1
|
Chen L, Cui W, Qin J, Zhu M, Zhang H, Yang J, Xu Z, Huang H. FKBP51 is Involved in Epileptic Seizure by Regulating PSD95 in a PTZ-Induced Epileptic Mouse Model. J Integr Neurosci 2025; 24:25710. [PMID: 40152573 DOI: 10.31083/jin25710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Epilepsy, the world's third most prevalent chronic brain disorder, significantly affects patients' quality of life and increases the economic burden on families and society. Previous studies have demonstrated that FK506-binding protein 51 (FKBP51) plays a crucial role in synaptic plasticity. However, FKBP51 exhibits different functions under various physiological and pathological conditions. Our study explored the relationship between FKBP51 and epilepsy and its possible mechanism of action. We also analyzed the expression levels of postsynaptic density-95 (PSD95) and synaptophysin (SYP) in the hippocampus to examine the pathophysiology of epilepsy. METHODS A chronic epileptic kindling model was established by injecting pentylenetetrazole (PTZ) intraperitoneally, and a spontaneous seizure model was created by injecting kainic acid (KA) into the dentate gyrus using a stereotaxic apparatus. Endogenous FKBP51 expression was inhibited using adeno-associated virus (AAV)-FKBP51-Small hairpin RNAs (shRNA). The expression of FKBP51, PSD95, and SYP in the hippocampus and synaptosomes was measured through western blotting. Golgi staining and electron microscopy were used to examine spines and synaptic structures. RESULTS The results showed a significant increase in FKBP51 expression in the hippocampal tissue of the PTZ- and KA-induced epilepsy model groups. Inhibition of FKBP51 expression through AAV-FKBP51-shRNA resulted in a shorter latency and an elevated seizure grade score in mice. Moreover, the suppression of FKBP51 expression enhanced the expression of synaptic plasticity-related proteins, increased the density of dendritic spines, and elevated the quantity of spherical synaptic vesicles in the presynaptic membrane in the hippocampus. CONCLUSIONS FKBP51 may serve as an endogenous protective factor in epilepsy by regulating the expression of the synaptic plasticity-related protein PSD95, the density of dendritic spines, and the number of synaptic vesicles in the hippocampal CA1.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Wenxiu Cui
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
- Department of Neurology, Ziyang Central Hospital, 641300 Ziyang, Sichuan, China
| | - Jiyao Qin
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Manmin Zhu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China
| |
Collapse
|
2
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
4
|
Wu X, Liu C, Wang J, Zhang Y, Li Y, Wang Y, Song L, Qin L, Zhang T, He Q. The role of TrkB signaling-mediated synaptic plasticity in the antidepressant properties of catalpol, the main active compound of Rehmannia glutinosa Libosch. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118448. [PMID: 38871009 DOI: 10.1016/j.jep.2024.118448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rehmannia glutinosa Libosch. (RGL) is a famous ethnic medicine contained in antidepressant Chinese medicine formulas and is traditionally clinically used for depression. We have recently confirmed that RGL enhanced synaptic plasticity in a mouse model of Chinese medical syndrome and that catalpol may be the representatively pharmacological component responsible for its improvement in synaptic plasticity and treatment of depression. Impaired synaptic plasticity is closely linked to major depression. Tyrosine kinase receptor B (TrkB) signaling has recently been discovered as a key pathway for synaptic plasticity improvement and antidepressant discovery. However, to date, it is unknown whether the target of catalpol to improve synaptic plasticity involves TrkB and whether its antidepressant mechanism involves synaptic plasticity mediated by TrkB signaling. AIM OF STUDY This study aims to elucidate the potential antidepressant target and mechanisms of catalpol, the main active compound of RGL, through TrkB signaling-mediated synaptic plasticity. MATERIALS AND METHODS We have recently predicted through molecular networking strategy (including network pharmacology, molecular docking, and molecular dynamics simulation) that catalpol may exert its antidepressant effects by regulating TrkB signaling and thus modulating essential synaptic plasticity proteins. Then, this study used classic behavioral tests, targeted diagnostic reagents, Nissl and Golgi staining, immunohistochemical analysis, immunofluorescence analysis, Western blot, enzyme-linked immunosorbent assay, and Real-time PCR to confirm the potential target and signaling of catalpol to improve synaptic plasticity for the treatment of depression. RESULTS The data showed that catalpol could improve synaptic plasticity and depressive behaviors, and its action pathway was predicted to involve TrkB signaling. Subsequently, the blockade of TrkB abolished the improvement of synaptic plasticity by catalpol and its antidepressant properties, which validated that TrkB signaling was the key pathway for catalpol to improve synaptic plasticity and exert antidepressant properties. Inhibition of COX-2 was likely to be a necessary facilitator for the antidepressant efficacy of catalpol via the TrkB target and TrkB-mediated synaptic plasticity. CONCLUSION TrkB signaling-mediated synaptic plasticity plays a key role in the antidepressant properties of catalpol. This study provides critical information for the development of new and targeted antidepressant therapies or treatment strategies by catalpol. However, considering the existence of sex differences in depression (female depression is 2-3 times than that of males) and not exploring the antidepressant sex specificity of catalpol is a limitation, we will investigate the sex specificity of the antidepressant effects and molecular mechanisms of catalpol on sex-specific animals in the future to provide a preclinical basis for more accurate and targeted medication of catalpol.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Choi IA, Yun JH, Lee J, Choi DH. Neuropeptide FF Promotes Neuronal Survival and Enhances Synaptic Protein Expression Following Ischemic Injury. Int J Mol Sci 2024; 25:11580. [PMID: 39519132 PMCID: PMC11546865 DOI: 10.3390/ijms252111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the neuroprotective effects of neuropeptide FF (NPFF, FLFQPQRFamide) in the context of ischemic injury. Based on transcriptomic analysis in stroke models treated with 5-Aza-dC and task-specific training, we identified significant gene expression changes, particularly involving NPFF. To further explore NPFF's role in promoting neuronal recovery, recombinant NPFF protein (rNPFF) was used in primary mixed cortical cultures subjected to oxygen-glucose deprivation and reoxygenation. Our results demonstrated that rNPFF significantly reduced lactate dehydrogenase release, indicating decreased cellular damage. It also significantly increased the expression of TUJ1 and MAP2, markers of neuronal survival and dendritic integrity. Additionally, rNPFF significantly upregulated key synaptic proteins, including GAP43, PSD95, and synaptophysin, which are essential for synaptic repair and plasticity. Post-injury rNPFF treatment led to a significant upregulation of pro-brain-derived neurotrophic factor (BDNF) and mature BDNF, which play critical roles in neuronal survival, growth, and synaptic plasticity. Moreover, rNPFF activated the protein kinase Cε isoform, Sirtuin 1, and peroxisome proliferator-activated receptor gamma pathways, which are crucial for regulating cellular stress responses, synaptic plasticity, and energy homeostasis, further promoting neuronal survival and recovery. These findings suggest that rNPFF may play a pivotal role in enhancing neuronal survival and synaptic plasticity after ischemic injury, highlighting its potential as a therapeutic target for stroke recovery.
Collapse
Affiliation(s)
- In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (I.-A.C.); (J.H.Y.); (J.L.)
- Department of Occupational Therapy, Division of Health, Baekseok University, Cheonan-si 31065, Chung-cheongnam-do, Republic of Korea
| | - Ji Hee Yun
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (I.-A.C.); (J.H.Y.); (J.L.)
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (I.-A.C.); (J.H.Y.); (J.L.)
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (I.-A.C.); (J.H.Y.); (J.L.)
