1
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 PMCID: PMC11653054 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Haque A, Zaman V, Drasites KP, Matzelle D, Sawant S, Vertegel A, Varma A, Banik NL. Induction of Neural Differentiation and Protection by a Novel Slow-Release Nanoparticle Estrogen Construct in a Rat Model of Spinal Cord Injury. Neurochem Res 2024; 50:41. [PMID: 39613948 PMCID: PMC11607007 DOI: 10.1007/s11064-024-04289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. Estrogen (E2) treatment is known to be neuroprotectant in SCI. This hormone is highly pleiotropic and has been shown to decrease apoptosis, modulate calcium signaling, regulate growth factor expression, act as an anti-inflammatory, and drive angiogenesis. These beneficial effects were found in our earlier study at the low dose of 10 µg/kg E2 in rats. However, the dose remains non-physiologic, which poses a safety hurdle for clinical use. Thus, we recently devised/constructed a fast release nanoparticle (NP) estrogen embedded (FNP-E2) construct and tested a focal delivery system in a contused SCI rat model which showed protection in the short run. In the current study, we have developed a novel slow-release NP estrogen (SNP-E2) delivery system that shows sustained release of E2 in the injured spinal cord and no systemic exposure in the host. The study of E2 release and kinetics of this SNP-E2 construct in vitro and in vivo supported this claim. Delivery of E2 to the injured spinal cord via this approach reduced inflammation and gliosis, and induced microglial differentiation of M1 to M2 in rats after SCI. Analysis of spinal cord samples showed improved myelination and survival signals (AKT) as demonstrated by western blot analysis. SNP-E2 treatment also induced astrocytic differentiation into neuron-like (MAP2/NeuN) cells, supported the survival of oligodendrocyte precursor cells (OPC), and improved bladder and locomotor function in rats following SCI. These data suggest that this novel delivery strategy of SNP-E2 to the injured spinal cord may provide a safe and effective therapeutic approach to treat individuals suffering from SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Abhay Varma
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| |
Collapse
|
3
|
Cai J, Rong H, Chen J, Deng Z, Chen S, Liao H, Pan D, Chen Y, Shi Z, Li Y, Li H, Xu Y, Tang Y. Association of immune-mediated diseases with the risk of dementia and brain structure in UK Biobank participants. Age Ageing 2024; 53:afae274. [PMID: 39714283 DOI: 10.1093/ageing/afae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Immunity and inflammation may be essential to the pathogenesis of dementia. However, the association of immune-mediated diseases with the risk of incident dementia has not been well characterised. OBJECTIVES We aimed to investigate the prospective association of 27 immune-mediated diseases and incident dementia risk and to explore the underlying mechanisms driven by brain structures. METHODS We included 487 459 UK Biobank participants aged 37-73 years without dementia at enrolment. Immune-mediated diseases and dementia cases were ascertained according to the International Classification of Diseases codes. Time-varying Cox proportional hazards regression and general linear regression models were used to examine the association of immune-mediated disease with incident dementia risk and brain morphometric measures, respectively. RESULTS Over a median follow-up of 12.3 years, 1654 cases of incident dementia were documented in 86 243 patients with immune-mediated diseases. Overall, immune-mediated diseases were associated with a higher all-cause dementia risk (hazard ratio [HR], 1.24; 95% confidence interval, 1.17-1.32). Five out of 27 immune-mediated diseases were associated with an increased risk of dementia individually. Comorbidity of multiple immune-mediated diseases further increased the risk. Moreover, the immune-mediated disease was associated with smaller total surface areas of both left (β, -286.51; SE, 102.58; P = .014) and right hemispheres (β, -298.56; SE, 103.96; P = .016), greater white matter hyperintensities volume (β, 1.02; SE, 0.13; P < .001) and less healthy white matter microstructures. CONCLUSIONS Immune-mediated diseases were associated with an increased risk of incident dementia, and the association of those diseases with brain structural abnormalities might provide clues to the underlying mechanisms.
Collapse
Affiliation(s)
- Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Heng Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiongxue Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhenhong Deng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sitai Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huanquan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Dong Pan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yanting Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
5
|
Jacquens A, Csaba Z, Soleimanzad H, Bokobza C, Delmotte PR, Userovici C, Boussemart P, Chhor V, Bouvier D, van de Looij Y, Faivre V, Diao S, Lemoine S, Blugeon C, Schwendimann L, Young-Ten P, Naffaa V, Laprevote O, Tanter M, Dournaud P, Van Steenwinckel J, Degos V, Gressens P. Deleterious effect of sustained neuroinflammation in pediatric traumatic brain injury. Brain Behav Immun 2024; 120:99-116. [PMID: 38705494 DOI: 10.1016/j.bbi.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.
Collapse
Affiliation(s)
- Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Zsolt Csaba
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Haleh Soleimanzad
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | | | | | - Vibol Chhor
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Damien Bouvier
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Yohan van de Looij
- Université de Genève, Service Développement et Croissance, Département de Pédiatrie, Faculté de Médecine, 1211 Genève, Suisse; Centre d'Imagerie Biomédicale, Section Technologie d'Imagerie Animale, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Siaho Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | | | | | - Vanessa Naffaa
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Olivier Laprevote
- Université de Paris, CNRS, CiTCoM, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Pascal Dournaud
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | - Vincent Degos
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
6
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Chen M, Wang H, Chen P, Zhu G, Li S, Li Z, Liu X, Ye G, Chen W. Neonatal microglia transplantation at early stage but not late stage after traumatic brain injury shows protective effects in mice. J Neurophysiol 2024; 131:598-606. [PMID: 38380844 DOI: 10.1152/jn.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.
Collapse
Affiliation(s)
- Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guangyao Zhu
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Li
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengpan Li
- Department of Emergency and Trauma Center, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xuelan Liu
- Department of Emergency and Trauma Center, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Pudong New Area, Shanghai, China
| |
Collapse
|
8
|
Dulka K, Lajkó N, Nacsa K, Gulya K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. EPIGENOMES 2024; 8:11. [PMID: 38534795 DOI: 10.3390/epigenomes8010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kálmán Nacsa
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
9
|
Schlotterose L, Cossais F, Lucius R, Hattermann K. Resveratrol Alleviates the Early Challenges of Implant-Based Drug Delivery in a Human Glial Cell Model. Int J Mol Sci 2024; 25:2078. [PMID: 38396755 PMCID: PMC10889494 DOI: 10.3390/ijms25042078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.
Collapse
Affiliation(s)
| | | | | | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany; (L.S.); (R.L.)
| |
Collapse
|
10
|
Qin L, Kamash P, Yang Y, Ding Y, Ren C. A narrative review of potential neural repair poststroke: Decoction of Chinese angelica and peony in regulating microglia polarization through the neurosteroid pathway. Brain Circ 2024; 10:5-10. [PMID: 38655444 PMCID: PMC11034443 DOI: 10.4103/bc.bc_45_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 04/26/2024] Open
Abstract
Ischemic stroke is a major global health crisis, characterized by high morbidity and mortality rates. Although there have been significant advancements in treating the acute phase of this condition, there remains a pressing need for effective treatments that can facilitate the recovery of neurological functions. Danggui-Shaoyao-San (DSS), also known as the Decoction of Chinese Angelica and Peony, is a traditional Chinese herbal formula. It has demonstrated promising results in the regulation of microglial polarization and modulation of neurosteroid receptor expression, which may make it a potent strategy for promoting the recovery of neurological functions. Microglia, which plays a crucial role in neuroplasticity and functional reconstruction poststroke, is regulated by neurosteroids. This review posits that DSS could facilitate the recovery of neuronal function poststroke by influencing microglial polarization through the neurosteroid receptor pathway. We will further discuss the potential mechanisms by which DSS could enhance neural function in stroke, including the regulation of microglial activation, neurosteroid regulation, and other potential mechanisms.
