1
|
Brahmi M, Adli DEH, Kaoudj I, Alkholifi FK, Arabi W, Sohbi S, Ziani K, Kahloula K, Slimani M, Sweilam SH. Chemical Composition, In Vivo, and In Silico Molecular Docking Studies of the Effect of Syzygium aromaticum (Clove) Essential Oil on Ochratoxin A-Induced Acute Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2025; 14:130. [PMID: 39795390 PMCID: PMC11723110 DOI: 10.3390/plants14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The aim of our research was to understand the impact of ochratoxin A (OTA) exposure on various physiological and behavioral aspects in adult Wistar rats, and to evaluate the efficacy of a Syzygium aromaticum essential oil (EOC) treatment in restoring the damage caused by this toxin. The essential oils were extracted by hydrodistillation, a yield of 12.70% was obtained for EOC, and the GC-MS characterization of this essential oil revealed that its principal major components are eugenol (80.95%), eugenyl acetate (10.48%), β-caryophyllene (7.21%), and α-humulene (0.87%). Acute OTA intoxication was induced by an intraperitoneal (IP) injection of 289 µg/kg/b.w. every 48 h for 12 doses, resulting in significant reductions in the body and brain weights of exposed rats when compared with controls. The neurobehavioral analysis using several behavioral testing techniques, such as the forced swimming, the dark/light test, the Morris water maze, and the open field test, clearly revealed that OTA exposure causes neurobehavioral disorders, including decreased locomotor activity, a reduced willingness to explore the environment, reflecting a state of stress, anxiety and depression, as well as impaired memory and learning. In addition, OTA intoxication has been associated with metabolic disturbances such as hyperglycemia and hypercortisolemia. However, treatment with EOC mitigated these adverse effects by improving body and brain weights and restoring neurobehavioral function. The in silico analysis revealed significant affinities between clove oils and two tested esterase enzymes (ACh and BuChE) that were more than or similar to the four neurotransmitters "dopamine, serotonin, norepinephrine, and glutamic acid" and the co-crystallized ligands NAG, MES, and GZ5. These results highlight the therapeutic potential of EOC in combating the toxic effects of OTA and pave the way for future research into the mechanisms of action and therapeutic applications of natural compounds in the prevention and treatment of poison-induced diseases.
Collapse
Affiliation(s)
- Mostapha Brahmi
- Department of Biological Science, Faculty of Natural and Life Sciences, University of Ahmed Zabana, Relizane 48000, Algeria
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Djallal Eddine H. Adli
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Imane Kaoudj
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Wafaa Arabi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Soumia Sohbi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Khaled Kahloula
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Miloud Slimani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr MoulayTahar, Saida 20000, Algeria; (D.E.H.A.); (I.K.); (W.A.); (S.S.); (K.Z.); (K.K.); (M.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt
| |
Collapse
|
2
|
Zhang F, Yoon K, Kim NS, Ming GL, Song H. Cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating neural stem cell quiescence in the hippocampal dentate gyrus. Stem Cell Reports 2023:S2213-6711(23)00200-X. [PMID: 37390823 PMCID: PMC10362507 DOI: 10.1016/j.stemcr.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023] Open
Abstract
Quiescence is a hallmark of adult neural stem cells (NSCs) in the mammalian brain, and establishment and maintenance of quiescence is essential for life-long continuous neurogenesis. How NSCs in the dentate gyrus (DG) of the hippocampus acquire their quiescence during early postnatal stages and continuously maintain quiescence in adulthood is poorly understood. Here, we show that Hopx-CreERT2-mediated conditional deletion of Nkcc1, which encodes a chloride importer, in mouse DG NSCs impairs both their quiescence acquisition at early postnatal stages and quiescence maintenance in adulthood. Furthermore, PV-CreERT2-mediated deletion of Nkcc1 in PV interneurons in the adult mouse brain leads to activation of quiescent DG NSCs, resulting in an expanded NSC pool. Consistently, pharmacological inhibition of NKCC1 promotes NSC proliferation in both early postnatal and adult mouse DG. Together, our study reveals both cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating the acquisition and maintenance of NSC quiescence in the mammalian hippocampus.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Kijun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Nam-Shik Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Department of Psychiatry, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Comparison of the effect of glyphosate and glyphosate-based herbicide on hippocampal neurogenesis after developmental exposure in rats. Toxicology 2023; 483:153369. [PMID: 36332718 DOI: 10.1016/j.tox.2022.153369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Increasing evidence indicates that glyphosate (GlyP)-based herbicides (GBHs) induce developmental neurotoxicity. The present study investigated the developmental exposure effect of GlyP and GBH on hippocampal neurogenesis in rats. Dams were treated from gestational day 6 to day 21 post-delivery on weaning with a diet containing 1.5% or 3.0% GlyP or drinking water with 1.0% GBH (containing 0.36% GlyP). Dams in the 1.5%-GlyP, 3.0%-GlyP, and GBH groups received 1.04, 2.16, and 0.25 g GlyP/kg body weight (BW)/day during gestation, and 2.27, 4.65, and 0.58 g GlyP/kg BW/day during lactation, respectively. On weaning, 3.0% GlyP- and GBH-exposed offspring decreased the BW, and the latter also decreased the brain weight. Both compounds suppressed neural progenitor cell proliferation in the neurogenic niche, and GlyP-exposed offspring showed a decreased number of TUBB3+ immature granule cells. In contrast, both compounds increased the number of ARC+ granule cells, suggesting increased synaptic plasticity. Both compounds downregulated antioxidant genes (Cat and Sod2) in the dentate gyrus, suggestive of increased sensitivity to oxidative stress, which might be related to the suppression of neurogenesis. At the adult age, GBH alone sustained decreases in body and brain weights. Both compounds increased hippocampal malondialdehyde levels and upregulated Cat in the dentate gyrus, suggesting induction of oxidative stress. Both compounds upregulated Casp9, and GBH increased neural progenitor cell apoptosis, suggesting disruption of neurogenesis related to oxidative stress. GBH increased the number of COX2+ granule cells, and both compounds upregulated Arc, suggesting increased synaptic plasticity. These results suggest that GlyP and GBH might cause similar effects on disruption of neurogenesis accompanying compensatory responses and induction of oxidative stress responses through the adult age in the hippocampus. However, effects on adult age were more evident with GBH, suggesting that the surfactants contained in GBH might have contributed to the enhanced neurotoxicity of GlyP, similar to the enhanced general toxicity.