- Department of Medical Science, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
7
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
9
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Wan J, Ma L, Jiao X, Dong W, Lin J, Qiu Y, Wu W, Liu Q, Chen C, Huang H, Li S, Zheng H, Wu Y. Impaired synaptic plasticity and decreased excitability of hippocampal glutamatergic neurons mediated by BDNF downregulation contribute to cognitive dysfunction in mice induced by repeated neonatal exposure to ketamine. CNS Neurosci Ther 2024; 30:e14604. [PMID: 38332635 PMCID: PMC10853651 DOI: 10.1111/cns.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
AIM Repeated exposure to ketamine during the neonatal period in mice leads to cognitive impairments in adulthood. These impairments are likely caused by synaptic plasticity and excitability damage. We investigated the precise role of brain-derived neurotrophic factor (BDNF) in the cognitive impairments induced by repeated ketamine exposure during the neonatal period. METHODS We evaluated the cognitive function of mice using the Morris water maze test and novel object recognition test. Western blotting and immunofluorescence were used to detect the protein levels of BDNF. Western blotting, Golgi-Cox staining, transmission electron microscopy, and long-term potentiation (LTP) recordings were used to assess synaptic plasticity in the hippocampus. The excitability of neurons was evaluated using c-Fos. In the intervention experiment, pAdeno-CaMKIIα-BDNF-mNeuronGreen was injected into the hippocampal CA1 region of mice to increase the level of BDNF. The excitability of neurons was enhanced using a chemogenetic approach. RESULTS Our findings suggest that cognitive impairments in mice repeatedly exposed to ketamine during the neonatal period are associated with downregulated BDNF protein level, synaptic plasticity damage, and decreased excitability of glutamatergic neurons in the hippocampal CA1 region. Furthermore, the specific upregulation of BDNF in glutamatergic neurons of the hippocampal CA1 region and the enhancement of excitability can improve impaired synaptic plasticity and cognitive function in mice. CONCLUSION BDNF downregulation mediates synaptic plasticity and excitability damage, leading to cognitive impairments in adulthood following repeated ketamine exposure during the neonatal period.
Collapse
Affiliation(s)
- Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Linhui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinhao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jiatao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yongkang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Weifeng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
11
|
Rimbault C, Breillat C, Compans B, Toulmé E, Vicente FN, Fernandez-Monreal M, Mascalchi P, Genuer C, Puente-Muñoz V, Gauthereau I, Hosy E, Claverol S, Giannone G, Chamma I, Mackereth CD, Poujol C, Choquet D, Sainlos M. Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques. eLife 2024; 13:e69620. [PMID: 38167295 PMCID: PMC10803022 DOI: 10.7554/elife.69620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.
Collapse
Affiliation(s)
- Charlotte Rimbault
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Christelle Breillat
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Benjamin Compans
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Estelle Toulmé
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Filipe Nunes Vicente
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Patrice Mascalchi
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Camille Genuer
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Virginia Puente-Muñoz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Isabel Gauthereau
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Eric Hosy
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Gregory Giannone
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Ingrid Chamma
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Christel Poujol
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
12
|
Ortega-de San Luis C, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. Curr Biol 2023; 33:5368-5380.e5. [PMID: 37992719 DOI: 10.1016/j.cub.2023.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
13
|
Levine AJ, Thadani C, Soontornniyomkij V, Lopez-Aranda MF, Mesa YG, Kitchen S, Rezek V, Silva A, Kolson DL. Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice. RESEARCH SQUARE 2023:rs.3.rs-3678629. [PMID: 38168407 PMCID: PMC10760308 DOI: 10.21203/rs.3.rs-3678629/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Kitchen
- UCLA Humanized Mouse Core Laboratory, University of California
| | - Valerie Rezek
- UCLA Humanized Mouse Core Laboratory, University of California
| | | | | |
Collapse
|
14
|
Zeng H, Cheng L, Lu DZ, Fan S, Wang KX, Xu LL, Cai B, Zhou MW, Wang JW. Unbiased multitissue transcriptomic analysis reveals complex neuroendocrine regulatory networks mediated by spinal cord injury-induced immunodeficiency. J Neuroinflammation 2023; 20:219. [PMID: 37775760 PMCID: PMC10543323 DOI: 10.1186/s12974-023-02906-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI), which causes loss of sensory and motor function in the body below the level of injury, is a devastating disease of the central nervous system. SCI leads to severe secondary immunosuppression, called SCI-induced immunodeficiency syndrome (SCI-IDS), which is characterized by increased susceptibility to infection and further exacerbates neurological dysfunction. Several studies have suggested that SCI-IDS is an independent risk factor for poor neurological prognosis. SCI-IDS predominantly occurs following injury above the T5 levels and eventually leads to systemic immune failure, possibly via the sympathetic-adrenal medullary axis and the hypothalamic‒pituitary‒adrenal (HPA) axis. However, the mechanism remains unclear. METHODS AND OBJECTIVES The concentrations of adrenocorticotropic hormone and cortisol in plasma, as well as changes in sympathetic activity (blood pressure and catecholamine levels in plasma), were assessed in rats in the high-level (T3) spinal cord injury (T3-SCI) group and the low-level (T10) spinal cord injury (T10-SCI) group. Second, the differential regulation of the gene network between the sympathetic-adrenal medullary axis and the HPA axis was explored by histology and multitissue transcriptomics, and the neuroendocrine-immune network associated with SCI-IDS was further elucidated. RESULTS The spleen and thymus gland, which are secondary immune organs, were significantly atrophied in rats in the T3-SCI group, and the white pulp of the spleen was significantly atrophied. The level of cortisol, which is mediated by the adrenal glands, was markedly elevated, but norepinephrine levels were markedly decreased. There was no difference in adrenocorticotropic hormone expression between any of the groups. The transcriptome analysis results showed that the downregulated differentially expressed genes (DEGs) in the T3-SCI group were enriched in the GO term immunoregulation, indicating that splenic immune function was markedly impaired after high-level SCI. The upregulated DEGs in the hypothalamus (hub genes: Nod2, Serpine1, Cebpb, Nfkbil1, Ripk2, Zfp36, Traf6, Akap8, Gfer, Cxcl10, Tnfaip3, Icam1, Fcgr2b, Ager, Dusp10, and Mapkapk2) were significantly enriched in inflammatory pathways, and the downregulated genes (hub genes: Grm4, Nmu, P2ry12, rt1-bb1, Oprm1, Zfhx2, Gpr83, and Chrm2) were enriched in pathways related to inhibitory Gi-mediated G protein-coupled receptor (Gi-GPCR) neurons and neuropeptide changes. The upregulated genes in the adrenal glands (hub genes: Ciart, per2, per3, cry1, and cry2) were enriched in cortisol secretion and circadian rhythm changes, and the downregulated genes (hub genes: IL7r, rt1-bb, rt1-bb1, rt1-da, rt1-ba, cd74, cxcr3, vcam1, ccl5, bin1, and IL8) were significantly enriched in MHC-mediated immune responses. CONCLUSIONS To explore the possible mechanism underlying SCI-IDS, this study assessed the differential regulation of the gene network associated with neuroendocrine immunity after SCI. Progressive neuroinflammation spreads after injury, and neurotransmission through Gi-mediated G protein-coupled receptors in the HPA axis and neuropeptide production by the hypothalamus are inhibited. Disruption of the connection between the hypothalamus and the adrenal glands causes autonomous regulation of the adrenal glands, disturbance of circadian rhythm and finally hypercortisolemia, leading to general suppression of peripheral adaptive immunity. Neuraxial nerve inflammation caused by SCI persists indefinitely, blocking nerve repair; persistent system-wide immunosuppression in the periphery results in increased susceptibility to infection, leading to poor neurological prognosis.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Li Cheng
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - De-zhi Lu
- School of Medicine, Shanghai University, Shanghai, 200444 China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Ke-xin Wang
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Li-li Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Mou-wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191 China
| | - Jin-wu Wang
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| |
Collapse
|
15
|
Liu X, Ding Y, Jiang C, Ma X, Xin Y, Li Y, Zhang S, Shao B. Astragaloside IV ameliorates radiation-induced nerve cell damage by activating the BDNF/TrkB signaling pathway. Phytother Res 2023; 37:4102-4116. [PMID: 37226643 DOI: 10.1002/ptr.7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