Collapse
Affiliation(s)
- Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peter Kamash
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Salaudeen MA, Allan S, Pinteaux E. Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Hum Cell 2024; 37:154-166. [PMID: 37987924 PMCID: PMC10764391 DOI: 10.1007/s13577-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.
Collapse
Affiliation(s)
- Maryam Adenike Salaudeen
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Stuart Allan
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK.
| |
Collapse
|
12
|
Hong Y, Jiang L, Tang F, Zhang M, Cui L, Zhong H, Xu F, Li M, Chen C, Chen L. PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia. Mol Biol Rep 2023; 50:10277-10285. [PMID: 37971567 DOI: 10.1007/s11033-023-08815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Recent reports suggest that peroxisome proliferator-activated receptor-γ (PPAR-γ) could promote microglial M2 polarization to inhibit inflammation. However, the specific molecular mechanisms that trigger PPAR-γ's anti-inflammatory ability in microglia are yet to be expounded. Thus, in this study, we aimed to explore the molecular mechanisms behind the anti-inflammatory effects of PPAR-γ in hypoxia-stimulated rat retinal microglial cells. METHODS AND RESULTS We used shRNA expressing lentivirus to knock down PPAR-γ and CD200 genes, and we assessed hypoxia-induced polarization markers release - M1 (iNOS, IL-1β, IL-6, and TNF-α) and M2 (Arg-1, YM1, IL-4, and IL-10) by RT-PCR. We also monitored PPAR-γ-related signals (PPAR-γ, PPAR-γ in cytoplasm or nucleus, CD200, and CD200Rs) by Western blot and RT-PCR. Our results showed that hypoxia enhanced PPAR-γ and CD200 expressions in microglial cells. Moreover, PPAR-γ agonist 15d-PGJ2 elevated CD200 and CD200R1 expressions, whereas sh-PPAR-γ had the opposite effect. Following hypoxia, expressions of M1 markers increased significantly, while those of M2 markers decreased, and the above effects were attenuated by 15d-PGJ2. Conversely, knocking down PPAR-γ or CD200 inhibited the polarization of microglial cells to M2 phenotype. CONCLUSION Our findings demonstrated that PPAR-γ performed an anti-inflammatory function in hypoxia-stimulated microglial cells by promoting their polarization to M2 phenotype via the CD200-CD200R1 pathway.
Collapse
Affiliation(s)
- Yiyi Hong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Jiang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fen Tang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ling Cui
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Haibin Zhong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fan Xu
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lifei Chen
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
13
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
14
|
Marciante AB, Mitchell GS. Increased spinal adenosine impairs phrenic long-term facilitation in aging rats. J Appl Physiol (1985) 2023; 134:1537-1548. [PMID: 37167263 PMCID: PMC10281789 DOI: 10.1152/japplphysiol.00197.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a form of spinal, respiratory motor plasticity known as phrenic long-term facilitation (pLTF). In middle-aged male and geriatric female rats, mAIH-induced pLTF is attenuated through unknown mechanisms. In young adults, mAIH activates competing intracellular signaling cascades, initiated by serotonin 2 and adenosine 2A (A2A) receptors, respectively. Spinal A2A receptor inhibition enhances mAIH-induced pLTF, meaning, serotonin dominates, and adenosine constrains mAIH-induced plasticity in the daily rest phase. Thus, we hypothesized elevated basal adenosine levels in the ventral cervical spinal cord of aged rats shifts this balance, undermining mAIH-induced pLTF. A selective A2A receptor antagonist (MSX-3) or vehicle was delivered intrathecally at C4 in anesthetized young (3-6 mo) and aged (20-22 mo) Sprague-Dawley rats before mAIH (3,5-min episodes; arterial Po2 = 45-55 mmHg). In young males, spinal A2A receptor inhibition enhanced pLTF (119 ± 5%) vs. vehicle (55 ± 9%), consistent with prior reports. In old males, pLTF was reduced to 25 ± 11%, but A2A receptor inhibition increased pLTF to levels greater than in young males (186 ± 19%). Basal adenosine levels in ventral C3-C5 homogenates are elevated two- to threefold in old vs. young males. These findings advance our understanding of age as a biological variable in phrenic motor plasticity and will help guide translation of mAIH as a therapeutic modality to restore respiratory and nonrespiratory movements in older populations afflicted with clinical disorders that compromise movement.NEW & NOTEWORTHY Advanced age undermines respiratory motor plasticity, specifically phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH). We report that spinal adenosine increases in aged male rats, undermining mAIH-induced pLTF via adenosine 2A (A2A) receptor activation, an effect reversed by selective spinal adenosine 2A receptor inhibition. These findings advance our understanding of mechanisms that impair neuroplasticity, and the ability to compensate for the onset of lung or neural injury with age, and may guide efforts to harness mAIH as a treatment for clinical disorders that compromise breathing and other movements.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Department of Physical Therapy & McKnight Brain Institute, Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Department of Physical Therapy & McKnight Brain Institute, Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
15
|
Maher EE, Strzelecki AM, Weafer JJ, Gipson CD. The importance of translationally evaluating steroid hormone contributions to substance use. Front Neuroendocrinol 2023; 69:101059. [PMID: 36758769 PMCID: PMC10182261 DOI: 10.1016/j.yfrne.2023.101059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Clinically, women appear to be more susceptible to certain aspects of substance use disorders (SUDs). The steroid hormones 17β-estradiol (E2) and progesterone (Pg) have been linked to women-specific drug behaviors. Here, we review clinical and preclinical studies investigating how cycling ovarian hormones affect nicotine-, cocaine-, and opioid-related behaviors. We also highlight gaps in the literature regarding how synthetic steroid hormone use may influence drug-related behaviors. In addition, we explore how E2 and Pg are known to interact in brain reward pathways and provide evidence of how these interactions may influence drug-related behaviors. The synthesis of this review demonstrates the critical need to study women-specific factors that may influence aspects of SUDs, which may play important roles in addiction processes in a sex-specific fashion. It is important to understand factors that impact women's health and may be key to moving the field forward toward more efficacious and individualized treatment strategies.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ashley M Strzelecki
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Jessica J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
16
|
Bergman D, Jackson TL. Phenotype switching in a global method for agent-based models of biological tissue. PLoS One 2023; 18:e0281672. [PMID: 36780481 PMCID: PMC9925070 DOI: 10.1371/journal.pone.0281672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Agent-based models (ABMs) are an increasingly important tool for understanding the complexities presented by phenotypic and spatial heterogeneity in biological tissue. The resolution a modeler can achieve in these regards is unrivaled by other approaches. However, this comes at a steep computational cost limiting either the scale of such models or the ability to explore, parameterize, analyze, and apply them. When the models involve molecular-level dynamics, especially cell-specific dynamics, the limitations are compounded. We have developed a global method for solving these computationally expensive dynamics significantly decreases the computational time without altering the behavior of the system. Here, we extend this method to the case where cells can switch phenotypes in response to signals in the microenvironment. We find that the global method in this context preserves the temporal population dynamics and the spatial arrangements of the cells while requiring markedly less simulation time. We thus add a tool for efficiently simulating ABMs that captures key facets of the molecular and cellular dynamics in heterogeneous tissue.
Collapse
Affiliation(s)
- Daniel Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
17
|
Yoshizawa M, Fukushi I, Takeda K, Kono Y, Hasebe Y, Koizumi K, Ikeda K, Pokorski M, Toda T, Okada Y. Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. J Physiol Sci 2022; 72:26. [PMID: 36229778 PMCID: PMC10717757 DOI: 10.1186/s12576-022-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.