Collapse
|
4
|
Continuous Exposure to Alpha-Glycosyl Isoquercitrin from Gestation Ameliorates Disrupted Hippocampal Neurogenesis in Rats Induced by Gestational Injection of Valproic Acid. Neurotox Res 2022; 40:2278-2296. [PMID: 36094739 DOI: 10.1007/s12640-022-00574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
This study examined the ameliorating effect of alpha-glycosyl isoquercitrin (AGIQ), an antioxidant, on disrupted hippocampal neurogenesis in the dentate gyrus (DG) in a rat model of autism spectrum disorder induced by prenatal valproic acid (VPA) exposure. Dams were intraperitoneally injected with 500 mg/kg VPA on gestational day 12. AGIQ was administered in the diet at 0.25 or 0.5% to dams from gestational day 13 until weaning at postnatal day (PND) 21 and then to pups until PND 63. At PND 21, VPA-exposed offspring showed decreased numbers of type-2a and type-3 neural progenitor cells (NPCs) among granule cell lineage subpopulations. AGIQ treatment at both doses rescued the reduction in type-3 NPCs. AGIQ upregulated Reln and Vldlr transcript levels in the DG at 0.5% and ≥ 0.25%, respectively, and increased the number of reelin+ interneurons in the DG hilus at 0.5%. AGIQ at 0.25% and/or 0.5% also upregulated Ntrk2, Cntf, Igf1, and Chrnb2. At PND 63, there were no changes in the granule cell lineage subpopulations in response to VPA or AGIQ. AGIQ at 0.25% increased the number of FOS+ granule cells, accompanied by Gria2 and Gria3 upregulation and increasing trend in the number of FOS+ granule cells at 0.5%. There was no definitive evidence of VPA-induced oxidative stress in the hippocampus throughout postnatal life. These results indicate that AGIQ ameliorates the VPA-induced disruption of hippocampal neurogenesis at weaning involving reelin, BDNF-TrkB, CNTF, and IGF1 signaling, and enhances FOS-mediated synaptic plasticity in adulthood, potentially through AMPA-receptor upregulation. The ameliorating effects of AGIQ may involve direct interactions with neural signaling cascades rather than antioxidant capacity.
Collapse
|
5
|
Mineur YS, Mose TN, Vanopdenbosch L, Etherington IM, Ogbejesi C, Islam A, Pineda CM, Crouse RB, Zhou W, Thompson DC, Bentham MP, Picciotto MR. Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Mol Psychiatry 2022; 27:1829-1838. [PMID: 34997190 PMCID: PMC9106825 DOI: 10.1038/s41380-021-01404-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Tenna N Mose
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Laura Vanopdenbosch
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Ian M Etherington
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Chika Ogbejesi
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Ashraful Islam
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Cristiana M Pineda
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Richard B Crouse
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Wenliang Zhou
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - David C Thompson
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Matthew P Bentham
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
| |
Collapse
|
6
|
Shimizu S, Maeda N, Takahashi Y, Uomoto S, Takesue K, Ojiro R, Tang Q, Ozawa S, Okano H, Takashima K, Woo GH, Yoshida T, Shibutani M. Oral exposure to aluminum chloride for 28 days suppresses neural stem cell proliferation and increases mature granule cells in adult hippocampal neurogenesis of young-adult rats. J Appl Toxicol 2022; 42:1337-1353. [PMID: 35146777 DOI: 10.1002/jat.4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
Aluminum (Al), a common light metal, affects the developing nervous system. Developmental exposure to Al chloride (AlCl3 ) induces aberrant neurogenesis by targeting neural stem cells (NSCs) and/or neural progenitor cells (NPCs) in the dentate gyrus (DG) of rats and mice. To investigate whether hippocampal neurogenesis is similarly affected by AlCl3 exposure in a general toxicity study, AlCl3 was orally administered to 5-week-old Sprague Dawley rats at dosages of 0, 4000, or 8000 ppm in drinking water for 28 days. AlCl3 downregulated Sox2 transcript levels in the DG at the highest dosage and produced a dose-dependent decrease of SOX2+ cells without altering numbers of GFAP+ or TBR2+ cells in the subgranular zone, suggesting that AlCl3 decreases Type 2a NPCs. High-dose exposure downregulated Pcna, upregulated Pvalb, and altered expression of genes suggestive of oxidative stress induction (upregulation of Nos2 and downregulation of antioxidant enzyme genes), indicating suppressed proliferation and differentiation of Type 1 NSCs. AlCl3 doses also increased mature granule cells in the DG. Upregulation of Reln may have contributed to an increase of granule cells to compensate for the decrease of Type 2a NPCs. Moreover, upregulation of Calb2, Gria2, Mapk3, and Tgfb3, as well as increased numbers of activated astrocytes in the DG hilus, may represent ameliorating responses against suppressed neurogenesis. These results suggest that 28-day exposure of young-adult rats to AlCl3 differentially targeted NPCs and mature granule cells in hippocampal neurogenesis, yielding a different pattern of disrupted neurogenesis from developmental exposure.