Radiation can induce nerve cell damage. Synapse connectivity and functionality are thought to be the essential foundation of all cognitive functions. Therefore, treating and preventing damage to synaptic structure and function is an urgent challenge. Astragaloside IV (AS-IV) is a glycoside extracted from Astragalus membranaceus (Fisch.). Bunge is a widely used traditional Chinese medicine in China with various pharmacological properties, including protective effects on the central nervous system (CNS). In this study, the effect of AS-IV on synapse damage and BDNF/TrkB signaling pathway in radiated C57BL/6 mice with X-rays was investigated. PC12 cells and primary cortical neurons were exposed to UVA in vitro. Open field test and rotarod test were used to observe the effects of AS-IV on the motor and explore the abilities of radiated mice. The pathological changes in the brain were observed by hematoxylin and eosin and Nissl staining. Immunofluorescence analysis was used to detect the synapse damage. The expressions of the BDNF/TrkB pathway and neuroprotection-related molecules were detected by Western blotting and Quantitative-RTPCR, respectively. The results showed that AS-IV could improve the motor and explore abilities of radiated mice, reduce pathological damage to the cortex, enhance neuroprotection functions, and activate BDNF/TrkB pathway. In conclusion, AS-IV could relieve radiation-induced synapse damage, at least partly through the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Chenxin Jiang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Ma
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Xin
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shengxiang Zhang
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Baoping Shao
- Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Ignjatović Đ, Tovilović-Kovačević G, Mićić B, Tomić M, Djordjevic A, Macut D, Vojnović Milutinović D. Effects of early life overnutrition and hyperandrogenism on spatial learning and memory in a rat model of polycystic ovary syndrome. Horm Behav 2023; 153:105392. [PMID: 37295324 DOI: 10.1016/j.yhbeh.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by endocrine and metabolic abnormalities such as obesity and insulin resistance. PCOS is also associated with psychiatric disorders and cognitive impairment. The animal model of PCOS was induced by treating rats with 5α-dihydrotestosterone (5α-DHT) and additionally modified to induce adiposity by litter size reduction (LSR). Spatial learning and memory were assessed using the Barnes Maze test, and striatal markers of synaptic plasticity were analyzed. Striatal insulin signaling was estimated by the levels of insulin receptor substrate 1 (IRS1), its inhibitory phosphorylation at Ser307, and glycogen synthase kinase-3α/β (GSK3α/β) activity. Both LSR and DHT treatment significantly decreased striatal protein levels of IRS1, followed by increased GSK3α/β activity in small litters. Results of the behavioral study showed that LSR had a negative effect on learning rate and memory retention, whereas DHT treatment did not induce impairment in memory formation. While protein levels of synaptophysin, GAP43, and postsynaptic density protein 95 (PSD-95) were not altered by the treatments, DHT treatment induced an increase in phosphorylation of PSD-95 at Ser295 in both normal and small litters. This study revealed that LSR and DHT treatment suppressed insulin signaling by downregulating IRS1 in the striatum. However, DHT treatment did not have an adverse effect on learning and memory, probably due to compensatory elevation in pPSD-95-Ser295, which had a positive effect on synaptic strength. This implies that hyperandrogenemia in this setting does not represent a threat to spatial learning and memory, opposite to the effect of overnutrition-related adiposity.
Collapse
Affiliation(s)
- Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Bojana Mićić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000 Belgrade, Serbia.
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| |
Collapse
|
17
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Abazari D, Wild AR, Qiu T, Dickinson BC, Bamji SX. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J Cell Sci 2023; 136:jcs260629. [PMID: 37039765 PMCID: PMC10113885 DOI: 10.1242/jcs.260629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 04/12/2023] Open
Abstract
Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins. Using primary hippocampal cultures, we demonstrate that synaptic activity does not impact the transcription of palmitoylating and depalmitoylating enzymes, changes in thioesterase activity, or post-translational modification of the depalmitoylating enzymes of the ABHD17 family and APT2 (also known as LYPLA2). In contrast, synaptic activity does mediate post-translational modification of the palmitoylating enzymes ZDHHC2, ZDHHC5 and ZDHHC9 (but not ZDHHC8) to influence protein-protein interactions, enzyme stability and enzyme function. Post-translational modifications of the ZDHHC enzymes were also observed in the hippocampus following fear conditioning. Taken together, our findings demonstrate that signaling events activated by synaptic activity largely impact activity of the ZDHHC family of palmitoyl-acyl transferases with less influence on the activity of palmitoyl thioesterases.
Collapse
Affiliation(s)
- Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tian Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
19
|
Gao WR, Hu XH, Yu KY, Cai HY, Wang ZJ, Wang L, Wu MN. Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice. Behav Brain Res 2023; 438:114171. [PMID: 36280008 DOI: 10.1016/j.bbr.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid β protein (Aβ) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aβ level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aβ and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aβ oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aβ oligomers and p-tau.
Collapse
Affiliation(s)
- Wen-Rui Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Lei Wang
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
20
|
Brown JC, Higgins ES, George MS. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022; 25:1289-1298. [PMID: 35088731 PMCID: PMC10479373 DOI: 10.1016/j.neurom.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
The fields of Neurobiology and Neuromodulation have never been closer. Consequently, the phrase "synaptic plasticity" has become very familiar to non-basic scientists, without actually being very familiar. We present the "Story of the AMPA receptor," an easy-to-understand "10,000 ft" narrative overview of synaptic plasticity, oriented toward the brain stimulation clinician or scientist without basic science training. Neuromodulation is unparalleled in its capacity to both modulate and probe plasticity, yet many are not comfortable with their grasp of the topic. Here, we describe the seminal discoveries that defined the canonical mechanisms of long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. We then provide a conceptual framework for how plasticity at the synapse is accomplished, describing the functional roles of N-methyl-d-aspartate (NMDA) receptors and calcium, their effect on calmodulin, phosphatases (ie, calcineurin), kinases (ie, calcium/calmodulin-dependent protein kinase [CaMKII]), and structural "scaffolding" proteins (ie, post-synaptic density protein [PSD-95]). Ultimately, we describe how these affect the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor. More specifically, AMPA receptor delivery to (LTP induction), removal from (LTD), or recycling within (LTP maintenance) the synapse is determined by the status of phosphorylation and protein binding at specific sites on the tails of AMPA receptor subunits: GluA1 and GluA2. Finally, we relate these to transcranial magnetic stimulation (TMS) treatment, highlighting evidences for LTP as the basis of high-frequency TMS therapy, and briefly touch on the role of plasticity for other brain stimulation modalities. In summary, we present Synaptic Plasticity 101 as a singular introductory reference for those less familiar with the mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edmund S Higgins
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
21
|
Chen H, Qiao D, Si Y, He Z, Zhang B, Wang C, Zhang Y, Wang X, Shi Y, Cui C, Cui H, Li S. Effects of membrane androgen receptor binding on synaptic plasticity in primary hippocampal neurons. Mol Cell Endocrinol 2022; 554:111711. [PMID: 35803447 DOI: 10.1016/j.mce.2022.111711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Androgens play an important role in the regulation of hippocampal synaptic plasticity. While the classical molecular mechanism of androgen's genomic activity is their binding to intracellular androgen receptors (iARs), they can also induce rapid non-genomic effects through specific membrane androgen receptors (mARs). In this study, we aimed to localize and characterize these mARs in primary rat hippocampal neurons. Specific punctate fluorescent signals on the cell surface, observed by testosterone-fetal bovine serum albumin conjugated fluorescein isothiocyanate (T-BSA-FITC), indicated the presence of mARs in hippocampal neurons. T-BSA-FITC binding to the cell membrane was incompletely blocked by the iAR-antagonist flutamide, and mAR binding site was competitively bound by free testosterone (T). Most neurons expressing androgen membrane binding sites are glutamatergic (excitatory), although several are γ-aminobutyric acid (GABA)ergic (inhibitory). Confocal microscopy and live-cell imaging techniques were used to observe the real-time rapid effects of androgens on hippocampal dendritic spine morphology. Immunofluorescence cell staining was used to observe their effects on the postsynaptic density protein 95 (PSD95) and synapsin (SYN) synaptic markers. While androgens did not cause a short-term increase in dendritic spine density of rat primary hippocampal neurons, they promoted the transformation of dendritic spines from thin to mushroom, promoted dendritic spine maturation, increased dendritic spine surface area, and rapidly increased PSD95 and SYN expression in the primary hippocampal neurons. Hippocampal synaptosomes were prepared using the Optiprep and Percoll density gradient two-step centrifuge methods, and the gene expression profiles of the synaptosomes and hippocampus were compared using a gene chip; PSD95 mRNA expression was detected by reverse transcription-polymerase chain reaction. Several mRNAs were detected at the synaptic site, including PSD95. Finally, the Venus-PSD95 plasmid was constructed and transfected into HT22 cells, which is a mouse hippocampal neuronal cell line. The real-time effect of androgen on synaptic protein PSD95 was observed by fluorescence recovery after photobleaching experiments, which involved the translation process of PSD95 mRNA. In conclusion, our findings increased our understanding of how androgens exert the neuroprotective mechanisms on synaptic plasticity.