Collapse
Affiliation(s)
- Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Keiko Ikeda
- Institute of Innovative Research, Homeostatic Mechanism Research Unit, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
18
|
Li S, Song Q, Wu B, Kan G, Wang F, Yang J, Zhu S. Structural damage to the rat eye following long-term simulated weightlessness. Exp Eye Res 2022; 223:109200. [PMID: 35932903 DOI: 10.1016/j.exer.2022.109200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
To better perform space missions and develop human spaceflights, the eye health of astronauts is receiving increasing attention from researchers. In this study, we used prolonged tail suspension to simulate microgravity cephalad fluid shift in space to observe intraocular pressure (IOP) changes, retinal structure, and optic nerve damage in rats. We observed significant choroidal thickening and optic nerve demyelination lesions in the rats in each experimental group. At the cellular level, retinal ganglion cells (RGCs) survival was significantly reduced, optic nerve oligodendrocytes were reduced, and apoptotic factors and microglia-mediated inflammation-related factors were detected in both the retina and optic nerve. The severity of these changes increased with increasing tails suspension time. In conclusion, simulated long-term microgravity can lead to slight intraocular pressure fluctuations, choroidal thickening, reduced RGCs survival, and optic nerve demyelination in rats.
Collapse
Affiliation(s)
- Siqi Li
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610036, China
| | - Qiuyi Song
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610036, China
| | - Bin Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Fei Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jiawei Yang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610036, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, Chengdu, Sichuan, 610075, China.
| | - Siquan Zhu
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610036, China; Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
19
|
Arik E, Heinisch O, Bienert M, Gubeljak L, Slowik A, Reich A, Schulz JB, Wilhelm T, Huber M, Habib P. Erythropoietin Enhances Post-ischemic Migration and Phagocytosis and Alleviates the Activation of Inflammasomes in Human Microglial Cells. Front Cell Neurosci 2022; 16:915348. [PMID: 35813499 PMCID: PMC9263298 DOI: 10.3389/fncel.2022.915348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant human erythropoietin (rhEPO) has been shown to exert anti-apoptotic and anti-inflammatory effects after cerebral ischemia. Inflammatory cytokines interleukin-1β and -18 (IL-1β and IL-18) are crucial mediators of apoptosis and are maturated by multiprotein complexes termed inflammasomes. Microglia are the first responders to post-ischemic brain damage and are a main source of inflammasomes. However, the impact of rhEPO on microglial activation and the subsequent induction of inflammasomes after ischemia remains elusive. To address this, we subjected human microglial clone 3 (HMC-3) cells to various durations of oxygen-glucose-deprivation/reperfusion (OGD/R) to assess the impact of rhEPO on cell viability, metabolic activity, oxidative stress, phagocytosis, migration, as well as on the regulation and activation of the NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes. Administration of rhEPO mitigated OGD/R-induced oxidative stress and cell death. Additionally, it enhanced metabolic activity, migration and phagocytosis of HMC-3. Moreover, rhEPO attenuated post-ischemic activation and regulation of the NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes as well as their downstream effectors CASPASE1 and IL-1β. Pharmacological inhibition of NLRP3 via MCC950 had no effect on the activation of CASPASE1 and maturation of IL-1β after OGD/R, but increased protein levels of NLRP1, NLRC4, and AIM2, suggesting compensatory activities among inflammasomes. We provide evidence that EPO-conveyed anti-inflammatory actions might be mediated via the regulation of the inflammasomes.
Collapse
Affiliation(s)
- Eren Arik
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ole Heinisch
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michaela Bienert
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lara Gubeljak
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
- *Correspondence: Pardes Habib, ; orcid.org/0000-0002-5771-216X
| |
Collapse
|
20
|
Estrogen-related receptor α (ERRα) functions in the hypoxic injury of microglial cells. J Vet Res 2022; 66:131-140. [PMID: 35582481 PMCID: PMC8959695 DOI: 10.2478/jvetres-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Hypoxia is a common pathological condition after spinal cord injury. Oestrogen-related receptor alpha (ERRα), as a key regulator of energy metabolism and mitochondrial functions, plays an important role in maintaining cell homeostasis. However, its role in hypoxic spinal microglia has not been fully elaborated. This study investigated the receptor’s activity when these cells are hypoxic and used as an in vitro model.
Material and Methods
In this study, microglia (BV2) were exposed to cobalt chloride as a hypoxic model, and the inverse agonist of ERRα, XCT790, and pyrido[1,2-α]-pyrimidin-4-one were used to regulate the expression of the receptor to explore the ERRα-related mechanisms involved in hypoxic spinal cord injury (SCI).
Results
ERRα promoted autophagy in BV2 cells and inhibited the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and the expression of anti-inflammatory factors under hypoxic conditions. It also promoted the expression of fibronectin type III domain containing protein 5 (FNDC5).
Conclusion
When a hypoxic SCI occurs, ERRα may maintain the homeostasis of spinal cord nerve cells by regulating autophagy and the p38MAPK/nuclear factor-kappa B cell and FNDC5/brain-derived neurotrophic factor signalling pathways, which are beneficial to the recovery of these cells.
Collapse
|
21
|
Neudecker V, Perez-Zoghbi JF, Brambrink AM. Does inflammation mediate behavioural alterations in anaesthesia-induced developmental neurotoxicity? Br J Anaesth 2022; 128:602-605. [PMID: 35115157 DOI: 10.1016/j.bja.2021.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
Anaesthesia exposure early in life potentially impairs neurobehavioural development. A recent study in the Journal investigated the possibility that progesterone mitigates anaesthesia-induced developmental neurotoxicity in neonatal rats exposed to sevoflurane. The novel findings show that the steroid hormone progesterone protects against development of behavioural alterations caused by sevoflurane. The protective mechanism is proposed to relate to anti-inflammatory properties of progesterone, which brings up important questions regarding the role of inflammation in mediating the neurobehavioural alterations in anaesthesia-induced developmental neurotoxicity. We discuss this mechanism and encourage new research that may clarify the underlying mechanisms of progesterone-induced protection and extend these findings into a translational model.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Zheng P, Bai Q, Feng J, Zhao B, Duan J, Zhao L, Liu N, Ren D, Zou S, Chen W. Neonatal microglia and proteinase inhibitors-treated adult microglia improve traumatic brain injury in rats by resolving the neuroinflammation. Bioeng Transl Med 2022; 7:e10249. [PMID: 35079627 PMCID: PMC8780040 DOI: 10.1002/btm2.10249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
Microglia participate in the regulation of neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the repair effects of intracranial injection of neonatal microglia or protease-treated adult microglia on TBI in rat model. Lateral fluid percussion injury was used to establish rat brain injury model. E64 and serpinA3N were employed for the treatment of adult microglia. Cleaved caspase-3 level was analyzed through immunoblotting assay. Enzyme-linked immunosorbent assay was employed to analyze cytokine and chemokine levels. Astrocytosis and microgliosis were shown by immunofluorescence. The cognitive function of rats was analyzed by water maze. The injection of neonatal microglia inhibited cell apoptosis, reduced astrocytosis and microgliosis, decreased the level of chemokines and cytokines in cortex and ipsilateral hippocampus, and improved cognitive function of TBI rat model. The transplantation of peptidase inhibitors-treated adult microglia also inhibited cell apoptosis, reduced astrocytosis and microgliosis, and improved cognitive function of rats with TBI. The transplantation of either neonatal microglia or peptidase inhibitors-treated adult microglia significantly inhibited the pathogenesis of TBI in rat model, while untreated adult microglia showed no significant effect.