Collapse
Affiliation(s)
- Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
7
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Ogawa B, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact 2022; 351:109767. [PMID: 34863679 DOI: 10.1016/j.cbi.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
The present study investigated the role of neuroinflammation and brain oxidative stress induced by neonatal treatment with lipopolysaccharides (LPS) on the development of autism spectrum disorder (ASD)-like behaviors and disruptive hippocampal neurogenesis in rats by exploring the chemopreventive effects of alpha-glycosyl isoquercitrin (AGIQ) as an antioxidant. AGIQ was dietary administered to dams at 0.25% or 0.5% (w/w) from gestational day 18 until postnatal day (PND) 21 on weaning and then to pups until the adult stage on PND 77. The pups were intraperitoneally injected with LPS (1 mg/kg body weight) on PND 3. At PND 6, LPS alone increased Iba1+ and CD68+ cell numbers without changing the CD163+ cell number and strongly upregulated pro-inflammatory cytokine gene expression (Il1a, Il1b, Il6, Nfkb1, and Tnf) in the hippocampus, and increased brain malondialdehyde levels. At PND 10, pups decreased ultrasonic vocalization (USV), suggesting the induction of pro-inflammatory responses and oxidative stress to trigger communicative deficits. By contrast, LPS alone upregulated Nfe2l2 expression at PND 6, increased Iba1+, CD68+, and CD163+ cell numbers, and upregulated Tgfb1 at PND 21, suggesting anti-inflammatory responses until the weaning period. However, LPS alone disrupted hippocampal neurogenesis at weaning and suppressed social interaction parameters and rate of freezing time at fear acquisition and extinction during the adolescent stage. On PND 77, neuroinflammatory responses had mostly disappeared; however, disruptive neurogenesis and fear memory deficits were sustained. AGIQ ameliorated most changes on acute pro-inflammatory responses and oxidative stress at PND 6, and the effects on USVs at PND 10 and neurogenesis and behavioral parameters throughout the adult stage. These results suggested that neonatal LPS treatment induced acute but transient neuroinflammation, triggering the progressive disruption of hippocampal neurogenesis leading to abnormal behaviors in later life. AGIQ treatment was effective for ameliorating LPS-induced progressive changes by critically suppressing initial pro-inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
8
|
Almulla AYH, Mogulkoc R, Baltaci AK, Dasdelen D. Learning, Neurogenesis and Effects of Flavonoids on Learning. Mini Rev Med Chem 2022; 22:355-364. [PMID: 34238155 DOI: 10.2174/1389557521666210707120719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Learning and memory are two of our mind's most magical abilities. Different brain regions have roles to process and store different types of memories. The hippocampus is the part of the brain responsible for receiving information and storing it in the neocortex. One of the most impressive characteristics of the hippocampus is its capacity for neurogenesis which is a process, new neurons are produced and then transformed into mature neurons and integrated into neural circuits. The neurogenesis process in the hippocampus, an example of neuroplasticity in the adult brain, is believed to aid hippocampal-dependent learning and memory. New neurons are constantly produced in the hippocampus and integrated into the pre-existing neuronal network, this allows old memories already stored in the neocortex to be removed from the hippocampus and replaced with new ones. Factors affecting neurogenesis in the hippocampus may also affect hippocampal-dependent learning and memory. The flavonoids can exert particularly powerful actions in mammalian cognition and improve hippocampaldependent learning and memory by positively affecting hippocampal neurogenesis.
Collapse
Affiliation(s)
| | - Rasim Mogulkoc
- Department of Physiology, Medical School, Selcuk University, Konya, Turkey
| | | | - Dervis Dasdelen
- Department of Physiology, Medical School, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Kikuchi S, Takahashi Y, Ojiro R, Takashima K, Okano H, Tang Q, Woo GH, Yoshida T, Shibutani M. Identification of gene targets of developmental neurotoxicity focusing on DNA hypermethylation involved in irreversible disruption of hippocampal neurogenesis in rats. J Appl Toxicol 2020; 41:1021-1037. [PMID: 33150595 PMCID: PMC8247304 DOI: 10.1002/jat.4089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
We have previously found that maternal exposure to 6‐propyl‐2‐thiouracil (PTU), valproic acid (VPA), or glycidol (GLY) has a sustained or late effect on hippocampal neurogenesis at the adult stage in rat offspring. Herein, we searched for genes with hypermethylated promoter region and downregulated transcript level to reveal irreversible markers of developmental neurotoxicity. The hippocampal dentate gyrus of male rat offspring exposed maternally to PTU, VPA, or GLY was subjected to Methyl‐Seq and RNA‐Seq analyses on postnatal day (PND) 21. Among the genes identified, 170 were selected for further validation analysis of gene expression on PND 21 and PND 77 by real‐time reverse transcription‐PCR. PTU and GLY downregulated many genes on PND 21, reflecting diverse effects on neurogenesis. Furthermore, genes showing sustained downregulation were found after PTU or VPA exposure, reflecting a sustained or late effect on neurogenesis by these compounds. In contrast, such genes were not observed with GLY, probably because of the reversible nature of the effects. Among the genes showing sustained downregulation, Creb, Arc, and Hes5 were concurrently downregulated by PTU, suggesting an association with neuronal mismigration, suppressed synaptic plasticity, and reduction in neural stem and progenitor cells. Epha7 and Pvalb were also concurrently downregulated by PTU, suggesting an association with the reduction in late‐stage progenitor cells. VPA induced sustained downregulation of Vgf and Dpysl4, which may be related to the aberrations in synaptic plasticity. The genes showing sustained downregulation may be irreversible markers of developmental neurotoxicity. Hippocampal dentate gyrus of rat offspring exposed maternally to PTU, VPA, or GLY was subjected to global methylation analysis on PND 21. Genes downregulated on PND 77 were examined. PTU concurrently downregulated Creb, Arc, and Hes5, suggesting an association with the diverse effects on neurogenesis. PTU also concurrently downregulated Epha7 and Pvalb, suggesting an association with progenitor cell reduction. VPA downregulated Vgf and Dpysl4, suggesting an association with the aberrant synaptic plasticity. In contrast, GLY did not induce sustained downregulation.
Collapse
Affiliation(s)
- Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
An Overview of Nicotinic Cholinergic System Signaling in Neurogenesis. Arch Med Res 2020; 51:287-296. [DOI: 10.1016/j.arcmed.2020.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
|
11
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
12
|
Sasaki-Takahashi N, Shinohara H, Shioda S, Seki T. The polarity and properties of radial glia-like neural stem cells are altered by seizures with status epilepticus: Study using an improved mouse pilocarpine model of epilepsy. Hippocampus 2020; 30:250-262. [PMID: 32101365 DOI: 10.1002/hipo.23153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
In the adult mouse hippocampus, new neurons are produced by radial glia-like (RGL) neural stem cells in the subgranular zone, which extend their apical processes toward the molecular layer, and express the astrocyte marker glial fibrillary acidic protein, but not the astrocyte marker S100β. In rodent models of epilepsy, adult hippocampal neurogenesis was reported to be increased after acute and mild seizures, but to be decreased by chronic and severe epilepsy. In the present study, we investigated how the severity of seizures affects neurogenesis and RGL neural stem cells in acute stages of epilepsy, using an improved mouse pilocarpine model in which pilocarpine-induced hypothermia was prevented by maintaining body temperature, resulting in a high incidence rate of epileptic seizures and low rate of mortality. In mice that experienced seizures without status epilepticus (SE), the number of proliferating progenitors and immature neurons were significantly increased, whereas no changes were observed in RGL cells. In mice that experienced seizures with SE, the number of proliferating progenitors and immature neurons were unchanged, but the number of RGL cells with an apical process was significantly reduced. Furthermore, the processes of the majority of RGL cells extended inversely toward the hilus, and about half of the aberrant RGL cells expressed S100β. These results suggest that seizures with SE lead to changes in the polarity and properties of RGL neural stem cells, which may direct them toward astrocyte differentiation, resulting in the reduction of neural stem cells producing new granule cells. This also suggests the possibility that cell polarity of RGL stem cells is important for maintaining the stemness of adult neural stem cells.