Collapse
Affiliation(s)
- Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yao Si
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhen He
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China
| | - Xuelin Wang
- Grade 2018, 5+3 Integrated Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yichun Shi
- Grade 2019, Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chengran Cui
- Grade 2019, Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
22
|
Stachowicz K. Is PSD-95 entangled in the side effects of antidepressants? Neurochem Int 2022; 159:105391. [PMID: 35817245 DOI: 10.1016/j.neuint.2022.105391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
PSD-95 is a component and a building block of an excitatory synapse. PSD-95 is a specialized protein that is part of a "combination lock" system responsible for plastic events at the synapse, such as receptor expression, which consequently induces changes in the PSD structure and thus affects synaptic plasticity. The possible involvement of PSD-95 in antidepressant side effects related to cognitive function and psychosis will be considered. An attempt will be made to trace the sequence of events in the proposed mechanism leading to these disorders, focusing mainly on NMDA receptors. Understanding the mechanisms of action of compounds with antidepressant potential may facilitate the design of safer drugs.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna, 12, 31-343, Kraków, Poland.
| |
Collapse
|
23
|
Zhao Y, Yang L, Chen Y, Zhang X, Li J, Liang D, Jiang S, Gao J, Meng Y. A Comparative Analysis of Bombyx mori (Lepidoptera: Bombycidae) β-fructofuranosidase Homologs Reveals Different Post-Translational Regulations in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13050410. [PMID: 35621746 PMCID: PMC9143633 DOI: 10.3390/insects13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The β-fructofuranosidase (β-FFase) encoding gene BmSuc1 regulates the glycometabolism of silkworm larvae, and it participates in the resistance of mulberry alkaloids. However, there is no molecular or biochemical information available about the mulberry pest Glyphodespyloalis Walker β-FFase homologs. In this paper, we have obtained five β-FFase homologous genes in G. pyloalis and characterized the expression and the localization of GpSUC1a in the midgut. The β-FFase activity in the midgut of G. pyloalis larvae and GpSUC1a were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of BmSUC1. Some putative N-glycosylation sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a. The results indicate that such post-translational modifications (PTMs) are differentially supporting that β-FFase are active in these two mulberry feeding caterpillars, and the activation of GpSUC1a may be controlled by a more complex post-translational regulatory system in G. pyloalis larvae. This is the first report on the characterization of β-FFase genes from G. pyloalis and the first comparison of expression regulation between two mulberry feeding insects B. mori and G. pyloalis. Moreover, this research may provide new ideas for the management of mulberry borers. Abstract The silk-spinning and Lepidopteran model insect Bombyx mori (Bombycidae) is a mulberry specialist. The BmSuc1 gene is the first β-fructofuranosidase (β-FFase) encoding gene identified in animals, and β-FFase acts as an essential sucrase for glycometabolism modulation in the silkworm larvae, involved in resistance to mulberry alkaloids. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is an important mulberry pest leading to heavy economic loss of sericulture. However, no molecular or biochemical information is available about G. pyloalis β-FFase homologs. In this study, five β-FFase homologous genes in G. pyloalis were obtained. The genes GpSuc1a and GpSuc2c were expressed in the midgut; GpSuc2c encodes a truncated polypeptide. The expression and the localization of GpSUC1a in the midgut was characterized. Whereas recombinant GpSUC1a expressed in both Escherichia coli and BmN cells displayed little activity as compared with higher activity of BmSUC1, β-FFase activity in the larval midgut of G. pyloalis and GpSUC1a purified from the midgut were both confirmed. The data suggested that the activation of GpSUC1a is probably controlled by a more complicated post-translational regulation system in G. pyloalis larvae than that of BmSUC1 in B. mori. To study post-translational modifications (PTMs), GpSUC1a and BmSUC1 were purified from larval midguts using immunoprecipitation and subjected to LC-MS to perform PTMs analysis. Some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a, indicating that such PTMs were supporting the differential β-FFases activities in these two mulberry feeding caterpillars.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Department of Pathology, Henan Provincial People’s Hospital, 7 Weiwu Road, Zhengzhou 450003, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Dan Liang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-551-65786967
| |
Collapse
|
24
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
25
|
PSD-95: An Effective Target for Stroke Therapy Using Neuroprotective Peptides. Int J Mol Sci 2021; 22:ijms222212585. [PMID: 34830481 PMCID: PMC8618101 DOI: 10.3390/ijms222212585] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.
Collapse
|
26
|
Vistrup-Parry M, Chen X, Johansen TL, Bach S, Buch-Larsen SC, Bartling CRO, Ma C, Clemmensen LS, Nielsen ML, Zhang M, Strømgaard K. Site-specific phosphorylation of PSD-95 dynamically regulates the postsynaptic density as observed by phase separation. iScience 2021; 24:103268. [PMID: 34761188 PMCID: PMC8567388 DOI: 10.1016/j.isci.2021.103268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/11/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Postsynaptic density protein 95 is a key scaffolding protein in the postsynaptic density of excitatory glutamatergic neurons, organizing signaling complexes primarily via its three PSD-95/Discs-large/Zona occludens domains. PSD-95 is regulated by phosphorylation, but technical challenges have limited studies of the molecular details. Here, we genetically introduced site-specific phosphorylations in single, tandem, and full-length PSD-95 and generated a total of 11 phosphorylated protein variants. We examined how these phosphorylations affected binding to known interaction partners and the impact on phase separation of PSD-95 complexes and identified two new phosphorylation sites with opposing effects. Phosphorylation of Ser78 inhibited phase separation with the glutamate receptor subunit GluN2B and the auxiliary protein stargazin, whereas phosphorylation of Ser116 induced phase separation with stargazin only. Thus, by genetically introducing phosphoserine site-specifically and exploring the impact on phase separation, we have provided new insights into the regulation of PSD-95 by phosphorylation and the dynamics of the PSD.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Thea L Johansen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sara C Buch-Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Chenxue Ma
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen, China
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Zhao H, Li S, He L, Tang F, Han X, Deng W, Lin Z, Huang R, Li Z. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol Neurobiol 2021; 59:748-761. [PMID: 34766239 DOI: 10.1007/s12035-021-02633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Dravet syndrome (DS) is a form of severe childhood-onset refractory epilepsy typically caused by a heterozygous loss-of-function mutation. DS patient-derived induced pluripotent stem cells (iPSCs) are appropriate human cells for exploring disease mechanisms and testing new therapeutic strategies in vitro. Repeated spontaneous seizures can cause neuroinflammatory reactions and oxidative stress, resulting in neuronal toxicity, neuronal dysfunction, blood-brain barrier disruption, and hippocampal inflammation. Antiepileptic drug therapy does not delay the development of chronic epilepsy. The application of mesenchymal stem cells (MSCs) is one therapeutic strategy for thwarting epilepsy development. This study evaluated the effects of human umbilical cord mesenchymal stem cell-conditioned medium (HUMSC-CM) in a new in vitro model of neurons differentiated from DS patient-derived iPSCs. In the presence of HUMSC-CM, increases in superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and glutathione (GSH) levels were found to contribute to a reduction in reactive oxygen species (ROS) levels. In parallel, inflammation was rescued in DS patient-derived neuronal cells via increased expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10) and significant downregulation of tumor necrosis factor-α and interleukin-1β expression. The intracellular calcium concentration ([Ca2+]i) and malondialdehyde (MDA) and ROS levels were decreased in DS patient-derived cells. In addition, action potential (AP) firing ability was enhanced by HUMSC-CM. In conclusion, HUMSC-CM can effectively eliminate ROS, affect migration and neurogenesis, and promote neurons to enter a highly functional state. Therefore, HUMSC-CM is a promising therapeutic strategy for the clinical treatment of refractory epilepsy such as DS.