Collapse
Affiliation(s)
- Ping Zheng
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qingke Bai
- Department of NeurologyThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jiugeng Feng
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bing Zhao
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jian Duan
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Lin Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ning Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dabin Ren
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Shufeng Zou
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wei Chen
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of NeurosurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of NeurosurgeryThe People's Hospital of Shanghai Pudong New AreaShanghaiChina
| |
Collapse
|
23
|
Mitchell GS, Baker TL. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:409-432. [PMID: 35965036 DOI: 10.1016/b978-0-323-91534-2.00016-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Widespread appreciation that neuroplasticity is an essential feature of the neural system controlling breathing has emerged only in recent years. In this chapter, we focus on respiratory motor plasticity, with emphasis on the phrenic motor system. First, we define related but distinct concepts: neuromodulation and neuroplasticity. We then focus on mechanisms underlying two well-studied models of phrenic motor plasticity: (1) phrenic long-term facilitation following brief exposure to acute intermittent hypoxia; and (2) phrenic motor facilitation after prolonged or recurrent bouts of diminished respiratory neural activity. Advances in our understanding of these novel and important forms of plasticity have been rapid and have already inspired translation in multiple respects: (1) development of novel therapeutic strategies to preserve/restore breathing function in humans with severe neurological disorders, such as spinal cord injury and amyotrophic lateral sclerosis; and (2) the discovery that similar plasticity also occurs in nonrespiratory motor systems. Indeed, the realization that similar plasticity occurs in respiratory and nonrespiratory motor neurons inspired clinical trials to restore leg/walking and hand/arm function in people living with chronic, incomplete spinal cord injury. Similar application may be possible to other clinical disorders that compromise respiratory and non-respiratory movements.
Collapse
Affiliation(s)
- Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
24
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
25
|
Wali B, Sayeed I, Stein DG, Raper J. Prophylactic progesterone prevents adverse behavioural and neurocognitive effects of neonatal anaesthesia exposure in rat. Br J Anaesth 2021; 128:301-310. [PMID: 34920856 DOI: 10.1016/j.bja.2021.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Evidence from animal models and human studies suggests an association between early general anaesthesia exposure and development of long-lasting neurocognitive problems including learning and memory impairments and an anxious phenotype. Because millions of children each year undergo procedures that require anaesthesia, it is important to investigate ways to protect the vulnerable developing brain. We evaluated whether progesterone treatment administered before general anaesthesia exposure could prevent long-term anaesthesia-induced neurocognitive and behavioural changes. METHODS Female and male Long-Evans rat pups were repeatedly exposed to 2 h of sevoflurane or control procedures at postnatal days 7, 10, and 13. Subcutaneous injections of progesterone or vehicle were administered immediately before general anaesthesia exposure or control procedures. Neurobehavioural and cognitive outcomes were evaluated using elevated plus maze and Morris water maze tests. RESULTS Prophylactic progesterone treatment attenuated the chemokine (C-X-C motif) ligand 1 (CXCL1) response to sevoflurane exposure. Rats given vehicle treatment with general anaesthesia exposure exhibited increased anxiety on the elevated plus maze and learning and memory impairments on the Morris water maze. However, rats treated with progesterone before general anaesthesia lacked these impairments and performed in a similar manner to controls on both tasks. CONCLUSIONS Progesterone attenuated the anaesthesia-induced, acute peripheral inflammatory response and prevented cognitive and behavioural alterations associated with early repeated general anaesthesia exposure. Importantly, our results suggest that progesterone treatments given before general anaesthesia may help to protect the developing brain.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience and Behavioral Biology Program, Emory College of Arts and Sciences, Atlanta, GA, USA
| | - Jessica Raper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
28
|
Erythropoietin Abrogates Post-Ischemic Activation of the NLRP3, NLRC4, and AIM2 Inflammasomes in Microglia/Macrophages in a TAK1-Dependent Manner. Transl Stroke Res 2021; 13:462-482. [PMID: 34628598 PMCID: PMC9046144 DOI: 10.1007/s12975-021-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are known to contribute to brain damage after acute ischemic stroke (AIS). TAK1 is predominantly expressed in microglial cells and can regulate the NLRP3 inflammasome, but its impact on other inflammasomes including NLRC4 and AIM2 after AIS remains elusive. EPO has been shown to reduce NLRP3 protein levels in different disease models. Whether EPO-mediated neuroprotection after AIS is conveyed via an EPO/TAK1/inflammasome axis in microglia remains to be clarified. Subjecting mice deficient for TAK1 in microglia/macrophages (Mi/MΦ) to AIS revealed a significant reduction in infarct sizes and neurological impairments compared to the corresponding controls. Post-ischemic increased activation of TAK1, NLRP3, NLRC4, and AIM2 inflammasomes including their associated downstream cascades were markedly reduced upon deletion of Mi/MΦ TAK1. EPO administration improved clinical outcomes and dampened stroke-induced activation of TAK1 and inflammasome cascades, which was not evident after the deletion of Mi/MΦ TAK1. Pharmacological inhibition of NLRP3 in microglial BV-2 cells did not influence post-OGD IL-1β levels, but increased NLRC4 and AIM2 protein levels, suggesting compensatory activities among inflammasomes. Overall, we provide evidence that Mi/MΦ TAK1 regulates the expression and activation of the NLRP3, NLRC4, AIM2 inflammasomes. Furthermore, EPO mitigated stroke-induced activation of TAK1 and inflammasomes, indicating that EPO conveyed neuroprotection might be mediated via an EPO/TAK1/inflammasome axis.
Collapse
|
29
|
Connor M, Lamorie-Foote K, Liu Q, Shkirkova K, Baertsch H, Sioutas C, Morgan TE, Finch CE, Mack WJ. Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. PLoS One 2021; 16:e0253766. [PMID: 34214084 PMCID: PMC8253444 DOI: 10.1371/journal.pone.0253766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
Exposure to ambient air pollution has been associated with white matter damage and neurocognitive decline. However, the mechanisms of this injury are not well understood and remain largely uncharacterized in experimental models. Prior studies have shown that exposure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation, specifically the upregulation of inflammatory microglia. This study examines white matter and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic diameter ≤200 nm) consisting primarily of traffic-related emissions was collected from an urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group). Microglia were characterized by immunohistochemical double staining of ionized calcium-binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeostatic cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligodendrocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia were significantly increased in the corpus callosum of mice exposed to nPM when compared to those exposed to filtered air (2.2 fold increase; p<0.05). This was accompanied by an increase in dMBP (1.4 fold increase; p<0.05) immunofluorescent density, a decrease in oligodendrocyte cell counts (1.16 fold decrease; p<0.05), and a decrease in neurofilament SMI-312 (1.13 fold decrease; p<0.05) immunofluorescent density. Exposure to nPM results in increased inflammatory microglia, white matter injury, and axonal degradation in the corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reactive oxygen/ nitrogen species which may further contribute to the white matter damage observed in this model.