Collapse
Affiliation(s)
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
14
|
Dentate gyrus neurogenesis across different ages in male rats: an immunohistochemical approach. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Watanabe Y, Nakajima K, Ito Y, Akahori Y, Saito F, Woo GH, Yoshida T, Shibutani M. Twenty-eight-day repeated oral doses of sodium valproic acid increases neural stem cells and suppresses differentiation of granule cell lineages in adult hippocampal neurogenesis of postpubertal rats. Toxicol Lett 2019; 312:195-203. [PMID: 31085223 DOI: 10.1016/j.toxlet.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Developmental exposure to valproic acid (VPA), a model compound for experimental autism, has shown to primarily target GABAergic interneuron subpopulations in hippocampal neurogenesis of rat offspring. The VPA-exposed animals had revealed late effects on granule cell lineages, involving progenitor cell proliferation and synaptic plasticity. To investigate the possibility whether hippocampal neurogenesis in postpubertal rats in a protocol of 28-day repeated exposure is affected in relation with the property of a developmental neurotoxicant by developmental exposure, VPA was orally administered to 5-week-old male rats at 0, 200, 800 and 900 mg/kg body weight/day for 28 days. At 900 mg/kg, GFAP+ cells increased in number, but DCX+ cells decreased in number in the granule cell lineages. Moreover, CHRNB2+ cells and NeuN+ postmitotic neurons decreased in number in the hilus of the dentate gyrus. Transcript level examined at 900 mg/kg in the dentate gyrus was increased with Kit, but decreased with Dpsyl3, Btg2, Pvalb and Chrnb2. These results suggest that VPA increased type-1 stem cells in relation to the activation of SCF-KIT signaling and suppression of BTG2-mediated antiproliferative effect on stem cells. VPA also decreased type-3 progenitor cells and immature granule cells probably in relation with PVALB+ interneuron hypofunction and reduced CHRNB2+ interneuron subpopulation in the hilus, as well as with suppression of BTG2-mediated terminal differentiation of progenitor cells. Thus, the disruption pattern of VPA by postpubertal exposure was different from developmental exposure. However, disruption itself can be detected, suggesting availability of hippocampal neurogenesis in detecting developmental neurotoxicants in a 28-day toxicity study.
Collapse
Affiliation(s)
- Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan.
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan.
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Republic of Korea.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
16
|
Watanabe Y, Abe H, Nakajima K, Ideta-Otsuka M, Igarashi K, Woo GH, Yoshida T, Shibutani M. Aberrant Epigenetic Gene Regulation in GABAergic Interneuron Subpopulations in the Hippocampal Dentate Gyrus of Mouse Offspring Following Developmental Exposure to Hexachlorophene. Toxicol Sci 2019; 163:13-25. [PMID: 29301063 PMCID: PMC5917777 DOI: 10.1093/toxsci/kfx291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1–PLCB4 signaling may be responsible for the suppression on weaning.
Collapse
Affiliation(s)
- Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk 27136, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
17
|
Continuous exposure to α-glycosyl isoquercitrin from developmental stage facilitates fear extinction learning in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Tanaka T, Nakajima K, Masubuchi Y, Ito Y, Kikuchi S, Ideta-Ohtsuka M, Woo GH, Yoshida T, Igarashi K, Shibutani M. Aberrant epigenetic gene regulation in hippocampal neurogenesis of mouse offspring following maternal exposure to 3,3'-iminodipropionitrile. J Toxicol Sci 2019; 44:93-105. [PMID: 30726815 DOI: 10.2131/jts.44.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Maternal exposure to 3,3'-iminodipropionitrile (IDPN) affects hippocampal neurogenesis in mouse offspring, with biphasic disruption, which facilitates neurogenesis during exposure and reduces the broad range of the granule cell lineage population at the adult stage. The present study investigated the epigenetically hypermethylated and downregulated genes related to the IDPN-induced disrupted neurogenesis. Mated female mice were treated with IDPN at 0 or 1200 ppm in drinking water from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring on PND 21 was subjected to methyl-capture sequencing and real-time reverse transcription-PCR analyses, followed by validation analyses on DNA methylation. Three genes, Edc4, Kiss1 and Mrpl38, were identified as those showing promoter-region hypermethylation and transcript downregulation, with Mrpl38 sustaining the changes through PND 77. Immunohistochemically, MRPL38, a mitochondrial ribosomal protein, revealed an irreversible decrease in the number of immunoreactive interneurons in the dentate gyrus hilar region, suggesting a causal relationship with the long-lasting effect on neurogenesis by the impaired migration due to mitochondrial dysfunction of interneurons, which regulate the differentiation and survival of granule cell lineages. Downregulation of Edc4 may also be responsible for decreased neurogenesis on PND 77 owing to a mechanism involving interleukin-6 downregulation via processing body dysfunction. Downregulation of Kiss1 may be responsible for the facilitation of neurogenesis during IDPN-exposure due to decreased glutamatergic neurotransmission and also for suppressed neurogenesis on PND 77 due to decreased expression of immediate-early genes, which play a crucial role in the maintenance of cell differentiation or plasticity.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Maky Ideta-Ohtsuka
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
19
|
Developmental Exposure of Mice to T-2 Toxin Increases Astrocytes and Hippocampal Neural Stem Cells Expressing Metallothionein. Neurotox Res 2018; 35:668-683. [DOI: 10.1007/s12640-018-9981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
|
20
|
McAlinn HR, Reich B, Contoreggi NH, Kamakura RP, Dyer AG, McEwen BS, Waters EM, Milner TA. Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience 2018; 383:98-113. [PMID: 29753863 PMCID: PMC5994383 DOI: 10.1016/j.neuroscience.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. Without stress, total CRFR1 dendritic levels were higher in females in CA1 and in males in the hilus; moreover, plasmalemmal CRFR1 was elevated in pyramidal cell dendrites in CA1 in females and in CA3 in males. Following CIS, near-plasmalemmal CRFR1 increased in CA1 pyramidal cell dendrites in males but not to levels of control or CIS females. In CA3 and the hilus, CIS decreased cytoplasmic and total CRFR1 in dendrites in males only. These results suggest that in naive rats, CRF could induce a greater activation of CA1 pyramidal cells in females than males. Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress.