Collapse
Affiliation(s)
- Huifang Zhao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Tang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyuan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Bandyopadhyay SS, Halder AK, Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Dutta A, Chatterjee P, Nasipuri M, Wójtowicz T, Wlodarczyk J, Basu S. RFCM-PALM: In-Silico Prediction of S-Palmitoylation Sites in the Synaptic Proteins for Male/Female Mouse Data. Int J Mol Sci 2021; 22:ijms22189901. [PMID: 34576064 PMCID: PMC8467992 DOI: 10.3390/ijms22189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
S-palmitoylation is a reversible covalent post-translational modification of cysteine thiol side chain by palmitic acid. S-palmitoylation plays a critical role in a variety of biological processes and is engaged in several human diseases. Therefore, identifying specific sites of this modification is crucial for understanding their functional consequences in physiology and pathology. We present a random forest (RF) classifier-based consensus strategy (RFCM-PALM) for predicting the palmitoylated cysteine sites on synaptic proteins from male/female mouse data. To design the prediction model, we have introduced a heuristic strategy for selection of the optimum set of physicochemical features from the AAIndex dataset using (a) K-Best (KB) features, (b) genetic algorithm (GA), and (c) a union (UN) of KB and GA based features. Furthermore, decisions from best-trained models of the KB, GA, and UN-based classifiers are combined by designing a three-star quality consensus strategy to further refine and enhance the scores of the individual models. The experiment is carried out on three categorized synaptic protein datasets of a male mouse, female mouse, and combined (male + female), whereas in each group, weighted data is used as training, and knock-out is used as the hold-out set for performance evaluation and comparison. RFCM-PALM shows ~80% area under curve (AUC) score in all three categories of datasets and achieve 10% average accuracy (male—15%, female—15%, and combined—7%) improvements on the hold-out set compared to the state-of-the-art approaches. To summarize, our method with efficient feature selection and novel consensus strategy shows significant performance gains in the prediction of S-palmitoylation sites in mouse datasets.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (S.S.B.); (A.K.H.); (A.D.); (M.N.)
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Barasat, Kolkata 700126, India
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (S.S.B.); (A.K.H.); (A.D.); (M.N.)
- Department of Computer Science and Engineering, University of Engineering & Management, Kolkata 700156, India
| | - Monika Zaręba-Kozioł
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.Z.-K.); (A.B.-K.); (T.W.)
| | - Anna Bartkowiak-Kaczmarek
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.Z.-K.); (A.B.-K.); (T.W.)
| | - Aviinandaan Dutta
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (S.S.B.); (A.K.H.); (A.D.); (M.N.)
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India;
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (S.S.B.); (A.K.H.); (A.D.); (M.N.)
| | - Tomasz Wójtowicz
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.Z.-K.); (A.B.-K.); (T.W.)
| | - Jakub Wlodarczyk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.Z.-K.); (A.B.-K.); (T.W.)
- Correspondence: (J.W.); (S.B.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (S.S.B.); (A.K.H.); (A.D.); (M.N.)
- Correspondence: (J.W.); (S.B.)
| |
Collapse
|
29
|
Desch K, Langer JD, Schuman EM. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep 2021; 36:109583. [PMID: 34433048 PMCID: PMC8411114 DOI: 10.1016/j.celrep.2021.109583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis. Global proteome and phosphoproteome dynamics following homeostatic synaptic scaling Approximately 3,300 activity-sensitive, synapse-associated phospho-events Persistent signaling of ~25% of initial phospho-events (min to 24 h) Persistent and reciprocal phosphoregulation links synaptic up- and down-scaling
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
30
|
Zhou Y, Lu H, Liu Y, Zhao Z, Zhang Q, Xue C, Zou Y, Cao Z, Luo W. Cirbp-PSD95 axis protects against hypobaric hypoxia-induced aberrant morphology of hippocampal dendritic spines and cognitive deficits. Mol Brain 2021; 14:129. [PMID: 34419133 PMCID: PMC8379783 DOI: 10.1186/s13041-021-00827-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Hypobaric hypoxia (HH) is a typical characteristic of high altitude environment and causes a spectrum of pathophysiological effects, including headaches, gliovascular dysfunction and cognitive retardation. Here, we sought to understand the mechanisms underlying cognitive deficits under HH exposure. Our results showed that hypobaric hypoxia exposure impaired cognitive function and suppressed dendritic spine density accompanied with increased neck length in both basal and apical hippocampal CA1 region neurons in mice. The expression of PSD95, a vital synaptic scaffolding molecule, is down-regulated by hypobaric hypoxia exposure and post-transcriptionally regulated by cold-inducible RNA-binding protein (Cirbp) through 3′-UTR region binding. PSD95 expressing alleviates hypoxia-induced dendritic spine morphology changes of hippocampal neurons and memory deterioration. Moreover, overexpressed Cirbp in hippocampus rescues HH-induced abnormal expression of PSD95 and attenuates hypoxia-induced dendritic spine injury and cognitive retardation. Thus, our findings reveal a novel mechanism that Cirbp-PSD-95 axis appears to play an essential role in HH-induced cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Ying Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Chong Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Ma J, Gao Y, Tang W, Huang W, Tang Y. Fluoxetine Protects against Dendritic Spine Loss in Middle-aged APPswe/PSEN1dE9 Double Transgenic Alzheimer's Disease Mice. Curr Alzheimer Res 2021; 17:93-103. [PMID: 32053075 DOI: 10.2174/1567205017666200213095419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Studies have suggested that cognitive impairment in Alzheimer's disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. OBJECTIVE In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. RESULTS It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. CONCLUSION These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.