Collapse
Affiliation(s)
- Michelle Connor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Kristina Shkirkova
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Cox A, Capone M, Matzelle D, Vertegel A, Bredikhin M, Varma A, Haque A, Shields DC, Banik NL. Nanoparticle-Based Estrogen Delivery to Spinal Cord Injury Site Reduces Local Parenchymal Destruction and Improves Functional Recovery. J Neurotrauma 2021; 38:342-352. [PMID: 32680442 PMCID: PMC11864116 DOI: 10.1089/neu.2020.7047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) patients sustain significant functional impairments; this is causally related to restricted neuronal regeneration after injury. The ensuing reactive gliosis, inflammatory cascade, and glial scar formation impede axonal regrowth. Although systemic anti-inflammatory agents (steroids) have been previously administered to counteract this, no current therapeutic is approved for post-injury neuronal regeneration, in part because of related side effects. Likewise, therapeutic systemic estrogen levels exhibit neuroprotective properties, but dose-dependent side effects are prohibitive. The current study thus uses low-dose estrogen delivery to the spinal cord injury (SCI) site using an agarose gel patch embedded with estrogen-loaded nanoparticles. Compared to controls, spinal cords from rodents treated with nanoparticle site-directed estrogen demonstrated significantly decreased post-injury lesion size, reactive gliosis, and glial scar formation. However, axonal regeneration, vascular endothelial growth factor production, and glial-cell-derived neurotrophic factor levels were increased with estrogen administration. Concomitantly improved locomotor and bladder functional recovery were observed with estrogen administration after injury. Therefore, low-dose site-directed estrogen may provide a future approach for enhanced neuronal repair and functional recovery in SCI patients.
Collapse
Affiliation(s)
- April Cox
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Abhay Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naren L. Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
31
|
Voelz C, Habib P, Köberlein S, Beyer C, Slowik A. Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress. Mol Neurobiol 2020; 58:1535-1549. [PMID: 33210205 DOI: 10.1007/s12035-020-02210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNA) are small noncoding sequences that control apoptosis, proliferation, and neuroinflammatory pathways in microglia cells. The expression of distinct miRNAs is altered after ischemia in the brain. Only minor information is available about the biogenesis and maturation of miRNAs after ischemia. We aimed at examining the impact of oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2)-induced stress on the expression of miRNA regulating proteins such as DROSHA, DGCR8, XPO5, DICER, TARBP2, and AGO2 in the cultured human microglial cell line HMC-3 (human microglial cell line clone 3). OGD duration of 2.5 h or H2O2 stimulation at a concentration of 100 μM for 24 h resulted in a marked increase of the hypoxia sensor hypoxia-inducible factor1-α in HMC-3 cells. These treatments also led to an upregulation of DROSHA, DICER1, and AGO2 detected by semiquantitative real-time PCR (qrtPCR). XPO5 and TARBP2 were only upregulated after stimulation with H2O2, while DGCR8 responded only to OGD. We found elevated DICER1, DROSHA, and AGO2 protein levels by western blot and immunohistochemistry staining. Interestingly, the latter also exposed a colocalization of AGO2 with stress granules (G3BP1) after OGD. Our data indicate that DICER, DROSHA, and AGO2 are induced in microglial cells under hypoxia-like conditions. It might be speculated that their inductions might increase the miRNA synthesis rate. Future studies should investigate this correlation to determine which miRNAs are preferably expressed by microglia cells after ischemia and which functions they could exert.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Köberlein
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-Brain, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
32
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
33
|
Acosta-Martínez M. Shaping Microglial Phenotypes Through Estrogen Receptors: Relevance to Sex-Specific Neuroinflammatory Responses to Brain Injury and Disease. J Pharmacol Exp Ther 2020; 375:223-236. [PMID: 32513838 DOI: 10.1124/jpet.119.264598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/05/2020] [Indexed: 03/08/2025] Open
Abstract
In mammals, 17β-estradiol (E2), the primary endogenous estrogen, maintains normal central nervous system (CNS) function throughout life and influences brain responses to injury and disease. Estradiol-induced cellular changes are mediated through the activation of nuclear and extranuclear estrogen receptors (ERs), which include ERα, ERβ, and the G-protein coupled receptor, GPER1. ERs are widely expressed throughout the brain, acting as transcriptional effectors or rapidly initiating membrane and cytoplasmic signaling cascades in practically all brain cells including microglia, the resident immune cells of the CNS. Activation of ERs by E2 exerts potent anti-inflammatory effects through mechanisms involving the modification of microglial cell responses to acute or chronic brain injury. Recent studies suggest that microglial maturation is influenced by the internal gonadal hormone milieu and that their functions in the normal and diseased brain are sex specific. However, the role that each ER subtype plays in microglial development or in determining microglial function as the primary cellular defense mechanism against pathogens and injury remains unclear. This is partly due to the fact that most studies investigating the mechanisms by which E2-ER signaling modifies microglial cellular phenotypes have been restricted to one sex or age. This review examines the different in vivo and in vitro models used to study the direct and indirect regulation of microglial cell function by E2 through ERs. Ischemic stroke will be used as an example of a neurologic disease in which activation of ERs shapes microglial phenotypes in response to injury in a sex- and age-specific fashion. SIGNIFICANCE STATEMENT: As the primary immune sensors of central nervous system damage, microglia are important potential therapeutic targets. Estrogen receptor signaling modulates microglial responses to brain injury and disease in a sex- and age-specific fashion. Hence, investigating the molecular mechanisms by which estrogen receptors regulate and shape microglial functions throughout life may result in novel and effective therapeutic opportunities that are tailored for each sex and age.
Collapse
|
34
|
Habib P, Harms J, Zendedel A, Beyer C, Slowik A. Gonadal Hormones E2 and P Mitigate Cerebral Ischemia-Induced Upregulation of the AIM2 and NLRC4 Inflammasomes in Rats. Int J Mol Sci 2020; 21:ijms21134795. [PMID: 32645874 PMCID: PMC7370209 DOI: 10.3390/ijms21134795] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acute ischemic stroke (AIS) is a devastating neurological condition with a lack of neuroprotective therapeutic options, despite the reperfusion modalities thrombolysis and thrombectomy. Post-ischemic brain damage is aggravated by an excessive inflammatory cascade involving the activation and regulation of the pro-inflammatory cytokines IL-1β and IL-18 by inflammasomes. However, the role of AIM2 and NLRC4 inflammasomes and the influence of the neuroprotective steroids 17β-estradiol (E2) and progesterone (P) on their regulation after ischemic stroke have not yet been conclusively elucidated. To address the latter, we subjected a total of 65 rats to 1 h of transient Middle Cerebral Artery occlusion (tMCAO) followed by a reperfusion period of 72 h. Moreover, we evaluated the expression and regulation of AIM2 and NLRC4 in glial single-cell cultures (astroglia and microglia) after oxygen–glucose deprivation (OGD). The administration of E2 and P decreased both infarct sizes and neurological impairments after cerebral ischemia in rats. We detected a time-dependent elevation of gene and protein levels (Western Blot/immunohistochemistry) of the AIM2 and NLRC4 inflammasomes in the post-ischemic brains. E2 or P selectively mitigated the stroke-induced increase of AIM2 and NLRC4. While both inflammasomes seemed to be exclusively abundant in neurons under physiological and ischemic conditions in vivo, single-cell cultures of cortical astrocytes and microglia equally expressed both inflammasomes. In line with the in vivo data, E and P selectively reduced AIM2 and NLRC4 in primary cortical astrocytes and microglial cells after OGD. In conclusion, the post-ischemic elevation of AIM2 and NLRC4 and their down-regulation by E2 and P may shed more light on the anti-inflammatory effects of both gonadal hormones after stroke.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Julie Harms
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (J.H.); (A.Z.); (C.B.)
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (J.H.); (A.Z.); (C.B.)
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (J.H.); (A.Z.); (C.B.)
- JARA Brain, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (J.H.); (A.Z.); (C.B.)