Collapse
Affiliation(s)
- Helena R McAlinn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Andreina G Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Inohana M, Eguchi A, Nakamura M, Nagahara R, Onda N, Nakajima K, Saegusa Y, Yoshida T, Shibutani M. Developmental Exposure to Aluminum Chloride Irreversibly Affects Postnatal Hippocampal Neurogenesis Involving Multiple Functions in Mice. Toxicol Sci 2018; 164:264-277. [PMID: 29635646 PMCID: PMC6016705 DOI: 10.1093/toxsci/kfy081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aluminum (Al) is neurotoxic to adults and also to infants. In this study, we investigated the developmental exposure effect of AlCl3 on postnatal hippocampal neurogenesis. Pregnant mice were administered 0-, 900-, or 1800-ppm AlCl3 via drinking water from gestational day 6 to postnatal day (PND) 21, with their offspring examined on PND 21 and PND 77. On PND 21, GFAP-immunoreactive (+) neural stem cells (NSCs) and p21Cip1/Waf1+ cells were decreased in number in the subgranular zone at 900 and ≥900 ppm, respectively. Pcna transcript level examined at 1800 ppm was decreased in the dentate gyrus. These results suggest induction of compromised cell quiescence that caused impaired self-renewal capacity of NSCs accompanying slowing down of cell cycling, which ultimately resulted in exhaustion of the NSC pool. At 1800 ppm, Reelin+ hilar GABAergic interneurons were also decreased, suggesting a contribution to the NSC reduction. At this dose, TBR2+ or DCX+ progenitor and immature granule cells and PVALB+ interneurons were increased. Moreover, COX-2+ granule cells were increased at ≥900 ppm. These results suggest facilitation of transient progenitor cell proliferation and differentiation during exposure. Moreover, TUNEL+ or Morin-stained granule cells were increased, together with Casp12 transcript upregulation, suggesting induction of Al accumulation-related endoplasmic reticulum stress-mediated granule cell apoptosis. Transcript expression changes on cholinergic and glutamatergic signals and synaptic plasticity suggested contribution to disruptive neurogenesis. The NSC-targeting effects sustained through the adult stage despite no sustained Al-accumulation. These results suggest that developmental AlCl3-exposure irreversibly affects postnatal hippocampal neurogenesis involving multiple functions in mice.
Collapse
Affiliation(s)
- Mari Inohana
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ayumi Eguchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Misato Nakamura
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Rei Nagahara
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Yukie Saegusa
- Environment Health and Safety Division, Environment Directorate, OECD, 75775 Paris Cedex 16, France
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
22
|
GABA regulates the proliferation and apoptosis of MAC-T cells through the LPS-induced TLR4 signaling pathway. Res Vet Sci 2018; 118:395-402. [DOI: 10.1016/j.rvsc.2018.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
|
23
|
Watanabe Y, Nakajima K, Mizukami S, Akahori Y, Imatanaka N, Woo GH, Yoshida T, Shibutani M. Differential effects between developmental and postpubertal exposure to N-methyl-N-nitrosourea on progenitor cell proliferation of rat hippocampal neurogenesis in relation to COX2 expression in granule cells. Toxicology 2017; 389:55-66. [DOI: 10.1016/j.tox.2017.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
|
24
|
Uemori T, Toda K, Seki T. Seizure severity-dependent selective vulnerability of the granule cell layer and aberrant neurogenesis in the rat hippocampus. Hippocampus 2017; 27:1054-1068. [PMID: 28608989 DOI: 10.1002/hipo.22752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
The pilocarpine-induced status epilepticus rodent model has been commonly used to analyze the mechanisms of human temporal lobe epilepsy. Recent studies using this model have demonstrated that epileptic seizures lead to increased adult neurogenesis of the dentate granule cells, and cause abnormal cellular organization in dentate neuronal circuits. In this study, we examined these structural changes in rats with seizures of varying severity. In rats with frequent severe seizures, we found a clear loss of Prox1 and NeuN expression in the dentate granule cell layer (GCL), which was confined mainly to the suprapyramidal blade of the GCL at the septal and middle regions of the septotemporal axis of the hippocampus. In the damaged suprapyramidal region, the number of immature neurons in the subgranular zone was markedly reduced. In contrast, in rats with less frequent severe seizures, there was almost no loss of Prox1 and NeuN expression, and the number of immature neurons was increased. In rats with no or slight loss of Prox1 expression in the GCL, ectopic immature neurons were detected in the molecular layer of the suprapyramidal blade in addition to the hilus, and formed chainlike aggregated structures along the blood vessels up to the hippocampal fissure, suggesting that newly generated neurons migrate at least partially along blood vessels to the hippocampal fissure. These results suggest that seizures of different severity cause different effects on GCL damage, neurogenesis, and the migration of new neurons, and that these structural changes are selective to subdivisions of the GCL and the septotemporal axis of the hippocampus.
Collapse
Affiliation(s)
- Takeshi Uemori
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Keiko Toda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Late effect of developmental exposure to glycidol on hippocampal neurogenesis in mice: Loss of parvalbumin-expressing interneurons. ACTA ACUST UNITED AC 2017; 69:517-526. [PMID: 28495474 DOI: 10.1016/j.etp.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
Abstract
Developmental exposure to glycidol of rats causes axonal injury targeting axon terminals in dams and transient disruption of late-stage differentiation of hippocampal neurogenesis, accompanying sustained increase in the number of reelin-producing or calretinin-expressing interneurons in offspring. The molecular mechanism of disruptive neurogenesis probably targets the newly generating nerve terminals. We previously found differences between mice and rats in the effects on hippocampal neurogenesis after developmental exposure to the same neurotoxic substances. In the present study, we examined the effects and underlying mechanisms of developmental exposure to glycidol on hippocampal neurogenesis in mice. Glycidol (800 or 1600ppm) was administered in drinking water to mated female mice from gestational day 6 to postnatal day 21. Compared to mice drinking water without glycidol (control), the exposed dams showed axon terminal injury at both concentrations of glycidol. The offspring of the dams that had received 1600ppm glycidol had fewer parvalbumin (PVALB)+ γ-aminobutyric acid (GABA)-ergic interneurons and neuron-specific nuclear protein+ postmitotic neurons in the hilus of the hippocampal dentate gyrus. Thus, exposure of glycidol to adult mice induced axonal degeneration equivalent to that seen in the rat; however, the target mechanism for the disruption of hippocampal neurogenesis by developmental exposure was different from that in rats, with the hilar neuronal population not affected until adulthood. Considering the role of PVALB+ GABAergic interneurons in the brain, developmental glycidol exposure in mice may cause a decline in cognitive function in later life, and involve a different mechanism from that targeting axon terminals in rats.
