9:925. [PMID: 29760711 PMCID: PMC5936749 DOI: 10.3389/fimmu.2018.00925] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Autoimmunity develops when self-tolerance mechanisms are failing to protect healthy tissue. A sustained reaction to self is generated, which includes the generation of effector cells and molecules that destroy tissues. A way to restore this intrinsic tolerance is through immune modulation that aims at refurbishing this immunologically naïve or unresponsive state, thereby decreasing the aberrant immune reaction taking place. One major cytokine has been shown to play a pivotal role in several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS): tumor necrosis factor alpha (TNFα) modulates the induction and maintenance of an inflammatory process and it comes in two variants, soluble TNF (solTNF) and transmembrane bound TNF (tmTNF). tmTNF signals via TNFR1 and TNFR2, whereas solTNF signals mainly via TNFR1. TNFR1 is widely expressed and promotes mainly inflammation and apoptosis. Conversely, TNFR2 is restricted mainly to immune and endothelial cells and it is known to activate the pro-survival PI3K-Akt/PKB signaling pathway and to sustain regulatory T cells function. Anti-TNFα therapies are successfully used to treat diseases such as RA, colitis, and psoriasis. However, clinical studies with a non-selective inhibitor of TNFα in MS patients had to be halted due to exacerbation of clinical symptoms. One possible explanation for this failure is the non-selectivity of the treatment, which avoids TNFR2 stimulation and its immune and tissue protective properties. Thus, a receptor-selective modulation of TNFα signal pathways provides a novel therapeutic concept that might lead to new insights in MS pathology with major implications for its effective treatment.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
44
|
Kojima W, Hayashi K. Changes in the axo-glial junctions of the optic nerves of cuprizone-treated mice. Histochem Cell Biol 2018; 149:529-536. [PMID: 29460173 DOI: 10.1007/s00418-018-1654-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
Demyelination induced by cuprizone in mice has served a useful model system for the study of demyelinating diseases, such as multiple sclerosis. Severity of demyelination by cuprizone, however, varies across different regions of the central nervous system; the corpus callosum is sensitive, while the optic nerves are resistant. Here, we investigated the effects of cuprizone on optic nerves, focusing on the axo-glial junctions. Immunostaining for sodium channels, contactin-associated protein, neurofascins, and potassium channels revealed that there were no massive changes in the density and morphology of the axo-glial junctions in cuprizone-treated optic nerves. However, when we counted the number of incomplete junctional complexes, we observed increased numbers of isolated paranodes. These isolated paranodes were immunopositive for both axonal and glial membrane proteins, indicating that they were the contact sites between axons and glia. These were not associated with sodium channels or potassium channels, suggesting the absence of physiological functions. When teased axons from cuprizone-treated optic nerves were immunostained, the isolated paranodes were found at the internode region of the myelin. From these observations, we conclude that cuprizone induces new contacts between axons and myelins at the internode region.
Collapse
Affiliation(s)
- Wataru Kojima
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, Japan
| | - Kensuke Hayashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
45
|
Beckmann N, Giorgetti E, Neuhaus A, Zurbruegg S, Accart N, Smith P, Perdoux J, Perrot L, Nash M, Desrayaud S, Wipfli P, Frieauff W, Shimshek DR. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol Commun 2018; 6:9. [PMID: 29448957 PMCID: PMC5815182 DOI: 10.1186/s40478-018-0510-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). While multiple effective immunomodulatory therapies for MS exist today, they lack the scope of promoting CNS repair, in particular remyelination. Microglia play a pivotal role in regulating myelination processes, and the colony-stimulating factor 1 (CSF-1) pathway is a key regulator for microglia differentiation and survival. Here, we investigated the effects of the CSF-1 receptor kinase inhibitor, BLZ945, on central myelination processes in the 5-week murine cuprizone model by non-invasive and longitudinal magnetic resonance imaging (MRI) and histology. Therapeutic 2-week BLZ945 treatment caused a brain region-specific enhancement of remyelination in the striatum/cortex, which was absent in the corpus callosum/external capsule. This beneficial effect correlated positively with microglia reduction, increased oligodendrocytes and astrogliosis. Prophylactic BLZ945 treatment prevented excessive demyelination in the corpus callosum by reducing microglia and increasing oligondendrocytes. In the external capsule oligodendrocytes were depleted but not microglia and a buildup of myelin debris and axonal damage was observed. A similar microglial dysfunction in the external capsule with an increase of myelin debris was obvious in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice treated with cuprizone. Finally, therapeutic BLZ945 treatment did not change the disease course in experimental autoimmune encephalomyelitis mice, a peripherally driven neuroinflammation model. Taken together, our data suggest that a short-term therapeutic inhibition of the CSF-1 receptor pathway by BLZ945 in the murine cuprizone model enhances central remyelination by modulating neuroinflammation. Thus, microglia-modulating therapies could be considered clinically for promoting myelination in combination with standard-of-care treatments in MS patients.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Elisa Giorgetti
- Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Anna Neuhaus
- Neuroscience, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Stefan Zurbruegg
- Neuroscience, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Nathalie Accart
- Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Paul Smith
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
- Present address: Incyte, 1801 Augustine Cut-off, Wilmington, DE, 19803, USA
| | - Julien Perdoux
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Ludovic Perrot
- Global Scientific Operations, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Mark Nash
- Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Sandrine Desrayaud
- PK Sciences, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Peter Wipfli
- PK Sciences, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Wilfried Frieauff
- Preclinical Safety, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland.