- Correspondence: ; Tel.: +49-241-80-89112
| |
Collapse
|
35
|
Espinosa-Garcia C, Atif F, Yousuf S, Sayeed I, Neigh GN, Stein DG. Progesterone Attenuates Stress-Induced NLRP3 Inflammasome Activation and Enhances Autophagy following Ischemic Brain Injury. Int J Mol Sci 2020; 21:E3740. [PMID: 32466385 PMCID: PMC7312827 DOI: 10.3390/ijms21113740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome inhibition and autophagy induction attenuate inflammation and improve outcome in rodent models of cerebral ischemia. However, the impact of chronic stress on NLRP3 inflammasome and autophagic response to ischemia remains unknown. Progesterone (PROG), a neuroprotective steroid, shows promise in reducing excessive inflammation associated with poor outcome in ischemic brain injury patients with comorbid conditions, including elevated stress. Stress primes microglia, mainly by the release of alarmins such as high-mobility group box-1 (HMGB1). HMGB1 activates the NLRP3 inflammasome, resulting in pro-inflammatory interleukin (IL)-1β production. In experiment 1, adult male Sprague-Dawley rats were exposed to social defeat stress for 8 days and then subjected to global ischemia by the 4-vessel occlusion model, a clinically relevant brain injury associated with cardiac arrest. PROG was administered 2 and 6 h after occlusion and then daily for 7 days. Animals were killed at 7 or 14 days post-ischemia. Here, we show that stress and global ischemia exert a synergistic effect in HMGB1 release, resulting in exacerbation of NLRP3 inflammasome activation and autophagy impairment in the hippocampus of ischemic animals. In experiment 2, an in vitro inflammasome assay, primary microglia isolated from neonatal brain tissue, were primed with lipopolysaccharide (LPS) and stimulated with adenosine triphosphate (ATP), displaying impaired autophagy and increased IL-1β production. In experiment 3, hippocampal microglia isolated from stressed and unstressed animals, were stimulated ex vivo with LPS, exhibiting similar changes than primary microglia. Treatment with PROG reduced HMGB1 release and NLRP3 inflammasome activation, and enhanced autophagy in stressed and unstressed ischemic animals. Pre-treatment with an autophagy inhibitor blocked Progesterone's (PROG's) beneficial effects in microglia. Our data suggest that modulation of microglial priming is one of the molecular mechanisms by which PROG ameliorates ischemic brain injury under stressful conditions.
Collapse
Affiliation(s)
- Claudia Espinosa-Garcia
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| | - Gretchen N. Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Donald G. Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA; (F.A.); (S.Y.); (I.S.); (D.G.S.)
| |
Collapse
|
36
|
Benefits of progesterone on brain immaturity and white matter injury induced by chronic hypoxia in neonatal rats. J Thorac Cardiovasc Surg 2020; 160:e55-e66. [PMID: 32689704 DOI: 10.1016/j.jtcvs.2020.03.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aims to evaluate the protective effects of progesterone on white matter injury and brain immaturity in neonatal rats with chronic hypoxia. METHODS Three-day old Sprague-Dawley rats were randomly divided into 3 groups: (1) control (n = 48), rats were exposed to normoxia (fraction of inspired oxygen: 21% ± 0%); (2) chronic hypoxia (n = 48), rats were exposed to hypoxia (fraction of inspired oxygen: 10.5% ± 1.0%); and (3) progesterone (n = 48), rats were exposed to hypoxia and administrated with progesterone (8 mg/kg/d). Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative polymerase chain reaction, and Western blot analyses were compared on postnatal day 14 in different groups. Motor skill and coordination abilities of rats were assessed via rotation experiments. RESULTS Increased brain weights (P < .05), narrowed ventricular sizes (P < .01), and rotarod experiment scores (P < .01) were better in the progesterone group than in the chronic hypoxia group. The number of mature oligodendrocytes and myelin basic protein expression increased in the progesterone group compared with the chronic hypoxia group (P < .01). The polarization of M1 microglia cells in the corpus callosum of chronic hypoxia-induced hypomyelination rats was significantly increased, whereas there were fewer M2 microglia cells. Conversely, progesterone therapy had an opposite effect and caused an increase in M2 microglia polarization versus a reduction in M1 microglia cells. CONCLUSIONS Progesterone could prevent white matter injury and improve brain maturation in a neonatal hypoxic rat model; this may be associated with inducing a switch from M1 to M2 in microglia.
Collapse
|
37
|
Schölwer I, Habib P, Voelz C, Rolfes L, Beyer C, Slowik A. NLRP3 Depletion Fails to Mitigate Inflammation but Restores Diminished Phagocytosis in BV-2 Cells After In Vitro Hypoxia. Mol Neurobiol 2020; 57:2588-2599. [PMID: 32239449 DOI: 10.1007/s12035-020-01909-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022]
Abstract
Post-hypoxic/ischemic neuroinflammation is selectively driven by sterile inflammation, which implies the interplay of brain-intrinsic immune cells with other neural cells and immigrated peripheral immune cells. The resultant inflammatory cascade evolves extra- and intracellular pathogen and danger-associated receptors. The latter interacts with multiprotein complexes termed inflammasomes. The NLRP3 inflammasome is one of the best-described inflammasomes. However, its impact on post-ischemic neuroinflammation and its role in neuroprotection after ischemic stroke are still under debate. Microglial cells are known to be the main source of neuroinflammation; hence, we depleted NLRP3 in BV-2 microglial cells using shRNA to investigate its role in IL-1β maturation and phagocytosis after hypoxia (oxygen-glucose-deprivation (OGD)). We also examined the expression profiles of other inflammasomes (NLRC4, AIM2, ASC) and caspase-1 activity after OGD. OGD triggered caspase-1 activity and increased IL-1β secretion in BV-2 cells with no alteration after NLRP3 depletion. The expression of the AIM2 inflammasome was significantly higher after OGD in NLRP3-depleted cells, whereas NLRC4 was unaltered in all groups. Interestingly, OGD induced a complete inactivation of phagocytic activity in wild-type cells, while in NLRP3-depleted BV-2, this inactivity was restored after hypoxia. Our findings indicate a minor role of NLRP3 in the inflammatory response after hypoxic/ischemic stimulus. However, NLRP3 seems to play a pivotal role in the regulation of post-ischemic phagocytosis. This might be a prerequisite for the putative neuroprotective effect.