Collapse
Affiliation(s)
- Jing Ma
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Gao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
32
|
Lan Z, Meng Z, Lian B, Liu M, Sun T, Sun H, Liu Z, Hu Z, Guo Q, Zhang J. Hippocampal Aromatase Knockdown Aggravates Ovariectomy-Induced Spatial Memory Impairment, Aβ Accumulation and Neural Plasticity Deficiency in Adult Female Mice. Neurochem Res 2021; 46:1188-1202. [PMID: 33559105 DOI: 10.1007/s11064-021-03258-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
Ovarian estrogens (mainly 17β estradiol, E2) have been involved in the regulation of the structure of hippocampus, the center of spatial memory. In recent years, high levels of aromatase (AROM), the estrogen synthase, has been localized in hippocampus; and this hippocampus-derived E2 seems to be functional in synaptic plasticity and spatial memory as ovarian E2 does. However, the contribution of ovarian E2 and hippocampal E2 to spatial memory and neural plasticity remains unclear. In this study, AROM-specific RNA interference AAVs (shAROM) were constructed and injected into the hippocampus of control or ovariectomized (OVX) mice. Four weeks later the spatial learning and memory behavior was examined with Morris water maze, the expression of hippocampal Aβ related proteins, selected synaptic proteins and CA1 synapse density, actin polymerization related proteins and CA1 spine density were also examined. The results showed that while OVX and hippocampal shAROM contributed similarly to most of the parameters examined, shAROM induced more increase in BACE1 (amyloidogenic β-secretase), more decrease in neprilysin (Aβ remover) and Profilin-1 (actin polymerization inducer). More importantly, combined OVX and shAROM treatment displayed most significant impairment of spatial learning and memory as well as decrease in synaptic plasticity compared to OVX or shAROM alone. In conclusion, the above results clearly demonstrated the crucial role of hippocampal E2 in the regulation of the structure and function of hippocampus besides ovarian E2, indicating that hippocampal E2 content should also be taken into consideration during estrogenic replacement.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing, China
| | - Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing, China
| | - Biyao Lian
- Department of Neurobiology, Army Medical University, Chongqing, China
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengying Liu
- Department of Neurobiology, Army Medical University, Chongqing, China
- The 305 Hospital of PLA, Beijing, China
| | - Tao Sun
- Department of Neurobiology, Army Medical University, Chongqing, China
- The 63650 Hospital of PLA, Malan, China
| | - Huan Sun
- Department of Neurobiology, Army Medical University, Chongqing, China
- Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Liu
- Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Zhenxin Hu
- Battalion One of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Qiang Guo
- Department of Basic Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing, China.
| |
Collapse
|
33
|
Khan R, Kulasiri D, Samarasinghe S. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders. Neural Regen Res 2021; 16:1150-1157. [PMID: 33269764 PMCID: PMC8224123 DOI: 10.4103/1673-5374.300331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases. Ca2+- dependent kinases and phosphatases are responsible for controlling neuronal processing; balance is achieved through opposition. During molecular mechanisms of learning and memory, kinases generally modulate positively while phosphatases modulate negatively. This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity. It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
34
|
Illendula M, Osuru HP, Ferrarese B, Atluri N, Dulko E, Zuo Z, Lunardi N. Surgery, Anesthesia and Intensive Care Environment Induce Delirium-Like Behaviors and Impairment of Synaptic Function-Related Gene Expression in Aged Mice. Front Aging Neurosci 2020; 12:542421. [PMID: 33088271 PMCID: PMC7544741 DOI: 10.3389/fnagi.2020.542421] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To establish a clinically relevant mouse model of perioperative delirium. METHODS Aged C57BL/6J mice were tested at baseline in the Y-maze novel arm preference, buried food, simple discrimination task of the attentional set-shifting test, and open field tests. They were subsequently randomized to insult (anesthesia, surgery, and Intensive Care Unit environment) or control group. Insult-exposed mice received laparotomy under sevoflurane anesthesia, propofol sedation and exposure to intermittent lights, sounds and cage shaking. Controls did not receive anesthesia, surgery, or intensive care environment. All mice were tested in the Y-maze novel arm preference, buried food, attentional, and open field tests at the end of intensive care environment (0 h) and every 6 h up to 24 h. Mouse hippocampi were collected at 24 h for gene expression analyses. RESULTS Surgery, anesthesia and Intensive Care environment decreased the entries in the Y-maze novel arm at 0 h (P = 0.001), 6 h (P < 0.001), 18 h (P = 0.002), and 24 h (P = 0.029). Insult exposure increased the latency to find a buried cereal reward at 18 h (P = 0.035) and 24 h (P = 0.027), and increased the trials to criterion in the reverse compound discrimination (P = 0.013) and extradimensional shift (P < 0.001) tasks of the attentional test. The overall incidence of delirium was 72% in A/S/I mice. Messenger RNA levels of synuclein alpha (-3.785 fold change relative to controls), Neurotrophic Receptor Tyrosine Kinase1 (-2.267), and syntaxin1a (-1.498) were decreased in the hippocampus of mice 24 h after insult exposure. Protein levels of syntaxin 1a (P = 0.012), Neurotrophic Receptor Tyrosine Kinase1 (P = 0.039), synuclein alpha (P = 0.017), phosphorylated synuclein alpha (P = 0.008), synaptophysin (P = 0.002), postsynaptic density protein 95 (P = 0.003), and microtubule-associated protein 2 (P = 0.013) were also decreased, relative to controls. CONCLUSION Surgery, anesthesia and Intensive Care environment impaired mouse behaviors that depend on attention, memory, and thought organization. The changes were acute in onset and fluctuating in time. Mice with delirium exhibited decreased expression of key synaptic function-related genes. The behavioral changes induced by anesthesia, surgery, and Intensive Care environment in aged mice are consistent with the clinical features of human delirium, and support the use of this animal model for future mechanistic studies of perioperative delirium.
Collapse
Affiliation(s)
- Meghana Illendula
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Hari Prasad Osuru
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Bianca Ferrarese
- Department of Anesthesiology and Intensive Care Medicine, University of Padova, Padua, Italy
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elzbieta Dulko
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
35
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
36
|
The Conformational Plasticity Vista of PDZ Domains. Life (Basel) 2020; 10:life10080123. [PMID: 32726937 PMCID: PMC7460260 DOI: 10.3390/life10080123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023] Open
Abstract
The PDZ domain (PSD95-Discs large-ZO1) is a widespread modular domain present in the living organisms. A prevalent function in the PDZ family is to serve as scaffolding and adaptor proteins connecting multiple partners in signaling pathways. An explanation of the flexible functionality in this domain family, based just on a static perspective of the structure-activity relationship, might fall short. More dynamic and conformational aspects in the protein fold can be the reasons for such functionality. Folding studies indeed showed an ample and malleable folding landscape for PDZ domains where multiple intermediate states were experimentally detected. Allosteric phenomena that resemble energetic coupling between residues have also been found in PDZ domains. Additionally, several PDZ domains are modulated by post-translational modifications, which introduce conformational switches that affect binding. Altogether, the ability to connect diverse partners might arise from the intrinsic plasticity of the PDZ fold.
Collapse
|
37
|
Nowacka A, Borczyk M, Salamian A, Wójtowicz T, Włodarczyk J, Radwanska K. PSD-95 Serine 73 phosphorylation is not required for induction of NMDA-LTD. Sci Rep 2020; 10:2054. [PMID: 32029829 PMCID: PMC7005143 DOI: 10.1038/s41598-020-58989-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/16/2020] [Indexed: 01/11/2023] Open
Abstract
PSD-95 is a major scaffolding protein of the post-synaptic density (PSD) of a glutamatergic synapse. PSD-95, via interactions with stargazin, anchors AMPA receptors at the synapse and regulates AMPAR currents. The expression of PSD-95 is regulated during synaptic plasticity. It is, however, unknown whether this regulation is required for induction of functional plasticity of glutamatergic synapses. Here, we show that NMDA-induced long-term depression of synaptic transmission (NMDA-LTD) is accompanied by downregulation of PSD-95 protein levels. Using pharmacologic and molecular manipulations, we further demonstrate that the NMDA-induced downregulation of PSD-95 depends on the activation of CaMKII and CaMKII-driven phosphorylation of PSD-95 serine 73. Surprisingly, neither CaMKII activity nor CaMKII-dependent phosphorylation of PSD-95 serine 73 are required for the expression of NMDA-LTD. These results support the hypothesis that synaptic plasticity of AMPARs may occur without dynamic regulation of PSD-95 protein levels.
Collapse
Affiliation(s)
- Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
38
|
Engineering selective competitors for the discrimination of highly conserved protein-protein interaction modules. Nat Commun 2019; 10:4521. [PMID: 31586061 PMCID: PMC6778148 DOI: 10.1038/s41467-019-12528-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules. Developing inhibitors that target specific protein-protein interactions (PPIs) is challenging. Here, the authors show that target selectivity and PPI blocking can be achieved simultaneously with PPI inhibitors that contain two functional modules, and create a paralog-selective PSD-95 inhibitor as proof-of-concept.