Collapse
|
26
|
Hasegawa-Baba Y, Tanaka T, Watanabe Y, Wang L, Itahashi M, Yoshida T, Shibutani M. Late Effect of Developmental Exposure to 3,3'-Iminodipropionitrile on Neurogenesis in the Hippocampal Dentate Gyrus of Mice. Neurotox Res 2017; 32:27-40. [PMID: 28168441 DOI: 10.1007/s12640-017-9703-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/17/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
The effects of developmental exposure to 3,3'-iminodipropionitrile (IDPN), a neurotoxicant that causes proximal axonopathy, on mouse hippocampal neurogenesis was examined. Pregnant mice were exposed to IDPN at 0, 600, or 1200 ppm in their drinking water from gestational day 6 to postnatal day (PND) 21. On PND 21, male offspring showed increased postmitotic neuron-specific NeuN-immunoreactive(+) granule cell numbers in the dentate subgranular zone (SGZ) and granule cell layer (GCL) and decreased glutamate receptor gene Grin2d levels in the dentate gyrus at 1200 ppm. On PND 77, decreased numbers were observed for TBR2+ progenitor cells in the SGZ at ≥600 ppm and GFAP+ stem cells, DCX+ progenitor cells and immature granule cells, NeuN+ immature and mature granule cells, PCNA+ proliferating cells in the SGZ and/or GCL, and immunoreactive cells for ARC or FOS, immediate-early gene products related to neuronal and synaptic plasticity, in the GCL at 1200 ppm. Additionally, at 1200 ppm of IDPN, downregulation of Kit, the gene encoding the stem cell factor (SCF) receptor, and upregulation of Kitl, encoding SCF, were observed in the dentate gyrus. Therefore, maternal IDPN exposure in mice affects neurogenesis involving glutamatergic signals at the end of developmental exposure, with late effects suppressing SGZ cell proliferation, reducing the broad range of granule cell lineage population, which may be responsible for SCF receptor downregulation. The upregulated SCF was likely a feedback response to the decreased receptor level. These results suggest that reduced SCF signaling may cause suppressed neuronal and synaptic plasticity.
Collapse
Affiliation(s)
- Yasuko Hasegawa-Baba
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Liyun Wang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
27
|
Immunohistochemistry of aberrant neuronal development induced by 6-propyl-2-thiouracil in rats. Toxicol Lett 2016; 261:59-71. [DOI: 10.1016/j.toxlet.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
|
28
|
Tanaka T, Hasegawa-Baba Y, Watanabe Y, Mizukami S, Kangawa Y, Yoshida T, Shibutani M. Maternal exposure to ochratoxin A targets intermediate progenitor cells of hippocampal neurogenesis in rat offspring via cholinergic signal downregulation and oxidative stress responses. Reprod Toxicol 2016; 65:113-122. [DOI: 10.1016/j.reprotox.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
29
|
Song J, Olsen RHJ, Sun J, Ming GL, Song H. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018937. [PMID: 27143698 DOI: 10.1101/cshperspect.a018937] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 Neuroscience Center and Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Reid H J Olsen
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jiaqi Sun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| |
Collapse
|
30
|
Cattani AA, Allene C, Seifert V, Rosenow F, Henshall DC, Freiman TM. Involvement of microRNAs in epileptogenesis. Epilepsia 2016; 57:1015-26. [PMID: 27207608 DOI: 10.1111/epi.13404] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 12/12/2022]
Abstract
Patients who have sustained brain injury or had developmental brain lesions present a non-negligible risk for developing delayed epilepsy. Finding therapeutic strategies to prevent development of epilepsy in at-risk patients represents a crucial medical challenge. Noncoding microRNA molecules (miRNAs) are promising candidates in this area. Indeed, deregulation of diverse brain-specific miRNAs has been observed in animal models of epilepsy as well as in patients with epilepsy, mostly in temporal lobe epilepsy (TLE). Herein we review deregulated miRNAs reported in epilepsy with potential roles in key molecular and cellular processes underlying epileptogenesis, namely neuroinflammation, cell proliferation and differentiation, migration, apoptosis, and synaptic remodeling. We provide an up-to-date listing of miRNAs altered in epileptogenesis and assess recent functional studies that have interrogated their role in epilepsy. Last, we discuss potential applications of these findings for the future development of disease-modifying therapeutic strategies for antiepileptogenesis.
Collapse
Affiliation(s)
| | | | - Volker Seifert
- Department of Neurosurgery, Goethe University, Frankfurt, Germany
| | - Felix Rosenow
- Department of Epileptology, Goethe-University, Frankfurt, Germany
| | - David C Henshall
- Physiology & Medical Physics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Thomas M Freiman
- Department of Neurosurgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
31
|
Tanaka T, Mizukami S, Hasegawa-Baba Y, Onda N, Sugita-Konishi Y, Yoshida T, Shibutani M. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats. Toxicology 2015; 336:59-69. [DOI: 10.1016/j.tox.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
|
32
|
Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice. Arch Toxicol 2015; 90:2009-24. [DOI: 10.1007/s00204-015-1588-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
33
|
Xiang J, Yan S, Li SH, Li XJ. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice. PLoS Genet 2015; 11:e1005175. [PMID: 25875952 PMCID: PMC4398408 DOI: 10.1371/journal.pgen.1005175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. Although the majority of the neurons in the brain are generated during embryonic stage, new neurons are continuously being produced postnatally, and at a much lower rate in adulthood. As postnatal neurogenesis is a key component of the brain maturation process that creates dynamic ‘wirings’ in the brain necessary for an individual to grow, learn, and cope with the external world, attenuated postnatal neurogenesis may affect an individual’s mental stability, rendering a higher susceptibility to depression later in life. In the current study, we genetically ablated the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions, and found that early loss of Hap1 significantly reduces postnatal hippocampal neurogenesis, and leads to adult depressive-like behavior. We also found c-kit as an effector to mediate the neurogenesis defect and adult depressive-like phenotype in mice lacking Hap1. The results provide the first genetic evidence to demonstrate the importance of postnatal neurogenesis in adult depression, and may offer new avenues in the prevention and treatment of depression. Our study also has potential implications to other adult-onset mental disorders.