| |
Collapse
|
46
|
Sun J, Zhou H, Bai F, Ren Q, Zhang Z. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice. Oncotarget 2017; 7:30003-17. [PMID: 27129150 PMCID: PMC5058659 DOI: 10.18632/oncotarget.8981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both multiple sclerosis (MS) and Alzheimer's disease (AD) are progressive neurological disorders with myelin injury and memory impairment. However, whether myelin impairment could cause AD-like neurological pathology remains unclear. To explore neurological pathology following myelin injury, we assessed cognitive function, the expression of myelin proteins, axonal transport-associated proteins, axonal structural proteins, synapse-associated proteins, tau and beta amyloid and the status of neurons, using the cuprizone mouse model of demyelination. We found the mild impairment of learning ability in cuprizone-fed mice and the decreased expression of myelin basic protein (MBP) in the hippocampus. And anti-LINGO-1 improved learning ability and partly restored MBP level. Furthermore, we also found kinesin light chain (KLC), neurofilament light chain (NFL) and neurofilament heavy chain (NF200) were declined in demyelinated hippocampus, which could be partly improved by treatment with anti-LINGO-1. However, we did not observe the increased expression of beta amyloid, hyperphosphorylation of tau and loss of neurons in demyelinated hippocampus. Our results suggest that demyelination might lead to the impairment of neuronal transport, but not cause increased level of hyperphosphorylated tau and beta amyloid. Our research demonstrates remyelination might be an effective pathway to recover the function of neuronal axons and cognition in MS.
Collapse
Affiliation(s)
- Junjun Sun
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hong Zhou
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Bai
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qingguo Ren
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neuropsychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
47
|
Toll-Like Receptor 2-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. Mol Neurobiol 2017; 55:6237-6249. [PMID: 29288338 DOI: 10.1007/s12035-017-0838-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.
Collapse
|
48
|
Weng C, Ding M, Fan S, Cao Q, Lu Z. Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination. Mol Med Rep 2017; 16:1864-1870. [PMID: 28656232 PMCID: PMC5562062 DOI: 10.3892/mmr.2017.6843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Transcription factor 7 like 2 (TCF7L2, also termed TCF4), is a Wnt effector induced transiently in the oligodendroglial lineage. The current well accepted hypothesis is that TCF7L2 inhibits oligodendrocyte differentiation and remyelination through canonical Wnt/β‑catenin signaling. However, recent studies indicated that TCF7L2 activity is required during oligodendrocyte differentiation and remyelination. In order to clarify this, in situ hybridization, immunofluorescence and western blot analysis using in vivo TCF7L2 conditional knockout mice, were performed and it was found that TCF7L2 promotes oligodendrocyte differentiation during myelin formation and remyelination. Furthermore, it was established that TCF7L2 does not affect oligodendrocyte precursor cells during remyelination. These data are of important clinical significance to develop novel therapeutic targets to overcome multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Cao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Cuprizone-Containing Pellets Are Less Potent to Induce Consistent Demyelination in the Corpus Callosum of C57BL/6 Mice. J Mol Neurosci 2017; 61:617-624. [PMID: 28238065 DOI: 10.1007/s12031-017-0903-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 01/06/2023]
Abstract
The chopper chelator cuprizone serves as a valuable chemical tool to induce consistent and reproducible demyelination in the central nervous system. However, the daily preparation of fresh cuprizone powder mixed in finely ground rodent chow might well be a particular health problem. Alternative methods, such as the fabrication of cuprizone-containing pellets, are available. The effectiveness of this method is, however, not known. In the present study, we compared whether intoxication of C57BL/6 mice with 0.25% cuprizone mixed into ground rodent chow does induce demyelination to a similar extent compared to a cuprizone-pellet intoxication protocol. We found that feeding of 0.25% cuprizone in ground chow provides a strong, well-defined, and reproducible demyelination along with increased accumulation of microglia and axonal damage in the corpus callosum, whereas all analyzed parameters were significantly less distinct in mice fed with cuprizone-containing pellets at an equivalent concentration of cuprizone at week 5. Even a higher concentration of cuprizone in pellet formulation was less potent compared to do so. This study illustrates that the established protocol of cuprizone intoxication (i.e., mixed in ground rodent chow) is the gold standard method to achieve consistent and reproducible demyelination. Why cuprizone loses its effectiveness in pellet formulation needs to be addressed in subsequent studies.
Collapse
|
50
|
The Effect of Stereotactic Injections on Demyelination and Remyelination: a Study in the Cuprizone Model. J Mol Neurosci 2017; 61:479-488. [PMID: 28124770 DOI: 10.1007/s12031-017-0888-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Remyelination is the natural repair mechanism in demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis. Several animal models have been used to study demyelination and remyelination. Among toxic animal models, oral administration of the toxin cuprizone leads to white and gray matter demyelination. In contrast, focal demyelination models include the stereotactic application of a toxin such as lysolecithin or ethidium bromide. The injection procedure generates a local disruption of the blood-brain barrier (BBB) and might thus trigger a local inflammatory reaction and consequently may influence demyelination and remyelination. In order to study such consequences, we applied stereotactic injections in the cuprizone model where demyelination and remyelination are mediated independent of this procedure. Immunohistochemistry was performed to detect the presence of lymphocytes and activated glial cells in the injection area. Blood protein stainings were used to assess the integrity of the BBB and myelin staining to evaluate demyelination and remyelination processes. Stereotactic injection led to a local disruption of the BBB as shown by local extravasation of blood proteins. Along the injection canal, T and B lymphocytes could be detected and there was a tendency of a higher microgliosis and astrocytosis. However, these changes did not influence demyelination and remyelination processes at the site of injection, in the corpus callosum, or in the cerebral cortex. Our results suggest that a local stereotactic injection has no major impact on CNS demyelination and remyelination.
Collapse
|