Collapse
|
39
|
RPS23RG1 Is Required for Synaptic Integrity and Rescues Alzheimer's Disease-Associated Cognitive Deficits. Biol Psychiatry 2019; 86:171-184. [PMID: 30292394 PMCID: PMC6389446 DOI: 10.1016/j.biopsych.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although synaptic impairment is a prerequisite to cognitive deficiencies in Alzheimer's disease (AD), mechanisms underlying the dysregulation of essential synaptic scaffolding components and their integrity remain elusive. RPS23RG1 is a newly identified protein implicated in AD. However, the physiological function of RPS23RG1 has yet to be determined. METHODS We investigated the role of RPS23RG1 in maintaining synaptic structure and function in cell cultures and in Rps23rg1 knockout mice and determined whether targeting RPS23RG1-mediated pathways has therapeutic potential in APP/PS1 AD model mice. RESULTS Deletion of the Rps23rg1 gene resulted in severe memory deficits and impairment of postsynaptic structure and function, with marked reductions in postsynaptic densities-93 and -95 (PSD-93 and PSD-95) levels. RPS23RG1 interacted with PSD-93/PSD-95 through its intracellular domain, consequently sequestering PSD-93/PSD-95 from murine double minute 2-mediated ubiquitination and degradation, thereby maintaining synaptic function. Restoration of PSD-93/PS-D95 levels reversed synaptic and memory deficits in Rps23rg1 knockout mice. We further observed attenuated RPS23RG1 expression in human AD, which positively correlated with PSD-93/PSD-95 levels. Importantly, an RPS23RG1-derived peptide comprising a unique PSD-93/PSD-95 interaction motif rescued synaptic and cognitive defects in Rps23rg1 knockout and AD mouse models. CONCLUSIONS Our results reveal a role for RPS23RG1 in maintaining synaptic integrity and function and provide a new mechanism for synaptic dysfunction in AD pathogenesis. This demonstrates that RPS23RG1-mediated pathways show good therapeutic potential in AD intervention.
Collapse
|
40
|
Diaz A, Jeanneret V, Merino P, McCann P, Yepes M. Tissue-type plasminogen activator regulates p35-mediated Cdk5 activation in the postsynaptic terminal. J Cell Sci 2019; 132:jcs224196. [PMID: 30709918 PMCID: PMC6432712 DOI: 10.1242/jcs.224196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Neuronal depolarization induces the synaptic release of tissue-type plasminogen activator (tPA). Cyclin-dependent kinase-5 (Cdk5) is a member of the family of cyclin-dependent kinases that regulates cell migration and synaptic function in postmitotic neurons. Cdk5 is activated by its binding to p35 (also known as Cdk5r1), a membrane-anchored protein that is rapidly degraded by the proteasome. Here, we show that tPA prevents the degradation of p35 in the synapse by a plasminogen-dependent mechanism that requires open synaptic N-methyl-D-aspartate (NMDA) receptors. We show that tPA treatment increases the abundance of p35 and its binding to Cdk5 in the postsynaptic density (PSD). Furthermore, our data indicate that tPA-induced p35-mediated Cdk5 activation does not induce cell death, but instead prevents NMDA-induced ubiquitylation of postsynaptic density protein-95 (PSD-95; also known as Dlg4) and the removal of GluR1 (also known as Gria1)-containing α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors from the PSD. These results show that the interaction between tPA and synaptic NMDA receptors regulates the expression of AMPA receptor subunits in the PSD via p35-mediated Cdk5 activation. This is a novel role for tPA as a regulator of Cdk5 activation in cerebral cortical neurons.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Valerie Jeanneret
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
41
|
Hou L, Sun F, Huang R, Sun W, Zhang D, Wang Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson's disease model. Redox Biol 2019; 22:101134. [PMID: 30798073 PMCID: PMC6389731 DOI: 10.1016/j.redox.2019.101134] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022] Open
Abstract
The activation of NADPH oxidase contributes to dopaminergic neurodegeneration and motor deficits in Parkinson's disease (PD). However, whether NADPH oxidase is involved in non-motor symptoms, especially cognitive dysfunction in PD remains unknown. This study is undertaken to characterize the effects of inhibition of NADPH oxidase by a widely used NADPH oxidase inhibitor apocynin on learning and memory deficits in paraquat and maneb-induced mouse PD model. Results showed that mice injected with paraquat and maneb displayed impairments of spatial learning and memory, which was associated with reduced tyrosine hydroxylase expression as well as increased neurodegeneration, synaptic loss, α-synuclein expression and Ser129-phosphorylation in the hippocampus. Interestingly, apocynin treatment significantly ameliorated learning and memory deficits as well as hippocampal neurodegeneration and α-synuclein pathology in mice treated with these two pesticides. Mechanistically, we found that apocynin mitigated paraquat and maneb-induced NADPH oxidase activation and related oxidative stress. Furthermore, reduced microglial activation and M1 polarization were observed in apocynin and paraquat and maneb co-treated mice compared with paraquat and maneb alone group. Finally, apocynin inhibited the activation of signal transducers and activators of transcription 1 (STAT1) and nuclear factor kappa B (NF-κB) pathways, two key regulatory factors for microglial M1 inflammatory responses, in paraquat and maneb-treated mice. Altogether, our findings implied that NADPH oxidase mediates learning and memory deficits in PD, and inhibition of NADPH oxidase by apocynin blocks impairments of learning and memory via the suppression of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Ruixue Huang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
42
|
Amara N, Foe IT, Onguka O, Garland M, Bogyo M. Synthetic Fluorogenic Peptides Reveal Dynamic Substrate Specificity of Depalmitoylases. Cell Chem Biol 2018; 26:35-47.e7. [PMID: 30393067 DOI: 10.1016/j.chembiol.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Palmitoylation is a post-translational modification involving the thioesterification of cysteine residues with a 16-carbon-saturated fatty acid. Little is known about rates of depalmitoylation or the parameters that dictate these rates. Here we report a modular strategy to synthesize quenched fluorogenic substrates for the specific detection of depalmitoylase activity and for mapping the substrate specificity of individual depalmitoylases. We demonstrate that human depalmitoylases APT1 and APT2, and TgPPT1 from the parasite Toxoplasma gondii, have distinct specificities that depend on amino acid residues distal to the palmitoyl cysteine. This information informs the design of optimal and non-optimal substrates as well as isoform-selective substrates to detect the activity of a specific depalmitoylase in complex proteomes. In addition to providing tools for studying depalmitoylases, our findings identify a previously unrecognized mechanism for regulating steady-state levels of distinct palmitoylation sites by sequence-dependent control of depalmitoylation rates.
Collapse
Affiliation(s)
- Neri Amara
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Jeanneret V, Ospina JP, Diaz A, Manrique LG, Merino P, Gutierrez L, Torre E, Wu F, Cheng L, Yepes M. Tissue-type plasminogen activator protects the postsynaptic density in the ischemic brain. J Cereb Blood Flow Metab 2018; 38:1896-1910. [PMID: 29547062 PMCID: PMC6259311 DOI: 10.1177/0271678x18764495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia causes the presynaptic release of tissue-type plasminogen activator (tPA). The postsynaptic density (PSD) is a postsynaptic structure that provides a matrix where signaling transduction of excitatory synapses takes place. The postsynaptic density protein-95 (PSD-95) is the most abundant scaffolding protein in the postsynaptic density (PSD), where it modulates the postsynaptic response to the presynaptic release of glutamate by regulating the anchoring of glutamate receptors to the PSD. We found that tPA induces the local translation of PSD-95 mRNA and the subsequent recruitment of PSD-95 protein to the PSD, via plasminogen-independent activation of TrkB receptors. Our data show that PSD-95 is removed from the PSD during the early stages of cerebral ischemia, and that this effect is abrogated by either the release of neuronal tPA, or intravenous administration of recombinant tPA (rtPA). We report that the effect of tPA on PSD-95 is associated with inhibition of the phosphorylation and recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the PSD, known to amplify the effect of the excitotoxic injury, and that this is followed by TrkB-mediated protection of dendritic spines from the harmful effects of the hypoxic insult. These data reveal that tPA is a synaptic protector in the ischemic brain.