Collapse
Affiliation(s)
- Jianxing Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SHL); (XJL)
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SHL); (XJL)
| |
Collapse
|
34
|
Silver H, Bilker WB. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms. Psychiatry Res 2015; 226:277-83. [PMID: 25639372 DOI: 10.1016/j.psychres.2014.12.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2014] [Accepted: 12/20/2014] [Indexed: 12/14/2022]
Abstract
Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging.
Collapse
Affiliation(s)
- Henry Silver
- Brain Behavior Laboratory, Sha׳ar Menashe Mental Health Center, Mobile Post Hefer 37806, Israel; Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia 19104-6021, USA.
| |
Collapse
|
35
|
Cutuli D, Caporali P, Gelfo F, Angelucci F, Laricchiuta D, Foti F, De Bartolo P, Bisicchia E, Molinari M, Farioli Vecchioli S, Petrosini L. Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates. Front Behav Neurosci 2015; 9:66. [PMID: 25814946 PMCID: PMC4357301 DOI: 10.3389/fnbeh.2015.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Paola Caporali
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Francesca Gelfo
- Santa Lucia Foundation Rome, Italy ; Department of Systemic Medicine, University of Rome Tor Vergata Rome, Italy
| | | | - Daniela Laricchiuta
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- Santa Lucia Foundation Rome, Italy ; Department of Sociological and Psychopedagogical Studies, University "Guglielmo Marconi" of Rome Rome, Italy
| | | | | | | | - Laura Petrosini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| |
Collapse
|
36
|
SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients. Neurobiol Dis 2015; 77:127-40. [PMID: 25766675 DOI: 10.1016/j.nbd.2015.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 02/28/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported. We hypothesized that in MTLE altered miRNA-mediated regulation of target genes could be involved in hippocampal cell remodeling. A miRNA screen was performed in hippocampal focal and non-focal brain tissue samples obtained from the temporal neocortex (both n=8) of MTLE patients. Out of 215 detected miRNAs, two were differentially expressed (hsa-miR-34c-5p: mean increase of 5.7 fold (p=0.014), hsa-miR-212-3p: mean decrease of 76.9% (p=0.0014)). After in-silico target gene analysis and filtering, reporter gene assays confirmed RNA interference for hsa-miR-34c-5p with 3'-UTR sequences of GABRA3, GRM7 and GABBR2 and for hsa-miR-212-3p with 3'-UTR sequences of SOX11, MECP2, ADCY1 and ABCG2. Reporter gene assays with mutated 3'-UTR sequences of the transcription factor SOX11 identified two different binding sites for hsa-miR-212-3p and its primary transcript partner hsa-miR-132-3p. Additionally, there was an inverse time-dependent expression of Sox11 and miR-212-3p as well as miR-132-3p in rat neonatal cortical neurons. Transfection of neurons with anti-miRs for miR-212-3p and miR-132-3p suggest that both miRNAs work synergistically to control Sox11 expression. Taken together, these results suggest that differential miRNA expression in neurons could contribute to an altered function of the transcription factor SOX11 and other genes in the setting of epilepsy, resulting not only in impaired neural differentiation, but also in imbalanced neuronal excitability and accelerated drug export.
Collapse
|
37
|
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 2014; 94:991-1026. [PMID: 25287858 DOI: 10.1152/physrev.00004.2014] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.
Collapse
Affiliation(s)
- James B Aimone
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Yan Li
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Star W Lee
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Gregory D Clemenson
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Wei Deng
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Fred H Gage
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
38
|
Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 2014; 8:396. [PMID: 25505873 PMCID: PMC4245909 DOI: 10.3389/fncel.2014.00396] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zone (SVZ) of adult humans. The molecular mechanisms that control neurogenesis have been extensively studied during embryonic development. Therefore, we have a broad knowledge of the intrinsic factors and extracellular signaling pathways driving proliferation and differentiation of embryonic neural precursors. Many of these factors also play important roles during adult neurogenesis, but essential differences exist in the biological responses of neural precursors in the embryonic and adult contexts. Because adult neural stem cells (NSCs) are normally found in a quiescent state, regulatory pathways can affect adult neurogenesis in ways that have no clear counterpart during embryogenesis. BMP signaling, for instance, regulates NSC behavior both during embryonic and adult neurogenesis. However, this pathway maintains stem cell proliferation in the embryo, while it promotes quiescence to prevent stem cell exhaustion in the adult brain. In this review, we will compare and contrast the functions of transcription factors (TFs) and other regulatory molecules in the embryonic brain and in adult neurogenic regions of the adult brain in the mouse, with a special focus on the hippocampal niche and on the regulation of the balance between quiescence and activation of adult NSCs in this region.
Collapse
Affiliation(s)
- Noelia Urbán
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - François Guillemot
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| |
Collapse
|
39
|
Song J, Crowther AJ, Olsen RHJ, Song H, Ming GL. A diametric mode of neuronal circuitry-neurogenesis coupling in the adult hippocampus via parvalbumin interneurons. NEUROGENESIS 2014. [DOI: 10.4161/neur.29949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Persson A, Sim SC, Virding S, Onishchenko N, Schulte G, Ingelman-Sundberg M. Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 2014; 19:733-41. [PMID: 23877834 PMCID: PMC4031638 DOI: 10.1038/mp.2013.89] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Abstract
Selective serotonin reuptake inhibitors, tricyclic antidepressants, various psychoactive drugs, as well as endogenous steroids and cannabinoid-like compounds are metabolized by the polymorphic cytochrome P450 2C19 (CYP2C19). Absence of this enzyme has been recently shown to associate with lower levels of depressive symptoms in human subjects. To investigate endogenous functions of CYP2C19 and its potential role in brain function, we have used a transgenic mouse model carrying the human CYP2C19 gene. Here, CYP2C19 was expressed in the developing fetal, but not adult brain and was associated with altered fetal brain morphology, where mice homozygous for the CYP2C19 transgenic insert had severely underdeveloped hippocampus and complete callosal agenesis and high neonatal lethality. CYP2C19 expression was also found in human fetal brain. In adult hemizygous mice we observed besides decreased hippocampal volume, an altered neuronal composition in the hippocampal dentate gyrus. Reduced hippocampal volumes have been reported in several psychiatric disorders, supporting the relevance of this model. Here we found that adult hemizygous CYP2C19 transgenic mice demonstrate behavior indicative of increased stress and anxiety based on four different tests. We hypothesize that expression of the CYP2C19 enzyme prenatally may affect brain development by metabolizing endogenous compounds influencing this development. Furthermore, CYP2C19 polymorphism may have a role in interindividual susceptibility for psychiatric disorders.