Collapse
Affiliation(s)
- Isabelle Schölwer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Leoni Rolfes
- Neurology Clinic and Institute for Translational Neurology, University of Muenster, Münster, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
38
|
Zhang L, Dong ZF, Zhang JY. Immunomodulatory role of mesenchymal stem cells in Alzheimer's disease. Life Sci 2020; 246:117405. [PMID: 32035129 DOI: 10.1016/j.lfs.2020.117405] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and is characterized by gradual loss in memory, language, and cognitive function. The hallmarks of AD include extracellular amyloid deposition, intracellular neuronal fiber entanglement, and neuronal loss. Despite strenuous efforts toward improvement of AD, there remains a lack of effective treatment and current pharmaceutical therapies only alleviate the symptoms for a short period of time. Interestingly, some progress has been achieved in treatment of AD based on mesenchymal stem cell (MSC) transplantation in recent years. MSC transplantation, as a rising therapy, is used as an intervention in AD, because of the enormous potential of MSCs, including differentiation potency, immunoregulatory function, and no immunological rejection. Although numerous strategies have focused on the use of MSCs to replace apoptotic or degenerating neurons, recent studies have implied that MSC-immunoregulation, which modulates the activity state of microglia or astrocytes and mediates neuroinflammation via several transcription factors (NFs) signaling pathways, may act as a major mechanism for the therapeutic efficacy of MSC and be responsible for some of the satisfactory results. In this review, we will focus on the role of MSC-immunoregulation in MSC-based therapy for AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Zhi-Fang Dong
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Jie-Yuan Zhang
- Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
39
|
Zolezzi JM, Villaseca P, Inestrosa NC. Toward an integrative understanding of the neuroinflammatory molecular milieu in Alzheimer disease neurodegeneration. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:163-176. [DOI: 10.1016/b978-0-12-815868-5.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Habib P, Stamm AS, Schulz JB, Reich A, Slowik A, Capellmann S, Huber M, Wilhelm T. EPO and TMBIM3/GRINA Promote the Activation of the Adaptive Arm and Counteract the Terminal Arm of the Unfolded Protein Response after Murine Transient Cerebral Ischemia. Int J Mol Sci 2019; 20:ijms20215421. [PMID: 31683519 PMCID: PMC6862264 DOI: 10.3390/ijms20215421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis leading to impairment of endoplasmic reticulum (ER) function. The unfolded protein response (UPR) is an ER-located and cytoprotective pathway that aims to resolve ER stress. Transmembrane BAX inhibitor-1 motif-containing (TMBIM) protein family member TMBIM3/GRINA is highly expressed in the brain and mostly located at the ER membrane suppressing ER calcium release by inositol-1,4,5-trisphosphate receptors. GRINA confers neuroprotection and is regulated by erythropoietin (EPO) after murine cerebral ischemia. However, the role of GRINA and the impact of EPO treatment on the post-ischemic UPR have not been elucidated yet. We subjected GRINA-deficient (Grina−/−) and wildtype mice to transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 6 h or 72 h of reperfusion. We administered EPO or saline 0, 24 and 48 h after tMCAo/sham surgery. Oxygen–glucose deprivation (OGD) and pharmacological stimulation of the UPR using Tunicamycin and Thapsigargin were carried out in primary murine cortical mixed cell cultures. Treatment with the PERK-inhibitor GSK-2606414, IRE1a-RNase-inhibitor STF-083010 and EPO was performed 1 h prior to either 1 h, 2 h or 3 h of OGD. We found earlier and larger infarct demarcations in Grina−/− mice compared to wildtype mice, which was accompanied by a worse neurological outcome and an abolishment of EPO-mediated neuroprotection after ischemic stroke. In addition, GRINA-deficiency increased apoptosis and the activation of the corresponding PERK arm of the UPR after stroke. EPO enhanced the post-ischemic activation of pro-survival IRE1a and counteracted the pro-apoptotic PERK branch of the UPR. Both EPO and the PERK-inhibitor GSK-2606414 reduced cell death and regulated Grina mRNA levels after OGD. In conclusion, GRINA plays a crucial role in post-ischemic UPR and the use of both GSK-2606414 and EPO might lead to neuroprotection.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cells, Cultured
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Erythropoietin/pharmacology
- Glucose/metabolism
- Indoles/pharmacology
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/genetics
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/prevention & control
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroprotective Agents/pharmacology
- Oxygen/metabolism
- Sulfonamides/pharmacology
- Thapsigargin/pharmacology
- Thiophenes/pharmacology
- Tunicamycin/pharmacology
- Unfolded Protein Response/drug effects
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ann-Sophie Stamm
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Joerg B Schulz
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbAnd RWTH Aachen University, 52074 Aachen, Germany.
| | - Arno Reich
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
41
|
Habib P, Stamm AS, Zeyen T, Noristani R, Slowik A, Beyer C, Wilhelm T, Huber M, Komnig D, Schulz JB, Reich A. EPO regulates neuroprotective Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp Neurol 2019; 320:112978. [PMID: 31211943 DOI: 10.1016/j.expneurol.2019.112978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members exert inhibitory activities in apoptosis and necroptosis. FAIM2 (TMBIM-2) is neuroprotective against murine focal ischemia and is regulated by erythropoietin (EPO). Similar to FAIM2, GRINA (TMBIM-3) is predominantly expressed in the brain. The role of GRINA in transient brain ischemia, its potential synergistic effects with FAIM2 and its regulation by EPO treatment were assessed. METHODS We performed transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 72 h of reperfusion in GRINA-deficient (GRINA-/-), FAIM2-deficient (FAIM2-/-), double-deficient (GRINA-/-FAIM2-/-) and wildtype littermates (WT) mice. We administered EPO or saline 0, 24 and 48 h after tMCAo. We subjected primary murine cortical neurons (pMCN) of all mouse strains to oxygen-glucose deprivation (OGD) after GRINA and/or FAIM2 gene transfection. RESULTS Compared to wildtype controls GRINA deficiency led to a similar increase in infarct volumes as FAIM2 deficiency (p < .01). We observed the highest neurological deficits and largest infarct sizes in double-deficient mice. EPO administration upregulated GRINA and FAIM2 mRNA levels in wildtype littermates. EPO decreased infarct sizes and abrogated neurological impairments in wildtype controls. GRINA and/or FAIM2 deficient mice showed increased expression levels of cleaved-caspase 3 and of pro-apoptotic BAX mRNA. Further, caspase 8 was upregulated in FAIM2-/- and caspase 9 in GRINA-/- mice. Overexpression of GRINA and FAIM2 in wildtype and in double deficient pMCN decreased cell death rate after OGD. CONCLUSIONS GRINA and FAIM2 are highly expressed in the brain and convey EPO-mediated neuroprotection after ischemic stroke involving different caspases.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Ann-Sophie Stamm
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Zeyen
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rozina Noristani
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Daniel Komnig
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
43
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
44
|
Aftabizadeh M, Tatarek-Nossol M, Andreetto E, El Bounkari O, Kipp M, Beyer C, Latz E, Bernhagen J, Kapurniotu A. Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chem Neurosci 2019; 10:3703-3717. [PMID: 31295403 DOI: 10.1021/acschemneuro.9b00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation in the brain and pancreas is linked to cell degeneration and pathogenesis of both Alzheimer's disease (AD) and type 2 diabetes (T2D). Inflammatory cascades in both tissues are triggered by the uptake of β-amyloid peptide (Aβ) or islet amyloid polypeptide (IAPP) aggregates by microglial cells (AD) or macrophages (T2D) and their insufficient lysosomal degradation. This results in lysosomal damage, caspase-1/NLRP3 inflammasome activation and release of interleukin-1β (IL-1β), a key proinflammatory cytokine in both diseases. Here we show that the inflammatory processes mediated by Aβ and IAPP aggregates in microglial cells and macrophages are blocked by IAPP-GI, a nonamyloidogenic IAPP mimic, which forms high-affinity soluble and nonfibrillar hetero-oligomers with both polypeptides. In contrast to fibrillar Aβ aggregates, nonfibrillar Aβ/IAPP-GI or Aβ/IAPP hetero-oligomers become rapidly internalized by microglial cells and targeted to lysosomes where Aβ is fully degraded. Internalization occurs via IAPP receptor-mediated endocytosis. Moreover, in contrast to IAPP aggregates, IAPP/IAPP-GI hetero-oligomers become rapidly internalized and degraded in the lysosomal compartments of macrophages. Our findings uncover a previously unknown function for the IAPP/Aβ cross-amyloid interaction and suggest that conversion of Aβ or IAPP into lysosome-targeted and easily degradable hetero-oligomers by heteroassociation with IAPP mimics could become a promising approach to specifically prevent amyloid-mediated inflammation in AD, T2D, or both diseases.