Collapse
Affiliation(s)
- Valerie Jeanneret
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juan P Ospina
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ariel Diaz
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Luis G Manrique
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura Gutierrez
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Fang Wu
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Lihong Cheng
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,3 Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
44
|
The membrane palmitoylated protein, MPP6, is involved in myelin formation in the mouse peripheral nervous system. Histochem Cell Biol 2018; 151:385-394. [PMID: 30357511 DOI: 10.1007/s00418-018-1745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
A membrane skeletal molecular complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6)-Lin7-cell adhesion molecule 4 (CADM4), is incorporated in Schwann cells, especially in Schmidt-Lanterman incisures (SLIs), in the mouse peripheral nervous system (PNS). MPP6, Lin7, and CADM4 are transported to SLIs by 4.1G. In this study, we created MPP6-deficient mice and evaluated myelin structure and MPP6 protein complexes. In SLIs in MPP6-deficient nerves, Lin7 was rarely detected by immunohistochemistry and western blotting, but the localization and amount of CADM4 and 4.1G were not altered. Motor activity was not significantly impaired in a tail-suspension test, but the sciatic nerves of MPP6-deficient mice had thicker myelin in internodes by electron microscopy compared to that of wild-type mice. These results indicate that the MPP6-Lin7 complex regulates myelin formation.
Collapse
|
45
|
Sadigh-Eteghad S, Geranmayeh MH, Majdi A, Salehpour F, Mahmoudi J, Farhoudi M. Intranasal cerebrolysin improves cognitive function and structural synaptic plasticity in photothrombotic mouse model of medial prefrontal cortex ischemia. Neuropeptides 2018; 71:61-69. [PMID: 30054019 DOI: 10.1016/j.npep.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
Medial prefrontal cortex (mPFC) ischemia affects post-stroke cognitive outcomes. We aimed to investigate the effects of different doses and routes of cerebrolysin (CBL) on the structural synaptic plasticity and cognitive function after mPFC ischemia in mice. Thence, CBL (1, 2.5 ml/kg/i.p./daily) or (1 ml/kg/i.n./daily), were administrated in photothrombotic mouse model of mPFC ischemia for two weeks. Episodic and spatial memories were assessed by the What-Where-Which (WWWhich) and Barnes tasks. Growth-associated protein 43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the lesioned area using western blot analysis. Dendritic arbors, spine densities, and morphology were assessed via Golgi-Cox staining. Treatment with 2.5 ml/kg/i.p. and 1 ml/kg/i.n. doses attenuated mPFC ischemia-induced episodic and spatial memories impairment. Results showed an obvious increase in the GAP-43, PSD-95 and SYN levels and improvement in the structural synaptic indexes in lesioned area induced by the same doses and routes of CBL. In conclusion, we found that specific doses/routes of CBL have positive effects on the structural synaptic plasticity and cognitive outcomes after mPFC ischemia.
Collapse
Affiliation(s)
- Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Xia ZX, Shen ZC, Zhang SQ, Wang J, Nie TL, Deng Q, Chen JG, Wang F, Wu PF. De-palmitoylation by N-(tert-Butyl) hydroxylamine inhibits AMPAR-mediated synaptic transmission via affecting receptor distribution in postsynaptic densities. CNS Neurosci Ther 2018; 25:187-199. [PMID: 29911316 DOI: 10.1111/cns.12996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Palmitoylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) subunits or their "scaffold" proteins produce opposite effects on AMPAR surface delivery. Considering AMPARs have long been identified as suitable drug targets for central nervous system (CNS) disorders, targeting palmitoylation signaling to regulate AMPAR function emerges as a novel therapeutic strategy. However, until now, much less is known about the effect of palmitoylation-deficient state on AMPAR function. Herein, we set out to determine the effect of global de-palmitoylation on AMPAR surface expression and its function, using a special chemical tool, N-(tert-Butyl) hydroxylamine (NtBuHA). METHODS BS3 protein cross-linking, Western blot, immunoprecipitation, patch clamp, and biotin switch assay. RESULTS Bath application of NtBuHA (1.0 mM) reduced global palmitoylated proteins in the hippocampus of mice. Although NtBuHA (1.0 mM) did not affect the expression of ionotropic glutamate receptor subunits, it preferentially decreased the surface expression of AMPARs, not N-methyl-d-aspartate receptors (NMDARs). Notably, NtBuHA (1.0 mM) reduces AMPAR-mediated excitatory postsynaptic currents (mEPSCs) in the hippocampus. This effect may be largely due to the de-palmitoylation of postsynaptic density protein 95 (PSD95) and protein kinase A-anchoring proteins, both of which stabilized AMPAR synaptic delivery. Furthermore, we found that changing PSD95 palmitoylation by NtBuHA altered the association of PSD95 with stargazin, which interacted directly with AMPARs, but not NMDARs. CONCLUSION Our data suggest that the palmitoylation-deficient state initiated by NtBuHA preferentially reduces AMPAR function, which may potentially be used for the treatment of CNS disorders, especially infantile neuronal ceroid lipofuscinosis (Batten disease).
Collapse
Affiliation(s)
- Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Lei Nie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| |
Collapse
|
47
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Krishnan ML, Van Steenwinckel J, Schang AL, Yan J, Arnadottir J, Le Charpentier T, Csaba Z, Dournaud P, Cipriani S, Auvynet C, Titomanlio L, Pansiot J, Ball G, Boardman JP, Walley AJ, Saxena A, Mirza G, Fleiss B, Edwards AD, Petretto E, Gressens P. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun 2017; 8:428. [PMID: 28874660 PMCID: PMC5585205 DOI: 10.1038/s41467-017-00422-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Juliette Van Steenwinckel
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Jun Yan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Johanna Arnadottir
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Constance Auvynet
- Pierre and Marie Curie University, UMRS-1135, Sorbonne Paris Cité, F-75006, Paris, France
| | - Luigi Titomanlio
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
| | - Julien Pansiot
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - James P Boardman
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, Edinburgh, EH16 4TJ, UK
| | - Andrew J Walley
- Cell Biology and Genetics Research Centre, St. George's University of London, London, SW17 0RE, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Ghazala Mirza
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
- Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France.
- PremUP, F-75006, Paris, France.
| |
Collapse
|
49
|
Calcium as a Trojan horse in mental diseases-The role of PMCA and PMCA-interacting proteins in bipolar disorder and schizophrenia. Neurosci Lett 2017; 663:48-54. [PMID: 28780170 DOI: 10.1016/j.neulet.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023]
Abstract
Although first mentions about calcium disturbances in psychiatric diseases appeared more than 30 years ago, the most recent genomic and proteomic findings confirmed a significant role of Ca2+ and Ca2+-regulated pathways in development of neuropathological processes, including bipolar disorder and schizophrenia. Moreover, last decades have shown that due to multifactorial nature of both diseases, impairment in neuronal calcium homeostasis may depend not only on disturbed Ca2+ entry system, but also on altered extrusion system. A pivotal role in Ca2+ clearance mechanism is played by plasma membrane Ca2+-ATPase (PMCA), the enzyme responsible for returning the elevated levels of cytosolic Ca2+ back to the resting state. In this paper we summarize the current knowledge about the role of PMCA in bipolar disorder and schizophrenia pathologies, as well as the contribution of several proteins that by interaction with PMCA modify signal transduction mechanisms.
Collapse
|
50
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|