Collapse
Affiliation(s)
- A Persson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S Virding
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - N Onishchenko
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - G Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Takimoto N, Wang L, Itahashi M, Ogawa T, Segawa R, Hara S, Murakami T, Suzuki K, Shibutani M. Maternal single injection of N-methyl-N-nitrosourea to cause microcephaly in offspring induces transient aberration of hippocampal neurogenesis in mice. Toxicol Lett 2014; 226:20-7. [DOI: 10.1016/j.toxlet.2014.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
42
|
Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, Shibutani M. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett 2014; 224:424-32. [DOI: 10.1016/j.toxlet.2013.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
|
43
|
Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:108003. [PMID: 25292167 PMCID: PMC4189010 DOI: 10.1117/1.jbo.19.10.108003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/15/2014] [Indexed: 05/09/2023]
Abstract
The use of transcranial low-level laser (light) therapy (tLLLT) to treat stroke and traumatic brain injury (TBI) is attracting increasing attention. We previously showed that LLLT using an 810-nm laser 4 h after controlled cortical impact (CCI)-TBI in mice could significantly improve the neurological severity score, decrease lesion volume, and reduce Fluoro-Jade staining for degenerating neurons. We obtained some evidence for neurogenesis in the region of the lesion. We now tested the hypothesis that tLLLT can improve performance on the Morris water maze (MWM, learning, and memory) and increase neurogenesis in the hippocampus and subventricular zone (SVZ) after CCI-TBI in mice. One and (to a greater extent) three daily laser treatments commencing 4-h post-TBI improved neurological performance as measured by wire grip and motion test especially at 3 and 4 weeks post-TBI. Improvements in visible and hidden platform latency and probe tests in MWM were seen at 4 weeks. Caspase-3 expression was lower in the lesion region at 4 days post-TBI. Double-stained BrdU-NeuN (neuroprogenitor cells) was increased in the dentate gyrus and SVZ. Increases in double-cortin (DCX) and TUJ-1 were also seen. Our study results suggest that tLLLT may improve TBI both by reducing cell death in the lesion and by stimulating neurogenesis.
Collapse
Affiliation(s)
- Weijun Xuan
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Department of Otolaryngology, Nanning 530021, China
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
| | - Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
- Guangxi Medical University, First Affiliated College and Hospital, Department of Infectious Diseases, Nanning 530021, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- Address all correspondence to: Michael R. Hamblin E-mail:
| |
Collapse
|
44
|
Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, Bettler B, Taylor V. GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 2013; 141:83-90. [PMID: 24284211 DOI: 10.1242/dev.102608] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult neurogenesis is tightly regulated through the interaction of neural stem/progenitor cells (NSCs) with their niche. Neurotransmitters, including GABA activation of GABAA receptor ion channels, are important niche signals. We show that adult mouse hippocampal NSCs and their progeny express metabotropic GABAB receptors. Pharmacological inhibition of GABAB receptors stimulated NSC proliferation and genetic deletion of GABAB1 receptor subunits increased NSC proliferation and differentiation of neuroblasts in vivo. Cell-specific conditional deletion of GABAB receptors supports a cell-autonomous role in newly generated cells. Our data indicate that signaling through GABAB receptors is an inhibitor of adult neurogenesis.
Collapse
Affiliation(s)
- Claudio Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zitman F, Richter-Levin G. Age and sex-dependent differences in activity, plasticity and response to stress in the dentate gyrus. Neuroscience 2013; 249:21-30. [DOI: 10.1016/j.neuroscience.2013.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 12/25/2022]
|
46
|
Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Ohishi T, Mitsumori K, Shibutani M. Glycidol Induces Axonopathy by Adult-Stage Exposure and Aberration of Hippocampal Neurogenesis Affecting Late-Stage Differentiation by Developmental Exposure in Rats. Toxicol Sci 2013; 134:140-54. [DOI: 10.1093/toxsci/kft092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013; 27:469-78. [PMID: 23392917 DOI: 10.1177/1545968312474119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurogenesis, the birth of new neurons, occurs throughout life in the subventricular zone and produces immature neurons that migrate tangentially through the rostral migratory stream to the olfactory bulb. This migration is tightly regulated by both structural and chemical influences. Interestingly, brain insults such as ischemic stroke increase neurogenesis and redirect neuroblast migration to the injury site. This injury-redirected neurogenesis and migration is coupled with angiogenic vasculature and is influenced by many of the factors that positively and negatively affect migration under developmental or normal adult conditions. Additionally, cytokines and chemokines such as stromal cell-derived factor-1 strongly influence neuronal migration poststroke. However, neuronal repopulation or brain regeneration is extremely limited. This limitation may potentially be due to the hostile poststroke microenvironment including the formation of the physical and chemical barriers of glial scar. Furthermore, interspecies differences in poststroke neurogenesis between rodents and humans complicate the translation of experimental results to humans. Despite these challenges, many drugs and other potential therapies have recently been evaluated for potential neurogenic properties poststroke. Improved understanding of poststroke neurorepair may lead to new and more effective neurorestorative therapies.
Collapse
|
48
|
Dieni CV, Chancey JH, Overstreet-Wadiche LS. Dynamic functions of GABA signaling during granule cell maturation. Front Neural Circuits 2013; 6:113. [PMID: 23316139 PMCID: PMC3539683 DOI: 10.3389/fncir.2012.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABAA receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | |
Collapse
|
49
|
Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 2012; 489:150-4. [PMID: 22842902 PMCID: PMC3438284 DOI: 10.1038/nature11306] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/11/2012] [Indexed: 02/08/2023]
Abstract
Adult neurogenesis arises from neural stem cells within specialized niches1–3. Neuronal activity and experience, presumably acting upon this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival1, 3. Whether local neuronal circuitry has a direct impact on adult neural stem cells is unknown. Here we show that in the adult hippocampus nestin-expressing radial glia-like quiescent neural stem cells4–9 (RGLs) respond tonically to the neurotransmitter GABA via γ2 subunit-containing GABAA Rs. Clonal analysis9 of individual RGLs revealed a rapid exit from quiescence and enhanced symmetric self-renewal after conditional γ2 deletion. RGLs are in close proximity to GAD67+ terminals of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of dentate PV+, but not somatostatin- or vasoactive intestinal polypeptide (VIP)-expressing, interneuron activity can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence following social isolation, an experience that induces RGL activation and symmetric division8. Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.
Collapse
|
50
|
|