Collapse
Affiliation(s)
- Maryam Aftabizadeh
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
- Cancer Immunotherapeutics and Tumor Immunology, City of Hope Medical Center Duarte, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | - Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Omar El Bounkari
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, United States
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
45
|
Azedi F, Mehrpour M, Talebi S, Zendedel A, Kazemnejad S, Mousavizadeh K, Beyer C, Zarnani AH, Joghataei MT. Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res 2019; 1723:146401. [PMID: 31445031 DOI: 10.1016/j.brainres.2019.146401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Even today, ischemic stroke is a major cause of death and disabilities because of its high incidence, limited treatments and poor understanding of the pathophysiology of ischemia/reperfusion, neuroinflammation and secondary injuries following ischemic stroke. The function of microglia as a part of the immune system of the brain following ischemic stroke can be destructive or protective. Recent surveys indicate that melatonin, a strong antioxidant agent, has receptors on microglial cells and can regulate them to protective form; yet, more findings are required for better understanding of this mechanism, particularly in the reperfusion phase. In this study, we initially aimed to evaluate the therapeutic efficacy of melatonin intra-arterially and to clarify the underlying mechanisms. After that by using an in vitro approach, we evaluated the protective effects of melatonin on microglial cells following the hypoxia condition. Our results proved that a single dose of melatonin at the beginning of reperfusion phase improved structural and behavioral outcomes. Melatonin increased NeuN and decreased GFAP, Iba1 and active caspase-3 at protein level. Furthermore, melatonin elevated BDNF, MAP2, HSPA1A and reduced VEGF at mRNA level. We also showed that melatonin receptor 1B highly expressed in microglial cells after 3 h hypoxia. Besides, melatonin increased the ratio of TREM2/iNOS as a marker of the most protective form of microglia (M2). In summary, our data suggest that melatonin has the possibility to serve as targeting microglial action for preventing secondary injury of reperfusion phase after ischemic stroke.
Collapse
Affiliation(s)
- Fereshteh Azedi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Butturini E, Boriero D, Carcereri de Prati A, Mariotto S. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch Biochem Biophys 2019; 669:22-30. [PMID: 31121156 DOI: 10.1016/j.abb.2019.05.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Microglia are resident immune cells that act as the first active defence in the central nervous system. These cells constantly monitor the tissue microenvironment and rapidly react in response to hypoxia, infection and injuries. Hypoxia in the brain has been detected in several neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Hypoxic conditions activate microglia cells towards M1 phenotype resulting in oxidative stress and the release of pro-inflammatory cytokines. Recently, we have demonstrated that oxidative stress induces S-glutathionylation of the STAT1 and hyper-activates its signaling in microglia BV2 cells pointing out the importance of this transcription factor in neuroinflammation. In this paper we analyse the cellular mechanisms that drive M1 microglia activation in BV2 cells in response to hypoxia correlating it to STAT1 activation. The analysis of the molecular mechanism of STAT1 signaling reveals that hypoxia generates oxidative stress and induces both phosphorylation and S-glutathionylation of STAT1 that are responsible of its aberrant activation. The silencing of STAT1 protein expression counteracts hypoxia-M1 microglia phenotype suggesting the strong link between hypoxia-STAT1 and STAT1-microglia activation.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Diana Boriero
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
47
|
Guennoun R, Zhu X, Fréchou M, Gaignard P, Slama A, Liere P, Schumacher M. Steroids in Stroke with Special Reference to Progesterone. Cell Mol Neurobiol 2019; 39:551-568. [PMID: 30302630 PMCID: PMC11469871 DOI: 10.1007/s10571-018-0627-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, Zendedel A. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. Int J Mol Sci 2019; 20:ijms20061271. [PMID: 30871254 PMCID: PMC6471434 DOI: 10.3390/ijms20061271] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke causes rapid hypoxic damage to the core neural tissue which is followed by graded chronological tissue degeneration in the peri-infarct zone. The latter process is mainly triggered by neuroinflammation, activation of inflammasomes, proinflammatory cytokines, and pyroptosis. Besides microglia, astrocytes play an important role in the fine-tuning of the inflammatory network in the brain. Lipocalin-2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. In this study, we analyzed LCN2 expression in hypoxic rat brain tissue after ischemic stroke and in astrocyte cell cultures receiving standardized hypoxic treatment. Whereas no LCN2-positive cells were seen in sham animals, the number of LCN2-positive cells (mainly astrocytes) was significantly increased after stroke. In vitro studies with hypoxic cultured astroglia revealed that LCN2 expression is significantly increased after only 2 h, then further increased, followed by a stepwise decline. The expression pattern of several proinflammatory cytokines mainly followed that profile in wild type (WT) but not in cultured LCN2-deficient astrocytes. Our data revealed that astrocytes are an important source of LCN2 in the peri-infarct region under hypoxic conditions. However, we must also stress that brain-intrinsic LCN2 after the initial hypoxia period might come from other sources such as invaded immune cells and peripheral organs via blood circulation. In any case, secreted LCN2 might have an influence on peripheral organ functions and the innate immune system during brain hypoxia.
Collapse
Affiliation(s)
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Miriam Scheld
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
49
|
Cheng Z, Yang Y, Duan F, Lou B, Zeng J, Huang Y, Luo Y, Lin X. Inhibition of Notch1 Signaling Alleviates Endotoxin-Induced Inflammation Through Modulating Retinal Microglia Polarization. Front Immunol 2019; 10:389. [PMID: 30930891 PMCID: PMC6423918 DOI: 10.3389/fimmu.2019.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are resident immune cells and play an important role in various cerebral and retinal inflammatory diseases. Notch1 signaling is involved in the microglia polarization and the control of cerebral inflammatory reactions. However, its role in endotoxin-induced uveitis (EIU) remains unknown. This study aimed to investigate the role of Notch1 signaling on retinal microglia polarization and inflammation in the cultured retinal microglial cells and EIU rat model. We found that Notch1 signaling blockade with N-[N-(3, 5-difluorophenacetyl)-1-alany1-S-phenyglycine t-butyl ester (DAPT) shifted retinal microglia phenotype from pro-inflammatory M1 phenotype (COX2+ and iNOS+) to anti-inflammatory M2 phenotype (Arg-1+) and reduced the release of pro-inflammatory cytokines both in vivo and in vitro. Moreover, DAPT treatment contributed to prevent retinal ganglion cells from apoptosis, reduce the intraocular infiltrating cells, and attenuate the impairment of retinal function. Taken together, these results suggest that inhibition of Notch1 signaling could alleviate the inflammatory response in EIU rat mainly through regulating the polarization of retinal microglia. Therefore, Notch1 signaling might be a promising therapeutic target in the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Zhixing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
50
|
Tetrahydroxystilbene glycoside antagonizes β-amyloid-induced inflammatory injury in microglia cells by regulating PU.1 expression. Neuroreport 2019; 29:787-793. [PMID: 29668503 PMCID: PMC5999375 DOI: 10.1097/wnr.0000000000001032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibiting β-amyloid (Aβ)-induced microglial activation is proposed as an effective strategy for the treatment of Alzheimer’s disease. Tetrahydroxystilbene glycoside (TSG) is the main active ingredient of Polygonum multiflorum and has a wide range of biological properties, including antiinflammation. Here, we focused on the function and regulatory mechanism of TSG in Aβ-induced N9 and BV2 cells. The results showed that Aβ treatment induced the activation of microglia cells and the production of inflammatory molecules, including inducible nitric oxide synthase, nitric oxide, cyclooxygenase 2, and prostaglandin E2, which were significantly inhibited by TSG pretreatment. Furthermore, we found Aβ exposure increased the levels of microglial M1 markers, interleukin (IL)-1β, IL-6, and tumor necrosis factor α, and the pretreatment of TSG suppressed the increase of M1 markers and enhanced the levels of M2 markers, including IL-10, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and arginase-1. PU.1 overexpression was found to eradicate the anti-inflammatory effects of TSG in Aβ-induced microglial cells. Taken together, these findings indicate that TSG attenuates Aβ-induced microglial activation and polarizes microglia towards M2 phenotype, which may be closely associated with the regulation of PU.1.
Collapse
|